
IDL Version 5.4
September, 2000 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

IDL Reference
Guide

Restricted Rights Notice
The IDL® software program and the accompanying procedures, functions, and documenta-
tion described herein are sold under license agreement. Their use, duplication, and disclo-
sure are subject to the restrictions stated in the license agreement. Research Systems, Inc.,
reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty
Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of
the software, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages
suffered by the Licensee or any others resulting from use of the IDL software package or its
documentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, Research Systems, Inc. grants you a limited, non-
transferable license to reproduce this particular document provided such copies are for your
use only and are not sold or distributed to third parties. All such copies must contain the
title page and this notice page in their entirety.

Acknowledgments
IDL® is a registered trademark of Research Systems Inc., registered in the United States Patent and Trademark Office, for
the computer program described herein. Software ≡ Vision™ is a trademark of Research Systems, Inc.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permis-
sion.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright © 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

CDF Library
Copyright © 1999
National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

This product contains StoneTable™, by StoneTablet Publishing. All rights to StoneTable™ and its documentation are
retained by StoneTablet Publishing, PO Box 12665, Portland OR 97212-0665. Copyright © 1992-1997 StoneTablet Publish-
ing

WASTE text engine © 1993-1996 Marco Piovanelli

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents
Reference:
IDL Commands Reference ... 41
IDL Syntax ... 42

Elements of Syntax .. 43
Procedures ... 44
Functions ... 45
Arguments ... 45
Keywords ... 45

.COMPILE ... 48

.CONTINUE .. 49

.EDIT ... 50

.FULL_RESET_SESSION .. 51

.GO ... 52

.OUT .. 53

.RESET_SESSION .. 54
IDL Reference Guide 3

4

.RETURN .. 56

.RNEW ... 57

.RUN .. 59

.SKIP .. 61

.STEP ... 62

.STEPOVER .. 63

.TRACE ... 64
A_CORRELATE ... 65
ABS .. 67
ACOS ... 68
ADAPT_HIST_EQUAL .. 69
ALOG .. 71
ALOG10 .. 72
AMOEBA .. 73
ANNOTATE .. 77

Using the Annotation Widget .. 77
ARG_PRESENT .. 79
ARRAY_EQUAL .. 81
ARROW .. 82
ASCII_TEMPLATE .. 84
ASIN .. 86
ASSOC .. 87
ATAN .. 90
AXIS .. 91
BAR_PLOT ... 95
BEGIN...END .. 99
BESELI .. 101
BESELJ .. 103
BESELK .. 105
BESELY .. 107
BETA ... 109
BILINEAR ... 110
BIN_DATE .. 112
BINARY_TEMPLATE ... 113
BINDGEN ... 115
BINOMIAL ... 116
Contents IDL Reference Guide

5

BLAS_AXPY .. 118
BLK_CON ... 120
BOX_CURSOR ... 122

Using BOX_CURSOR .. 122
BREAK .. 124
BREAKPOINT .. 125
BROYDEN .. 128
BYTARR ... 131
BYTE ... 132
BYTEORDER .. 133

Note On IEEE to VAX Format Conversion .. 136
BYTSCL .. 137
C_CORRELATE ... 139
CALDAT ... 141
CALENDAR .. 144
CALL_EXTERNAL .. 145

Note On IEEE to VAX Format Conversion .. 151
String Parameters .. 152
Calling Convention .. 152
Portable .. 153

CALL_FUNCTION ... 159
CALL_METHOD .. 160
CALL_PROCEDURE ... 161
CASE ... 162
CATCH .. 164
CD .. 166
CDF Routines .. 169
CEIL ... 170
CHEBYSHEV .. 171
CHECK_MATH .. 172
CHISQR_CVF ... 178
CHISQR_PDF ... 179
CHOLDC ... 181
CHOLSOL ... 182
CINDGEN .. 184
CIR_3PNT ... 185
IDL Reference Guide Contents

6

CLOSE ... 187
CLUST_WTS .. 189
CLUSTER .. 191
COLOR_CONVERT ... 193
COLOR_QUAN .. 195

Using COLOR_QUAN ... 195
COLORMAP_APPLICABLE ... 199
COMFIT .. 200
COMMON ... 203
COMPILE_OPT .. 204
COMPLEX .. 207
COMPLEXARR .. 209
COMPLEXROUND .. 210
COMPUTE_MESH_NORMALS .. 211
COND .. 212
CONGRID ... 213
CONJ ... 216
CONSTRAINED_MIN ... 217
CONTINUE ... 224
CONTOUR .. 225

Smoothing Contours .. 225
CONVERT_COORD .. 238
CONVOL ... 241

Using CONVOL .. 241
COORD2TO3 .. 245
CORRELATE .. 247
COS .. 249
COSH ... 250
CRAMER .. 251
CREATE_STRUCT .. 253
CREATE_VIEW ... 255
CROSSP .. 258
CRVLENGTH ... 259
CT_LUMINANCE .. 261
CTI_TEST ... 263
CURSOR ... 265
Contents IDL Reference Guide

7

CURVEFIT .. 268
CV_COORD .. 272
CVTTOBM .. 274
CW_ANIMATE ... 276

Using CW_ANIMATE .. 276
CW_ANIMATE_GETP ... 281
CW_ANIMATE_LOAD .. 283

Example ... 284
CW_ANIMATE_RUN .. 285
CW_ARCBALL .. 287

Using CW_ARCBALL ... 287
CW_BGROUP ... 291
CW_CLR_INDEX ... 296
CW_COLORSEL .. 299

Using CW_COLORSEL ... 299
CW_DEFROI ... 301
CW_FIELD .. 305
CW_FILESEL .. 309
CW_FORM .. 313

Using CW_FORM ... 313
CW_FSLIDER ... 321

Using CW_FSLIDER .. 321
CW_LIGHT_EDITOR .. 325
CW_LIGHT_EDITOR_GET ... 329
CW_LIGHT_EDITOR_SET ... 332
CW_ORIENT .. 334
CW_PALETTE_EDITOR ... 336
CW_PALETTE_EDITOR_GET ... 342
CW_PALETTE_EDITOR_SET .. 343
CW_PDMENU .. 344
CW_RGBSLIDER ... 351

Using CW_RGBSLIDER .. 351
CW_TMPL .. 354
CW_ZOOM ... 355

Using CW_ZOOM .. 355
DBLARR ... 360
IDL Reference Guide Contents

8

DCINDGEN .. 361
DCOMPLEX ... 362
DCOMPLEXARR ... 364
DEFINE_KEY ... 365

Defining New Function Keys .. 372
DEFROI ... 374

Using DEFROI .. 374
DEFSYSV .. 376
DELETE_SYMBOL .. 378
DELLOG ... 379
DELVAR ... 380
DERIV ... 381
DERIVSIG ... 382
DETERM ... 383
DEVICE ... 385
DFPMIN .. 389
DIALOG_MESSAGE ... 392
DIALOG_PICKFILE .. 395
DIALOG_PRINTERSETUP ... 398
DIALOG_PRINTJOB ... 400
DIALOG_READ_IMAGE .. 402
DIALOG_WRITE_IMAGE .. 405
DIGITAL_FILTER .. 407
DILATE ... 409

Using DILATE .. 410
DINDGEN ... 414
DISSOLVE .. 415
DIST .. 416
DLM_LOAD ... 417
DLM_REGISTER ... 418
DO_APPLE_SCRIPT .. 419
DOC_LIBRARY ... 421
DOUBLE ... 424
DRAW_ROI .. 426
EFONT .. 428
EIGENQL .. 430
Contents IDL Reference Guide

9

EIGENVEC .. 433
ELMHES .. 435
EMPTY .. 436
ENABLE_SYSRTN .. 437

Special Cases ... 438
EOF .. 439

Using EOF with VMS Files .. 439
EOS_* Routines ... 441
ERASE ... 442
ERODE .. 444

Using ERODE ... 445
ERRORF .. 449
ERRPLOT .. 450
EXECUTE ... 452
EXIT .. 453
EXP .. 454
EXPAND ... 455
EXPAND_PATH ... 456

The Path Definition String .. 456
EXPINT ... 460
EXTRAC .. 462
EXTRACT_SLICE .. 464
F_CVF ... 468
F_PDF .. 469
FACTORIAL ... 471
FFT ... 473

Running Time .. 475
FILE_CHMOD .. 477
FILE_DELETE .. 481
FILE_EXPAND_PATH .. 483
FILE_MKDIR .. 485
FILE_TEST .. 486
FILE_WHICH .. 490
FILEPATH ... 491
FINDFILE .. 493
FINDGEN .. 495
IDL Reference Guide Contents

10
FINITE ... 496
FIX ... 498
FLICK .. 500
FLOAT .. 501
FLOOR .. 502
FLOW3 .. 504
FLTARR .. 506
FLUSH ... 507
FOR .. 508
FORMAT_AXIS_VALUES .. 509
FORWARD_FUNCTION ... 510
FREE_LUN ... 511
FSTAT ... 513
FULSTR .. 516
FUNCT .. 518
FUNCTION ... 519
FV_TEST ... 520
FX_ROOT ... 522
FZ_ROOTS .. 524
GAMMA .. 526
GAMMA_CT .. 527
GAUSS_CVF .. 528
GAUSS_PDF ... 529
GAUSS2DFIT ... 531

Procedure Used and Other Notes .. 531
GAUSSFIT .. 534
GAUSSINT .. 537
GET_DRIVE_LIST ... 538
GET_KBRD .. 539
GET_LUN ... 541
GET_SCREEN_SIZE .. 542
GET_SYMBOL ... 543
GETENV ... 544

Environment Variables Under VMS ... 544
Special Handling of the IDL_TMPDIR Environment Variable 545
The UNIX Environment .. 545
Contents IDL Reference Guide

11
GOTO .. 547
GRID_TPS ... 548
GRID3 .. 551
GS_ITER .. 554
H_EQ_CT .. 557
H_EQ_INT ... 558

Using the H_EQ_INT Interface .. 558
HANNING ... 559
HDF_* Routines .. 560
HDF_BROWSER .. 561

Graphical User Interface Menu Options ... 562
HDF_READ ... 565

Graphical User Interface Menu Options ... 566
HEAP_GC .. 569
HELP .. 571
HILBERT ... 578
HIST_2D .. 579
HIST_EQUAL ... 581
HISTOGRAM .. 584
HLS .. 590
HOUGH ... 592
HQR ... 600
HSV .. 602
IBETA .. 604
IDENTITY ... 606
IDL_Container Object Class .. 607
IDLanROI Object Class ... 608
IDLanROIGroup Object Class ... 609
IDLffDICOM Object Class .. 610
IDLffDXF Object Class ... 611
IDLffLanguageCat Object Class .. 612
IDLffShape Object Class ... 613
IDLgr* Object Classes ... 614
IF...THEN...ELSE .. 615
IGAMMA .. 616
IMAGE_CONT .. 619
IDL Reference Guide Contents

12
IMAGE_STATISTICS .. 620
IMAGINARY .. 623
INDGEN .. 624
INT_2D .. 626
INT_3D .. 629
INT_TABULATED ... 632
INTARR .. 634
INTERPOL .. 635
INTERPOLATE .. 637
INVERT ... 641
IOCTL .. 643
ISHFT .. 646
ISOCONTOUR .. 647
ISOSURFACE ... 650
JOURNAL ... 652
JULDAY .. 653
KEYWORD_SET .. 656
KRIG2D ... 657
KURTOSIS .. 661
KW_TEST ... 662
L64INDGEN .. 665
LABEL_DATE .. 666
LABEL_REGION ... 670
LADFIT ... 672
LAGUERRE .. 674
LEEFILT .. 676
LEGENDRE .. 678
LINBCG .. 681
LINDGEN .. 684
LINFIT ... 685
LINKIMAGE ... 688

VMS LINKIMAGE and LIB$FIND_IMAGE_SYMBOL 691
LIVE_Tools ... 694
LIVE_CONTOUR ... 695
LIVE_CONTROL ... 703
LIVE_DESTROY .. 706
Contents IDL Reference Guide

13
LIVE_EXPORT ... 708
LIVE_IMAGE ... 711
LIVE_INFO ... 718

Structure Tables for LIVE_INFO and LIVE CONTROL 719
LIVE_LINE ... 729
LIVE_LOAD ... 733
LIVE_OPLOT .. 734
LIVE_PLOT .. 739
LIVE_PRINT ... 747
LIVE_RECT .. 749
LIVE_STYLE .. 753
LIVE_SURFACE .. 760
LIVE_TEXT .. 768
LJLCT .. 772
LL_ARC_DISTANCE ... 773
LMFIT .. 775
LMGR .. 780
LNGAMMA .. 783
LNP_TEST .. 784
LOADCT ... 787
LOCALE_GET .. 789
LON64ARR ... 790
LONARR ... 791
LONG .. 792
LONG64 .. 793
LSODE ... 794
LU_COMPLEX ... 799
LUDC ... 801
LUMPROVE .. 803
LUSOL ... 805
M_CORRELATE .. 807
MACHAR .. 809

MACHAR Fields ... 809
MAKE_ARRAY .. 811
MAKE_DLL .. 814
MAP_2POINTS ... 820
IDL Reference Guide Contents

14
MAP_CONTINENTS .. 824
MAP_GRID ... 828
MAP_IMAGE .. 833
MAP_PATCH .. 837
MAP_PROJ_INFO .. 841
MAP_SET .. 843
MATRIX_MULTIPLY ... 854
MAX .. 856
MD_TEST ... 858
MEAN .. 860
MEANABSDEV .. 861
MEDIAN ... 863
MEMORY ... 865
MESH_CLIP .. 868
MESH_DECIMATE .. 870
MESH_ISSOLID ... 872
MESH_MERGE .. 873
MESH_NUMTRIANGLES ... 875
MESH_OBJ ... 876
MESH_SMOOTH ... 882
MESH_SURFACEAREA ... 884
MESH_VALIDATE .. 886
MESH_VOLUME ... 888
MESSAGE ... 889
MIN .. 891
MIN_CURVE_SURF .. 893
MK_HTML_HELP .. 898
MODIFYCT .. 901
MOMENT .. 903
MORPH_CLOSE .. 905
MORPH_DISTANCE ... 908
MORPH_GRADIENT ... 911
MORPH_HITORMISS .. 913
MORPH_OPEN ... 916
MORPH_THIN .. 919
MORPH_TOPHAT ... 921
Contents IDL Reference Guide

15
MPEG_CLOSE .. 923
MPEG_OPEN .. 924
MPEG_PUT ... 928
MPEG_SAVE .. 930
MSG_CAT_CLOSE .. 931
MSG_CAT_COMPILE ... 932
MSG_CAT_OPEN .. 934
MULTI ... 936
N_ELEMENTS .. 937
N_PARAMS .. 938
N_TAGS .. 939
NCDF_* Routines .. 940
NEWTON .. 941
NORM .. 944
OBJ_CLASS .. 946
OBJ_DESTROY .. 947
OBJ_ISA .. 948
OBJ_NEW ... 949
OBJ_VALID .. 951
OBJARR .. 953
ON_ERROR .. 954
ON_IOERROR .. 955
ONLINE_HELP ... 956
OPEN ... 959

Note On IEEE to VAX Format Conversion .. 969
OPLOT ... 971
OPLOTERR ... 974
P_CORRELATE .. 975
PARTICLE_TRACE ... 977
PCOMP .. 979
PLOT .. 983
PLOT_3DBOX .. 987
PLOT_FIELD .. 991
PLOTERR .. 993
PLOTS ... 994
PNT_LINE ... 997
IDL Reference Guide Contents

16
POINT_LUN ... 999
Use Of POINT_LUN On Compressed Files ... 999

POLAR_CONTOUR ... 1001
POLAR_SURFACE .. 1003
POLY ... 1005
POLY_2D .. 1006
POLY_AREA .. 1010
POLY_FIT ... 1011
POLYFILL .. 1015

Fill Methods .. 1015
POLYFILLV .. 1019
POLYSHADE .. 1021
POLYWARP ... 1025
POPD ... 1027
POWELL ... 1028
PRIMES ... 1031
PRINT/PRINTF ... 1032

Format Compatibility .. 1033
PRINTD ... 1035
PRO .. 1036
PROFILE ... 1037
PROFILER .. 1039
PROFILES ... 1041

Using PROFILES .. 1041
PROJECT_VOL .. 1043
PS_SHOW_FONTS .. 1046
PSAFM .. 1047
PSEUDO .. 1048
PTR_FREE .. 1050
PTR_NEW ... 1051
PTR_VALID .. 1052
PTRARR .. 1054
PUSHD .. 1055
QROMB ... 1056
QROMO .. 1058
QSIMP ... 1061
Contents IDL Reference Guide

17
QUERY_* Routines ... 1063
QUERY_BMP ... 1065
QUERY_DICOM .. 1066
QUERY_IMAGE ... 1068
QUERY_JPEG ... 1071
QUERY_PICT ... 1072
QUERY_PNG .. 1073
QUERY_PPM .. 1075
QUERY_SRF ... 1076
QUERY_TIFF .. 1077
QUERY_WAV .. 1079
R_CORRELATE ... 1080
R_TEST ... 1082
RADON ... 1084
RANDOMN ... 1093
RANDOMU ... 1098
RANKS .. 1103
RDPIX .. 1105

Using RDPIX .. 1105
READ/READF .. 1106

Format Compatibility .. 1108
READ_ASCII .. 1109
READ_BINARY ... 1112
READ_BMP .. 1114
READ_DICOM ... 1116
READ_IMAGE .. 1117
READ_INTERFILE .. 1119
READ_JPEG .. 1120
READ_PICT .. 1124
READ_PNG ... 1126
READ_PPM ... 1129
READ_SPR ... 1131
READ_SRF ... 1132
READ_SYLK .. 1134
READ_TIFF .. 1137
READ_WAV ... 1144
IDL Reference Guide Contents

18
READ_WAVE .. 1145
READ_X11_BITMAP .. 1147
READ_XWD ... 1149
READS .. 1150
READU .. 1152
REBIN ... 1155

Rules Used by REBIN .. 1155
Endpoint Effects When Expanding ... 1156

RECALL_COMMANDS .. 1158
RECON3 .. 1159

Using RECON3 ... 1159
REDUCE_COLORS .. 1164
REFORM ... 1165
REGRESS .. 1167
REPEAT...UNTIL ... 1171
REPLICATE .. 1172
REPLICATE_INPLACE ... 1173
RESOLVE_ALL .. 1175
RESOLVE_ROUTINE .. 1177
RESTORE .. 1179

Note to VMS Users ... 1179
RETALL .. 1181
RETURN ... 1182
REVERSE .. 1184
REWIND ... 1186
RK4 .. 1187
ROBERTS ... 1189
ROT ... 1191
ROTATE .. 1194
ROUND ... 1196
ROUTINE_INFO .. 1198
RS_TEST ... 1201
S_TEST .. 1203
SAVE ... 1205
SAVGOL ... 1208
SCALE3 ... 1212
Contents IDL Reference Guide

19
SCALE3D .. 1214
SEARCH2D ... 1215
SEARCH3D ... 1218
SET_PLOT .. 1221
SET_SHADING .. 1223
SET_SYMBOL .. 1225
SETENV .. 1226
SETLOG .. 1227
SETUP_KEYS ... 1229
SFIT ... 1232
SHADE_SURF .. 1234

Restrictions .. 1234
SHADE_SURF_IRR ... 1239
SHADE_VOLUME ... 1241
SHIFT .. 1244
SHOW3 .. 1246
SHOWFONT ... 1248
SIN ... 1250
SINDGEN .. 1251
SINH .. 1252
SIZE ... 1253

IDL Type Codes .. 1253
SKEWNESS .. 1257
SKIPF ... 1258
SLICER3 .. 1259

The SLICER3 Graphical User Interface ... 1260
Operational Details .. 1273

SLIDE_IMAGE ... 1277
SMOOTH ... 1281
SOBEL ... 1283
SOCKET .. 1285
SORT ... 1289
SPAWN .. 1291
SPH_4PNT ... 1298
SPH_SCAT .. 1300
SPHER_HARM ... 1303
IDL Reference Guide Contents

20
SPL_INIT .. 1306
SPL_INTERP .. 1308
SPLINE .. 1310
SPLINE_P .. 1312
SPRSAB .. 1314
SPRSAX .. 1316
SPRSIN .. 1318
SPRSTP ... 1321
SQRT ... 1322
STANDARDIZE ... 1323
STDDEV .. 1325
STOP .. 1326
STRARR .. 1327
STRCMP .. 1328
STRCOMPRESS ... 1330
STREAMLINE .. 1331
STREGEX ... 1333
STRETCH .. 1337
STRING ... 1339

Differences Between STRING and PRINT .. 1340
STRJOIN ... 1342
STRLEN .. 1343
STRLOWCASE ... 1344
STRMATCH .. 1345
STRMESSAGE ... 1348
STRMID .. 1349
STRPOS ... 1351
STRPUT .. 1353
STRSPLIT ... 1355
STRTRIM .. 1359
STRUCT_ASSIGN .. 1361
STRUCT_HIDE .. 1363
STRUPCASE ... 1365
SURFACE ... 1366

Restrictions .. 1366
SURFR ... 1371
Contents IDL Reference Guide

21
SVDC ... 1372
SVDFIT .. 1375
SVSOL ... 1380
SWAP_ENDIAN ... 1382
SWITCH .. 1383
SYSTIME .. 1385
T_CVF ... 1388
T_PDF .. 1389
T3D .. 1391
TAG_NAMES ... 1394
TAN ... 1396
TANH .. 1397
TAPRD .. 1398
TAPWRT ... 1399
TEK_COLOR .. 1400
TEMPORARY ... 1401
TETRA_CLIP .. 1402
TETRA_SURFACE ... 1404
TETRA_VOLUME .. 1405
THIN .. 1407
THREED .. 1409
TIME_TEST2 .. 1410
TIMEGEN .. 1411
TM_TEST .. 1416
TOTAL .. 1418
TRACE .. 1421
TrackBall Object .. 1422
TRANSPOSE ... 1423
TRI_SURF ... 1425
TRIANGULATE ... 1429
TRIGRID ... 1432
TRIQL .. 1440
TRIRED ... 1442
TRISOL .. 1443
TRNLOG ... 1445
TS_COEF ... 1447
IDL Reference Guide Contents

22
TS_DIFF .. 1449
TS_FCAST .. 1451
TS_SMOOTH .. 1453
TV .. 1455
TVCRS .. 1459
TVLCT .. 1461
TVRD .. 1464

Unexpected Results Using TVRD with X Windows .. 1465
TVSCL ... 1467
UINDGEN ... 1469
UINT .. 1470
UINTARR .. 1471
UL64INDGEN ... 1472
ULINDGEN ... 1473
ULON64ARR .. 1474
ULONARR .. 1475
ULONG ... 1476
ULONG64 ... 1477
UNIQ ... 1478
USERSYM .. 1480
VALUE_LOCATE .. 1482
VARIANCE ... 1484
VAX_FLOAT .. 1485
VECTOR_FIELD .. 1487
VEL .. 1488
VELOVECT .. 1490
VERT_T3D .. 1492
VOIGT ... 1494
VORONOI ... 1496
VOXEL_PROJ .. 1498
WAIT ... 1503
WARP_TRI ... 1504
WATERSHED ... 1506
WDELETE .. 1508
WEOF .. 1509
WF_DRAW ... 1510
Contents IDL Reference Guide

23
WHERE ... 1513
WHILE...DO .. 1517
WIDGET_BASE .. 1518

Keywords to WIDGET_CONTROL ... 1535
Keywords to WIDGET_INFO .. 1535
Exclusive And Non-Exclusive Bases .. 1535
Positioning Child Widgets Within a Base ... 1536
Positioning Top-Level Bases ... 1536
Iconizing, Layering, and Destroying Groups of Top-Level Bases 1536
Events .. 1538

WIDGET_BUTTON .. 1540
Keywords to WIDGET_CONTROL ... 1547
Keywords to WIDGET_INFO .. 1547
Exclusive And Non-Exclusive Bases .. 1547
Events Returned by Button Widgets ... 1547
Bitmap Button Labels .. 1547

WIDGET_CONTROL ... 1549
WIDGET_DRAW .. 1578

Keywords to WIDGET_CONTROL ... 1587
Keywords to WIDGET_INFO .. 1587
Widget Events Returned by Draw Widgets .. 1587
Backing Store .. 1589

WIDGET_DROPLIST ... 1591
Keywords to WIDGET_CONTROL ... 1596
Keywords to WIDGET_INFO .. 1596
Widget Events Returned by Droplist Widgets .. 1597

WIDGET_EVENT ... 1598
Event Processing ... 1599
Events .. 1600

WIDGET_INFO .. 1602
WIDGET_LABEL ... 1614

Keywords to WIDGET_CONTROL ... 1619
Keywords to WIDGET_INFO .. 1619
Widget Events Returned by Label Widgets .. 1619

WIDGET_LIST ... 1620
Keywords to WIDGET_CONTROL ... 1626
IDL Reference Guide Contents

24
Keywords to WIDGET_INFO .. 1626
Widget Events Returned by List Widgets ... 1626

WIDGET_SLIDER .. 1628
Keywords to WIDGET_CONTROL ... 1634
Keywords to WIDGET_INFO .. 1634
Slider Widget Events ... 1634
Known Implementation Problems ... 1635

WIDGET_TABLE ... 1636
Note on Table Sizing ... 1636
Keywords to WIDGET_CONTROL ... 1646
Keywords to WIDGET_INFO .. 1647
Widget Events Returned by Table Widgets .. 1647

WIDGET_TEXT ... 1651
Keywords to WIDGET_CONTROL ... 1658
Keywords to WIDGET_INFO .. 1658
Text Widget Events ... 1658

WINDOW .. 1661
WRITE_BMP .. 1665
WRITE_IMAGE .. 1667
WRITE_JPEG .. 1669
WRITE_NRIF .. 1672
WRITE_PICT .. 1674
WRITE_PNG ... 1675
WRITE_PPM ... 1678
WRITE_SPR .. 1679
WRITE_SRF .. 1680
WRITE_SYLK .. 1682
WRITE_TIFF .. 1684
WRITE_WAV ... 1690
WRITE_WAVE ... 1691
WRITEU .. 1693
WSET .. 1695
WSHOW .. 1696
WTN .. 1697
XBM_EDIT ... 1701
XDISPLAYFILE ... 1703
Contents IDL Reference Guide

25
XDXF ... 1706
Using XDXF .. 1707

XFONT .. 1710
XINTERANIMATE .. 1711

Using XINTERANIMATE ... 1711
XLOADCT .. 1718
XMANAGER .. 1721

Warning ... 1725
A Note About Blocking in XMANAGER .. 1725

XMNG_TMPL ... 1729
XMTOOL .. 1730
XOBJVIEW ... 1731

Using XOBJVIEW .. 1735
XPALETTE ... 1739

Using the XPALETTE Interface ... 1740
A Note about the Colors Used in the Interface ... 1741

XPCOLOR ... 1743
XPLOT3D .. 1744

Using XPLOT3D ... 1748
XREGISTERED .. 1751
XROI .. 1753

Using XROI ... 1758
XSQ_TEST .. 1762
XSURFACE ... 1764
XVAREDIT ... 1766
XVOLUME .. 1767

Using XVOLUME .. 1770
The XVOLUME Interface ... 1771

XVOLUME_ROTATE .. 1773
XVOLUME_WRITE_IMAGE .. 1775
XYOUTS ... 1776

Scaled Hardware Fonts .. 1778
ZOOM .. 1779

Using ZOOM ... 1779
Using ZOOM with Draw Widgets .. 1779
IDL Reference Guide Contents

26
ZOOM_24 .. 1781
Using ZOOM_24 .. 1781
Using ZOOM_24 with Draw Widgets .. 1781

Appendix A:
IDL Object Class & Method Reference .. 1783
Using this Appendix .. 1784

Syntax .. 1784
Arguments ... 1785
Creating Objects from the Graphics Class Library ... 1785

IDL_Container ... 1787
IDL_Container::Add ... 1788
IDL_Container::Cleanup ... 1789
IDL_Container::Count .. 1790
IDL_Container::Get .. 1791
IDL_Container::Init ... 1792
IDL_Container::IsContained ... 1793
IDL_Container::Move ... 1794
IDL_Container::Remove ... 1795

IDLanROI .. 1796
IDLanROI::AppendData ... 1798
IDLanROI::Cleanup .. 1800
IDLanROI::ComputeGeometry ... 1801
IDLanROI::ComputeMask .. 1803
IDLanROI::ContainsPoints ... 1806
IDLanROI::GetProperty .. 1808
IDLanROI::Init .. 1810
IDLanROI::RemoveData .. 1813
IDLanROI::ReplaceData ... 1814
IDLanROI::Rotate ... 1817
IDLanROI::Scale ... 1818
IDLanROI::SetProperty .. 1819
IDLanROI::Translate .. 1820

IDLanROIGroup .. 1821
IDLanROIGroup::Add .. 1823
IDLanROIGroup::Cleanup .. 1824
Contents IDL Reference Guide

27
IDLanROIGroup::ComputeMask .. 1825
IDLanROIGroup::ComputeMesh .. 1828
IDLanROIGroup::ContainsPoints ... 1830
IDLanROIGroup::GetProperty .. 1832
IDLanROIGroup::Init .. 1834
IDLanROIGroup::Rotate ... 1835
IDLanROIGroup::Scale ... 1836
IDLanROIGroup::Translate .. 1837

IDLffDICOM ... 1838
IDL DICOM v3.0 Conformance Summary ... 1840
IDLffDICOM::Cleanup ... 1844
IDLffDICOM::DumpElements ... 1845
IDLffDICOM::GetChildren .. 1846
IDLffDICOM::GetDescription .. 1847
IDLffDICOM::GetElement ... 1849
IDLffDICOM::GetGroup .. 1851
IDLffDICOM::GetLength ... 1853
IDLffDICOM::GetParent .. 1854
IDLffDICOM::GetPreamble ... 1855
IDLffDICOM::GetReference .. 1856
IDLffDICOM::GetValue ... 1858
IDLffDICOM::GetVR ... 1861
IDLffDICOM::Init ... 1863
IDLffDICOM::Read .. 1864
IDLffDICOM::Reset ... 1865

IDLffDXF .. 1866
IDLffDXF::Cleanup .. 1868
IDLffDXF::GetContents ... 1869
IDLffDXF::GetEntity .. 1872
Fields Common to all Structures ... 1872
Structure Formats .. 1874
IDLffDXF::GetPalette ... 1883
IDLffDXF::Init .. 1884
IDLffDXF::PutEntity .. 1885
IDLffDXF::Read ... 1886
IDLffDXF::RemoveEntity .. 1887
IDL Reference Guide Contents

28
IDLffDXF::Reset .. 1888
IDLffDXF::SetPalette ... 1889
IDLffDXF::Write .. 1890

IDLffLanguageCat ... 1891
IDLffLanguageCat::IsValid .. 1892
IDLffLanguageCat::Query .. 1893
IDLffLanguageCat::SetCatalog .. 1894

IDLffShape .. 1895
Overview ... 1896
Accessing Shapefiles ... 1901
Creating New Shapefiles ... 1903
Updating Existing Shapefiles .. 1904
IDLffShape::AddAttribute .. 1906
IDLffShape::Cleanup .. 1908
IDLffShape::Close .. 1909
IDLffShape::DestroyEntity ... 1910
IDLffShape::GetAttributes .. 1911
IDLffShape::GetEntity .. 1913
IDLffShape::GetProperty .. 1915
IDLffShape::Init .. 1919
IDLffShape::Open ... 1921
IDLffShape::PutEntity .. 1922
IDLffShape::SetAttributes .. 1924

IDLgrAxis .. 1927
IDLgrAxis::Cleanup .. 1928
IDLgrAxis::GetCTM ... 1929
IDLgrAxis::GetProperty ... 1931
IDLgrAxis::Init ... 1933
IDLgrAxis::SetProperty .. 1945

IDLgrBuffer ... 1946
IDLgrBuffer::Cleanup ... 1948
IDLgrBuffer::Draw ... 1949
IDLgrBuffer::Erase ... 1950
IDLgrBuffer::GetContiguousPixels .. 1951
IDLgrBuffer::GetDeviceInfo .. 1952
IDLgrBuffer::GetFontnames ... 1954
Contents IDL Reference Guide

29
IDLgrBuffer::GetProperty ... 1955
IDLgrBuffer::GetTextDimensions .. 1956
IDLgrBuffer::Init ... 1957
IDLgrBuffer::PickData .. 1960
IDLgrBuffer::Read .. 1962
IDLgrBuffer::Select ... 1963
IDLgrBuffer::SetProperty ... 1965

IDLgrClipboard .. 1966
IDLgrClipboard::Cleanup ... 1967
IDLgrClipboard::Draw .. 1968
IDLgrClipboard::GetContiguousPixels ... 1970
IDLgrClipboard::GetDeviceInfo ... 1971
IDLgrClipboard::GetFontnames ... 1973
IDLgrClipboard::GetProperty ... 1974
IDLgrClipboard::GetTextDimensions ... 1975
IDLgrClipboard::Init ... 1976
IDLgrClipboard::SetProperty .. 1979

IDLgrColorbar ... 1980
IDLgrColorbar::Cleanup ... 1981
IDLgrColorbar::ComputeDimensions ... 1982
IDLgrColorbar::GetProperty ... 1983
IDLgrColorbar::Init ... 1985
IDLgrColorbar::SetProperty .. 1991

IDLgrContour .. 1992
IDLgrContour::Cleanup .. 1993
IDLgrContour::GetCTM ... 1994
IDLgrContour::GetProperty .. 1996
IDLgrContour::Init .. 1998
IDLgrContour::SetProperty ... 2006

IDLgrFont .. 2007
IDLgrFont::Cleanup .. 2008
IDLgrFont::GetProperty .. 2009
IDLgrFont::Init .. 2010
IDLgrFont::SetProperty ... 2012

IDLgrImage .. 2013
IDLgrImage::Cleanup ... 2015
IDL Reference Guide Contents

30
IDLgrImage::GetCTM .. 2016
IDLgrImage::GetProperty ... 2018
IDLgrImage::Init ... 2020
IDLgrImage::SetProperty .. 2027

IDLgrLegend ... 2028
IDLgrLegend::Cleanup ... 2030
IDLgrLegend::ComputeDimensions ... 2031
IDLgrLegend::GetProperty ... 2032
IDLgrLegend::Init ... 2034
IDLgrLegend::SetProperty .. 2040

IDLgrLight ... 2041
IDLgrLight::Cleanup ... 2042
IDLgrLight::GetCTM ... 2043
IDLgrLight::GetProperty .. 2045
IDLgrLight::Init .. 2046
IDLgrLight::SetProperty ... 2050

IDLgrModel ... 2051
IDLgrModel::Add ... 2053
IDLgrModel::Cleanup ... 2054
IDLgrModel::Draw ... 2055
IDLgrModel::GetByName .. 2056
IDLgrModel::GetCTM .. 2057
IDLgrModel::GetProperty ... 2059
IDLgrModel::Init ... 2060
IDLgrModel::Reset ... 2062
IDLgrModel::Rotate .. 2063
IDLgrModel::Scale ... 2064
IDLgrModel::SetProperty ... 2065
IDLgrModel::Translate ... 2066

IDLgrMPEG .. 2067
Subclasses ... 2067
IDLgrMPEG::Cleanup .. 2068
IDLgrMPEG::GetProperty .. 2069
IDLgrMPEG::Init .. 2070
IDLgrMPEG::Put .. 2075
IDLgrMPEG::Save .. 2076
Contents IDL Reference Guide

31
IDLgrMPEG::SetProperty ... 2077
IDLgrPalette ... 2078

IDLgrPalette::Cleanup ... 2079
IDLgrPalette::GetRGB .. 2080
IDLgrPalette::GetProperty .. 2081
IDLgrPalette::Init .. 2082
IDLgrPalette::LoadCT ... 2085
IDLgrPalette::NearestColor ... 2086
IDLgrPalette::SetRGB ... 2087
IDLgrPalette::SetProperty ... 2088

IDLgrPattern .. 2089
IDLgrPattern::Cleanup .. 2090
IDLgrPattern::GetProperty .. 2091
IDLgrPattern::Init .. 2092
IDLgrPattern:SetProperty .. 2094

IDLgrPlot ... 2095
IDLgrPlot::Cleanup ... 2096
IDLgrPlot::GetCTM .. 2097
IDLgrPlot::GetProperty ... 2099
IDLgrPlot::Init ... 2101
IDLgrPlot::SetProperty ... 2107

IDLgrPolygon .. 2108
IDLgrPolygon::Cleanup .. 2109
IDLgrPolygon::GetCTM ... 2110
IDLgrPolygon::GetProperty .. 2112
IDLgrPolygon::Init .. 2114
IDLgrPolygon::SetProperty ... 2123

IDLgrPolyline .. 2124
Subclasses .. 2124
IDLgrPolyline::Cleanup .. 2125
IDLgrPolyline::GetCTM ... 2126
IDLgrPolyline::GetProperty .. 2128
IDLgrPolyline::Init .. 2130
IDLgrPolyline::SetProperty ... 2136

IDLgrPrinter ... 2137
IDLgrPrinter::Cleanup ... 2138
IDL Reference Guide Contents

32
IDLgrPrinter::Draw ... 2139
IDLgrPrinter::GetContiguousPixels .. 2140
IDLgrPrinter::GetFontnames .. 2141
IDLgrPrinter::GetProperty .. 2142
IDLgrPrinter::GetTextDimensions ... 2144
IDLgrPrinter::Init .. 2145
IDLgrPrinter::NewDocument ... 2149
IDLgrPrinter::NewPage .. 2150
IDLgrPrinter::SetProperty ... 2151

IDLgrROI .. 2152
IDLgrROI::Cleanup .. 2154
IDLgrROI::GetProperty .. 2155
IDLgrROI::Init .. 2157
IDLgrROI::PickVertex .. 2162
IDLgrROI::SetProperty ... 2163

IDLgrROIGroup .. 2164
IDLgrROIGroup::Add ... 2166
IDLgrROIGroup::Cleanup .. 2167
IDLgrROIGroup::GetProperty .. 2168
IDLgrROIGroup::Init .. 2170
IDLgrROIGroup::PickRegion ... 2172
IDLgrROIGroup::SetProperty ... 2173

IDLgrScene .. 2174
IDLgrScene::Add .. 2175
IDLgrScene::Cleanup .. 2176
IDLgrScene::GetByName ... 2177
IDLgrScene::GetProperty ... 2178
IDLgrScene::Init ... 2179
IDLgrScene::SetProperty .. 2181

IDLgrSurface ... 2182
IDLgrSurface::Cleanup ... 2183
IDLgrSurface::GetCTM .. 2184
IDLgrSurface::GetProperty ... 2186
IDLgrSurface::Init ... 2188
IDLgrSurface::SetProperty ... 2198
Contents IDL Reference Guide

33
IDLgrSymbol ... 2199
IDLgrSymbol::Cleanup ... 2200
IDLgrSymbol::GetProperty ... 2201
IDLgrSymbol::Init ... 2202
IDLgrSymbol::SetProperty ... 2205

IDLgrTessellator .. 2206
IDLgrTessellator::AddPolygon ... 2207
IDLgrTessellator::Cleanup .. 2209
IDLgrTessellator::Init .. 2210
IDLgrTessellator::Reset .. 2211
IDLgrTessellator::Tessellate ... 2212

IDLgrText .. 2213
IDLgrText::Cleanup .. 2214
IDLgrText::GetCTM ... 2215
IDLgrText::GetProperty .. 2217
IDLgrText::Init .. 2219
IDLgrText::SetProperty ... 2225

IDLgrView ... 2226
IDLgrView::Add ... 2227
IDLgrView::Cleanup ... 2228
IDLgrView::GetByName .. 2229
IDLgrView::GetProperty ... 2230
IDLgrView::Init ... 2231
IDLgrView::SetProperty ... 2235

IDLgrViewgroup .. 2236
IDLgrViewgroup::Add .. 2238
IDLgrViewgroup::Cleanup ... 2239
IDLgrViewgroup::GetByName ... 2240
IDLgrViewgroup::GetProperty ... 2241
IDLgrViewgroup::Init ... 2242
IDLgrViewgroup::SetProperty .. 2244

IDLgrVolume ... 2245
IDLgrVolume::Cleanup ... 2246
IDLgrVolume::ComputeBounds ... 2247
IDLgrVolume::GetCTM ... 2248
IDLgrVolume::GetProperty .. 2250
IDL Reference Guide Contents

34
IDLgrVolume::Init .. 2252
IDLgrVolume::PickVoxel ... 2260
IDLgrVolume::SetProperty ... 2261

IDLgrVRML .. 2262
IDLgrVRML::Cleanup .. 2265
IDLgrVRML::Draw .. 2266
IDLgrVRML::GetDeviceInfo ... 2267
IDLgrVRML::GetFontnames .. 2269
IDLgrVRML::GetProperty ... 2270
IDLgrVRML::GetTextDimensions ... 2271
IDLgrVRML::Init ... 2272
IDLgrVRML::SetProperty .. 2275

IDLgrWindow .. 2276
IDLgrWindow::Cleanup ... 2278
IDLgrWindow::Draw .. 2279
IDLgrWindow::Erase .. 2280
IDLgrWindow::GetContiguousPixels ... 2281
IDLgrWindow::GetDeviceInfo ... 2282
IDLgrWindow::GetFontnames ... 2284
IDLgrWindow::GetProperty ... 2285
IDLgrWindow::GetTextDimensions ... 2287
IDLgrWindow::Iconify ... 2288
IDLgrWindow::Init ... 2289
IDLgrWindow::Pickdata ... 2294
IDLgrWindow::Read ... 2296
IDLgrWindow::Select ... 2297
IDLgrWindow::SetCurrentCursor ... 2299
IDLgrWindow::SetProperty .. 2301
IDLgrWindow::Show .. 2302

TrackBall ... 2303
TrackBall::Init ... 2304
Trackball::Reset .. 2306
TrackBall::Update ... 2307
Contents IDL Reference Guide

35
Appendix B:
IDL Graphics Devices ... 2309
Supported Devices ... 2310
Keywords Accepted by the IDL Devices ... 2311
Window Systems ... 2351

Backing Store .. 2351
Image Display On Monochrome Devices ... 2353

Printing Graphics Output Files .. 2354
Setting Up The Printer ... 2355
Positioning Graphics Output ... 2356
Image Background Color .. 2356

The CGM Device ... 2357
Abilities and Limitations ... 2357

The HP-GL Device .. 2359
Abilities And Limitations .. 2360
HP-GL Linestyles .. 2360

The LJ Device .. 2361
LJ Driver Strengths ... 2362
LJ Driver Limitations .. 2362
LJ Suggestions ... 2363

The Macintosh Display Device .. 2364
The Metafile Display Device ... 2365
The Null Display Device ... 2367
The PCL Device ... 2368
The Printer Device ... 2370
The PostScript Device .. 2371

Using PostScript Fonts .. 2372
Color PostScript .. 2372
PostScript Positioning ... 2374
Importing IDL Plots into Other Documents .. 2378

The Regis Terminal Device ... 2383
Defaults for Regis Devices .. 2383
Regis Limitations .. 2383

The Tektronix Device .. 2384
The DEVICE Procedure For Tektronix Terminals ... 2384
Tektronix Limitations .. 2384
IDL Reference Guide Contents

36
Tektronix Device Limitations ... 2385
The Microsoft Windows Device .. 2386
The X Windows Device ... 2387

X Windows Visuals ... 2387
Using Color Under X .. 2390
Using Pixmaps .. 2392
Setting the X Window Defaults .. 2394

The Z-Buffer Device .. 2395
Reading and Writing Buffers .. 2396
Z-Axis Scaling .. 2396
Polyfill Procedure .. 2396
Examples Using the Z-Buffer ... 2397

Appendix C:
Graphics Keywords .. 2401

BACKGROUND ... 2402
CHANNEL .. 2402
CHARSIZE ... 2403
CHARTHICK ... 2403
CLIP .. 2403
COLOR ... 2404
DATA .. 2404
DEVICE .. 2404
FONT .. 2405
LINESTYLE ... 2405
NOCLIP .. 2406
NODATA .. 2406
NOERASE .. 2407
NORMAL ... 2407
ORIENTATION .. 2407
POSITION ... 2407
PSYM .. 2408
SUBTITLE .. 2409
SYMSIZE .. 2409
T3D ... 2409
THICK ... 2410
Contents IDL Reference Guide

37
TICKLEN .. 2410
TITLE .. 2410
[XYZ]CHARSIZE ... 2411
[XYZ]GRIDSTYLE .. 2411
[XYZ]MARGIN .. 2411
[XYZ]MINOR ... 2411
[XYZ]RANGE .. 2411
[XYZ]STYLE .. 2412
[XYZ]THICK .. 2412
[XYZ]TICK_GET ... 2412
[XYZ]TICKFORMAT .. 2413
[XYZ]TICKINTERVAL ... 2415
[XYZ]TICKLAYOUT .. 2416
[XYZ]TICKLEN ... 2416
[XYZ]TICKNAME ... 2417
[XYZ]TICKS ... 2417
[XYZ]TICKUNITS ... 2417
[XYZ]TICKV .. 2418
[XYZ]TITLE ... 2418
Z ... 2419
ZVALUE ... 2419

Appendix D:
System Variables .. 2421
What Are System Variables? ... 2422
Constant System Variables .. 2423

!DPI ... 2423
!DTOR ... 2423
!MAP ... 2423
!PI .. 2423
!RADEG .. 2423
!VALUES .. 2423

Error Handling System Variables .. 2425
!ERR .. 2425
!ERROR_STATE .. 2425
!ERROR .. 2426
IDL Reference Guide Contents

38
!ERR_STRING ... 2426
!EXCEPT .. 2426
!MOUSE ... 2427
!MSG_PREFIX ... 2427
!SYSERROR ... 2427
!SYSERR_STRING .. 2428
!WARN ... 2428

IDL Environment System Variables .. 2429
!DIR ... 2429
!DLM_PATH .. 2429
!EDIT_INPUT ... 2429
!HELP_PATH ... 2430
!JOURNAL ... 2430
!MAKE_DLL .. 2430
!MORE .. 2432
!PATH ... 2433
!PROMPT ... 2435
!QUIET ... 2435
!VERSION .. 2436

Graphics System Variables .. 2437
!C System Variable ... 2437
!D System Variable ... 2437
!ORDER System Variable .. 2440
!P System Variable .. 2440
!X, !Y, !Z System Variables ... 2444

Appendix E:
IDL Operators .. 2453
Mathematical Operators ... 2454
Minimum and Maximum Operators .. 2455
Matrix Operators .. 2456
Boolean Operators ... 2457
Relational Operators .. 2459
Other Operators ... 2460
Operator Precedence .. 2461
Contents IDL Reference Guide

39
Appendix F:
Special Characters ... 2463

Exclamation Point (!) .. 2464
Apostrophe (') .. 2464
Semicolon (;) ... 2465
Dollar Sign ($) ... 2465
Quotation Mark (") .. 2465
Period (.) .. 2465
Ampersand (&) .. 2466
Colon (:) .. 2466
Asterisk (*) .. 2466
At Sign (@) ... 2466
Question Mark (?) ... 2467

Appendix G:
Reserved Words .. 2469

Appendix H:
Fonts .. 2471
Overview .. 2472
Fonts in IDL Direct vs. Object Graphics ... 2473

IDL Direct Graphics .. 2473
IDL Object Graphics ... 2473

About Vector Fonts .. 2474
Using Vector Fonts .. 2474
Specifying Font Size ... 2474
ISO Latin 1 Encoding .. 2475
Customizing the Vector Fonts ... 2476

About TrueType Fonts ... 2477
Using TrueType Fonts ... 2478
Specifying Font Size ... 2478
Using Embedded Formatting Commands ... 2479
IDL TrueType Font Resource Files ... 2479
Adding Your Own Fonts ... 2480
Where IDL Searches for Fonts .. 2481

About Device Fonts ... 2482
Which Device Fonts Are Available? ... 2482
IDL Reference Guide Contents

40
Using Device Fonts ... 2483
Fonts and the PostScript Device ... 2485

Choosing a Font Type .. 2489
Appearance .. 2489
Three-Dimensional Transformations .. 2489
Portability .. 2489
Computational Time .. 2490
Flexibility .. 2490
Print Quality .. 2490

Embedded Formatting Commands .. 2491
Changing Fonts within a String ... 2491
Positioning Commands ... 2493

Formatting Command Examples ... 2494
A Complex Equation ... 2495
Vector-Drawn Font Example .. 2496

TrueType Font Samples ... 2498
Vector Font Samples .. 2501

Appendix I:
Obsolete Routines .. 2511
What Are Obsolete Routines? ... 2512
Routines Obsoleted in IDL 5.4 .. 2513
Routines Obsoleted in IDL 5.3 .. 2514
Routines Obsoleted in IDL 5.2 .. 2515
Routines Obsoleted in IDL 5.1 .. 2516
Routines Obsoleted in IDL 5.0 .. 2517
Routines Obsoleted in IDL 4.0 or Earlier .. 2518
Obsolete System Variables .. 2524

Index ... 2527
Contents IDL Reference Guide

Reference:

IDL Commands
Reference
This reference is a complete listing of all built-in IDL functions, procedures,
statements, executive commands, and objects, collectively referred to as
“commands.” Every IDL language element that can be used either at the command
line or in a program is listed alphabetically. A description of each routine follows its
name.

Note
Descriptions of Scientific Data Formats routines (CDF_*, EOS_*, HDF_*, and
NCDF_* routines) can be found in the Scientific Data Formats book.

Routines written in the IDL language are noted as such, and the location of the .pro
file within the IDL distribution is specified. You may wish to inspect the IDL source
code for some of these routines to gain further insight into their inner workings.

Conventions used in this reference guide are described below.
IDL Reference Guide 41

42
IDL Syntax

The following table lists the elements used in IDL syntax listings:

Element Description

[] (Square brackets) Indicates that the contents are optional. Do not include the
brackets in your call.

[] (Italicized square
brackets)

Indicates that the square brackets are part of the statement
(used to define an array).

Argument Arguments are shown in italics, and must be specified in
the order listed.

KEYWORD Keywords are all caps, and can be specified in any order.
For functions, all arguments and keywords must be
contained within parentheses.

/KEYWORD Indicates a boolean keyword.

Italics Indicates arguments, expressions, or statements for which
you must provide values.

{ } (Braces) • Indicates that you must choose one of the values they
contain

• Encloses a list of possible values, separated by vertical
lines (|)

• Encloses useful information about a keyword

• Defines an IDL structure (this is the only case in which
the braces are included in the call).

| (Vertical lines) Separates multiple values or keywords.

[, Value1, ... , Valuen] Indicates that any number of values can be specified.

[, Value1, ... , Value8] Indicates the maximum number of values that can be
specified.

Table 1: Elements of IDL Syntax
IDL Syntax IDL Reference Guide

43
Elements of Syntax

Square Brackets ([])

• Content between square brackets is optional. Pay close attention to the
grouping of square brackets. Consider the following examples:

ROUTINE_NAME, Value1 [, Value2] [, Value3]: You must include Value1.
You do not have to include Value2 or Value3. Value2 and Value3 can be
specified independently.

ROUTINE_NAME, Value1 [, Value2, Value3]: You must include Value1. You
do not have to include Value2 or Value3, but you must include both Value2 and
Value3, or neither.

ROUTINE_NAME [, Value1 [, Value2]]: You can specify Value1 without
specifying Value2, but if you specify Value2, you must also specify Value1.

• Do not include square brackets in your statement unless the brackets are
italicized. Consider the following syntax:

Result = KRIG2D(Z [, X, Y] [, BOUNDS=[xmin, ymin, xmax, ymax]])

An example of a valid statement is:

R = KRIG2D(Z, X, Y, BOUNDS=[0,0,1,1])

• Note that when [, Value1, ... , Valuen] is listed, you can specify any number of
arguments. When an explicit number is listed, as in [, Value1, ... , Value8], you
can specify only as many arguments as are listed.

Braces ({ })

• For certain keywords, a list of the possible values is provided. This list is
enclosed in braces, and the choices are separated by a vertical line (|). Do not
include the braces in your statement. For example, consider the following
syntax:

LIVE_EXPORT [, QUALITY={0 | 1 | 2}]

In this example, you must choose either 0, 1, or 2. An example of a valid
statement is:

LIVE_EXPORT, QUALITY=1

• Braces are used to enclose the allowable range for a keyword value. Unless
otherwise noted, ranges provided are inclusive. Consider the following syntax:
IDL Reference Guide IDL Syntax

44
Result = CVTTOBM(Array [, THRESHOLD=value{0 to 255}])

An example of a valid statement is:

Result = CVTTOBM(A, THRESHOLD=150)

• Braces are also used to provide useful information about a keyword. For
example:

[, LABEL=n{label every nth gridline}]

Do not include the braces or their content in your statement.

• Certain keywords are prefaced by X, Y, or Z. Braces are used for these
keywords to indicate that you must choose one of the values it contains. For
example, [{X | Y}RANGE=array] indicates that you can specify either
XRANGE=array or YRANGE=array.

• Note that in IDL, braces are used to define structures. When defining a
structure, you do want to include the braces in your statement.

Italics

• Italicized words are arguments, expressions, or statements for which you must
provide values. The value you provide can be a numerical value, such as 10, an
expression, such as DIST(100), or a named variable. For keywords that expect
a string value, the syntax is listed as KEYWORD=string. The value you
provide can be a string, such as 'Hello' (enclosed in single quotation marks), or
a variable that holds a string value.

• The italicized values that must be provided for keywords are listed in the most
helpful terms possible. For example, [, XSIZE=pixels] indicates that the XSIZE
keyword expects a value in pixels, while
[, ORIENTATION=ccw_degrees_from_horiz] indicates that you must provide
a value in degrees, measured counter-clockwise from horizontal.

Procedures

IDL procedures use the following general syntax:

PROCEDURE_NAME, Argument [, Optional_Argument]

where PROCEDURE_NAME is the name of the procedure, Argument is a required
parameter, and Optional_Argument is an optional parameter to the procedure.
IDL Syntax IDL Reference Guide

45
Functions

IDL functions use the following general syntax:

Result = FUNCTION_NAME(Argument [, Optional_Argument])

where Result is the returned value of the function, FUNCTION_NAME is the name
of the function, Argument is a required parameter, and Optional_Argument is an
optional parameter. Note that all arguments and keyword arguments to functions
should be supplied within the parentheses that follow the function’s name.

Functions do not always have to be used in assignment statements (i.e.,
A=SIN(10.2)), they can be used just like any other IDL expression. For example,
you could print the result of SIN(10.2) by entering the command:

PRINT, SIN(10.2)

Arguments

The “Arguments” section describes each valid argument to the routine. Note that
these arguments are positional parameters that must be supplied in the order indicated
by the routine’s syntax.

Named Variables

Often, arguments that contain values upon return from the function or procedure
(“output arguments”) are described as accepting “named variables”. A named
variable is simply a valid IDL variable name. This variable does not need to be
defined before being used as an output argument. Note, however that when an
argument calls for a named variable, only a named variable can be used—sending an
expression causes an error.

Keywords

The “Keywords” section describes each valid keyword argument to the routine. Note
that keyword arguments are formal parameters that can be supplied in any order.

Keyword arguments are supplied to IDL routines by including the keyword name
followed by an equal sign (“=”) and the value to which the keyword should be set.
The value can be a value, an expression, or a named variable (a named variable is
simply a valid IDL variable name).
IDL Reference Guide IDL Syntax

46
Note
If you set a keyword equal to an undefined named variable, IDL will quietly ignore
the value.

For example, to produce a plot with diamond-shaped plotting symbols, the PSYM
keyword should be set to 4 as follows:

PLOT, FINDGEN(10), PSYM=4

Note the following when specifying keywords:

• Certain keywords are boolean, meaning they can be set to either 0 or 1. These
keywords are switches used to turn an option on and off. Usually, setting such
keywords equal to 1 causes the option to be turned on. Explicitly setting the
keyword to 0 (or not including the keyword) turns the option off. In the syntax
listings in this reference, all keywords that are preceded by a slash can be set
by prefacing them by the slash. For example, SURFACE, DIST(10), /SKIRT is
a shortcut for SURFACE, DIST(10), SKIRT=1. To turn the option back off,
you must set the keyword equal to 0, as in SURFACE, DIST(10), SKIRT=0.

In rare cases, a keyword’s default value is 1. In these cases, the syntax is listed
as KEYWORD=0, as in SLIDE_IMAGE [, Image] [, CONGRID=0]. In this
example, CONGRID is set to 1 by default. If you specify CONGRID=0, you
can turn it back on by specifying either /CONGRID or CONGRID=1.

• Some keywords are used to obtain values that can be used upon return from the
function or procedure. These keywords are listed as KEYWORD=variable.
Any valid variable name can be used for these keywords, and the variable does
not need to be defined first. Note, however, that when a keyword calls for a
named variable, only a named variable can be used—sending an expression
causes an error.

For example, the WIDGET_CONTROL procedure can return the user values
of widgets in a named variable using the GET_UVALUE keyword. To return
the user value for a widget ID (contained in the variable mywidget) in the
variable userval, you would use the command:

WIDGET_CONTROL, mywidget, GET_UVALUE = userval

Upon return from the procedure, userval contains the user value. Note that
userval did not have to be defined before the call to WIDGET_CONTROL.

• Some routines have keywords that are mutually exclusive, meaning only one
of the keywords can be present in a given statement. These keywords are
IDL Syntax IDL Reference Guide

47
grouped together, and separated by a vertical line. For example, consider the
following syntax:

PLOT, [X,] Y [, /DATA | , /DEVICE | , /NORMAL]

In this example, you can choose either DATA, DEVICE, or NORMAL, but not
more than one. An example of a valid statement is:

PLOT, SIN(A), /DEVICE

• Keywords can be abbreviated to their shortest unique length. For example, the
XSTYLE keyword can be abbreviated to XST because there are no other
keywords in IDL that begin with XST. You cannot shorten XSTYLE to XS,
however, because there are other keywords that begin with XS, such as
XSIZE.
IDL Reference Guide IDL Syntax

48
.COMPILE

The .COMPILE command compiles and saves procedures and programs in the same
manner as .RUN. If one or more filenames are specified, the procedures and
functions contained therein are compiled but not executed. If you enter this command
at the Command Input Line of the IDLDE and the files are not yet open, IDL opens
the files within Editor windows and compiles the procedures and functions contained
therein.

See RESOLVE_ROUTINE for a way to invoke the same operation from within an
IDL routine, and RESOLVE_ALL for a way to automatically compile all user-written
or library functions called by all currently-compiled routines.

If the -f flag is specified, File is compiled from the source stored temporarily in
TempFile rather than on disk in File itself. This allows you to make changes to File
(in an IDLDE editor window, for example), store the modified source into the
temporary file (IDLDE does it automatically), compile, and test the changes without
overwriting the original code stored in File.

Note
.COMPILE is an executive command. Executive commands can only be used at the
IDL command prompt, not in programs.

Syntax

.COMPILE [File1, ..., Filen]

.COMPILE -f File TempFile
.COMPILE IDL Reference Guide

49
.CONTINUE

The .CONTINUE command continues execution of a program that has stopped
because of an error, a stop statement, or a keyboard interrupt. IDL saves the location
of the beginning of the last statement executed before an error. If it is possible to
correct the error condition in the interactive mode, the offending statement can be re-
executed by entering .CONTINUE. After STOP statements, .CONTINUE continues
execution at the next statement. The .CONTINUE command can be abbreviated; for
example, .C. Execution of a program interrupted by typing Ctrl+C also can be
resumed at the point of interruption with the .CONTINUE command.

Note
.CONTINUE is an executive command. Executive commands can only be used at
the IDL command prompt, not in programs.

Syntax

.CONTINUE
IDL Reference Guide .CONTINUE

50
.EDIT

The .EDIT command opens files in IDL Editor windows when called from the
Command Input Line of the IDLDE. This functionality is only available on the
Windows and Motif platforms. Note that filenames are separated by spaces, not
commas.

Note
.EDIT is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

.EDIT File1 [File2 ... Filen]
.EDIT IDL Reference Guide

51
.FULL_RESET_SESSION

The .FULL_RESET_SESSION command does everything .RESET_SESSION does,
plus the following:

• Removes all system routines installed via LINKIMAGE or a DLM.

• Removes all structure definitions installed via a DLM.

• Removes all message blocks added by DLMs.

• Unloads all sharable libraries loaded into IDL via CALL_EXTERNAL,
LINKIMAGE, or a DLM.

• Re-initializes all DLMs to their unloaded initial state.

Note
The VMS operating system does not support unloading sharable libraries.
Therefore, .FULL_RESET_SESSION is identical to .RESET_SESSION under
VMS, and these extra steps are not performed.

Note
.FULL_RESET_SESSION is an executive command. Executive commands can
only be used at the IDL command prompt, not in programs.

Syntax

.FULL_RESET_SESSION
IDL Reference Guide .FULL_RESET_SESSION

52
.GO

The .GO command starts execution at the beginning of a previously-compiled main
program.

Note
.GO is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

.GO
.GO IDL Reference Guide

53
.OUT

The .OUT command continues executing statements in the current program until it
returns.

Note
.OUT is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

.OUT
IDL Reference Guide .OUT

54
.RESET_SESSION

The .RESET_SESSION command resets much of the state of an IDL session without
requiring the user to exit and restart the IDL session.

.RESET_SESSION does the following:

• Returns current execution point to $MAIN$ (RETALL).

• Removes all breakpoints.

• Closes all files except the standard 3 units, the JOURNAL file (if any), and any
files in use by graphics drivers.

• Destroys/Removes the following:

• All local variables in $MAIN$.

• All widgets. Exit handlers are not called.

• All windows and pixmaps for the current window system graphics device
are closed. No other graphics state is reset.

• All common blocks.

• All handles

• All user defined system variables

• All pointer and object reference heap variables.

• Object destructors are not called.

• All user defined structure definitions.

• All user defined object definitions.

• All compiled user functions and procedures, including the main program
($MAIN$), if any.

The following are not reset:

• The current values of intrinsic system variables are retained.

• The saved commands and output log are preserved.

• Graphics drivers are not reset to their full uninitialized state. However, all
windows and pixmaps for the current window system device are closed.

• The following files are not closed:
.RESET_SESSION IDL Reference Guide

55
• Stdin (LUN 0)

• Stdout (LUN -1)

• Stderr (LUN -2)

• The journal file (!JOURNAL) if one is open.

• Any files in use by graphics drivers (e.g. PostScript).

• Dynamically loaded graphics drivers (LINKIMAGE) are not removed, nor are
any dynamic sharable libraries containing such drivers, even if the same
library was also used for another purpose such as CALL_EXTERNAL,
LINKIMAGE system routines, or DLMs. See the .FULL_RESET_SESSION
executive command to unload dynamic libraries.

Note
.RESET_SESSION is an executive command. Executive commands can only be
used at the IDL command prompt, not in programs.

Syntax

.RESET_SESSION
IDL Reference Guide .RESET_SESSION

56
.RETURN

The .RETURN command continues execution of a program until encountering a
RETURN statement. This is convenient for debugging programs since it allows the
whole program to run, stopping before returning to the next-higher program level so
you can examine local variables.

Also see the RETURN command.

Note
.RETURN is an executive command. Executive commands can only be used at the
IDL command prompt, not in programs.

Syntax

.RETURN
.RETURN IDL Reference Guide

57
.RNEW

The .RNEW command compiles and saves procedures and functions in the same
manner as .RUN. In addition, all variables in the main program unit, except those in
common blocks, are erased. The -T and -L filename switches have the same effect as
with .RUN.

Note
.RNEW is an executive command. Executive commands can only be used at the
IDL command prompt, not in programs.

Syntax

.RNEW [File1, ..., Filen]

To save listing in a file: .RNEW -L ListFile.lis File1 [, File2, ..., Filen]

To display listing on screen: .RNEW -T File1 [, File2, ..., Filen]

Example

Some statements using the .RUN and .RNEW commands are shown below.

Statement Description

.RUN Accept a program from the
keyboard. Retain the present
variables.

.RUN myfile Compile the file myfile.pro. If
it is not found in the current
directory, try to find it in the
directory search path.

.RUN -T A, B, C Compile the files a.pro, b.pro
and c.pro. List the files on the
terminal.

Table 2: Examples using .RUN and .RNEW
IDL Reference Guide .RNEW

58
.RNEW -L myfile.lis myfile, yourfile Erase all variables and compile
the files myfile.pro and
yourfile.pro. Produce a listing
on myfile.lis.

Statement Description

Table 2: Examples using .RUN and .RNEW
.RNEW IDL Reference Guide

59
.RUN

The .RUN command compiles procedures, functions, and/or main programs in
memory. Main programs are executed immediately. The command can be followed
by a list of files to be compiled. Filenames are separated by blanks, tabs, or commas.

If a file specification is included in the command, IDL searches for the file first in the
current directory, then in the directories specified by the system variable !PATH. See
“Executing Program Files” in Chapter 2 of Using IDL for more information on IDL’s
search strategy.

If a main program unit is encountered, execution of the program will begin after all
files have been read if there were no errors. The values of all of the variables are
retained. If the file isn’t found, input is accepted from the keyboard until a complete
program unit is entered.

Files containing IDL procedures, programs, and functions are assumed to have the
file extension (suffix) .pro. Files created with the SAVE procedure are assumed to
have the extension .sav. See “Preparing and Running Programs” in Chapter 2 of
Using IDL for further information.

Note
.RUN is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

.RUN [File1, ..., Filen]

To save listing in a file: .RUN -L ListFile.lis File1 [, File2, ..., Filen]

To display listing on screen: .RUN -T File1 [, File2, ..., Filen]

Note
Subsequent calls to .RUN compile the procedure again.

Using .RUN to Make Program Listings

The command arguments -T for terminal listing or -L filename for listing to a named
file can appear after the command name and before the program filenames to produce
a numbered program listing directed to the terminal or to a file.
IDL Reference Guide .RUN

60
For instance, to see a listing on the screen as a result of compiling a procedure
contained in a file named analyze.pro, use the following command:

.RUN -T analyze

To compile the same procedure and save the listing in a file named analyze.lis,
use the following command:

.RUN -L analyze.lis analyze

In listings produced by IDL, the line number of each statement is printed at the left
margin. This number is the same as that printed in IDL error statements, simplifying
location of the statement causing the error.

Note
If the compiled file contains more than one procedure or function, line numbering is
reset to “1” each time the end of a program segment is detected.

Each level of block nesting is indented four spaces to the right of the preceding block
level to improve the legibility of the program’s structure.
.RUN IDL Reference Guide

61
.SKIP

The .SKIP command skips one or more statements and then executes a single step. It
is useful for continuing over a program statement that caused an error. If the optional
argument n is present, it gives the number of statements to skip; otherwise, a single
statement is skipped. Note that .SKIP does not skip into a called routine.

For example, consider the following program segment:

......
OPENR, 1, 'missing'
READF, 1, xxx, ..., ...
...

If the OPENR statement fails because the specified file does not exist, program
execution will halt with the OPENR statement as the current statement. Execution
can not be resumed with the executive command .CONTINUE because it attempts to
re-execute the offending OPENR statement, causing the same error. The remainder of
the program can be executed by entering .SKIP, which skips over the incorrect OPEN
statement.

Note
.SKIP is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

.SKIP [n]
IDL Reference Guide .SKIP

62
.STEP

The .STEP command executes one or more statements in the current program starting
at the current position, stops, and returns control to the interactive mode. This
command is useful in debugging programs. The optional argument n indicates the
number of statements to execute. If n is omitted, a single statement is executed.

Note
.STEP is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

.STEP [n] or .S [n]
.STEP IDL Reference Guide

63
.STEPOVER

The .STEPOVER command executes one or more statements in the current program
starting at the current position, stops, and returns control to the interactive mode.
Unlike .STEP, if .STEPOVER executes a statement that calls another routine, the
called routine runs until it ends before control returns to interactive mode. That is, a
statement calling another routine is treated as a single statement.

The optional argument n indicates the number of statements to execute. If n is
omitted, a single statement (or called routine) is executed.

Note
.STEPOVER is an executive command. Executive commands can only be used at
the IDL command prompt, not in programs.

Syntax

.STEPOVER [n] or .SO [n]
IDL Reference Guide .STEPOVER

64
.TRACE

The .TRACE command continues execution of a program that has stopped because of
an error, a stop statement, or a keyboard interrupt.

Note
.TRACE is an executive command. Executive commands can only be used at the
IDL command prompt, not in programs.

Syntax

.TRACE
.TRACE IDL Reference Guide

65
A_CORRELATE

The A_CORRELATE function computes the autocorrelation Px(L) or autocovariance
Rx(L) of a sample population X as a function of the lag L.

where x is the mean of the sample population x = (x0, x1, x2, ... , xN-1).

Note
This routine is primarily designed for use in 1-D time-series analysis. The mean is
subtracted before correlating. For image processing, methods based on FFT should
be used instead if more than a few tens of points exist. For example:

Function AutoCorrelate, X
Temp = FFT(X,-1)
RETURN, FFT(Temp * CONJ(Temp), 1)

END

This routine is written in the IDL language. Its source code can be found in the file
a_correlate.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = A_CORRELATE(X, Lag [, /COVARIANCE] [, /DOUBLE])

Px L() Px L–()

xk x–() xk L+ x–()
k 0=

N L– 1–

∑

xk x–()2

k 0=

N 1–

∑
--= =

Rx L() Rx L–() 1
N
---- xk x–() xk L+ x–()

k 0=

N L– 1–

∑= =
IDL Reference Guide A_CORRELATE

66
Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Lag

An n-element integer vector in the interval [-(n-2), (n-2)], specifying the signed
distances between indexed elements of X.

Keywords

COVARIANCE

Set this keyword to compute the sample autocovariance rather than the sample
autocorrelation.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

; Define an n-element sample population:
X = [3.73, 3.67, 3.77, 3.83, 4.67, 5.87, 6.70, 6.97, 6.40, 5.57]
; Compute the autocorrelation of X for LAG = -3, 0, 1, 3, 4, 8:
lag = [-3, 0, 1, 3, 4, 8]
result = A_CORRELATE(X, lag)
PRINT, result

IDL prints:

0.0146185 1.00000 0.810879 0.0146185 -0.325279 -0.151684

See Also

CORRELATE, C_CORRELATE, M_CORRELATE, P_CORRELATE,
R_CORRELATE
A_CORRELATE IDL Reference Guide

67
ABS

The ABS function returns the absolute value of its argument.

Syntax

Result = ABS(X)

Arguments

X

The value for which the absolute value is desired. If X is of complex type, ABS
returns the magnitude of the complex number:

If X is of complex type, the result is returned as the corresponding floating point type.
For all other types, the result has the same type as X. If X is an array, the result has the
same structure, with each element containing the absolute value of the corresponding
element of X.

ABS applied to any of the unsigned integer types results in the unaltered value of X
being returned.

Example

To print the absolute value of -25, enter:

PRINT, ABS(-25)

IDL prints:

25

Real2 Imaginary2+
IDL Reference Guide ABS

68
ACOS

The ACOS function returns the angle, expressed in radians, whose cosine is X (i.e.,
the arc-cosine). The range of ACOS is between 0 and π.

Syntax

Result = ACOS(X)

Arguments

X

The cosine of the desired angle in the range (-1 ≤ X ≤ 1). If X is double-precision
floating, the result of ACOS is also double-precision. X cannot be complex. All other
types are converted to single-precision floating-point and yield floating-point results.
If X is an array, the result has the same structure, with each element containing the
arc-cosine of the corresponding element of X.

Example

To find the arc-cosine of 0.707 and store the result in the variable B, enter:

B = ACOS(0.707)

See Also

COS
ACOS IDL Reference Guide

69
ADAPT_HIST_EQUAL

The ADAPT_HIST_EQUAL function performs adaptive histogram equalization, a
form of automatic image contrast enhancement. The algorithm is described in Pizer
et. al., “Adaptive Histogram Equalization and its Variations.”, Computer Vision,
Graphics and Image Processing, 39:355-368. Adaptive histogram equalization
involves applying contrast enhancement based on the local region surrounding each
pixel. Each pixel is mapped to an intensity proportional to its rank within the
surrounding neighborhood. This method of automatic contrast enhancement has
proven to be broadly applicable to a wide range of images and to have demonstrated
effectiveness.

Syntax

Result = ADAPT_HIST_EQUAL (Image [, CLIP=value] [, NREGIONS=nregions]
[, TOP=value])

Return Value

The result of the function is a byte image with the same dimensions as the input
image parameter.

Arguments

Image

A two-dimensional array representing the image for which adaptive histogram
equalization is to be performed. This parameter is interpreted as unsigned 8-bit data,
so be sure that the input values are properly scaled into the range of 0 to 255.

Keywords

CLIP

Set this keyword to a nonzero value to clip the histogram by limiting its slope to the
given CLIP value, thereby limiting contrast. For example, if CLIP is set to 3, the
slope of the histogram is limited to 3. By default, the slope and/or contrast is not
limited. Noise over-enhancement in nearly homogeneous regions is reduced by
setting this parameter to values larger than 1.0.
IDL Reference Guide ADAPT_HIST_EQUAL

70
NREGIONS

Set this keyword to the size of the overlapped tiles, as a fraction of the largest
dimensions of the image size. The default is 12, which makes each tile 1/12 the size
of the largest image dimension.

TOP

Set this keyword to the maximum value of the scaled output array. The default is 255.

Example

The following code snippet reads a data file in the examples/data subdirectory of
the IDL distribution containing a cerebral angiogram, and then displays both the
original image and the adaptive histogram equalized image:

OPENR, 1, FILEPATH('cereb.dat', $
SUBDIRECTORY=['examples','data'])

;Image size = 512 x 512
a = BYTARR(512,512, /NOZERO)

;Read it
READU, 1, a
CLOSE, 1

; Reduce size of image for comparison
a = CONGRID(a, 256,256)

;Show original
TVSCL, a, 0

;Show processed
TV, ADAPT_HIST_EQUAL(a, TOP=!D.TABLE_SIZE-1), 1

See Also

H_EQ_CT, H_EQ_INT, HIST_2D, HIST_EQUAL, HISTOGRAM
ADAPT_HIST_EQUAL IDL Reference Guide

71
ALOG

The ALOG function returns the natural logarithm of X. The result has the same
structure as X.

Syntax

Result = ALOG(X)

Arguments

X

The value for which the natural log is desired. The result of ALOG is double-
precision floating if X is double-precision, and complex if X is complex. All other
types are converted to single-precision floating-point and yield floating-point results.
When applied to complex numbers, the definition of the ALOG function is:

ALOG(x) = COMPLEX(log |x|, atan x)

Example

To print the natural logarithm of 5, enter:

PRINT, ALOG(5)

IDL prints:

1.60944

See Also

ALOG10
IDL Reference Guide ALOG

72
ALOG10

The ALOG10 function returns the logarithm to the base 10 of X. This function
operates in the same manner as the ALOG function.

Syntax

Result = ALOG10(X)

Arguments

X

The value for which the base 10 log is desired.

Example

To find the base 10 logarithm of 5 and store the result in the variable L, enter:

L = ALOG10(5)

See Also

ALOG
ALOG10 IDL Reference Guide

73
AMOEBA

The AMOEBA function performs multidimensional minimization of a function
Func(x), where x is an n-dimensional vector, using the downhill simplex method of
Nelder and Mead, 1965, Computer Journal, Vol 7, pp 308-313.

The downhill simplex method is not as efficient as Powell’s method, and usually
requires more function evaluations. However, the simplex method requires only
function evaluations—not derivatives—and may be more reliable than Powell’s
method.

If the minimum is found, AMOEBA returns an n-element vector corresponding to the
function’s minimum value. If a minimum within the given tolerance is not found
within the specified number of iterations, AMOEBA returns a scalar value of -1.
Results are returned with the same precision (single- or double-precision floating-
point) as is returned by the user-supplied function to be minimized.

This routine is written in the IDL language. Its source code can be found in the file
amoeba.pro in the lib subdirectory of the IDL distribution. AMOEBA is based on
the routine amoeba described in section 10.4 of Numerical Recipes in C: The Art of
Scientific Computing (Second Edition), published by Cambridge University Press,
and is used by permission.

Syntax

Result = AMOEBA(Ftol [, FUNCTION_NAME=string]
[, FUNCTION_VALUE=variable] [, NCALLS=value] [, NMAX=value]
[, P0=vector, SCALE=vector | , SIMPLEX=array])

Arguments

Ftol

The fractional tolerance to be achieved in the function value—that is, the fractional
decrease in the function value in the terminating step. If the function you supply
returns a single-precision result, Ftol should never be less than your machine’s
floating-point precision—the value contained in the EPS field of the structure
returned by the MACHAR function. If the function you supply returns a double-
precision floating-point value, Ftol should not be less than your machine’ double-
precision floating-point precision. See MACHAR for details.
IDL Reference Guide AMOEBA

74
Keywords

FUNCTION_NAME

Set this keyword equal to a string containing the name of the function to be
minimized. If this keyword is omitted, AMOEBA assumes that an IDL function
named “FUNC” is to be used.

The function to be minimized must be written as an IDL function and compiled prior
to calling AMOEBA. This function must accept an n-element vector as its only
parameter and return a scalar single- or double precision floating-point value as its
result.

See the Example section below for an example function.

FUNCTION_VALUE

Set this keyword equal to a named variable that will contain an (n+1)-element vector
of the function values at the simplex points. The first element contains the function
minimum.

NCALLS

Set this keyword equal to a named variable that will contain a count of the number of
times the function was evaluated.

NMAX

Set this keyword equal to a scalar value specifying the maximum number of function
evaluations allowed before terminating. The default is 5000.

P0

Set this keyword equal to an n-element single- or double-precision floating-point
vector specifying the initial starting point. Note that if you specify P0, you must also
specify SCALE.

For example, in a 3-dimensional problem, if the initial guess is the point [0,0,0], and
you know that the function’s minimum value occurs in the interval:

-10 < X[0] < 10, -100 < X[1] < 100, -200 < X[(2] < 200,

specify: P0=[0,0,0] and SCALE=[10, 100, 200].

Alternately, you can omit P0 and SCALE and specify SIMPLEX.
AMOEBA IDL Reference Guide

75
SCALE

Set this keyword equal to a scalar or n-element vector containing the problem’s
characteristic length scale for each dimension. SCALE is used with P0 to form an
initial (n+1) point simplex. If all dimensions have the same scale, set SCALE equal to
a scalar.

If SCALE is specified as a scalar, the function’s minimum lies within a distance of
SCALE from P0. If SCALE is an N-dimensional vector, the function's minimum lies
within the Ndim+1 simplex with the vertices P0, P0 + [1,0,...,0] * SCALE, P0 +
[0,1,0,...,0] * SCALE, ..., and P0+[0,0,...,1] * SCALE.

SIMPLEX

Set this keyword equal to an n by n+1 single- or double-precision floating-point array
containing the starting simplex. After AMOEBA has returned, the SIMPLEX array
contains the simplex enclosing the function minimum. The first point in the array,
SIMPLEX[*,0], corresponds to the function’s minimum. This keyword is ignored if
the P0 and SCALE keywords are set.

Example

Use AMOEBA to find the slope and intercept of a straight line that fits a given set of
points, minimizing the maximum error. The function to be minimized (FUNC, in this
case) returns the maximum error, given p[0] = intercept, and p[1] = slope.

; First define the function FUNC:
FUNCTION FUNC, P
COMMON FUNC_XY, X, Y
RETURN, MAX(ABS(Y - (P[0] + P[1] * X)))
END

; Put the data points into a common block so they are accessible to
; the function:
COMMON FUNC_XY, X, Y

; Define the data points:
X = FINDGEN(17)*5
Y = [12.0, 24.3, 39.6, 51.0, 66.5, 78.4, 92.7, 107.8, $

120.0, 135.5, 147.5, 161.0, 175.4, 187.4, 202.5, 215.4, 229.9]

; Call the function. Set the fractional tolerance to 1 part in
; 10^5, the initial guess to [0,0], and specify that the minimum
; should be found within a distance of 100 of that point:
R = AMOEBA(1.0e-5, SCALE=1.0e2, P0 = [0, 0], FUNCTION_VALUE=fval)

; Check for convergence:
IDL Reference Guide AMOEBA

76
IF N_ELEMENTS(R) EQ 1 THEN MESSAGE, 'AMOEBA failed to converge'

; Print results:
PRINT, 'Intercept, Slope:', r, $

'Function value (max error): ', fval[0]

IDL prints:

Intercept, Slope: 11.4100 2.72800
Function value: 1.33000

See Also

POWELL
AMOEBA IDL Reference Guide

77
ANNOTATE

The ANNOTATE procedure starts an IDL widget program that allows you to
interactively annotate images and plots with text and drawings. Drawing objects
include lines, arrows, polygons, rectangles, circles, and ellipses. Annotation files can
be saved and restored, and annotated displays can be written to TIFF or PostScript
files. The Annotation widget will work on any IDL graphics window or draw widget.

This routine is written in the IDL language. Its source code can be found in the file
annotate.pro in the lib subdirectory of the IDL distribution.

Using the Annotation Widget

Before calling the Annotation widget, plot or display your data in an IDL graphics
window or draw widget. Unless you specify otherwise (using the DRAWABLE or
WINDOW keywords), annotations will be made in the current graphics window.

For information on using the Annotation widget, click on the widget’s “Help” button.

Syntax

ANNOTATE [, COLOR_INDICES=array] [, DRAWABLE=widget_id | ,
WINDOW=index] [, LOAD_FILE=filename] [/TEK_COLORS]

Arguments

This procedure has no required arguments.

Keywords

COLOR_INDICES

An array of color indices from which the user can choose colors. For example, to
allow the user to choose 10 colors, spread evenly over the available indices, set the
keyword as follows:

COLOR_INDICES = INDGEN(10) * (!D.N_COLORS-1) / 9

If neither TEK_COLORS or COLOR_INDICES are specified, the default is to load
10 colors, evenly distributed over those available.
IDL Reference Guide ANNOTATE

78
DRAWABLE

The widget ID of the draw widget for the annotations. Do not set both DRAWABLE
and WINDOW. If neither WINDOW or DRAWABLE are specified, the current
window is used.

LOAD_FILE

The name of an annotation format file to load after initialization.

TEK_COLORS

Set this keyword and the Tektronix color table is loaded starting at color index
TEK_COLORS(0), with TEK_COLORS(1) color indices. The Tektronix color table
contains up to 32 distinct colors suitable for graphics. If neither TEK_COLORS or
COLOR_INDICES are specified, the default is to load 10 colors, evenly distributed
over those available.

WINDOW

The window index number of the window to receive the annotations. Do not set both
DRAWABLE and WINDOW. If neither WINDOW or DRAWABLE are specified,
the current window is used.

Example

; Output an image in the current window:
TVSCL, HANNING(300,200)
; Annotate it:
ANNOTATE

See Also

PLOTS, XYOUTS
ANNOTATE IDL Reference Guide

79
ARG_PRESENT

The ARG_PRESENT function returns a nonzero value if the following conditions are
met:

• The argument to ARG_PRESENT was passed as a plain or keyword argument
to the current routine by its caller, and

• The argument to ARG_PRESENT is a named variable into which a value will
be copied when the current routine exits.

In other words, ARG_PRESENT returns TRUE if the value of the specified variable
will be passed back to the caller. This function is useful in user-written procedures
that need to know if the lifetime of a value they are creating extends beyond the
current routine’s lifetime. This can be important for two reasons:

1. To avoid expensive computations that the caller is not interested in.

2. To prevent heap variable leakage that would result if the routine creates
pointers or object references and assigns them to arguments that are not passed
back to the caller.

Syntax

Result = ARG_PRESENT(Variable)

Arguments

Variable

The variable to be tested.

Example

Suppose that you are writing an IDL procedure that has the following procedure
definition line:

PRO myproc, RET_PTR = ret_ptr

The intent of the RET_PTR keyword is to pass back a pointer to a new pointer heap
variable. The following command could be used to avoid creating (and possibly
losing) a pointer if no named variable is provided by the caller:

IF ARG_PRESENT(ret_ptr) THEN BEGIN
IDL Reference Guide ARG_PRESENT

80
The commands that follow would only be executed if ret_ptr is supplied and will
be copied into a variable in the scope of the calling routine.

See Also

KEYWORD_SET, N_ELEMENTS, N_PARAMS
ARG_PRESENT IDL Reference Guide

81
ARRAY_EQUAL

The ARRAY_EQUAL function is a fast way to compare data for equality in
situations where the index of the elements that differ are not of interest. This
operation is much faster than using TOTAL(A NE B), because it stops the
comparison as soon as the first inequality is found, an intermediate array is not
created, and only one pass is made through the data. For best speed, ensure that the
operands are of the same data type.

Arrays may be compared to scalars, in which case each element is compared to the
scalar. For two arrays to be equal, they must have the same number of elements. If the
types of the operands differ, the type of the least precise is converted to that of the
most precise, unless the NO_TYPECONV keyword is specified to prevent it. This
function works on all numeric types and strings.

Syntax

Result = ARRAY_EQUAL(Op1 , Op2 [, /NO_TYPECONV])

Return Value

Returns 1 (true) if, and only if, all elements of Op1 are equal to Op2; returns 0 (false)
at the first instance of inequality.

Arguments

Op1, Op2

The variables to be compared.

Keywords

NO_TYPECONV

By default, ARRAY_EQUAL converts operands of different types to a common type
before performing the equality comparison. Set NO_TYPECONV to disallow this
implicit type conversion. If NO_TYPECONV is specified, operands of different
types are never considered to be equal, even if their numeric values are the same.

Example

; Return True (1) if all elements of a are equal to a 0 byte:
IF ARRAY_EQUAL(a, 0b) THEN ...
; Return True (1) if all elements of a are equal all elements of b:
IF ARRAY_EQUAL(a, b) THEN ...
IDL Reference Guide ARRAY_EQUAL

82
ARROW

The ARROW procedure draws one or more vectors with arrow heads.

This routine is written in the IDL language. Its source code can be found in the file
arrow.pro in the lib subdirectory of the IDL distribution.

Syntax

ARROW, X0, Y0, X1, Y1 [, /DATA | , /NORMALIZED] [, HSIZE=length]
[, COLOR=index] [, HTHICK=value] [, /SOLID] [, THICK=value]

Arguments

X0, Y0

Arrays or scalars containing the coordinates of the tail end of the vector or vectors.
Coordinates are in DEVICE coordinates unless otherwise specified.

X1,Y1

Arrays or scalars containing the coordinates of the arrowhead end of the vector or
vectors. X1 and Y1 must have the save number of elements as X0 and Y0.

Keywords

DATA

Set this keyword if vector coordinates are DATA coordinates.

NORMALIZED

Set this keyword if vector coordinates are NORMALIZED coordinates.

HSIZE

Use this keyword to set the length of the lines used to draw the arrowhead. The
default is 1/64th the width of the display (!D.X_SIZE / 64.). If the HSIZE is positive,
the value is assumed to be in device coordinate units. If HSIZE is negative, the
arrowhead length is set to the vector length * ABS(HSIZE). The lines are separated
by 60 degrees to make the arrowhead.

COLOR

The color of the arrow. The default is the highest color index.
ARROW IDL Reference Guide

83
HTHICK

The thickness of the arrowheads. The default is 1.0.

SOLID

Set this keyword to make a solid arrow, using polygon fills, looks better for thick
arrows.

THICK

The thickness of the body. The default is 1.0.

Examples

Draw an arrow from (100,150) to (300,350) in DEVICE units:

ARROW, 100, 150, 300, 350

Draw a sine wave with arrows from the line Y = 0 to SIN(X/4):

X = FINDGEN(50)
Y = SIN(x/4)
PLOT, X, Y
ARROW, X, REPLICATE(0,50), X, Y, /DATA

See Also

ANNOTATE, PLOTS, VELOVECT
IDL Reference Guide ARROW

84
ASCII_TEMPLATE

The ASCII_TEMPLATE function presents a graphical user interface (GUI) which
generates a template defining an ASCII file format. Templates are IDL structure
variables that may be used when reading ASCII files with the READ_ASCII routine.
See READ_ASCII for details on reading ASCII files.

This routine is written in the IDL language. Its source code can be found in the file
ascii_template.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = ASCII_TEMPLATE([Filename] [, BROWSE_LINES=lines]
[, CANCEL=variable] [, GROUP=widget_id])

Arguments

Filename

A string containing the name of a file to base the template on. If Filename is not
specified, a dialog allows you to choose a file.

Keywords

BROWSE_LINES

Set this keyword equal to the number of lines that will be read in at a time when the
“Browse” button is selected. The default is 50 lines.

CANCEL

Set this keyword to a named variable that will contain the byte value 1 if the user
clicked the “Cancel” button, or 0 otherwise.

GROUP

The widget ID of an existing widget that serves as “group leader” for the
ASCII_TEMPLATE graphical user interface. When a group leader is killed, for any
reason, all widgets in the group are also destroyed.

Example

Use the following command to generate a template structure from the file “myFile”:

myTemplate = ASCII_TEMPLATE(myFile)
ASCII_TEMPLATE IDL Reference Guide

85
See Also

READ_ASCII, BINARY_TEMPLATE
IDL Reference Guide ASCII_TEMPLATE

86
ASIN

The ASIN function returns the angle, expressed in radians, whose sine is X (i.e., the
arc-sine). The range of ASIN is between -π/2 and π/2. Rules for the type and structure
of the result are the same as those given for the ACOS function.

Syntax

Result = ASIN(X)

Arguments

X

The sine of the desired angle, -1 ≤ X ≤ 1.

Example

To print the arc-sine of 0.707, enter:

PRINT, ASIN(0.707)

IDL prints:

0.785247

See Also

SIN
ASIN IDL Reference Guide

87
ASSOC

The ASSOC function associates an array structure with a file. It provides a basic
method of random access input/output in IDL. An associated variable, which stores
this association, is created by assigning the result of ASSOC to a variable. This
variable provides a means of mapping a file into vectors or arrays of a specified type
and size.

Note
Unformatted data files generated by FORTRAN programs under UNIX contain an
extra long word before and after each logical record in the file. ASSOC does not
interpret these extra bytes but considers them to be part of the data. This is true even
if the F77_UNFORMATTED keyword is specified in the OPEN statement.
Therefore, ASSOC should not be used with such files. Instead, such files should be
processed using READU and WRITEU. An example of using IDL to read such data
is given in “Using Unformatted Input/Output” in Chapter 8 of Building IDL
Applications.

Note
Associated file variables cannot be used for output with files opened using the
COMPRESS keyword to OPEN. This is due to the fact that it is not possible to
move the current file position backwards in a compressed file that is currently open
for writing. ASSOC is allowed with compressed files opened for input only.
However, such operations may be slow due to the large amount of work required to
change the file position in a compressed file.

Effective use of ASSOC requires the ability to rapidly position the file to arbitrary
positions. In general, files that require random access may not be good candidates
for compression. If this is necessary however, such files can be processed using
READU and WRITEU.

Syntax

Result = ASSOC(Unit, Array_Structure [, Offset] [, /PACKED])
IDL Reference Guide ASSOC

88
Arguments

Unit

The IDL file unit to associate with Array_Structure.

Array_Structure

An expression of the data type and structure to be associated with Unit are taken from
Array_Structure. The actual value of Array_Structure is not used.

Offset

The offset in the file to the start of the data in the file. For stream files, and RMS
(VMS) block mode files, this offset is given in bytes. For RMS record-oriented files,
the offset is specified in records. Offset is useful for dealing with data files that
contain a descriptive header block followed by the actual data.

Keywords

PACKED

When ASSOC is applied to structures, the default action is to map the actual
definition of the structure for the current machine, including any holes required to
properly align the fields. (IDL uses the same rules for laying out structures as the C
language). If the PACKED keyword is specified, I/O using the resulting variable
instead works in the same manner as READU and WRITEU, and data is moved one
field at a time and there are no alignment gaps between the fields.

Example

Suppose that the file images.dat holds 5 images as 256-element by 256-element
arrays of bytes. Open the file for reading and create an associated variable by
entering:

OPENR, 1, 'images.dat' ;Open the file as file unit 1.
A = ASSOC(1, BYTARR(256, 256)) ;Make an associated variable.

Now A[0] corresponds to the first image in the file, A[1] is the second element, etc.
To display the first image in the file, you could enter:

TV, A[0]

The data for the first image is read and then displayed. Note that the data associated
with A[0] is not held in memory. It is read in every time there is a reference to A[0].
To store the image in the memory-resident array B, you could enter:

B = A[0]
ASSOC IDL Reference Guide

89
See Also

OPEN, READU
IDL Reference Guide ASSOC

90
ATAN

The ATAN function returns the angle, expressed in radians, whose tangent is X (i.e.,
the arc-tangent). If two parameters are supplied, the angle whose tangent is equal to
Y/X is returned. The range of ATAN is between -π/2 and π/2 for the single argument
case, and between -π and π if two arguments are given.

Syntax

Result = ATAN(X)

or

Result = ATAN(Y, X)

Arguments

X

The tangent of the desired angle.

Y

An optional argument. If this argument is supplied, ATAN returns the angle whose
tangent is equal to Y/X. If both arguments are zero, the result is undefined.

Example

To find the arc-tangent of 0.707 and store the result in the variable B, enter:

B = ATAN(0.707)

The following code defines a function that converts Cartesian coordinates to polar
coordinates. It returns “r” and “theta” given an “x” and “y” position:

;Define function TO_POLAR that accepts X and Y as arguments:
FUNCTION TO_POLAR, X, Y

;Return the distance and angle as a two-element array:
RETURN, [SQRT(X^2 + Y^2), ATAN(Y, X)]

END

See Also

TAN, TANH
ATAN IDL Reference Guide

91
AXIS

The AXIS procedure draws an axis of the specified type and scale at a given position.
The new scale is saved for use by subsequent overplots if the SAVE keyword
parameter is set. By default, AXIS draws an X axis. The XAXIS, YAXIS, and
ZAXIS keywords can be used to select a specific axis type and position.

Syntax

AXIS [, X [, Y [, Z]]] [, /SAVE] [, XAXIS={0 | 1} | YAXIS={0 | 1} | ZAXIS={0 | 1 |
2 | 3}] [, /XLOG] [, /YNOZERO] [, /YLOG] [, /ZLOG]

Graphics Keywords: [, CHARSIZE=value] [, CHARTHICK=integer]
[, COLOR=value] [, /DATA | , /DEVICE | , /NORMAL] [, FONT=integer]
[, /NODATA] [, /NOERASE] [, SUBTITLE=string] [, /T3D] [, TICKLEN=value]
[, {X | Y | Z}CHARSIZE=value]
[, {X | Y | Z}GRIDSTYLE=integer{0 to 5}]
[, {X | Y | Z}MARGIN=[left, right]]
[, {X | Y | Z}MINOR=integer]
[, {X | Y | Z}RANGE=[min, max]]
[, {X | Y | Z}STYLE=value]
[, {X | Y | Z}THICK=value]
[, {X | Y | Z}TICKFORMAT=string]
[, {X | Y | Z}TICKINTERVAL= value]
[, {X | Y | Z}TICKLAYOUT=scalar]
[, {X | Y | Z}TICKLEN=value]
[, {X | Y | Z}TICKNAME=string_array]
[, {X | Y | Z}TICKS=integer]
[, {X | Y | Z}TICKUNITS=string]
[, {X | Y | Z}TICKV=array]
[, {X | Y | Z}TICK_GET=variable]
[, {X | Y | Z}TITLE=string]
[, ZVALUE=value{0 to 1}]

Arguments

X, Y, and Z

Scalars giving the starting coordinates of the new axis. If no coordinates are
specified, the axis is drawn in its default position as given by the [XYZ]AXIS
keyword. When drawing an X axis, the X coordinate is ignored, similarly the Y and Z
IDL Reference Guide AXIS

92
arguments are ignored when drawing their respective axes (i.e., new axes will always
point in the correct direction).

Keywords

SAVE

Set this keyword to indicate that the scaling to and from data coordinates established
by the call to AXIS is to be saved in the appropriate axis system variable, !X, !Y, or
!Z. If this keyword is not present, the scaling is not changed.

XAXIS

Set this keyword to draw an X axis. If the X argument is not present, setting XAXIS
equal to 0 draws an axis under the plot window with the tick marks pointing up, and
setting XAXIS equal to one draws an axis above the plot window with the tick marks
pointing down. If the X argument is present, the X axis is positioned accordingly, and
setting XAXIS equal to 0 or 1 causes the tick marks to point up or down,
respectively.

XLOG

Set this keyword to specify a logarithmic X axis

YAXIS

Set this keyword to draw a Y axis. If the Y argument is not present, setting YAXIS
equal to 0 draws an axis on the left side of the plot window with the tick marks
pointing right, and setting YAXIS equal to one draws an axis on the right side of the
plot window with the tick marks pointing left. If the Y argument is present, the Y axis
is positioned accordingly, and setting YAXIS equal to 0 or 1 causes the tick marks to
point right or left, respectively.

Note
The YAXIS keyword must be specified in order use any Y* graphics keywords. See
the note under “Graphics Keywords Accepted” on page 93 for more information.

YLOG

Set this keyword to specify a logarithmic Y axis.

YNOZERO

Set this keyword to inhibit setting the minimum Y axis value to zero when the Y data
are all positive and non-zero, and no explicit minimum Y value is specified (using
AXIS IDL Reference Guide

93
YRANGE, or !Y.RANGE). By default, the Y axis spans the range of 0 to the
maximum value of Y, in the case of positive Y data. Set bit 4 in !Y.STYLE to make
this option the default.

ZAXIS

Set this keyword to draw a Z axis. If the Z argument is not present, setting ZAXIS has
the following meanings:

• 0 = lower (front) right, with tickmarks pointing left

• 1 = lower (front) left, with tickmarks pointing right

• 2 = upper (back) left, with tickmarks pointing right

• 3 = upper (back) right, with tickmarks pointing left

If the Z argument is present, the Z axis is positioned accordingly, and setting ZAXIS
equal to 0 or 1 causes the tick marks to point left or right, respectively.

Note that AXIS uses the 3D plotting transformation stored in the system variable
field !P.T.

Note
The ZAXIS keyword must be specified in order use any Z* graphics keywords. See
the note under Graphics Keywords Accepted for more information.

Graphics Keywords Accepted

See Appendix C, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above.

Note
In order for the Y* or Z* graphics keywords to work with the AXIS procedure, the
corresponding YAXIS or ZAXIS keyword must be specified. For example, the
following code will not draw a title for the Y axis:

AXIS, YTITLE ='Y-axis Title'

To use the YTITLE graphics keyword, you must specify the YAXIS keyword to
AXIS:

AXIS, YAXIS = 0, YTITLE ='Y-axis Title'
IDL Reference Guide AXIS

94
Because the AXIS procedure draws an X axis by default, it is not necessary to
specify the XAXIS keyword in order to use the X* graphics keywords.

CHARSIZE, CHARTHICK, COLOR, DATA, DEVICE, FONT, NODATA,
NOERASE, NORMAL, SUBTITLE, T3D, TICKLEN, [XYZ]CHARSIZE,
[XYZ]GRIDSTYLE, [XYZ]MARGIN, [XYZ]MINOR, [XYZ]RANGE,
[XYZ]STYLE, [XYZ]THICK, [XYZ]TICKFORMAT, [XYZ]TICKINTERVAL,
[XYZ]TICKLAYOUT, [XYZ]TICKLEN, [XYZ]TICKNAME, [XYZ]TICKS,
[XYZ]TICKUNITS, [XYZ]TICKV, [XYZ]TICK_GET, [XYZ]TITLE, ZVALUE.

Example

The following example shows how the AXIS procedure can be used with normal or
polar plots to draw axes through the origin, dividing the plot window into four
quadrants:

; Make the plot, polar in this example, and suppress the X and Y
; axes using the XSTYLE and YSTYLE keywords:
PLOT, /POLAR, XSTYLE=4, YSTYLE=4, TITLE='Polar Plot', r, theta

; Draw an X axis, through data Y coordinate of 0. Because the XAXIS
; keyword parameter has a value of 0, the tick marks point down:
AXIS,0,0,XAX=0,/DATA

; Similarly, draw the Y axis through data X = 0. The tick marks
; point left:
AXIS,0,0,0,YAX=0,/DATA

See Also

LABEL_DATE, PLOT
AXIS IDL Reference Guide

95
BAR_PLOT

The BAR_PLOT procedure creates a bar graph. This routine is written in the IDL
language. Its source code can be found in the file bar_plot.pro in the lib
subdirectory of the IDL distribution.

Syntax

BAR_PLOT, Values [, BACKGROUND=color_index]
[, BARNAMES=string_array] [, BAROFFSET=scalar] [, BARSPACE=scalar]
[, BARWIDTH=value] [, BASELINES=vector] [, BASERANGE=scalar{0.0 to
1.0}] [, COLORS=vector] [, /OUTLINE] [, /OVERPLOT] [, /ROTATE]
[, TITLE=string] [, XTITLE=string] [, YTITLE=string]

Arguments

Values

A vector containing the values to be represented by the bars. Each element in Values
corresponds to a single bar in the output.

Keywords

BACKGROUND

A scalar that specifies the color index to be used for the background color. By
default, the normal IDL background color is used.

BARNAMES

A string array, containing one string label per bar. If the bars are vertical, the labels
are placed beneath them. If horizontal (rotated) bars are specified, the labels are
placed to the left of the bars.

BAROFFSET

A scalar that specifies the offset to be applied to the first bar, in units of “nominal bar
width”. This keyword allows, for example, different groups of bars to be overplotted
on the same graph. If not specified, the default offset is equal to BARSPACE.
IDL Reference Guide BAR_PLOT

96
BARSPACE

A scalar that specifies, in units of “nominal bar width”, the spacing between bars. For
example, if BARSPACE is 1.0, then all bars will have one bar-width of space
between them. If not specified, the bars are spaced apart by 20% of the bar width.

BARWIDTH

A floating-point value that specifies the width of the bars in units of “nominal bar
width”. The nominal bar width is computed so that all the bars (and the space
between them, set by default to 20% of the width of the bars) will fill the available
space (optionally controlled with the BASERANGE keyword).

BASELINES

A vector, the same size as Values, that contains the base value associated with each
bar. If not specified, a base value of zero is used for all bars.

BASERANGE

A floating-point scalar in the range 0.0 to 1.0, that determines the fraction of the total
available plotting area (in the direction perpendicular to the bars) to be used. If not
specified, the full available area is used.

COLORS

A vector, the same size as Values, containing the color index to be used for each bar.
If not specified, the colors are selected based on spacing the color indices as widely
as possible within the range of available colors (specified by !D.N_COLORS).

OUTLINE

If set, this keyword specifies that an outline should be drawn around each bar.

OVERPLOT

If set, this keyword specifies that the bar plot should be overplotted on an existing
graph.

ROTATE

If set, this keyword indicates that horizontal rather than vertical bars should be
drawn. The bases of horizontal bars are on the left, “Y” axis and the bars extend to
the right.

TITLE

A string containing the main title for the bar plot.
BAR_PLOT IDL Reference Guide

97
XTITLE

A string containing the title for the X axis.

YTITLE

A string containing the title for the Y axis.

Example

By using the overplotting capability, it is relatively easy to create stacked bar charts,
or different groups of bars on the same graph.

The following example creates a two-dimensional array of 5 columns and 8 rows, and
creates a plot with 5 bars, each of which is a “stacked” composite of 8 sections.

;Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Load color table:
LOADCT, 5

;Make axes black:
!P.COLOR=0

;Create 5-column by 8-row array:
array = INDGEN(5,8)

;Create a 2D array, equal in size to array, that has identical
;color index values across each row to ensure that the same item is
;represented by the same color in all bars:
colors = INTARR(5,8)
FOR I = 0, 7 DO colors[*,I]=(20*I)+20

;With arrays and colors defined, create stacked bars (note that
;the number of rows and columns is arbitrary):

;Scale range to accommodate the total bar lengths:
!Y.RANGE = [0, MAX(array)]
nrows = N_ELEMENTS(array[0,*])
base = INTARR(nrows)
FOR I = 0, nrows-1 DO BEGIN
 BAR_PLOT, array[*,I], COLORS=colors[*,I], BACKGROUND=255, $
 BASELINES=base, BARWIDTH=0.75, BARSPACE=0.25, OVER=(I GT 0)
 base = array[*,I]
ENDFOR

;To plot each row of array as a clustered group of bars within the
;same graph, use the BASERANGE keyword to restrict the available
IDL Reference Guide BAR_PLOT

98
;plotting region for each set of bars, where NCOLS is the number of
;columns in array. (In this example, each group uses the same set
;of colors, but this could easily be changed.):

ncols = N_ELEMENTS(array[*,0])
FOR I = 0, nrows-1 DO BEGIN
 BAR_PLOT, array[*,I], COLORS=colors[*,I], BACKGROUND=255, $
 BARWIDTH=0.75, BARSPACE=0.25, BAROFFSET=I*(1.4*ncols), $
 OVER=(I GT 0), BASERANGE=0.12
ENDFOR

See Also

PLOT, PSYM Graphics Keyword
BAR_PLOT IDL Reference Guide

99
BEGIN...END

The BEGIN...END statement defines a block of statements. A block of statements is
a group of statements that is treated as a single statement. Blocks are necessary when
more than one statement is the subject of a conditional or repetitive statement. For
more information on using BEGIN...END and other IDL program control statements,
see Chapter 11, “Program Control” in Building IDL Applications.

Syntax

BEGIN

statements

END | ENDIF | ENDELSE | ENDFOR | ENDREP | ENDWHILE

The END identifier used to terminate the block should correspond to the type of
statement in which BEGIN is used. The following table lists the correct END
identifiers to use with each type of statement.

Statement END
Identifier Example

ELSE BEGIN ENDELSE IF (0) THEN A=1 ELSE BEGIN
A=2

ENDELSE

FOR variable=init, limit DO BEGIN ENDFOR FOR i=1,5 DO BEGIN
PRINT, array[i]

ENDFOR

IF expression THEN BEGIN ENDIF IF (0) THEN BEGIN
A=1

ENDIF

REPEAT BEGIN ENDREP REPEAT BEGIN
A = A * 2

ENDREP UNTIL A GT B

WHILE expression DO BEGIN ENDWHILE WHILE NOT EOF(1) DO BEGIN
READF, 1, A, B, C

ENDWHILE

LABEL: BEGIN END LABEL1: BEGIN
PRINT, A

END

Table 3: Types of END Identifiers
IDL Reference Guide BEGIN...END

100
Note
CASE and SWITCH also have their own END identifiers. CASE should always be
ended with ENDCASE, and SWITCH should always be ended with ENDSWITCH.

case_expression: BEGIN END CASE name OF
'Moe': BEGIN

PRINT, 'Stooge'
END

ENDCASE

switch_expression: BEGIN END SWITCH name OF
'Moe': BEGIN

PRINT, 'Stooge'
END

ENDSWITCH

Statement END
Identifier Example

Table 3: Types of END Identifiers
BEGIN...END IDL Reference Guide

101
BESELI

The BESELI function returns the I Bessel function of order N for the argument X.
The BESELI function is adapted from “SPECFUN - A Portable FORTRAN Package
of Special Functions and Test Drivers”, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELI(X, N)

Return Value

If X is double-precision, the result is double precision, otherwise the argument is
converted to floating-point and the result is floating-point.

Arguments

X

The expression for which the I Bessel function is required. The result will have the
same dimensions as X.

N

The order of the I Bessel function to calculate. N should be greater than or equal to 0
and less than 20, and can be either an integer or a real number.

Keywords

None

Example

The following example plots the I and K Bessel functions for orders 0, 1 and 2:

X = FINDGEN(40)/10

;Plot I and K Bessel Functions:
PLOT, X, BESELI(X, 0), MAX_VALUE=4, $

TITLE = 'I and K Bessel Functions'
OPLOT, X, BESELI(X, 1)
OPLOT, X, BESELI(X, 2)
OPLOT, X, BESELK(X, 0), LINESTYLE=2
OPLOT, X, BESELK(X, 1), LINESTYLE=2
IDL Reference Guide BESELI

102
OPLOT, X, BESELK(X, 2), LINESTYLE=2

;Annotate plot:
xcoords = [.18, .45, .95, 1.4, 1.8, 2.4]
ycoords = [2.1, 2.1, 2.1, 1.8, 1.6, 1.4]
labels = ['!8K!X!D0','!8K!X!D1','!8K!X!D2','!8I!X!D0',

'!8I!X!D1','!8I!X!D2']
XYOUTS, xcoords, ycoords, labels, /DATA

This results in the following plot:

See Also

BESELJ, BESELK, BESELY

Figure 1: I and K Bessel Functions.
BESELI IDL Reference Guide

103
BESELJ

The BESELJ function returns the J Bessel function of order N for the argument X.
The BESELJ function is adapted from “SPECFUN - A Portable FORTRAN Package
of Special Functions and Test Drivers”, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELJ(X, N)

Return Value

If X is double-precision, the result is double precision, otherwise the argument is
converted to floating-point and the result is floating-point.

Arguments

X

The expression for which the J Bessel function is required. The result has the same
dimensions as X.

N

The order of the J Bessel function to calculate. N should be greater than or equal to 0
and less than 20, and can be either an integer or a real number.

Keywords

None

Example

The following example plots the J and Y Bessel functions for orders 0, 1, and 2:

X = FINDGEN(100)/10

;Plot J and Y Bessel Functions:
PLOT, X, BESELJ(X, 0), TITLE = 'J and Y Bessel Functions'
OPLOT, X, BESELJ(X, 1)
OPLOT, X, BESELJ(X, 2)
OPLOT, X, BESELY(X, 0), LINESTYLE=2
OPLOT, X, BESELY(X, 1), LINESTYLE=2
OPLOT, X, BESELY(X, 2), LINESTYLE=2
IDL Reference Guide BESELJ

104
;Annotate plot:
xcoords = [1, 1.66, 3, .7, 1.7, 2.65]
ycoords = [.8, .62,.52, -.42, -.42, -.42]
labels = ['!8J!X!D0','!8J!X!D1','!8J!X!D2','!8Y!X!D0',

'!8Y!X!D1','!8Y!X!D2']
XYOUTS, xcoords, ycoords, labels, /DATA

This results in the following plot:

See Also

BESELI, BESELK, BESELY

Figure 2: The J and Y Bessel Functions.
BESELJ IDL Reference Guide

105
BESELK

The BESELK function returns the K Bessel function of order N for the argument X.
The BESELK function is adapted from “SPECFUN - A Portable FORTRAN
Package of Special Functions and Test Drivers”, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELK(X, N)

Return Value

If X is double-precision, the result is double precision, otherwise the argument is
converted to floating-point and the result is floating-point.

Arguments

X

The expression for which the K Bessel function is required. The result will have the
same dimensions as X.

N

The order of the K Bessel function to calculate. N should be greater than or equal to 0
and less than 20, and can be either an integer or a real number.

Keywords

None

Example

The following example plots the I and K Bessel functions for orders 0, 1 and 2:

X = FINDGEN(40)/10

;Plot I and K Bessel Functions:
PLOT, X, BESELI(X, 0), MAX_VALUE=4, $

TITLE = 'I and K Bessel Functions'
OPLOT, X, BESELI(X, 1)
OPLOT, X, BESELI(X, 2)
OPLOT, X, BESELK(X, 0), LINESTYLE=2
OPLOT, X, BESELK(X, 1), LINESTYLE=2
IDL Reference Guide BESELK

106
OPLOT, X, BESELK(X, 2), LINESTYLE=2

;Annotate plot:
xcoords = [.18, .45, .95, 1.4, 1.8, 2.4]
ycoords = [2.1, 2.1, 2.1, 1.8, 1.6, 1.4]
labels = ['!8K!X!D0','!8K!X!D1','!8K!X!D2','!8I!X!D0',

'!8I!X!D1','!8I!X!D2']
XYOUTS, xcoords, ycoords, labels, /DATA

This results in the following plot:

See Also

BESELI, BESELJ, BESELY

Figure 3: I and K Bessel Functions.
BESELK IDL Reference Guide

107
BESELY

The BESELY function returns the Y Bessel function of order N for the argument X.
The BESELY function is adapted from “SPECFUN - A Portable FORTRAN
Package of Special Functions and Test Drivers”, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELY(X, N)

Return Value

If X is double-precision, the result is double precision, otherwise the argument is
converted to floating-point and the result is floating-point.

Arguments

X

The expression for which the Y Bessel function is required. X must be greater than 0.
The result has the same dimensions as X.

N

The order of the Y Bessel function to calculate. N should be greater than or equal to 0
and less than 20, and can be either an integer or a real number.

Keywords

None.

Example

The following example plots the J and Y Bessel functions for orders 0, 1, and 2:

X = FINDGEN(100)/10

;Plot J and Y Bessel Functions:
PLOT, X, BESELJ(X, 0), TITLE = 'J and Y Bessel Functions'
OPLOT, X, BESELJ(X, 1)
OPLOT, X, BESELJ(X, 2)
OPLOT, X, BESELY(X, 0), LINESTYLE=2
OPLOT, X, BESELY(X, 1), LINESTYLE=2
OPLOT, X, BESELY(X, 2), LINESTYLE=2
IDL Reference Guide BESELY

108
;Annotate plot:
xcoords = [1, 1.66, 3, .7, 1.7, 2.65]
ycoords = [.8, .62,.52, -.42, -.42, -.42]
labels = ['!8J!X!D0','!8J!X!D1','!8J!X!D2','!8Y!X!D0',

'!8Y!X!D1','!8Y!X!D2']
XYOUTS, xcoords, ycoords, labels, /DATA

This results in the following plot:

See Also

BESELI, BESELJ, BESELK

Figure 4: The J and Y Bessel Functions.
BESELY IDL Reference Guide

109
BETA

The BETA function returns the value of the beta function B(Z, W). This routine is
written in the IDL language. Its source code can be found in the file beta.pro in the
lib subdirectory of the IDL distribution.

Syntax

Result = BETA(Z, W [, /DOUBLE])

Arguments

Z, W

The point at which the beta function is to be evaluated. Z and W can be scalar or
array.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

To evaluate the beta function at the point (1.0, 1.1) and print the result:

PRINT, BETA(1.0, 1.1)

IDL prints:

0.909091

The exact solution is:

((1.00 * .95135077) / (1.10 * .95135077)) = 0.909091.

See Also

GAMMA, IBETA, IGAMMA, LNGAMMA
IDL Reference Guide BETA

110
BILINEAR

The BILINEAR function uses a bilinear interpolation algorithm to compute the value
of a data array at each of a set of subscript values. The function returns a two-
dimensional interpolated array of the same type as the input array.

This routine is written in the IDL language. Its source code can be found in the file
bilinear.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = BILINEAR(P, IX, JY)

Arguments

P

A two-dimensional data array.

IX and JY

Arrays containing the X and Y “virtual subscripts” of P for which to interpolate
values. IX and JY can be either of the following:

• One-dimensional, n-element floating-point arrays of subscripts to look up in P.
One-dimensional arrays will be converted to two-dimensional arrays in such a
way that IX contains n identical rows and JY contains n identical columns.

• Two-dimensional, n-element floating-point arrays that uniquely specify the X
subscripts (the IX array) and the Y subscripts (the JY array) of the points to be
computed from the input array P.

In either case, IX must satisfy the expressions

0 <= MIN(IX) < N0 and 0 < MAX(IX) <= N0

where N0 is the total number of columns in the array P. JY must satisfy the
expressions

0 <= MIN(JY) < M0 and 0 < MAX(JY) <= M0

where M0 is the total number of rows in the array P.

It is better to use two-dimensional arrays for IX and JY because the algorithm is
somewhat faster. If IX and JY are specified as one-dimensional, the returned two-
BILINEAR IDL Reference Guide

111
dimensional arrays IX and JY can be re-used on subsequent calls to take advantage of
the faster 2D algorithm.

Example

Create a 3 x 3 floating point array P:

P = FINDGEN(3,3)

Suppose we wish to find the value of a point half way between the first and second
elements of the first row of P. Create the subscript arrays IX and JY:

IX = 0.5 ;Define the X subscript.
JY = 0.0 ;Define the Y subscript.
Z = BILINEAR(P, IX, JY) ;Interpolate.
PRINT, Z ;Print the value at the point IX,JY within P.

IDL prints:

0.500000

Suppose we wish to find the values of a 2 x 2 array of points in P. Create the subscript
arrays IX and JY:

IX = [[0.5, 1.9], [1.1, 2.2]] ;Define the X subscripts.
JY = [[0.1, 0.9], [1.2, 1.8]] ;Define the Y subscripts.
Z = BILINEAR(P, IX, JY) ;Interpolate.
PRINT, Z ;Print the array of values.

IDL prints:

0.800000 4.60000
4.70000 7.40000

See Also

INTERPOL, INTERPOLATE, KRIG2D
IDL Reference Guide BILINEAR

112
BIN_DATE

The BIN_DATE function converts a standard form ASCII date/time string to a binary
string. The function returns a six-element integer array where:

• Element 0 is the year (e.g., 1994)

• Element 1 is the month (1-12)

• Element 2 is the day (1-31)

• Element 3 is the hour (0-23)

• Element 4 is minutes (0-59)

• Element 5 is seconds (0-59)

This routine is written in the IDL language. Its source code can be found in the file
bin_date.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = BIN_DATE(Ascii_Time)

Arguments

Ascii_Time

A string containing the date/time to convert in standard ASCII format. If this
argument is omitted, the current date/time is used. Standard form is a 24 character
string:

DOW MON DD HH:MM:SS YYYY

where DOW is the day of the week, MON is the month, DD is the day of month,
HH:MM:SS is the time in hours, minutes, second, and YYYY is the year.

See Also

CALDAT, JULDAY, SYSTIME
BIN_DATE IDL Reference Guide

113
BINARY_TEMPLATE

The BINARY_TEMPLATE function presents a graphical user interface which
allows the user to interactively generate a template structure for use with
READ_BINARY.

The graphical user interface allows the user to define one or more fields in the binary
file. The file may be big, little, or native byte ordering.

Individual fields can be edited by the user to define the dimensionality and type of
data to be read. Where necessary, fields can be defined in terms of other previously
defined fields using IDL expressions. Fields can also be designated as “Verify”.
When a file is read using a template with “Verify” fields, those fields will be checked
against a user defined value supplied via the template.

Syntax

Template = BINARY_TEMPLATE ([Filename] [, CANCEL=variable]
[, GROUP=widget_id] [, N_ROWS=rows] [, TEMPLATE=variable])

Arguments

Filename

A scalar string containing the name of a binary file which may be used to test the
template. As the user interacts with the BINARY_TEMPLATE graphical user
interface, the user’s input will be tested for correctness against the binary data in the
file. If filename is not specified, a dialog allows the user to choose the file.

Keywords

CANCEL

Set this keyword to a named variable that will contain the byte value 1 if the user
clicked the “Cancel” button, or 0 otherwise.

GROUP

The widget ID of an existing widget that serves as “group leader” for the
BINARY_TEMPLATE interface. When a group leader is killed, for any reason, all
widgets in the group are also destroyed.
IDL Reference Guide BINARY_TEMPLATE

114
N_ROWS

Set this keyword to the number of rows to be visible in the BINARY_TEMPLATE’s
table of fields.

Note
The N_ROWS keyword is analogous to the WIDGET_TABLE and the
Y_SCROLL_SIZE keywords.

TEMPLATE

Set this keyword to a named variable that will contain the template structure
gererated by BINARY_TEMPLATE. This variable can then be specified for the
TEMPLATE keyword to READ_BINARY.

Note
A greater than (“>”) or less than (“<“) symbol can appear in the
BINARY_TEMPLATE’s “New Field” and the “Modify Field” dialogs where the
offset value is displayed. The presence of either symbol indicates that the supplied
offset value is “relative” from the end of the previous field or from the initial
position in the file. Greater than means offset forward. Less than means offset
backward. “>0” and “<0” are synonymous and mean “offset zero bytes”. The user
can delete these special symbols (thereby indicating that their corresponding offset
value is not “relative”) by typing over them in the “New Field” or “Modify Field”
dialogs where the offset value is displayed.

See Also

READ_BINARY, ASCII_TEMPLATE
BINARY_TEMPLATE IDL Reference Guide

115
BINDGEN

The BINDGEN function returns a byte array with the specified dimensions. Each
element of the array is set to the value of its one-dimensional subscript.

Syntax

Result = BINDGEN(D1, ...,D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Example

To create a four-element by four-element byte array, and store the result in the
variable A, enter:

A = BINDGEN(4,4)

Each element in A holds the value of its one-dimensional subscript. That is, if you
enter the command:

PRINT, A

IDL prints the result:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

See Also

CINDGEN, DCINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide BINDGEN

116
BINOMIAL

The BINOMIAL function computes the probability that in a cumulative binomial
(Bernoulli) distribution, a random variable X is greater than or equal to a user-
specified value V, given N independent performances and a probability of occurrence
or success P in a single performance:

This routine is written in the IDL language. Its source code can be found in the file
binomial.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = BINOMIAL(V, N, P [, /DOUBLE] [, /GAUSSIAN])

Arguments

V

A non-negative integer specifying the minimum number of times the event occurs in
N independent performances.

N

A non-negative integer specifying the number of performances.

P

A non-negative single- or double-precision floating-point scalar or array, in the
interval [0.0, 1.0], that specifies the probability of occurrence or success of a single
independent performance.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Probability X V≥() N!
x! N x–()!
-------------------------P

x
1 P–() N x–()

x V=

N

∑=
BINOMIAL IDL Reference Guide

117
GAUSSIAN

Set this keyword to use the Gaussian approximation, by using the normalized
variable Z = (V – NP)/SQRT(NP(1 – P)).

Note
The Gaussian approximation is useful when N is large and neither P nor (1–P) is
close to zero, where the binomial summation may overflow. If GAUSSIAN is not
explicitly set, and the binomial summation overflows, then BINOMIAL will
automatically switch to using the Gaussian approximation.

Examples

Compute the probability of obtaining at least two 6s in rolling a die four times. The
result should be 0.131944.

result = BINOMIAL(2, 4, 1.0/6.0)

Compute the probability of obtaining exactly two 6s in rolling a die four times. The
result should be 0.115741.

result = BINOMIAL(2, 4, 1./6.) - BINOMIAL(3, 4, 1./6.)

Compute the probability of obtaining three or fewer 6s in rolling a die four times. The
result should be 0.999228.

result = BINOMIAL(0, 4, 1./6.) - BINOMIAL(4, 4, 1./6.)

See Also

CHISQR_PDF, F_PDF, GAUSS_PDF, T_PDF
IDL Reference Guide BINOMIAL

118
BLAS_AXPY

The BLAS_AXPY procedure updates an existing array by adding a multiple of
another array. It can also be used to update one or more one-dimensional subvectors
of an array according to the following vector operation:

where a is a scale factor and X is an input vector.

BLAS_AXPY can be faster and use less memory than the usual IDL array notation
(e.g. Y=Y+A*X) for updating existing arrays.

Note
BLAS_AXPY is much faster when operating on entire arrays and rows, than when
used on columns or higher dimensions.

Syntax

BLAS_AXPY, Y, A, X [, D1, Loc1 [, D2, Range]]

Arguments

Y

The array to be updated. Y can be of any numeric type. BLAS_AXPY does not
change the size and type of Y.

A

The scaling factor to be multiplied with X. A may be any scalar or one-element array
that IDL can convert to the type of X. BLAS_AXPY does not change A.

X

The array to be scaled and added to array Y, or the vector to be scaled and added to
subvectors of Y.

D1

An optional parameter indicating which dimension of Y is to be updated.

Y aX Y+=
BLAS_AXPY IDL Reference Guide

119
Loc1

A variable with the same number of elements as the number of dimensions of Y. The
Loc1 and D1 arguments together determine which one-dimensional subvector (or
subvectors, if D1 and Range are provided) of Y is to be updated.

D2

An optional parameter, indicating in which dimension of Y a group of one-
dimensional subvectors are to be updated. D2 should be different from D1.

Range

A variable containing D2 indices indicating where to put one-dimensional updates of
Y.

Example

;A seed value needs to be defined:
seed = 5L

;Create a multidimensional array:
A = FINDGEN(40, 90, 10)

;Create a random update:
B = RANDOMU(seed, 40, 90, 10)

;Add a multiple of B to A.(i.e., A = A + 4.5*B):
BLAS_AXPY, A, 4.5, B

;Add a constant to a subvector of A
;(i.e. A[*,4,9] = A[*,4,9] + 4.3):
BLAS_AXPY, A, 1., REPLICATE(4.3, 40), 1, [0,4,9]

;Create a vector update:
C = FINDGEN(90)

;Add C to a group of subvectors of A
;(i.e. A[9,*,*] = A[9,*,*] + C):
BLAS_AXPY, A, 1., C, 2, [9,0,0], 3, LINDGEN(10)

See Also

REPLICATE_INPLACE
IDL Reference Guide BLAS_AXPY

120
BLK_CON

The BLK_CON function computes a “fast convolution” of a digital signal and an
impulse-response sequence. It returns the filtered signal.

This routine is written in the IDL language. Its source code can be found in the file
blk_con.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = BLK_CON(Filter, Signal [, B_LENGTH=scalar] [, /DOUBLE])

Return Value

This function returns a vector with the same length as Signal. If either of the input
arguments are double-precision or the DOUBLE keyword is set, the result is double-
precision, otherwise the result is single-precision.

Arguments

Filter

A P-element floating-point vector containing the impulse-response sequence of the
digital filter.

Signal

An n-element floating-point vector containing the discrete signal samples.

Keywords

B_LENGTH

A scalar specifying the block length of the subdivided signal segments. If this
parameter is not specified, a near-optimal value is chosen by the algorithm based
upon the length P of the impulse-response sequence. If P is a value less than 11 or
greater than 377, then B_LENGTH must be specified.

B_LENGTH must be greater than the filter length, P, and less than the number of
signal samples.

DOUBLE

Set this keyword to force the computation to be done using double-precision
arithmetic.
BLK_CON IDL Reference Guide

121
Example

; Create a filter of length P = 32:
filter = REPLICATE(1.0,32);Set all points to 1.0
filter(2*INDGEN(16)) = 0.5;Set even points to 0.5

; Create a sampled signal with random noise:
signal = SIN((FINDGEN(1000)/35.0)^2.5)
noise = (RANDOMU(SEED,1000)-.5)/2.
signal = signal + noise

; Convolve the filter and signal using block convolution:
result = BLK_CON(filter, signal)

See Also

CONVOL
IDL Reference Guide BLK_CON

122
BOX_CURSOR

The BOX_CURSOR procedure emulates the operation of a variable-sized box cursor
(also known as a “marquee” selector).

Warning
BOX_CURSOR does not function properly when used within a draw widget. See
the BUTTON_EVENTS and MOTION_EVENTS keywords in WIDGET_DRAW.

This routine is written in the IDL language. Its source code can be found in the file
box_cursor.pro in the lib subdirectory of the IDL distribution.

Using BOX_CURSOR

Once the box cursor has been realized, hold down the left mouse button to move the
box by dragging. Hold down the middle mouse button to resize the box by dragging.
(The corner nearest the initial mouse position is moved.) Press the right mouse button
to exit the procedure and return the current box parameters.

On machines with only two mouse buttons, hold down the left and right buttons
simultaneously to resize the box.

Syntax

BOX_CURSOR, [X0, Y0, NX, NY [, /INIT] [, /FIXED_SIZE]] [, /MESSAGE]

Arguments

X0, Y0

Named variables that will contain the coordinates of the lower left corner of the box
cursor.

NX, NY

Named variables that will contain the width and height of the cursor, in pixels.

Keywords

INIT

If this keyword is set, the arguments X0, Y0, NX, and NY contain the initial position
and size of the box.
BOX_CURSOR IDL Reference Guide

123
FIXED_SIZE

If this keyword is set, NX and NY contain the initial size of the box. This size may not
be changed by the user.

MESSAGE

If this keyword is set, IDL prints a message describing operation of the cursor.

See Also

Routines: CURSOR

Keywords to DEVICE: “CURSOR_CROSSHAIR” on page 2319,
“CURSOR_IMAGE” on page 2320, “CURSOR_STANDARD” on page 2320,
“CURSOR_XY” on page 2321
IDL Reference Guide BOX_CURSOR

124
BREAK

The BREAK statement provides a convenient way to immediately exit from a loop
(FOR, WHILE, REPEAT), CASE, or SWITCH statement without resorting to
GOTO statements.

Note
BREAK is an IDL statement. For information on using statements, see Chapter 11,
“Program Control” in Building IDL Applications.

Syntax

BREAK

Example

This example exits the enclosing WHILE loop when the value of i hits 5.

I = 0
WHILE (1) DO BEGIN

i = i + 1
IF (i eq 5) THEN BREAK

ENDWHILE
BREAK IDL Reference Guide

125
BREAKPOINT

The BREAKPOINT procedure allows you to insert and remove breakpoints in
programs for debugging. A breakpoint causes program execution to stop after the
designated statement is executed. Breakpoints are specified using the source file
name and line number. For multiple-line statements (statements containing “$”, the
continuation character), specify the line number of the last line of the statement.

You can insert breakpoints in programs without editing the source file. Enter the
following:

HELP, /BREAKPOINT

to display the breakpoint table which gives the index, module and source file
locations of each breakpoint.

Syntax

BREAKPOINT [, File], Index [, AFTER=integer] [, /CLEAR]
[, CONDITION=‘expression’] [, /DISABLE] [, /ENABLE] [, /ONCE] [, /SET]

Arguments

File

An optional string argument that contains the name of the source file. Note that if File
is not in the current directory, the full path name must be specified even if File is in
one of the directories specified by !PATH.

Index

The line number at which to clear or set a breakpoint.

Keywords

AFTER

Set this keyword equal to an integer n. Execution will stop only after the nth time the
breakpoint is hit. For example:

BREAKPOINT, /SET, 'test.pro', 8, AFTER=3

sets a breakpoint at the eighth line of the file test.pro, but only stops execution
after the breakpoint has been encountered three times.
IDL Reference Guide BREAKPOINT

126
CLEAR

Set this keyword to remove a breakpoint. The breakpoint to be removed is specified
either by index, or by the source file and line number. Use command HELP,
/BREAKPOINT to display the indices of existing breakpoints. For example:

; Clear breakpoint with an index of 3:
BREAKPOINT, /CLEAR, 3

; Clear the breakpoint corresponding to the statement in the file
; test.pro, line number 8:
BREAKPOINT, /CLEAR, 'test.pro',8

CONDITION

Set this keyword to a string containing an IDL expression. When a breakpoint is
encountered, the expression is evaluated. If the expression is true (if it returns a non-
zero value), program execution is interrupted. The expression is evaluated in the
context of the program containing the breakpoint. For example:

BREAKPOINT, 'myfile.pro', 6, CONDITION='i gt 2'

If i is greater than 2 at line 6 of myfile.pro, the program is interrupted.

DISABLE

Set this keyword to disable the specified breakpoint, if it exists. The breakpoint can
be specified using the breakpoint index or file and line number:

; Disable breakpoint with an index of 3:
BREAKPOINT, /DISABLE, 3

; Disable the breakpoint corresponding to the statement in the file
; test.pro, line number 8:
BREAKPOINT, /DISABLE, 'test.pro',8

ENABLE

Set this keyword to enable the specified breakpoint if it exists. The breakpoint can be
specified using the breakpoint index or file and line number:

; Enable breakpoint with an index of 3:
BREAKPOINT, /ENABLE, 3

; Enable the breakpoint corresponding to the statement in the file
; test.pro, line number 8:
BREAKPOINT, /ENABLE, 'test.pro',8
BREAKPOINT IDL Reference Guide

127
ONCE

Set this keyword to make the breakpoint temporary. If ONCE is set, the breakpoint is
cleared as soon as it is hit. For example:

BREAKPOINT, /SET, 'file.pro', 12, AFTER=3, /ONCE

sets a breakpoint at line 12 of file.pro. Execution stops when line 12 is
encountered the third time, and the breakpoint is automatically cleared.

SET

Set this keyword to set a breakpoint at the designated source file line. If this keyword
is set, the first input parameter, File must be a string expression that contains the
name of the source file. The second input parameter must be an integer that
represents the source line number.

For example, to set a breakpoint at line 23 in the source file xyz.pro, enter:

BREAKPOINT, /SET, 'xyz.pro', 23
IDL Reference Guide BREAKPOINT

128
BROYDEN

The BROYDEN function solves a system of n nonlinear equations (where n ≥ 2) in n
dimensions using a globally-convergent Broyden’s method. The result is an n-
element vector containing the solution.

BROYDEN is based on the routine broydn described in section 9.7 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = BROYDEN(X, Vecfunc [, CHECK=variable] [, /DOUBLE] [, EPS=value]
[, ITMAX=value] [, STEPMAX=value] [, TOLF=value] [, TOLMIN=value]
[, TOLX=value])

Arguments

X

An n-element vector (where n ≥ 2) containing an initial guess at the solution of the
system.

Vecfunc

A scalar string specifying the name of a user-supplied IDL function that defines the
system of non-linear equations. This function must accept a vector argument X and
return a vector result.

For example, suppose we wish to solve the following system:

To represent this system, we define an IDL function named BROYFUNC:

FUNCTION broyfunc, X
RETURN, [3.0 * X[0] - COS(X[1]*X[2]) - 0.5,$
X[0]^2 - 81.0*(X[1] + 0.1)^2 + SIN(X[2]) + 1.06,$
EXP(-X[0]*X[1]) + 20.0 * X[2] + (10.0*!PI - 3.0)/3.0]

END

3x yz() 1 2⁄–cos–

x
2

81 y 0.1+()2– z() 1.06+sin+

e xy– 20z 10π 3–
3

------------------+ +

0=
BROYDEN IDL Reference Guide

129
Keywords

CHECK

BROYDEN calls an internal function named fmin() to determine whether the
routine has converged to a local rather than a global minimum (see Numerical
Recipes, section 9.7). Use the CHECK keyword to specify a named variable which
will be set to 1 if the routine has converged to a local minimum or to 0 if not. If the
routine does converge to a local minimum, try restarting from a different initial guess
to obtain the global minimum.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

EPS

Set this keyword to a number close to machine accuracy, used to remove noise from
each iteration. The default is 10-7 for single precision, and 10-14 for double precision.

ITMAX

Use this keyword to specify the maximum allowed number of iterations. The default
is 200.

STEPMAX

Use this keyword to specify the scaled maximum step length allowed in line searches.
The default value is 100.0.

TOLF

Set the convergence criterion on the function values. The default value is 1.0 × 10-4.

TOLMIN

Set the criterion for deciding whether spurious convergence to a minimum of the
function fmin() has occurred. The default value is 1.0 × 10-6.

TOLX

Set the convergence criterion on X. The default value is 1.0 × 10-7.
IDL Reference Guide BROYDEN

130
Example

We can use BROYDEN to solve the non-linear system of equations defined by the
BROYFUNC function above:

;Provide an initial guess as the algorithm’s starting point:
X = [-1.0, 1.0, 2.0]

;Compute the solution:
result = BROYDEN(X, 'BROYFUNC')

;Print the result:
PRINT, result

IDL prints:

0.500000 -1.10731e-07 -0.523599

The exact solution (to eight-decimal accuracy) is [0.5, 0.0, -0.52359877].

See Also

FX_ROOT, FZ_ROOTS, NEWTON
BROYDEN IDL Reference Guide

131
BYTARR

The BYTARR function returns a byte vector or array.

Syntax

Result = BYTARR(D1, ..., D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, BYTARR sets every element of the result to zero. If the NOZERO
keyword is set, this zeroing is not performed (array elements contain random values)
and BYTARR executes faster.

Example

To create B as a 3 by 3 by 5 byte array where each element is set to zero, enter:

B = BYTARR(3, 3, 5)

See Also

COMPLEXARR, DBLARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
IDL Reference Guide BYTARR

132
BYTE

The BYTE function returns a result equal to Expression converted to byte type. If
Expression is a string, each string is converted to a byte vector of the same length as
the string. Each element of the vector is the character code of the corresponding
character in the string. The BYTE function can also be used to extract data from
Expression and place it in a byte scalar or array without modification, if more than
one parameter is present. See “Type Conversion Functions” on page 49 for details.

Syntax

Result = BYTE(Expression[, Offset [, Dim1, ..., Dim8]])

Arguments

Expression

The expression to be converted to type byte.

Offset

The byte offset from the beginning of Expression. Specifying this argument allows
fields of data extracted from Expression to be treated as byte data without conversion.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
The dimension parameters can be any scalar expression. Up to eight dimensions can
be specified. If no dimension arguments are given, the result is taken to be scalar.

Example

If the variable A contains the floating-point value 10.0, it can be converted to byte
type and saved in the variable B by entering:

B = BYTE(A)

See Also

COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64, STRING,
UINT, ULONG, ULONG64
BYTE IDL Reference Guide

133
BYTEORDER

The BYTEORDER procedure converts integers between host and network byte
ordering or floating-point values between the native format and XDR (IEEE) format.
This routine can also be used to swap the order of bytes within both short and long
integers. If the type of byte swapping is not specified via one of the keywords below,
bytes within short integers are swapped (even and odd bytes are interchanged).

The size of the parameter, in bytes, must be evenly divisible by two for short integer
swaps, and by four for long integer swaps. BYTEORDER operates on both scalars
and arrays. The parameter must be a variable, not an expression or constant, and may
not contain strings. The contents of Variable are overwritten by the result.

Network byte ordering is “big endian”. That is, multiple byte integers are stored in
memory beginning with the most significant byte.

Syntax

BYTEORDER, Variable1, ..., Variablen [, /DTOVAX] [, /DTOXDR] [, /FTOVAX]
[, /FTOXDR] [, /HTONL] [, /HTONS] [, /L64SWAP] [, /LSWAP] [, /NTOHL]
[, /NTOHS] [, /SSWAP] [, /SWAP_IF_BIG_ENDIAN]
[, /SWAP_IF_LITTLE_ENDIAN] [, /VAXTOD] [, /VAXTOF] [, /XDRTOD]
[, /XDRTOF]

VMS keywords: [, /DTOGFLOAT] [, /GFLOATTOD]

Arguments

Variablen

A named variable (not an expression or constant) that contains the data to be
converted. The contents of Variable are overwritten by the new values.

Keywords

DTOVAX

Set this keyword to convert native (IEEE) double-precision floating-point format to
VAX D float format. See “Note On IEEE to VAX Format Conversion” on page 136.

DTOXDR

Set this keyword to convert native double-precision floating-point format to XDR
(IEEE) format.
IDL Reference Guide BYTEORDER

134
FTOVAX

Set this keyword to convert native (IEEE) single-precision floating-point format to
VAX F float format. See “Note On IEEE to VAX Format Conversion” on page 136.

FTOXDR

Set this keyword to convert native single-precision floating-point format to XDR
(IEEE) format.

HTONL

Set this keyword to perform host to network conversion, longwords.

HTONS

Set this keyword to perform host to network conversion, short integers.

L64SWAP

Set this keyword to perform a 64-bit swap (8 bytes). Swap the order of the bytes
within each 64-bit word. For example, the eight bytes within a 64-bit word are
changed from (B0, B1, B2, B3 B4, B5, B6, B7), to (B7, B6, B5, B4, B3, B2, B1, B0).

LSWAP

Set this keyword to perform a 32-bit longword swap. Swap the order of the bytes
within each longword. For example, the four bytes within a longword are changed
from (B0, B1, B2, B3), to (B3, B2, B1, B0).

NTOHL

Set this keyword to perform network to host conversion, longwords.

NTOHS

Set this keyword to perform network to host conversion, short integers.

SSWAP

Set this keyword to perform a short word swap. Swap the bytes within short integers.
The even and odd numbered bytes are interchanged. This is the default action, if no
other keyword is set.

SWAP_IF_BIG_ENDIAN

If this keyword is set, the BYTEORDER request will only be performed if the
platform running IDL uses “big endian” byte ordering. On little endian machines, the
BYTEORDER request quietly returns without doing anything. Note that this
BYTEORDER IDL Reference Guide

135
keyword does not refer to the byte ordering of the input data, but to the computer
hardware.

SWAP_IF_LITTLE_ENDIAN

If this keyword is set, the BYTEORDER request will only be performed if the
platform running IDL uses “little endian” byte ordering. On big endian machines, the
BYTEORDER request quietly returns without doing anything. Note that this
keyword does not refer to the byte ordering of the input data, but to the computer
hardware.

VAXTOD

Set this keyword to convert VAX D float format to native (IEEE) double-precision
floating-point format. See “Note On IEEE to VAX Format Conversion” on page 136.

Note
If you have VAX G float format data, see the “VMS-Only Keywords” on page 135.

VAXTOF

Set this keyword to convert VAX F float format to native (IEEE) single-precision
floating-point format. See “Note On IEEE to VAX Format Conversion” on page 136.

Note
If you have VAX G float format data, see the “VMS-Only Keywords” on page 135.

XDRTOD

Set this keyword to convert XDR (IEEE) format to native double-precision floating-
point.

XDRTOF

Set this keyword to convert XDR (IEEE) format to native single-precision floating-
point.

VMS-Only Keywords

DTOGFLOAT

Set this keyword to convert native (IEEE) double-precision floating-point format to
VAX G float format. Note that IDL does not support the VAX G float format via any
other mechanism. See “Note On IEEE to VAX Format Conversion” on page 136.
IDL Reference Guide BYTEORDER

136
GFLOATTOD

Set this keyword to convert VAX G float format to native (IEEE) double-precision
floating-point format. Note that IDL does not support the VAX G float format via any
other mechanism.

Note On IEEE to VAX Format Conversion

Translation of floating-point values from the IDL’s native (IEEE) format to the VAX
formats and back (IEEE to VAX to IEEE) is not a completely reversible operation,
and should be avoided when possible. There are many cases where the recovered
values will differ from the original, including:

• The VAX floating point format lacks support for the IEEE special values
(NaN, Infinity). Hence, their special meaning is lost when they are converted
to VAX format and cannot be recovered.

• Differences in precision and range can also cause information to be lost in both
directions.

Research Systems recommends using IEEE/VAX conversions only to read existing
VAX format data, and strongly recommends that all new files be created using the
IEEE format.

See Also

SWAP_ENDIAN
BYTEORDER IDL Reference Guide

137
BYTSCL

The BYTSCL function scales all values of Array that lie in the range (Min ≤ x ≤ Max)
into the range (0 ≤ x ≤ Top). The returned result has the same structure as the original
parameter and is of byte type.

Syntax

Result = BYTSCL(Array [, MAX=value] [, MIN=value] [, /NAN] [, TOP=value])

Arguments

Array

The array to be scaled and converted to bytes.

Keywords

MAX

Set this keyword to the maximum value of Array to be considered. If MAX is not
provided, Array is searched for its maximum value. All values greater or equal to
MAX are set equal to TOP in the result.

Note
The data type of the value specified for MAX should match the data type of the
input array. Since MAX is converted to the data type of the input array, specifying
mismatched data types may produce undesired results.

MIN

Set this keyword to the minimum value of Array to be considered. If MIN is not
provided, Array is searched for its minimum value. All values less than or equal to
MIN are set equal to 0 in the result.

Note
The data type of the value specified for MIN should match the data type of the input
array. Since MIN is converted to the data type of the input array, specifying
mismatched data types may produce undesired results.
IDL Reference Guide BYTSCL

138
NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See “Special Floating-Point Values” on page 434 for more information
on IEEE floating-point values.)

TOP

Set this keyword to the maximum value of the scaled result. If TOP is not specified,
255 is used. Note that the minimum value of the scaled result is always 0.

Example

BYTSCL is often used to scale images into the appropriate range for 8-bit displays.
As an example, enter the following commands:

; Create a simple image array:
IM = DIST(200)

; Display the array as an image:
TV, IM

; Scale the image into the full range of bytes (0 to 255) and
; re-display it:
IM = BYTSCL(IM)

; Display the new image:
TV, IM

See Also

BYTE, TVSCL
BYTSCL IDL Reference Guide

139
C_CORRELATE

The C_CORRELATE function computes the cross correlation Pxy(L) or cross
covariance Rxy(L) of two sample populations X and Y as a function of the lag L

where x and y are the means of the sample populations x = (x0, x1, x2, ... , xN-1) and
y = (y0, y1, y2, ... , yN-1), respectively.

This routine is written in the IDL language. Its source code can be found in the file
c_correlate.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = C_CORRELATE(X, Y, Lag [, /COVARIANCE] [, /DOUBLE])

Pxy L()

xk L+ x–() yk y–()
k 0=

N L– 1–

∑

xk x–()2

k 0=

N 1–

∑ yk y–()2

k 0=

N 1–

∑
-- For L < 0

xk x–() yk L+ y–()
k 0=

N L– 1–

∑

xk x–()2

k 0=

N 1–

∑ yk y–()2

k 0=

N 1–

∑
-- For L 0≥

=

Rxy L()

1
N
---- xk L+ x–() yk y–()

k 0=

N L– 1–

∑ For L < 0

1
N
---- xk x–() yk L+ y–()

k 0=

N L– 1–

∑ For L 0≥

=

IDL Reference Guide C_CORRELATE

140
Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An n-element integer, single-, or double-precision floating-point vector.

Lag

A scalar or n-element integer vector in the interval [-(n-2), (n-2)], specifying the
signed distances between indexed elements of X.

Keywords

COVARIANCE

Set this keyword to compute the sample cross covariance rather than the sample cross
correlation.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

; Define two n-element sample populations:
X = [3.73, 3.67, 3.77, 3.83, 4.67, 5.87, 6.70, 6.97, 6.40, 5.57]
Y = [2.31, 2.76, 3.02, 3.13, 3.72, 3.88, 3.97, 4.39, 4.34, 3.95]

; Compute the cross correlation of X and Y for LAG = -5, 0, 1, 5,
; 6, 7:
lag = [-5, 0, 1, 5, 6, 7]
result = C_CORRELATE(X, Y, lag)
PRINT, result

IDL prints:

-0.428246 0.914755 0.674547 -0.405140 -0.403100 -0.339685

See Also

A_CORRELATE, CORRELATE, M_CORRELATE, P_CORRELATE,
R_CORRELATE
C_CORRELATE IDL Reference Guide

141
CALDAT

The CALDAT procedure computes the month, day, year, hour, minute, or second
corresponding to a given Julian date. The inverse of this procedure is JULDAY.

Note
The Julian calendar, established by Julius Caesar in the year 45 BCE, was corrected
by Pope Gregory XIII in 1582, excising ten days from the calendar. The CALDAT
procedure reflects the adjustment for dates after October 4, 1582. See the example
below for an illustration.

This routine is written in the IDL language. Its source code can be found in the file
caldat.pro in the lib subdirectory of the IDL distribution.

Syntax

CALDAT, Julian, Month [, Day [, Year [, Hour [, Minute [, Second]]]]]

Arguments

Julian

A numeric value or array that specifies the Julian Day Number (which begins at
noon) to be converted to a calendar date.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

Month

A named variable that, on output, contains the number of the desired month (1 =
January, ..., 12 = December).

Day

A named variable that, on output, contains the number of the day of the month (1-31).

Year

A named variable that, on output, contains the number of the desired year (e.g.,
1994).
IDL Reference Guide CALDAT

142
Hour

A named variable that, on output, contains the number of the hour of the day (0-23).

Minute

A named variable that, on output, contains the number of the minute of the hour
(0-59).

Second

A named variable that, on output, contains the number of the second of the minute
(0-59).

Examples

In 1582, Pope Gregory XIII adjusted the Julian calendar to correct for its inaccuracy
of slightly more than 11 minutes per year. As a result, the day following October 4,
1582 was October 15, 1582. CALDAT follows this convention, as illustrated by the
following commands:

CALDAT, 2299160, Month, Day, Year
PRINT, Month, Day, Year

IDL prints:

10 4 1582

Warning
You should be aware of this discrepancy between the original and revised Julian
calendar reckonings if you calculate dates before October 15, 1582.

Be sure to distinguish between Month and Minute when assigning variable names.
For example, the following code would cause the Minute value to be the same as the
Month value:

;Find date corresponding to Julian day 2529161.36:
CALDAT, 2529161.36, M, D, Y, H, M, S
PRINT, M, D, Y, H, M, S

IDL prints:

7 4 2212 18 7 0.00000000

Instead, use something like:

CALDAT, 2529161.36, Month, Day, Year, Hour, Minute, Second
PRINT, Month, Day, Year, Hour, Minute, Second
CALDAT IDL Reference Guide

143
You can use arrays for the Julian argument:

CALDAT,FINDGEN(4)+2449587L, m, d, y
PRINT, m, d, y

IDL prints:

 8 8 8 8
 22 23 24 25
 1994 1994 1994 1994

See Also

BIN_DATE, JULDAY, SYSTIME
IDL Reference Guide CALDAT

144
CALENDAR

The CALENDAR procedure displays a calendar for a month or an entire year on the
current plotting device. This IDL routine imitates the UNIX cal command.

This routine is written in the IDL language. Its source code can be found in the file
calendar.pro in the lib subdirectory of the IDL distribution.

Syntax

CALENDAR [[, Month] , Year]

Arguments

Month

The number of the month for which a calendar is desired (1 is January, 2 is February,
..., 12 is December). If called without arguments, CALENDAR draws a calendar for
the current month.

Year

The number of the year for which a calendar should be drawn. If YEAR is provided
without MONTH, a calendar for the entire year is drawn. If called without arguments,
CALENDAR draws a calendar for the current month.

Example

; Display a calendar for May, 1995.
CALENDAR, 5, 1995

See Also

SYSTIME
CALENDAR IDL Reference Guide

145
CALL_EXTERNAL

The CALL_EXTERNAL function calls a function in an external sharable object and
returns a scalar value. Parameters can be passed by reference (the default) or by
value. See Chapter 7, “CALL_EXTERNAL” in the External Development Guide for
examples.

CALL_EXTERNAL is supported under all operating systems supported by IDL,
although there are system specific details of which you must be aware. This function
requires no interface routines and is much simpler and easier to use than the
LINKIMAGE procedure. However, CALL_EXTERNAL performs no checking of
the type and number of parameters. Programming errors are likely to cause IDL to
crash or to corrupt your data.

Warning
Input and output actions should be performed within IDL code, using IDL’s built-in
input/output facilities, or by using the internal IDL_Message() function. Performing
input or output from external code, especially to the user console or tty (e.g. using
printf() or equivalent functionality in other languages to send text to stdout) may
create errors or generate unexpected results.

CALL_EXTERNAL supports the IDL Portable Convention, a portable calling
convention that works on all platforms. This convention passes two arguments to the
called routine, an argument count (argc) and an array of arguments (argv). On non-
VMS systems, this is the only available convention. Under VMS, the VMS
LIB$CALLG convention is also available. This convention, which is the default
under VMS, uses the VMS LIB$CALLG runtime library routine to call functions
without requiring a special (argc, argv) convention.

On UNIX, VMS, and Windows platforms, but not the Macintosh,
CALL_EXTERNAL also offers a feature called Auto Glue that can greatly simplify
use of the CALL_EXTERNAL portable convention if you have the appropriate C
compiler installed on your system. Auto glue automatically writes the glue function
required to convert the (argc, argv) arguments to the actual function call, and then
compiles and loads the glue function transparently. If you want IDL to simply write
the glue function for you, but not compile it, the WRITE_WRAPPER keyword can
be used.

The result of the CALL_EXTERNAL function is a scalar value returned by the
external function. By default, this is a scalar long (32-bit) integer. This default can be
changed by specifying one of the keywords described below that alter the result type.
IDL Reference Guide CALL_EXTERNAL

146
Syntax

Result = CALL_EXTERNAL(Image, Entry [, P0, ..., PN-1] [, /ALL_VALUE]
[, /B_VALUE | , /D_VALUE | , /F_VALUE | , /I_VALUE | , /L64_VALUE |
, /S_VALUE | , /UI_VALUE | , /UL_VALUE | , /UL64_VALUE] [, /CDECL]
[, RETURN_TYPE=value] [, /UNLOAD] [, VALUE=byte_array]
[, WRITE_WRAPPER=wrapper_file])

VMS keywords: [, DEFAULT=string] [, /PORTABLE] [, /VAX_FLOAT]

Auto Glue keywords: [, /AUTOGLUE] [, CC=string]
[, COMPILE_DIRECTORY=string] [, EXTRA_CFLAGS=string]
[, EXTRA_LFLAGS=string] [, /IGNORE_EXISTING_GLUE] [, LD=string]
[, /NOCLEANUP] [, /SHOW_ALL_OUTPUT] [, /VERBOSE]

Arguments

Image

The name of the file, which must be a sharable image (VMS), sharable library (UNIX
and Macintosh), or DLL (Windows), which contains the routine to be called.

Under VMS the full interpretation of this argument is discussed in “VMS
CALL_EXTERNAL and LIB$FIND_IMAGE_SYMBOL” on page 156.

Entry

A string containing the name of the symbol in the library which is the entry point of
the routine to be called.

P0, ..., PN-1

The parameters to be passed to the external routine. All array and structure arguments
are passed by reference (address). The default is to also pass scalars by reference, but
the ALL_VALUE or VALUE keywords can be used to pass them by value. Care
must be taken to ensure that the type, structure, and passing mechanism of the
parameters passed to the external routine match what it expects. There are some
restrictions on data types that can be passed by value, and the user needs to be aware
of how IDL passes strings. Both issues discussed in further detail below.
CALL_EXTERNAL IDL Reference Guide

147
Keywords

ALL_VALUE

Set this keyword to indicate that all parameters are passed by value. There are some
restrictions on data types that should be considered when using this keyword, as
discussed below.

B_VALUE

If set, this keyword indicates that the called function returns a byte value.

CDECL

The Microsoft Windows operating system has two distinct system defined standards
that govern how routines pass arguments: stdcall, which is used by much of the
operating system as well as languages such as Visual Basic, and cdecl, which is
used widely for programming in the C language. These standards differ in how and
when arguments are pushed and removed from the system stack. The standard used
by a given function is determined when the function is compiled, and can usually be
controlled by the programmer. If you call a function using the wrong standard (e.g.
calling a stdcall function as if it were cdecl, or the reverse), you could get
incorrect results, corrupted memory, or you could crash IDL. Unfortunately, there is
no way for IDL to know which convention a given function uses; this information
must be supplied by the user of CALL_EXTERNAL. If the CDECL keyword is
present, IDL will use the cdecl convention to call the function. Otherwise, stdcall
is used.

DEFAULT

This keyword is ignored on non-VMS platforms. Under VMS, it is a string
containing the default device, directory, file name, and file type information for the
file that contains the sharable image. See “VMS CALL_EXTERNAL and
LIB$FIND_IMAGE_SYMBOL” on page 156 for additional information.

D_VALUE

If set, this keyword indicates that the called function returns a double-precision
floating value.

F_VALUE

If set, this keyword indicates that the called function returns a single-precision
floating value.
IDL Reference Guide CALL_EXTERNAL

148
I_VALUE

If set, this keyword indicates that the called function returns an integer value.

L64_VALUE

If set, this keyword indicates that the called function returns a 64-bit integer value.

PORTABLE

Under VMS, causes CALL_EXTERNAL to use the IDL Portable calling convention
for passing arguments to the called function instead of the default VMS LIB$CALLG
convention. Under other operating systems, only the portable convention is available,
so this keyword is quietly ignored. The details of these calling conventions are
described in “Calling Convention” on page 152.

If you are using the IDL Portable calling convention, the AUTO_GLUE or
WRITE_WRAPPER keywords are available to simplify the task of matching the
form in which IDL passes the arguments to the interface of your target function.

RETURN_TYPE

The type code to set the type of the result. See the description of the SIZE function
for a list of the IDL type codes.

S_VALUE

If set, this keyword indicates that the called function returns a pointer to a
null-terminated string.

UI_VALUE

If set, this keyword indicates that the called function returns an unsigned integer
value.

UL_VALUE

If set, this keyword indicates that the called function returns an unsigned long integer
value.

UL64_VALUE

If set, this keyword indicates that the called function returns an unsigned 64-bit
integer value.

UNLOAD

Normally, IDL keeps Image loaded in memory after the call to CALL_EXTERNAL
completes. This is done for efficiency—loading a sharable object can be a slow
CALL_EXTERNAL IDL Reference Guide

149
operation. Setting the UNLOAD keyword will cause IDL to unload Image after the
call to it is complete. This is useful if you are debugging code in Image, as it allows
you to iterate on your code without having to exit IDL between tests. It can also be a
good idea if you do not intend to make any subsequent calls to routines within Image.

If IDL is unable to unload the sharable object, it will issue an error to that effect. In
addition to any operating system reported problem that might occur, there are 2
situations in which IDL cannot perform the UNLOAD operation:

• If the sharable library has been used for any other purpose in addition to
CALL_EXTERNAL (e.g. LINKIMAGE).

• The VMS operating system does not offer a mechanism for unloading sharable
objects from a running program. Use of the UNLOAD keyword under VMS
will therefore cause an error to be issued.

VALUE

A byte array, with as many elements as there are optional parameters, indicating the
method of parameter passing. Arrays are always passed by reference. If parameter Pi
is a scalar, it is passed by reference if VALUE[i] is 0; and by value if it is non-zero.
There are some restrictions on data types that should be considered when using this
keyword, as discussed below.

VAX_FLOAT (VMS Only)

If specified, all data passed to the called function is first converted to VAX F (single)
or D (double) floating point formats. On return, any data passed by reference is
converted back to the IEEE format used by IDL. This feature allow you to call code
compiled to work with earlier versions of IDL, which used the old VAX formats.

The default setting for this keyword is FALSE, unless IDL was started with the
VAX_FLOAT startup option, in which case the default is TRUE. See “Command
Line Options” in Chapter 4 of Using IDL for details on this qualifier. You can change
this setting at runtime using the VAX_FLOAT function.

WRITE_WRAPPER

If set, WRITE_WRAPPER supplies the name of a file for CALL_EXTERNAL to
create containing the C function required to convert the (argc, argv) interface used
by the CALL_EXTERNAL portable calling convention to the interface of the target
function. If WRITE_WRAPPER is specified, CALL_EXTERNAL writes the
specified file, but does not attempt to actually call the function specified by Entry.
The result from CALL_EXTERNAL is an integer 0 in this case, and has no special
meaning. Use of WRITE_WRAPPER implies the PORTABLE keyword.
IDL Reference Guide CALL_EXTERNAL

150
Note
This is similar to Auto Glue only in that CALL_EXTERNAL writes a function on
your behalf. Unlike auto glue, WRITE_WRAPPER does not attempt to compile the
resulting function or to use it. You might want to use WRITE_WRAPPER to
generate IDL interfaces for an external library in cases where you intend to combine
the interfaces with other code or otherwise modify it before using it with IDL.

Auto Glue Keywords (UNIX, VMS, and Windows)

Auto Glue, discussed in the section “Auto Glue” on page 153, offers a simplified way
to use the CALL_EXTERNAL portable calling convention. The following keywords
control its use. Many of these keywords correspond to the same keywords to the
MAKE_DLL procedure, and are covered in more detail in the documentation for that
routine.

AUTO_GLUE

Set this keyword to enable the CALL_EXTERNAL Auto Glue feature. Use of
AUTO_GLUE implies the PORTABLE keyword.

CC

If present, a template string to be used in generating the C compiler command(s) to
compile the automatically generated glue function. For a more complete description
of this keyword, see MAKE_DLL.

COMPILE_DIRECTORY

Specifies the directory to use for creating the necessary intermediate files and the
final glue function sharable library. For a more complete description of this keyword,
see MAKE_DLL.

EXTRA_CFLAGS

If present, a string supplying extra options to the command used to execute the C
compiler. For a more complete description of this keyword, see MAKE_DLL.

EXTRA_LFLAGS

If present, a string supplying extra options to the command used to execute the linker.
For a more complete description of this keyword, see MAKE_DLL.
CALL_EXTERNAL IDL Reference Guide

151
IGNORE_EXISTING_GLUE

Normally, if Auto Glue finds a pre-existing glue function, it will use it without
attempting to build it again. Set IGNORE_EXISTING_GLUE to override this
caching behavior and force CALL_EXTERNAL to rebuild the glue function sharable
library.

LD

If present, a template string to be used in generating the linker command to build the
glue function sharable library. For a more complete description of this keyword, see
MAKE_DLL.

NOCLEANUP

If set, CALL_EXTERNAL will not remove intermediate files generated in order to
build the glue function sharable library after the library has been built. This keyword
can be used to preserve information for debugging in case of error, or for additional
information on how Auto Glue works. For a more complete description of this
keyword, see MAKE_DLL.

SHOW_ALL_OUTPUT

Auto Glue normally produces no output unless an error prevents successful building
of the glue function sharable library. Set SHOW_ALL_OUTPUT to see all output
produced by the process of building the library. For a more complete description of
this keyword, see MAKE_DLL.

VERBOSE

If set, VERBOSE causes CALL_EXTERNAL to issue informational messages as it
carries out the task of locating, building, and executing the glue function. For a more
complete description of this keyword, see MAKE_DLL.

Note On IEEE to VAX Format Conversion

Translation of floating-point values from the IDL’s native (IEEE) format to the VAX
format and back (IEEE to VAX to IEEE) is not a completely reversible operation,
and should be avoided when possible. There are many cases where the recovered
values will differ from the original, including:

• The VAX floating point format lacks support for the IEEE special values
(NaN, Infinity). Hence, their special meaning is lost when they are converted
to VAX format and cannot be recovered.
IDL Reference Guide CALL_EXTERNAL

152
• Differences in precision and range can also cause information to be lost in both
directions.

Research Systems recommends using IEEE/VAX conversions only to read existing
VAX format data, and strongly recommends that all new files be created using the
IEEE format.

String Parameters

IDL represents strings internally as IDL_STRING descriptors, which are defined in
the C language as:

typedef struct {
 unsigned short slen;
 unsigned short stype;
 char *s;
} IDL_STRING;

To pass a string by reference, IDL passes the address of its IDL_STRING descriptor.
To pass a string by value the string pointer (the s field of the descriptor) is passed.
Programmers should be aware of the following when manipulating IDL strings:

• Called code should treat the information in the passed IDL_STRING
descriptor and the string itself as read-only, and should not modify these
values.

• The slen field contains the length of the string without including the NULL
termination that is required at the end of all C strings.

• The stype field is used internally by IDL to know keep track of how the
memory for the string was obtained, and should be ignored by
CALL_EXTERNAL users.

• s is the pointer to the actual C string represented by the descriptor. If the string
is NULL, IDL represents it as a NULL (0) pointer, not as a pointer to an empty
null terminated string. Hence, called code that expects a string pointer should
check for a NULL pointer before dereferencing it.

These issues are examined in greater detail in the IDL External Development Guide.

Calling Convention

CALL_EXTERNAL supports two distinct calling conventions for calling user-
supplied routines. The primary convention is the IDL Portable convention, which is
supported on all platforms. The second is the VMS LIB$CALLG convention which
is only available under VMS.
CALL_EXTERNAL IDL Reference Guide

153
Portable

The portable interface convention passes all arguments as elements of an array of C
void pointers (void *). The C language prototype for a user function called this way
looks like one of the following:

RET_TYPE xxx(int argc, void *argv[])

Where RET_TYPE is one of the following: UCHAR, short, IDL_UINT, IDL_LONG,
IDL_ULONG, IDL_LONG64, IDL_ULONG64, float, double, or char *. The return
type used must agree with the type assumed by CALL_EXTERNAL as specified via
the keywords described above.

Argc is the number of arguments, and the vector argv contains the arguments
themselves, one argument per element. Arguments passed by reference map directly
to these (void *) pointers, and can be cast to the proper type and then dereferenced
directly by the called function. Passing arguments by value is allowed, but since the
values are passed in (void *) pointers, there are some limitations and restrictions on
what is possible:

• Types that are larger than a pointer cannot be passed by value, and
CALL_EXTERNAL will issue an error if this is attempted. This limitation
applies only to the standard portable calling convention. Auto Glue does not
have this limitation, and is able to pass such variables by value.

• Integer values can be easily passed by value. IDL widens any of the integer
types to the C int type and they are then converted to a (void *) pointer using a
C cast operation.

• There is no C language-defined conversion between pointers and floating point
types, so IDL copies the data for the value directly into the pointer element.
Although such values can be retrieved by the called routine with the correct C
casting operations, this is inconvenient and error prone. It is best to pass non-
integer data by reference.

Auto Glue

Auto Glue is an extension to the IDL Portable Calling Convention that makes it
easier to use. It is supported under UNIX, VMS, and Microsoft Windows, but not on
the Macintosh at this time.

The portable calling convention requires your function to use the IDL defined (argc,
argv) interface for passing arguments. However, functions not explicitly written for
use with CALL_EXTERNAL do not have this interface. VMS users can solve this
problem by using the LIB$CALLG calling convention described in the following
IDL Reference Guide CALL_EXTERNAL

154
section, but that method only works under VMS and has other limitations as well. A
common solution using the portable convention is for the IDL user to write a glue
function that interfaces between IDL and the actual function. The entire purpose of
this glue function, which is usually very simple, is to convert the IDL (argc, argv)
method of passing parameters to a form acceptable to the desired function. Writing
this wrapper function is easy for programmers that understand the C language, the
system C compiler and linker, and how sharable libraries work on their target
operating system. However, it is also tedious and error prone, and can be difficult for
users that do not already have these skills.

Auto Glue uses the MAKE_DLL procedure to automate the process of using glue
code to call functions via the CALL_EXTERNAL portable calling convention. Since
it depends so closely on MAKE_DLL, an understanding of how MAKE_DLL works
is necessary to fully understand Auto Glue. As with MAKE_DLL, Auto Glue
requires that your system have a suitable C compiler installed. Please refer to the
documentation for MAKE_DLL.

Auto Glue maintains a cache of previously built glue functions, and will reuse them
on subsequent requests, even between IDL sessions. The process works as follows:

• CALL_EXTERNAL finds a suitable glue function by performing the
following steps in order, stopping after the first one that works. Glue function
libraries can be recognized by their name, which starts with the prefix idl_ce,
and end with the proper suffix for a sharable library on the target system (most
UNIX: .so, AIX: .a, HP-UX: .sl, VMS: .exe, Windows: .dll).

1. Look for a ce_glue subdirectory within the IDL distribution bin
subdirectory for the current platform. If this directory exists, it looks there for a
sharable library containing the appropriate glue function.

Note
For customer security reasons, the ce_glue subdirectory does not exist in the IDL
distribution as shipped by RSI, and IDL does not use it to create glue functions.
However, if an individual site creates this directory and places glue library files
within it, IDL will use them. Multiple IDL sessions on a given system can all share
these same glue files, even when run by different users on a multi-user system. If
you keep your IDL distribution on a network based file server shared by multiple
clients, and if you provide a sufficient selection of glue files, it is possible that your
users will not require a locally installed C compiler to use Auto Glue.

If you do create the ce_glue subdirectory on a multi-user system, we
recommend that you make it along with all files contained within belong to the
CALL_EXTERNAL IDL Reference Guide

155
owner of the IDL distribution, and apply file protections that prevent non-
privileged users from creating files in the directory or modifying them.

2. Look in the directory given by the COMPILE_DIRECTORY keyword, or if
COMPILE_DIRECTORY is not present, in the directory given by the
!MAKE_DLL.COMPILE_DIRECTORY system variable for the appropriate
glue function.

3. If this step is reached, there is no pre-existing glue function available.
CALL_EXTERNAL will create one in the same directory searched in the
previous step by generating a C language file containing the needed glue
function, and then compiling and linking it into a sharable library using the
functionality of the MAKE_DLL procedure.

• IDL loads the sharable library containing the glue function found in the
previous step, as well as the library you specified with the Image argument.

• CALL_EXTERNAL calls the glue function, causing your function to be called
with the correct parameters.

The first time CALL_EXTERNAL encounters the need for a glue function that does
not already exist, it will automatically build it, and then use it without any external
indication that this has happened. You may notice a brief hesitation in IDL’s
execution as it waits for this process to occur. Once a glue function exists, IDL can
load it immediately on subsequent calls (even in unrelated later IDL sessions), and no
delay will occur.

Example: Using Auto Glue To Call System Library Routines

Under Sun Solaris, there is a function in the system math library called hypot() that
computes the length of the hypotenuse of a right-angled triangle:

sqrt(x*x + y*y)

This function has the C prototype:

double hypot(double x, double y)

The following IDL function uses Auto Glue to call this routine:

FUNCTION HYPOT, X, Y
; Use the 32-bit or the 64-bit math library?
LIBM=(!VERSION.MEMORY_BITS EQ 64) $

? ’/usr/lib/sparcv9/libm.so’ : ’/usr/lib/libm.so’
RETURN, CALL_EXTERNAL(LIBM, ’hypot’, double(x), double(y), $

/ALL_VALUE, /D_VALUE, /AUTO_GLUE)
END
IDL Reference Guide CALL_EXTERNAL

156
VMS LIB$CALLG

The LIB$CALLG calling convention is built directly upon the VMS LIB$CALLG
runtime library function. This function allows calling functions with a natural
interface without requiring a special (argc, argv) convention. In FORTRAN, a
typical routine might be declared:

INTEGER *4 FUNCTION XXX(P1, P2, ..., PN)

As with the Portable convention described above, the return type for the function
must be one of the following types: UCHAR, short, IDL_UINT, IDL_LONG,
IDL_ULONG, IDL_LONG64, IDL_ULONG64, float, double, or char *.

It is possible to pass arguments of any data type by reference, but there are some
limitations and restrictions on passing arguments by value. Unfortunately, the
interface to LIB$CALLG was designed explicitly for the VAX hardware
architecture, and does not provide sufficient information to the operating system to
pass all data types by value properly on ALPHA Risc CPUs which pass arguments in
registers as well as on the system stack. To the best of our knowledge, Compaq
(formerly Digital Equipment Corporation) has no plans to supply an updated version
of LIB$CALLG that does not have these limitations. Therefore, this calling
convention has the following restrictions on ALPHA/VMS:

• A single or double-precision floating-point argument can only be passed by
value if it is one of the first six arguments to the function.

• Single- and double-precision complex arguments cannot be passed by value.

The LIB$CALLG calling convention is the default for VMS IDL because it was the
original convention supported on that platform, and because it allows calling routines
that do not adhere to the (argc, argv) style interface required by the portable
convention. The Portable convention, described above, can be used under VMS by
setting the PORTABLE keyword. If you are writing external code to be used under
operating systems other than VMS, using the portable interface simplifies cross
platform development.

VMS CALL_EXTERNAL and LIB$FIND_IMAGE_SYMBOL

The VMS implementation of CALL_EXTERNAL uses the system runtime library
function LIB$FIND_IMAGE_SYMBOL to perform the dynamic linking. This
function has a complicated interface in which the name of the library to be linked is
given in two separate arguments. We encourage VMS users wishing to use
CALL_EXTERNAL to read and fully understand the documentation for
LIB$FIND_IMAGE_SYMBOL in order to understand how it is used by IDL. The
CALL_EXTERNAL IDL Reference Guide

157
following discussion assumes that you have a copy of the
LIB$FIND_IMAGE_SYMBOL documentation available to consult as you read.

LIB$FIND_IMAGE_SYMBOL uses an argument called filename to specify the
name of the sharable library or executable to be loaded. This means that none of the
file specification punctuation characters (:, [, <, ;, .) are allowed. Filename can also
be a logical name, in which case its translated value is the name of the file to be
loaded. The translation of such a logical name is allowed to contain additional file
specification information. VMS uses this information to find the file to load, using
SYS$SHARE as the default location if a location is not specified via a logical name.
Alternatively, the user can supply the image-name argument, which is used as a
default file specification to fill in the parts of the file specification not contained in
filename. IDL uses the following rules, in the order listed, to determine how to call
LIB$FIND_IMAGE_SYMBOL:

1. If CALL_EXTERNAL is called with both the Image argument and DEFAULT
keyword, Image is passed to LIB$FIND_IMAGE_SYMBOL as filename, and
DEFAULT is passed as image-name. Both are passed directly to the function
without any interpretation.

2. If DEFAULT is not present and Image does not contain a file specification
character (:, [, <, ;, .) then it is passed to LIB$CALL_IMAGE_SYMBOL as
it’s filename argument without any further interpretation.

3. If DEFAULT is not present and Image contains a file specification character,
then IDL examines it and locates the filename part. The filename part is passed
to LIB$FIND_IMAGE_SYMBOL as filename and the entire string from
Image is passed as image-name.

This means that although LIB$CALL_IMAGE_SYMBOL has a complicated
interface, the CALL_EXTERNAL user can supply a simple file specification for
Image and it will be properly loaded by IDL. Full control of
LIB$CALL_IMAGE_SYMBOL is still available for those who require it.

Important Changes Since IDL 5.0

The current version of CALL_EXTERNAL differs from IDL versions up to and
including IDL 5.0 in a few ways that are important to users moving code to the
current version:

• Under Windows, CALL_EXTERNAL would pass IDL strings by value no
matter how the ALL_VALUE or VALUE keywords were set. This was
inconsistent with all the other platforms and created unnecessary confusion.
IDL now uses these keywords to decide how to pass strings on all platforms.
IDL Reference Guide CALL_EXTERNAL

158
Windows users with existing code that expects strings to be passed by value
without having specified it via one of these keywords will need to adjust their
use of CALL_EXTERNAL or their code.

• VMS IDL through version 5.0 was only capable of using the LIB$CALLG
calling convention. Newer versions can also use the portable convention.

• Older versions of IDL would quietly pass by value arguments that are larger
than a pointer without issuing an error when using the portable calling
convention. Although this might work on some hardware, it is error prone and
can cause IDL to crash. IDL now issues an error in this case. Programmers
with existing code moving to a current version of IDL should change their
code to pass such data by reference.

Example

See Chapter 7, “CALL_EXTERNAL” in the External Development Guide.

See Also

LINKIMAGE, VAX_FLOAT
CALL_EXTERNAL IDL Reference Guide

159
CALL_FUNCTION

CALL_FUNCTION calls the IDL function specified by the string Name, passing any
additional parameters as its arguments. The result of the called function is passed
back as the result of this routine.

Although not as flexible as the EXECUTE function, CALL_FUNCTION is much
faster. Therefore, CALL_FUNCTION should be used in preference to EXECUTE
whenever possible.

Syntax

Result = CALL_FUNCTION(Name [, P1, ..., Pn])

Arguments

Name

A string containing the name of the function to be called. This argument can be a
variable, which allows the called function to be determined at runtime.

Pi

The arguments to be passed to the function given by Name. These arguments are the
positional and keyword arguments documented for the called function, and are
passed to the called function exactly as if it had been called directly.

Example

The following command indirectly calls the IDL function SQRT (the square root
function) with an argument of 4 and stores the result in the variable R:

R = CALL_FUNCTION('SQRT', 4)

See Also

CALL_PROCEDURE, CALL_METHOD, EXECUTE
IDL Reference Guide CALL_FUNCTION

160
CALL_METHOD

CALL_METHOD calls the object method specified by Name, passing any additional
parameters as its arguments. CALL_METHOD can be used as either a function or a
procedure, depending on whether the called method is a function or procedure.

Although not as flexible as the EXECUTE function, CALL_METHOD is much
faster. Therefore, CALL_METHOD should be used in preference to EXECUTE
whenever possible.

Syntax

CALL_METHOD, Name, ObjRef, [, P1, ..., Pn]

or

Result = CALL_METHOD(Name, ObjRef, [, P1, ..., Pn])

Arguments

Name

A string containing the name of the method to be called. This argument can be a
variable, which allows the called method to be determined at runtime.

ObjRef

A scalar object reference that will be passed to the method as the Self argument.

Pi

The arguments to be passed to the method given by Name. These arguments are the
positional and keyword arguments documented for the called method, and are passed
to the called method exactly as if it had been called directly.

See Also

CALL_FUNCTION, CALL_PROCEDURE, EXECUTE
CALL_METHOD IDL Reference Guide

161
IDL Reference Guide CALL_PROCEDU

CALL_PROCEDURE

CALL_PROCEDURE calls the procedure specified by Name, passing any additional
parameters as its arguments.

Although not as flexible as the EXECUTE function, CALL_PROCEDURE is much
faster. Therefore, CALL_PROCEDURE should be used in preference to EXECUTE
whenever possible.

Syntax

CALL_PROCEDURE, Name [, P1, ..., Pn]

Arguments

Name

A string containing the name of the procedure do be called. This argument can be a
variable, which allows the called procedure to be determined at runtime.

Pi

The arguments to be passed to the procedure given by Name. These arguments are the
positional and keyword arguments documented for the called procedure, and are
passed to the called procedure exactly as if it had been called directly.

Example

The following example shows how to call the PLOT procedure indirectly with a
number of arguments. First, create a dataset for plotting by entering:

B = FINDGEN(100)

Call PLOT indirectly to create a polar plot by entering:

CALL_PROCEDURE, 'PLOT', B, B, /POLAR

A “spiral” plot should appear.

See Also

CALL_FUNCTION, CALL_METHOD, EXECUTE
RE

162
CASE

The CASE statement selects one, and only one, statement for execution, depending
on the value of an expression. This expression is called the case selector expression.
Each statement that is part of a CASE statement is preceded by an expression that is
compared to the value of the selector expression. CASE executes by comparing the
CASE expression with each selector expression in the order written. If a match is
found, the statement is executed and control resumes directly below the CASE
statement.

The ELSE clause of the CASE statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usually
written as the last clause in the CASE statement. The ELSE statement is executed
only if none of the preceding statement expressions match. If an ELSE clause is not
included and none of the values match the selector, an error occurs and program
execution stops.

The BREAK statement can be used within CASE statements to force an immediate
exit from the CASE.

In this CASE statement, only one clause is selected, and that clause is the first one
whose value is equal to the value of the case selector expression.

Tip
Each clause is tested in order, so it is most efficient to order the most frequently
selected clauses first.

CASE is similar to the SWITCH statement. For more information on using CASE
and other IDL program control statements, as well as the differences between CASE
and SWITCH, see Chapter 11, “Program Control” in Building IDL Applications.

Syntax

CASE expression OF

expression: statement

...

expression: statement

[ELSE: statement]

ENDCASE
CASE IDL Reference Guide

163
Example

This example illustrates how the CASE statement, unlike SWITCH, executes only
the one statement that matches the case expression:

x=2

CASE x OF
1: PRINT, 'one'
2: PRINT, 'two'
3: PRINT, 'three'
4: PRINT, 'four'

ENDCASE

IDL Prints:

two
IDL Reference Guide CASE

164
CATCH

The CATCH procedure provides a generalized mechanism for the handling of
exceptions and errors within IDL. Calling CATCH establishes an error handler for
the current procedure that intercepts all errors that can be handled by IDL, excluding
non-fatal warnings such as math errors.

When an error occurs, each active procedure, beginning with the offending procedure
and proceeding up the call stack to the main program level, is examined for an error
handler. If an error handler is found, control resumes at the statement after the call to
CATCH. The index of the error is returned in the argument to CATCH. The
!ERROR_STATE system variable is also set. If no error handlers are found, program
execution stops, an error message is issued, and control reverts to the interactive
mode. A call to ON_IOERROR in the procedure that causes an I/O error supersedes
CATCH, and takes the branch to the label defined by ON_IOERROR.

This mechanism is similar, but not identical to, the setjmp/longjmp facilities in C
and the catch/throw facilities in C++.

Error handling is discussed in more detail in Chapter 17, “Controlling Errors” in
Building IDL Applications.

Syntax

CATCH, Variable [, /CANCEL]

Arguments

Variable

A named variable in which the error index is returned. When an error handler is
established by a call to CATCH, Variable is set to zero. If an error occurs, Variable is
set to the error index, and control is transferred to the statement after the call to
CATCH. The error index is also returned in the CODE field of the !ERROR_STATE
system variable, i.e., !ERROR_STATE.CODE.

Keywords

CANCEL

Set this keyword to cancel the error handler for the current procedure. This
cancellation does not affect other error handlers that may be established in other
active procedures.
CATCH IDL Reference Guide

165
Example

The following procedure illustrates the use of CATCH:

PRO CATCH_EXAMPLE

; Define variable A:
A = FLTARR(10)

; Establish error handler. When errors occur, the index of the
; error is returned in the variable Error_status:
CATCH, Error_status

;This statement begins the error handler:
IF Error_status NE 0 THEN BEGIN

PRINT, 'Error index: ', Error_status
PRINT, 'Error message: ', !ERROR_STATE.MSG
; Handle the error by extending A:
A=FLTARR(12)

ENDIF

; Cause an error:
A[11]=12

; Even though an error occurs in the line above, program
; execution continues to this point because the event handler
; extended the definition of A so that the statement can be
; re-executed.
HELP, A

END

Running the ABC procedure causes IDL to produce the following output and control
returns to the interactive prompt:

Error index: -144
Error message:
Attempt to subscript A with <INT (11)> is out of range.
A FLOAT = Array[12]

See Also

!ERROR_STATE, ON_ERROR, ON_IOERROR, Chapter 17, “Controlling Errors”
in Building IDL Applications.
IDL Reference Guide CATCH

166
CD

The CD procedure is used to set and/or change the current working directory. This
routine changes the working directory for the IDL session and any child processes
started from IDL during that session after the directory change is made. Under UNIX,
CD does not affect the working directory of the process that started IDL. The
PUSHD, POPD, and PRINTD procedures provide a convenient interface to CD.

Syntax

CD [, Directory] [, CURRENT=variable]

Arguments

Directory

A scalar string specifying the path of the new working directory. If Directory is
specified as a null string, the working directory is changed to the user’s home
directory (UNIX and VMS) or to the directory specified by !DIR (Windows and
Macintosh). If this argument is not specified, the working directory is not changed.

Keywords

CURRENT

If CURRENT is present, it specifies a named variable into which the current working
directory is stored as a scalar string. The returned directory is the working directory
before the directory is changed. Thus, you can obtain the current working directory
and change it in a single statement:

CD, new_dir, CURRENT=old_dir

Note
On Windows and UNIX, the return value of the CURRENT keyword does not
include a directory separator at the end of the string. On Macintosh, the return value
of the CURRENT keyword includes an appended ‘:’ character on the end of the
string, and on VMS, the return value of the CURRENT keyword includes an
appended ‘]’ character on the end of the string.
CD IDL Reference Guide

167
Examples

Windows

To change drives:

CD, 'C:'

To specify a full path:

CD, 'C:\MyData\January'

To change from the C:\MyData directory to the C:\MyData\January directory:

CD, 'January'

To go back up a directory, use “..”. For example, if the current directory is
C:\MyData\January, you could go up to the C:\MyData directory with the
following command:

CD, '..'

If the current directory is C:\MyData\January, you could change to the
C:\MyData\February directory with the following command:

CD, '..\February'

Unix

To specify a full path:

CD, '/home/data/'

To change to the january subdirectory of the current directory:

CD, 'january'

To go back up a directory, use “..”. For example, if the current directory is
/home/data/january, you could go up to the /home/data/ directory with the
following command:

CD, '..'

If the current directory is /home/data/january, you could change to the
/home/data/february directory with the following command:

CD, '../february'

Macintosh

To change drives, provide a path that begins with a volume name:

CD, 'Macintosh volume:'
IDL Reference Guide CD

168
To specify a full path, separate the folders with colons.

CD, 'Macinotsh volume:My Data Folder:January:'

To specify a partial path from the current folder, begin your path with a colon. For
example, to change to the “January” subfolder of the current folder, use:

CD, ':January:'

To go back up the folder hierarchy, use a leading colon and then add one colon for
each level you want to go up. For example, if the current folder is
Macinotsh volume:My Data Folder:January:, you would go up to the folder
Macinotsh volume:My Data Folder: with the following command:

CD, '::'

To go up two folders, use:

CD, ':::'

You can append a new folder path after a series of colons to go back up the folder
hierarchy and then down into a subfolder. For example, to go from the folder
Macinotsh volume:My Data Folder:January: to the folder
Macinotsh volume:My Data Folder:Febuary:, use the following command:

CD, '::Febuary:'

You cannot specify multiple colons in the middle of a path—they must appear at the
beginning of the path specifier.

VMS

To change to the data subdirectory of the current directory:

CD, '[.data]'

See Also

PUSHD, POPD
CD IDL Reference Guide

169
CDF Routines

See “Alphabetical Listing of CDF Routines” in the Scientific Data Formats manual.
IDL Reference Guide CDF Routines

170

CEIL
CEIL

The CEIL function returns the closest integer greater than or equal to its argument.

Syntax

Result = CEIL(X [, /L64])

Return Value

If the input value X is integer type, Result has the same value and type as X.
Otherwise, Result is a 32-bit longword integer with the same structure as X.

Arguments

X

The value for which the ceiling function is to be evaluated. This value can be any
numeric type (integer, floating, or complex).

Keywords

L64

If set, the result type is 64-bit integer regardless of the input type. This is useful for
situations in which a floating point number contains a value too large to be
represented in a 32-bit integer.

Example

To print the ceiling function of 5.1, enter:

PRINT, CEIL(5.1)
; IDL prints:
6

To print the ceiling function of 3000000000.1, the result of which is too large to
represent in a 32-bit integer:

PRINT, CEIL(3000000000.1D, /L64)
; IDL prints:
3000000001

See Also

COMPLEXROUND, FLOOR, ROUND
IDL Reference Guide

171
CHEBYSHEV

The CHEBYSHEV function returns the forward or reverse Chebyshev polynomial
expansion of a set of data. Note: Results from this function are subject to roundoff
error given discontinuous data.

This routine is written in the IDL language. Its source code can be found in the file
chebyshev.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CHEBYSHEV(D, N)

Arguments

D

A vector containing the values at the zeros of Chebyshev polynomial.

N

A flag that, if set to -1, returns a set of Chebyshev polynomials. If set to +1, the
original data is returned.

See Also

FFT, WTN
IDL Reference Guide CHEBYSHEV

172
CHECK_MATH

The CHECK_MATH function returns and clears the accumulated math error status.

Syntax

Result = CHECK_MATH([, MASK=bitmask] [, /NOCLEAR] [, /PRINT])

Return Value

The returned value is the sum of the bit values (described in the following table) of
the accumulated errors. Note that not all machines detect all errors.

Note that each type of error is only represented once in the return value—any number
of “Integer divided by zero” errors will result in a return value of 1.

The math error status is cleared (reset to zero) when CHECK_MATH is called, or
when errors are reported. Math errors are reported either never, when the interpreter
returns to an interactive prompt, or after execution of each IDL statement, depending
on the value of the !EXCEPT system variable (see “!EXCEPT” on page 2426). See
“Examples” below for further discussion.

Value Condition

0 No errors detected since the last interactive prompt or call to
CHECK_MATH

1 Integer divided by zero

2 Integer overflow

16 Floating-point divided by zero

32 Floating-point underflow

64 Floating-point overflow

128 Floating-point operand error. An illegal operand was
encountered, such as a negative operand to the SQRT or
ALOG functions, or an attempt to convert to integer a
number whose absolute value is greater than 231 - 1

Table 4: Math Error Status Values
CHECK_MATH IDL Reference Guide

173
Keywords

MASK

If present, the mask of exceptions to check. Otherwise, all exceptions are checked.
Exceptions that are pending but not specified by MASK are not reported, and not
cleared. Set this keyword equal to the sum of the bit values for each exception to be
checked. For a list of the bit values corresponding to various exceptions, see
CHECK_MATH.

NOCLEAR

If set, CHECK_MATH returns the pending exceptions (as specified via the MASK
keyword) and clears them from its list of pending exceptions. If NOCLEAR is set,
the exceptions are not cleared and remain pending.

PRINT

Set this keyword to print an error message to the IDL command log if any
accumulated math errors exist. If this keyword is not present, CHECK_MATH
executes silently.

Examples

To simply check and clear the accumulated math error status using all the defaults,
enter:

PRINT, CHECK_MATH()

IDL prints the accumulated math error status code and resets to zero.

CHECK_MATH and !EXCEPT

Because the accumulated math error status is cleared when it is reported, the behavior
and appropriate use of CHECK_MATH depends on the value of the system variable
!EXCEPT.

• If !EXCEPT is set equal to 0, math exceptions are not reported automatically,
and thus CHECK_MATH will always return the error status accumulated
since the last time it was called.

• If !EXCEPT is set equal to 1, math exceptions are reported when IDL returns
to the interactive command prompt. In this case, CHECK_MATH will return
appropriate error codes when used within an IDL procedure, but will always
return zero when called at the IDL prompt.
IDL Reference Guide CHECK_MATH

174
• If !EXCEPT is set equal to 2, math exceptions are reported after each IDL
statement. In this case, CHECK_MATH will return appropriate error codes
only when used within an IDL statement, and will always return zero
otherwise.

For example:

;Set value of !EXCEPT to zero.
!EXCEPT=0

;Both of these operations cause errors.
PRINT, 1./0., 1/0

IDL prints:

Inf 1

The special floating-point value Inf is returned for 1./0. There is no integer analogue
to the floating-point Inf.

;Check the accumulated error status.
PRINT, CHECK_MATH()

IDL prints:

17

CHECK_MATH reports floating-point and integer divide-by-zero errors.

;Set value of !EXCEPT to one.
!EXCEPT=1

;Both of these operations cause errors.
PRINT, 1./0., 1/0

IDL prints:

Inf 1
% Program caused arithmetic error: Integer divide by 0
% Program caused arithmetic error: Floating divide by 0

This time IDL also prints error messages.

;Check the accumulated error status.
PRINT, CHECK_MATH()

IDL prints:

0

The status was reset.
CHECK_MATH IDL Reference Guide

175
However, if we do not allow IDL to return to an interactive prompt before checking
the math error status:

;Set value of !EXCEPT to one.
!EXCEPT=1

;Call to CHECK_MATH happens before returning to the
;IDL command prompt.
PRINT, 1./0., 1/0 & PRINT, CHECK_MATH()

IDL prints:

Inf 1
17

In this case, the math error status code (17) is printed, but because the error status has
been cleared by the call to CHECK_MATH, no error messages are printed when IDL
returns to the interactive command prompt. Finally,

;Set value of !EXCEPT to two.
!EXCEPT=2

;Call to CHECK_MATH happens before returning to the
;IDL command prompt.
PRINT, 1./0., 1/0 & PRINT, CHECK_MATH()

IDL prints:

Inf 1
% Program caused arithmetic error: Integer divide by 0
% Program caused arithmetic error: Floating divide by 0
% Detected at $MAIN$
 0

Errors are printed before executing the CHECK_MATH function, so
CHECK_MATH reports no errors. However, if we include the call to
CHECK_MATH in the first PRINT command, we see the following:

;Call to CHECK_MATH is part of a single IDL statement.
PRINT, 1./0., 1/0, CHECK_MATH()

IDL prints:

Inf 1 17

Printing Error Messages

The following code fragment prints abbreviated names of errors that have occurred:

;Create a string array of error names.
ERRS = ['Divide by 0', 'Underflow', 'Overflow', $
IDL Reference Guide CHECK_MATH

176
'Illegal Operand']

;Get math error status.
J = CHECK_MATH()
FOR I = 4, 7 DO IF ISHFT(J, -I) AND 1 THEN $

;Check to see if an error occurred and print the corresponding
;error message.

PRINT, ERRS(I-4), ' Occurred'

Testing Critical Code

Example 1

Assume you have a critical section of code that is likely to produce an error. The
following example shows how to check for errors, and if one is detected, how to
repeat the code with different parameters.

; Clear error status from previous operations, and print error
; messages if an error exists:
JUNK = CHECK_MATH(/PRINT)

; Disable automatic printing of subsequent math errors:
!EXCEPT=0

;Critical section goes here.
AGAIN: ...

; Did an arithmetic error occur? If so, print error message and
; request new values:
IF CHECK_MATH() NE 0 THEN BEGIN
PRINT, 'Math error occurred in critical section.'

; Get new parameters from user:
READ, 'Enter new values.',...

; Enable automatic printing of math errors:
!EXCEPT=2

;And retry:
GOTO, AGAIN
ENDIF

Example 2

This example demonstrates the use of the MASK keyword to check for a specific
error, and the NOCLEAR keyword to prevent exceptions from being cleared:

PRO EXAMPLE2_CHECKMATH
CHECK_MATH IDL Reference Guide

177
PRINT, 1./0
PRINT, CHECK_MATH(MASK=16,/NOCLEAR)
PRINT, CHECK_MATH(MASK=2,/NOCLEAR)

END

IDL prints:

Inf
16
0
% Program caused arithmetic error: Floating divide by 0

See Also

FINITE, ISHFT, MACHAR, “!VALUES” on page 2423, “!EXCEPT” on page 2426,
“Math Errors” in Chapter 17 of Building IDL Applications
IDL Reference Guide CHECK_MATH

178
CHISQR_CVF

The CHISQR_CVF function computes the cutoff value V in a Chi-square distribution
with Df degrees of freedom such that the probability that a random variable X is
greater than V is equal to a user-supplied probability P.

This routine is written in the IDL language. Its source code can be found in the file
chisqr_cvf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CHISQR_CVF(P, Df)

Arguments

P

A non-negative single- or double-precision floating-point scalar, in the interval [0.0,
1.0], that specifies the probability of occurrence or success.

Df

A positive integer, single- or double-precision floating-point scalar that specifies the
number of degrees of freedom of the Chi-square distribution.

Example

Use the following command to compute the cutoff value in a Chi-square distribution
with three degrees of freedom such that the probability that a random variable X is
greater than the cutoff value is 0.100. The result should be 6.25139.

PRINT, CHISQR_CVF(0.100, 3)

IDL prints:

6.25139

See Also

CHISQR_PDF, F_CVF, GAUSS_CVF, T_CVF
CHISQR_CVF IDL Reference Guide

179
CHISQR_PDF

The CHISQR_PDF function computes the probability P that, in a Chi-square
distribution with Df degrees of freedom, a random variable X is less than or equal to a
user-specified cutoff value V.

This routine is written in the IDL language. Its source code can be found in the file
chisqr_pdf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CHISQR_PDF(V, Df)

Return Value

If both arguments are scalar, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of V and Df, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the input array.

If any of the arguments are double-precision, the result is double-precision, otherwise
the result is single-precision.

Arguments

V

A scalar or array that specifies the cutoff value(s).

Df

A positive scalar or array that specifies the number of degrees of freedom of the Chi-
square distribution.

Examples

Use the following command to compute the probability that a random variable X,
from the Chi-square distribution with three degrees of freedom, is less than or equal
to 6.25. The result should be 0.899939.

result = CHISQR_PDF(6.25, 3)
PRINT, result

IDL prints:
IDL Reference Guide CHISQR_PDF

180
0.899939

Compute the probability that a random variable X from the Chi-square distribution
with three degrees of freedom, is greater than 6.25. The result should be 0.100061.

PRINT, 1 - chisqr_pdf(6.25, 3)

IDL prints:

0.100061

See Also

BINOMIAL, CHISQR_CVF, F_PDF, GAUSS_PDF, T_PDF
CHISQR_PDF IDL Reference Guide

181
CHOLDC

Given a positive-definite symmetric n by n array A, the CHOLDC procedure
constructs its Cholesky decomposition A = LLT, where L is a lower triangular array
and LT is the transpose of L.

CHOLDC is based on the routine choldc described in section 2.9 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

CHOLDC, A, P [, /DOUBLE]

Arguments

A

An n by n array. On input, only the upper triangle of A need be given. On output, L is
returned in the lower triangle of A, except for the diagonal elements, which are
returned in the vector P.

P

An n-element vector containing the diagonal elements of L.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

See “CHOLSOL” on page 182.

See Also

CHOLSOL
IDL Reference Guide CHOLDC

182
CHOLSOL

The CHOLSOL function returns an n-element vector containing the solution to the
set of linear equations Ax = b, where A is the positive-definite symmetric array
returned by the CHOLDC procedure.

CHOLSOL is based on the routine cholsl described in section 2.9 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = CHOLSOL(A, P, B [, /DOUBLE])

Arguments

A

An n by n positive-definite symmetric array, as output by CHOLDC. Only the lower
triangle of A is accessed.

P

The diagonal elements of the Cholesky factor L, as computed by CHOLDC.

B

An n-element vector containing the right-hand side of the equation.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

To solve a positive-definite symmetric system Ax = b:

;Define the coefficient array:
A = [[6.0, 15.0, 55.0], $

[15.0, 55.0, 225.0], $
[55.0, 225.0, 979.0]]

;Define the right-hand side vector B:
B = [9.5, 50.0, 237.0]
CHOLSOL IDL Reference Guide

183
;Compute Cholesky decomposition of A:
CHOLDC, A, P

;Compute and print the solution:
PRINT, CHOLSOL(A, P, B)

IDL prints:

-0.499998 -1.00000 0.500000

The exact solution vector is [-0.5, -1.0, 0.5].

See Also

CHOLDC, CRAMER, GS_ITER, LU_COMPLEX, LUSOL, SVSOL, TRISOL
IDL Reference Guide CHOLSOL

184
CINDGEN

The CINDGEN function returns a complex, single-precision, floating-point array
with the specified dimensions. Each element of the array has its real part set to the
value of its one-dimensional subscript. The imaginary part is set to zero.

Syntax

Result = CINDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Example

To create C, a 4-element vector of complex values with the real parts set to the value
of their subscripts, enter:

C = CINDGEN(4)

See Also

BINDGEN, DCINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
CINDGEN IDL Reference Guide

185
CIR_3PNT

The CIR_3PNT procedure returns the radius and center of a circle, given 3 points on
the circle. This is analogous to finding the circumradius and circumcircle of a
triangle; the center of the circumcircle is the point at which the three perpendicular
bisectors of the triangle formed by the points meet.

This routine is written in the IDL language. Its source code can be found in the file
cir_3pnt.pro in the lib subdirectory of the IDL distribution.

Syntax

CIR_3PNT, X, Y, R, X0, Y0

Arguments

X

A three-element vector containing the X-coordinates of the points.

Y

A three-element vector containing the Y-coordinates of the points.

R

A named variable that will contain the radius of the circle. The procedure returns 0.0
if the points are co-linear.

X0

A named variable that will contain the X-coordinate of the center of the circle. The
procedure returns 0.0 if the points are co-linear.

Y0

A named variable that will contain the Y-coordinate of the center of the circle. The
procedure returns 0.0 if the points are co-linear.

Example

X = [1.0, 2.0, 3.0]
Y = [1.0, 2.0, 1.0]
CIR_3PNT, X, Y, R, X0, Y0
PRINT, 'The radius is: ', R
PRINT, 'The center of the circle is at: ', X0, Y0
IDL Reference Guide CIR_3PNT

186
See Also

PNT_LINE, SPH_4PNT
CIR_3PNT IDL Reference Guide

187
CLOSE

The CLOSE procedure closes the file units specified as arguments. All open files are
also closed when IDL exits.

Syntax

CLOSE[, Unit1, ..., Unitn] [, /ALL] [, EXIT_STATUS=variable] [, /FILE]
[, /FORCE]

Arguments

Uniti
The IDL file units to close.

Keywords

ALL

Set this keyword to close all open file units. In addition, any file units that were
allocated via GET_LUN are freed.

EXIT_STATUS

Set this keyword to a named varible that will contain the exit status reported by a
UNIX child process started via the UNIT keyword to SPAWN. This value is the exit
value reported by the process by calling EXIT, and is analogous to the value returned
by $? under most UNIX shells. If used with any other type of file, 0 is returned.
EXIT_STATUS is not allowed in conjunction with the ALL or FILE keywords.

FILE

Set this keyword to close all file units from 1 to 99. File units greater than 99, which
are associated with the GET_LUN and FREE_LUN procedures, are not affected.

FORCE

Overrides the IDL file output buffer and forces the file to be closed no matter what
errors occur in the process.

IDL buffers file output for performance reasons. If it is not possible to properly flush
this data when a file close is requested, an error is normally issued and the file
remains open. An example of this might be that your disk does not have room to write
the remaining data. This default behavior prevents data from being lost. To override
IDL Reference Guide CLOSE

188
it and force the file to be closed no matter what errors occur in the process, specify
FORCE.

Example

If file units 1 and 3 are open, they can both be closed at the same time by entering the
command:

CLOSE, 1, 3

See Also

OPEN
CLOSE IDL Reference Guide

189
CLUST_WTS

The CLUST_WTS function computes the weights (the cluster centers) of an m-
column, n-row array, where m is the number of variables and n is the number of
observations or samples. The result is an m-column, N_CLUSTERS-row array of
cluster centers.

This routine is written in the IDL language. Its source code can be found in the file
clust_wts.pro in the lib subdirectory of the IDL distribution.

For more information on cluster analysis, see:

Everitt, Brian S. Cluster Analysis. New York: Halsted Press, 1993. ISBN 0-470-
22043-0

Syntax

Result = CLUST_WTS(Array [, /DOUBLE] [, N_CLUSTERS=value]
[, N_ITERATIONS=integer] [, VARIABLE_WTS=vector])

Arguments

Array

An m-column, n-row array of any data type except string, single- or double-precision
complex.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

N_CLUSTERS

Set this keyword equal to the number of cluster centers. The default is to compute n
cluster centers.

N_ITERATIONS

Set this keyword equal to the number of iterations used when in computing the
cluster centers. The default is to use 20 iterations.
IDL Reference Guide CLUST_WTS

190
VARIABLE_WTS

Set this keyword equal to an m-element vector of floating-point variable weights. The
elements of this vector are used to give greater or lesser importance to each variable
(each column) in determining the cluster centers. The default is to give all variables
equal weighting using a value of 1.0.

Example

See “CLUSTER” on page 191.

See Also

CLUSTER, “Multivariate Analysis” in Chapter 16 of Using IDL.
CLUST_WTS IDL Reference Guide

191
CLUSTER

The CLUSTER function computes the classification of an m-column, n-row array,
where m is the number of variables and n is the number of observations or samples.
The classification is based upon a cluster analysis of sample-based distances. The
result is a 1-column, n-row array of cluster number assignments that correspond to
each sample.

This routine is written in the IDL language. Its source code can be found in the file
cluster.pro in the lib subdirectory of the IDL distribution.

For more information on cluster analysis, see:

Everitt, Brian S. Cluster Analysis. New York: Halsted Press, 1993. ISBN 0-470-
22043-0

Syntax

Result = CLUSTER(Array, Weights [, /DOUBLE] [, N_CLUSTERS=value])

Arguments

Array

An M-column, N-row array of type float or double.

Weights

An array of weights (the cluster centers) computed using the CLUST_WTS function.
The dimensions of this array vary according to keyword values.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

N_CLUSTERS

Set this keyword equal to the number of clusters. The default is based upon the row
dimension of the Weights array.
IDL Reference Guide CLUSTER

192
Example

; Define an array with 4 variables and 10 observations:
array = $
[[1.5, 43.1, 29.1, 1.9], $
[24.7, 49.8, 28.2, 22.8], $
[30.7, 51.9, 7.0, 18.7], $
[9.8, 4.3, 31.1, 0.1], $
[19.1, 42.2, 0.9, 12.9], $
[25.6, 13.9, 3.7, 21.7], $
[1.4, 58.5, 27.6, 7.1], $
[7.9, 2.1, 30.6, 5.4], $
[22.1, 49.9, 3.2, 21.3], $
[5.5, 53.5, 4.8, 19.3]]

; Compute the cluster weights, using two distinct clusters:
weights = CLUST_WTS(array, N_CLUSTERS=2)

; Compute the classification of each sample:
result = CLUSTER(array, weights, N_CLUSTERS=2)

; Print each sample (each row) of the array and its corresponding
; cluster assignment:
FOR k = 0, N_ELEMENTS(result)-1 DO PRINT, $
array[*,k], result(k), FORMAT = '(4(f4.1, 2x), 5x, i1)'

IDL prints:

1.5 43.1 29.1 1.9 1
24.7 49.8 28.2 22.8 0
30.7 51.9 7.0 18.7 0
 9.8 4.3 31.1 0.1 1
19.1 42.2 0.9 12.9 0
25.6 13.9 3.7 21.7 0
 1.4 58.5 27.6 7.1 1
 7.9 2.1 30.6 5.4 1
22.1 49.9 3.2 21.3 0
 5.5 53.5 4.8 19.3 0

See Also

CLUST_WTS, PCOMP, STANDARDIZE, “Multivariate Analysis” in Chapter 16 of
Using IDL.
CLUSTER IDL Reference Guide

193
COLOR_CONVERT

The COLOR_CONVERT procedure converts colors to and from the RGB (Red
Green Blue), HLS (Hue Lightness Saturation), and HSV (Hue Saturation Value)
color systems. A keyword parameter indicates the type of conversion to be performed
(one of the keywords must be specified). The first three parameters contain the input
color triple(s) which may be scalars or arrays of the same size. The result is returned
in the last three parameters, O0, O1, and O2. RGB values are bytes in the range 0 to
255.

Hue is measured in degrees, from 0 to 360. Saturation, Lightness, and Value are
floating-point numbers in the range 0 to 1. A Hue of 0 degrees is the color red. Green
is 120 degrees. Blue is 240 degrees. A reference containing a discussion of the
various color systems is: Foley and Van Dam, Fundamentals of Interactive Computer
Graphics, Addison-Wesley Publishing Co., 1982.

Syntax

COLOR_CONVERT, I0, I1, I2, O0, O1, O2 {, /HLS_RGB | , /HSV_RGB | ,
/RGB_HLS | , /RGB_HSV}

Arguments

I0, I1, I2
The input color triple(s). These arguments may be either scalars or arrays of the same
length.

O0, O1, O2

The variables to receive the result. Their structure is copied from the input
parameters.

Keywords

HLS_RGB

Set this keyword to convert from HLS to RGB.

HSV_RGB

Set this keyword to convert from HSV to RGB.
IDL Reference Guide COLOR_CONVERT

194
RGB_HLS

Set this keyword to convert from RGB to HLS.

RGB_HSV

Set this keyword to convert from RGB to HSV.

Example

The command:

COLOR_CONVERT, 255, 255, 0, h, s, v, /RGB_HSV

converts the RGB color triple (255, 255, 0), which is the color yellow at full intensity
and saturation, to the HSV system. The resulting hue in the variable h is 60.0 degrees.
The saturation and value, s and v, are set to 1.0.

See Also

HLS, HSV
COLOR_CONVERT IDL Reference Guide

195
COLOR_QUAN

The COLOR_QUAN function quantizes a TrueColor image and returns a pseudo-
color image and palette to display the image on standard pseudo-color displays. The
output image and palette can have from 2 to 256 colors.

COLOR_QUAN solves the general problem of accurately displaying decomposed,
TrueColor images, that contain a palette of up to 224 colors, on pseudo-color displays
that can only display 256 (or fewer) simultaneous colors.

Syntax

Result = COLOR_QUAN(Image_R, Image_G, Image_B, R, G, B)

or

Result = COLOR_QUAN(Image, Dim, R, G, B)

Keywords: [, COLORS=integer{2 to 256}] [, CUBE={2 | 3 | 4 | 5 | 6} | ,
GET_TRANSLATION=variable [, /MAP_ALL]] [, /DITHER] [, ERROR=variable]
[, TRANSLATION=vector]

Note that the input image parameter can be passed as either three, separate color-
component arrays (Image_R, Image_G, Image_B) or as a three-dimensional array
containing all three components, Image, and a scalar, Dim, indicating the dimension
over which the colors are interleaved.

Using COLOR_QUAN

One of two color quantization methods can be used:

• Method 1 is a statistical method that attempts to find the N colors that most
accurately represent the original color distribution. This algorithm uses a
variation of the Median Cut Algorithm, described in “Color Image
Quantization for Frame Buffer Display”, from Computer Graphics, Volume
16, Number 3 (July, 1982), Page 297. It repeatedly subdivides the color space
into smaller and smaller rectangular boxes, until the requested number of
colors are obtained.

The original colors are then mapped to the nearest output color, and the
original image is resampled to the new palette with optional Floyd-Steinberg
color dithering. The resulting pseudo-color image and palette are usually a
good approximation of the original image.
IDL Reference Guide COLOR_QUAN

196
The number of colors in the output palette defaults to the number of colors
supported by the currently-selected graphics output device. The number of
colors can also be specified by the COLOR keyword parameter.

• Method 2, selected by setting the keyword parameter CUBE, divides the three-
dimensional color space into equal-volume cubes. Each color axis is divided
into CUBE segments, resulting in CUBE3 volumes. The original input image
is sampled to this color space using Floyd-Steinberg dithering, which
distributes the quantization error to adjacent pixels.

The CUBE method has the advantage that the color tables it produces are
independent of the input image, so that multiple quantized images can be
viewed simultaneously. The statistical method usually provides a better-
looking result and a smaller global error.

COLOR_QUAN can use the same color mapping for a series of images. See the
descriptions of the GET_TRANSLATION, MAP_ALL, and TRANSLATION
keywords, below.

Arguments

Image_R, Image_G, Image_B

Arrays containing the red, green, and blue components of the decomposed TrueColor
image. For best results, the input image(s) should be scaled to the range of 0 to 255.

Image

A three-dimensional array containing all three components of the TrueColor image.

Dim

A scalar that indicates the method of color interleaving in the Image parameter. A
value of 1 indicates interleaving by pixel: (3, n, m). A value of 2 indicates
interleaving by row: (n, 3, m). A value of 3 indicates interleaving by image: (n, m, 3).

R, G, B

Three output byte arrays containing the red, green, and blue components of the output
palette.
COLOR_QUAN IDL Reference Guide

197
Keywords

COLORS

The number of colors in the output palette. This value must be at least 2 and not
greater than 256. The default is the number of colors supported by the current
graphics output device.

CUBE

If this keyword is set, the color space is divided into CUBE3 volumes, to which the
input image is quantized. This result is always Floyd-Steinberg dithered. The value of
CUBE can range from 2 to 6; providing from 23 = 8, to 63 = 216 output colors. If this
keyword is set, the COLORS, DITHER, and ERROR keywords are ignored.

DITHER

Set this keyword to dither the output image. Dithering can improve the appearance of
the output image, especially when using relatively few colors.

ERROR

Set this optional keyword to a named variable. A measure of the quantization error is
returned. This error is proportional to the square of the Euclidean distance, in RGB
space, between corresponding colors in the original and output images.

GET_TRANSLATION

Set this keyword to a named variable in which the mapping between the original
RGB triples (in the TrueColor image) and the resulting pseudo-color indices is
returned as a vector. Do not use this keyword if CUBE is set.

MAP_ALL

Set this keyword to establish a mapping for all possible RGB triples into pseudo-
color indices. Set this keyword only if GET_TRANSLATION is also present. Note
that mapping all possible colors requires more compute time and slightly degrades
the quality of the resultant color matching.

TRANSLATION

Set this keyword to a vector of translation indices obtained by a previous call to
COLOR_QUAN using the GET_TRANSLATION keyword. The resulting image is
quantized using this vector.
IDL Reference Guide COLOR_QUAN

198
Example

The following code segment reads a TrueColor, row interleaved, image from a disk
file, and displays it on the current graphics display, using a palette of 128 colors:

;Open an input file:
OPENR, unit, 'XXX.DAT', /GET_LUN

;Dimensions of the input image:
a = BYTARR(512, 3, 480)

;Read the image:
READU, unit, a

;Close the file:
FREE LUN, unit

;Show the quantized image. The 2 indicates that the colors are
;interleaved by row:
TV, COLOR_QUAN(a, 2, r, g, b, COLORS=128)

;Load the new palette:
TVLCT, r, g, b

To quantize the image into 216 equal-volume color cubes, replace the call to
COLOR_QUAN with the following:

TV, COLOR_QUAN(a, 2, r, g, b, CUBE=6)

See Also

PSEUDO
COLOR_QUAN IDL Reference Guide

199
COLORMAP_APPLICABLE

The COLORMAP_APPLICABLE function determines whether the current visual
class supports the use of a colormap, and if so, whether colormap changes affect pre-
displayed Direct Graphics or if the graphics must be redrawn to pick up colormap
changes.

This routine is written in the IDL language. Its source code can be found in the file
colormap_applicable.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = COLORMAP_APPLICABLE(redrawRequired)

Return Value

The function returns a long value of 1 if the current visual class allows modification
of the color table, and 0 otherwise.

Arguments

redrawRequired

A named variable to retrieve a value indicating whether the visual class supports
automatic updating of graphics. The value is 0 if the graphics are updated
automatically, or 1 if the graphics must be redrawn to pick up changes to the
colormap.

Keywords

None.

Example

To determine whether to redisplay an image after a colormap change:

result = COLORMAP_APPLICABLE(redrawRequired)
IF ((result GT 0) AND (redrawRequired GT 0)) THEN BEGIN

my_redraw
ENDIF
IDL Reference Guide COLORMAP_APPLICABLE

200
COMFIT

The COMFIT function fits the paired data {xi, yi} to one of six common types of
approximating models using a gradient-expansion least-squares method. The result is
a vector containing the model parameters a0, a1, a2, etc.

This routine is written in the IDL language. Its source code can be found in the file
comfit.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = COMFIT(X, Y, A {, /EXPONENTIAL | , /GEOMETRIC | , /GOMPERTZ | ,
/HYPERBOLIC | , /LOGISTIC | , /LOGSQUARE} [, SIGMA=variable]
[, WEIGHTS=vector] [, YFIT=variable])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An n-element integer, single-, or double-precision floating-point vector.

A

A vector of initial estimates for each model parameter. The length of this vector
depends upon the type of model selected.

Keywords

Note
One of the following keywords specifying a type of model must be set when using
COMFIT. If you do not specify a model, IDL will display a warning message when
COMFIT is called.

EXPONENTIAL

Set this keyword to compute the parameters of the exponential model.

y a0a1
x a2+=
COMFIT IDL Reference Guide

201
GEOMETRIC

Set this keyword to compute the parameters of the geometric model.

GOMPERTZ

Set this keyword to compute the parameters of the Gompertz model.

HYPERBOLIC

Set this keyword to compute the parameters of the hyperbolic model.

LOGISTIC

Set this keyword to compute the parameters of the logistic model.

LOGSQUARE

Set this keyword to compute the parameters of the logsquare model.

SIGMA

Set this keyword to a named variable that will contain a vector of standard deviations
for the computed model parameters.

WEIGHTS

Set this keyword equal to a vector of weights for Yi. This vector should be the same
length as X and Y. The error for each term is weighted by WEIGHTSi when
computing the fit. Frequently, WEIGHTSi = 1.0/σ2

i, where σ is the measurement
error or standard deviation of Yi (Gaussian or instrumental weighting), or
WEIGHTS = 1/Y (Poisson or statistical weighting). If WEIGHTS is not specified,
WEIGHTSi is assumed to be 1.0.

y a0xa1 a2+=

y a0a1
a2x a3+=

y 1
a0 a1x+
--------------------=

y 1
a0a1

x a2+
----------------------=

y a0 a1 x() a2 x()2log+log+=
IDL Reference Guide COMFIT

202
YFIT

Set this keyword to a named variable that will contain an n-element vector of y-data
corresponding to the computed model parameters.

Example

; Define two n-element vectors of paired data:
X = [2.27, 15.01, 34.74, 36.01, 43.65, 50.02, 53.84, 58.30, $

62.12, 64.66, 71.66, 79.94, 85.67, 114.95]
Y = [5.16, 22.63, 34.36, 34.92, 37.98, 40.22, 41.46, 42.81, $

43.91, 44.62, 46.44, 48.43, 49.70, 55.31]

; Define a 3-element vector of initial estimates for the logsquare
; model:
A = [1.5, 1.5, 1.5]

; Compute the model parameters of the logsquare model, A[0], A[1],
; & A[2]:
result = COMFIT(X, Y, A, /LOGSQUARE)

The result should be the 3-element vector: [1.42494, 7.21900, 9.18794].

See Also

CURVEFIT, LADFIT, LINFIT, LMFIT, POLY_FIT, SVDFIT
COMFIT IDL Reference Guide

203
COMMON

The COMMON statement creates a common block.

Note
For more information on using COMMON, see Chapter 3, “Constants and
Variables” in Building IDL Applications.

Syntax

COMMON Block_Name, Variable1, ..., Variablen
IDL Reference Guide COMMON

204
COMPILE_OPT

The COMPILE_OPT statement allows the author to give the IDL compiler
information that changes some of the default rules for compiling the function or
procedure within which the COMPILE_OPT statement appears.

Research Systems recommends the use of

COMPILE_OPT IDL2

in all new code intended for use in a reusable library. We further recommend the use
of

COMPILE_OPT idl2, HIDDEN

in all such routines that are not intended to be called directly by regular users (e.g.
helper routines that are part of a larger package).

Note
For information on using COMPILE_OPT, see Chapter 12, “Procedures and
Functions” in Building IDL Applications.

Syntax

COMPILE_OPT opt1 [, opt2, ..., optn]

Arguments

optn
This argument can be any of the following:

• IDL2 — A shorthand way of saying:

COMPILE_OPT DEFINT32, STRICTARR

• DEFINT32 — IDL should assume that lexical integer constants default to the
32-bit type rather than the usual default of 16-bit integers. This takes effect
from the point where the COMPILE_OPT statement appears in the routine
being compiled and remains in effect until the end of the routine. The
COMPILE_OPT IDL Reference Guide

205
following table illustrates how the DEFINT32 argument changes the
interpretation of integer constants:

• HIDDEN — This routine should not be displayed by HELP, unless the FULL
keyword to HELP is used. This directive can be used to hide helper routines
that regular IDL users are not interested in seeing.

A side-effect of making a routine hidden is that IDL will not print a “Compile
module” message for it when it is compiled from the library to satisfy a call to
it. This makes hidden routines appear built-in to the user.

• OBSOLETE — If the user has !WARN.OBS_ROUTINES set to True,
attempts to compile a call to this routine will generate warning messages that
this routine is obsolete. This directive can be used to warn people that there
may be better ways to perform the desired task.

Constant Normal Type DEFINT32 Type

Without type specifier:

42 INT LONG

'2a'x INT LONG

42u UINT ULONG

'2a'xu UINT ULONG

With type specifier:

0b BYTE BYTE

0s INT INT

0l LONG LONG

42.0 FLOAT FLOAT

42d DOUBLE DOUBLE

42us UINT UINT

42ul ULONG ULONG

42ll LONG64 LONG64

42ull ULONG64 ULONG64

Table 5: Examples of the effect of the DEFINT32 argument
IDL Reference Guide COMPILE_OPT

206
• STRICTARR — While compiling this routine, IDL will not allow the use of
parentheses to index arrays, reserving their use only for functions. Square
brackets are then the only way to index arrays. Use of this directive will
prevent the addition of a new function in future versions of IDL, or new
libraries of IDL code from any source, from changing the meaning of your
code, and is an especially good idea for library functions.

Use of STRICTARR can eliminate many uses of the
FORWARD_FUNCTION definition.

Note
STRICTARR has no effect on the use of parentheses to reference structure tags
using the tag index, which is not an array indexing operation. For example, no
syntax error will occur when compiling the following code:

COMPILE_OPT STRICTARR
mystruct = {a:0, b:1}
byindex_0 = mystruct.(0)

For more on referencing structure tags by index, see “Advanced Structure Usage”
in Chapter 6 of Building IDL Applications.
COMPILE_OPT IDL Reference Guide

207
COMPLEX

The COMPLEX function returns complex scalars or arrays given one or two scalars
or arrays. If only one parameter is supplied, the imaginary part of the result is zero,
otherwise it is set to the value of the Imaginary parameter. Parameters are first
converted to single-precision floating-point. If either or both of the parameters are
arrays, the result is an array, following the same rules as standard IDL operators. If
three parameters are supplied, COMPLEX extracts fields of data from Expression.

Syntax

Result = COMPLEX(Real [, Imaginary])

or

Result = COMPLEX(Expression, Offset, Dim1 [, ..., Dim8])

Arguments

Real

Scalar or array to be used as the real part of the complex result.

Imaginary

Scalar or array to be used as the imaginary part of the complex result.

Expression

The expression from which data is to be extracted.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as complex data. See the
description in Chapter 3, “Constants and Variables” of Using IDL for details.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
The dimension parameters can be any scalar expression. Up to eight dimensions can
be specified. If no dimension arguments are given, the result is taken to be scalar.

When converting from a string argument, it is possible that the string does not contain
a valid floating-point value and no conversion is possible. The default action in such
IDL Reference Guide COMPLEX

208
cases is to print a warning message and return 0. The ON_IOERROR procedure can
be used to establish a statement to be jumped to in case of such errors.

Example

Create a complex array from two integer arrays by entering the following commands:

; Create the first integer array:
A = [1,2,3]

; Create the second integer array:
B = [4,5,6]

; Make A the real parts and B the imaginary parts of the new
; complex array:
C = COMPLEX(A, B)

; See how the two arrays were combined:
PRINT, C

IDL prints:

(1.00000, 4.00000)(2.00000, 5.00000)
(3.00000, 6.00000)

The real and imaginary parts of the complex array can be extracted as follows:

; Print the real part of the complex array C:
PRINT, 'Real Part: ', FLOAT(C)

; Print the imaginary part of the complex array C:
PRINT, 'Imaginary Part: ', IMAGINARY(C)

IDL prints:

Real Part: 1.00000 2.00000 3.00000
Imaginary Part: 4.00000 5.00000 6.00000

See Also

BYTE, CONJ, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64, STRING,
UINT, ULONG, ULONG64
COMPLEX IDL Reference Guide

209
COMPLEXARR

The COMPLEXARR function returns a complex, single-precision, floating-point
vector or array.

Syntax

Result = COMPLEXARR(D1, ..., D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters may be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, COMPLEXARR sets every element of the result to zero. If the NOZERO
keyword is set, this zeroing is not performed, and COMPLEXARR executes faster.

Example

To create an empty, 5-element by 5-element, complex array C, enter:

C = COMPLEXARR(5, 5)

See Also

DBLARR, DCOMPLEXARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
IDL Reference Guide COMPLEXARR

210
COMPLEXROUND

The COMPLEXROUND function rounds real and imaginary components of a
complex array and returns the resulting array. If the array is double-precision
complex, then the result is also double-precision complex.

This routine is written in the IDL language. Its source code can be found in the file
complexround.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = COMPLEXROUND(Input)

Arguments

Input

The complex array to be rounded.

Example

X = [COMPLEX(1.245, 3.88), COMPLEX(9.1, 0.3345)]
PRINT, COMPLEXROUND(X)

IDL prints:

(1.00000, 4.00000)(9.00000, 0.00000)

See Also

ROUND
COMPLEXROUND IDL Reference Guide

211
COMPUTE_MESH_NORMALS

The COMPUTE_MESH_NORMALS function computes normal vectors for a set of
polygons described by the input array. The return value is a 3 x M array containing a
unit normal for each vertex in the input array.

Syntax

Result = COMPUTE_MESH_NORMALS(fVerts[, iConn])

Arguments

fVerts

A 3 x M array of vertices.

iConn

A connectivity array (see the POLYGONS keyword to IDLgrPolygon::Init). If no
iConn array is provided, it is assumed that the vertices in fVerts constitute a single
polygon.

Keywords

None.
IDL Reference Guide COMPUTE_MESH_NORMALS

212
COND

The COND function returns the condition number of an n by n real or complex array
A by explicitly computing NORM(A)·NORM(A-1). If A is real and A-1 is invalid (due
to the singularity of A or floating-point errors in the INVERT function), COND
returns -1. If A is complex and A-1 is invalid (due to the singularity of A), calling
COND results in floating-point errors.

This routine is written in the IDL language. Its source code can be found in the file
cond.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = COND(A [, /DOUBLE])

Arguments

A

An n by n real or complex array.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

; Define a complex array A:
A = [[COMPLEX(1, 0), COMPLEX(2,-2), COMPLEX(-3, 1)], $

[COMPLEX(1,-2), COMPLEX(2, 2), COMPLEX(1, 0)], $
[COMPLEX(1, 1), COMPLEX(0, 1), COMPLEX(1, 5)]]

; Compute the condition number of the array using internal
; double-precision arithmetic:
PRINT, COND(A, /DOUBLE)

IDL prints:

5.93773

See Also

DETERM, INVERT
COND IDL Reference Guide

213
CONGRID

The CONGRID function shrinks or expands the size of an array by an arbitrary
amount. CONGRID is similar to REBIN in that it can resize a one, two, or three
dimensional array, but where REBIN requires that the new array size must be an
integer multiple of the original size, CONGRID will resize an array to any arbitrary
size. (REBIN is somewhat faster, however.) REBIN averages multiple points when
shrinking an array, while CONGRID just resamples the array.

The returned array has the same number of dimensions as the original array and is of
the same data type.

This routine is written in the IDL language. Its source code can be found in the file
congrid.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CONGRID(Array, X, Y, Z [, CUBIC=value{-1 to 0}] [, /INTERP]
[, /MINUS_ONE])

Arguments

Array

A 1-, 2-, or 3-dimensional array to resize. Array can be any type except string or
structure.

X

The new X-dimension of the resized array. X must be an integer or a long integer, and
must be greater than or equal to 2.

Y

The new Y-dimension of the resized array. If the original array has only 1 dimension,
Y is ignored. If the original array has 2 or 3 dimensions Y MUST be present.

Z

The new Z-dimension of the resized array. If the original array has only 1 or 2
dimensions, Z is ignored. If the original array has 3 dimensions then Z MUST be
present.
IDL Reference Guide CONGRID

214
Keywords

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Setting
this keyword equal to a value greater than zero specifies a value of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest that a
value of -0.5 significantly improves the reconstruction properties of this algorithm.
This keyword has no effect when used with 3-dimensional arrays.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal, f, is a band-limited signal, with no frequency
component larger than ω0, and f is sampled with spacing less than or equal to 1/(2ω0),
then f can be reconstructed by convolving with a sinc function: sinc(x) = sin(πx) /
(πx).

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used. Note that cubic convolution interpolation is
significantly slower than bilinear interpolation.

For further details see:

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniques for
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redondo
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubic
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

INTERP

Set this keyword to force CONGRID to use linear interpolation when resizing a 1- or
2-dimensional array. CONGRID automatically uses linear interpolation if the input
array is 3-dimensional. When the input array is 1- or 2-dimensional, the default is to
employ nearest-neighbor sampling.

MINUS_ONE

Set this keyword to prevent CONGRID from extrapolating one row or column
beyond the bounds of the input array. For example, if the input array has the
dimensions (i, j) and the output array has the dimensions (x, y), then by default the
array is resampled by a factor of (i/x) in the X direction and (j/y) in the Y direction. If
CONGRID IDL Reference Guide

215
MINUS_ONE is set, the array will be resampled by the factors (i-1)/(x-1) and (j-
1)/(y-1).

Example

Given vol is a 3-D array with the dimensions (80, 100, 57), resize it to be a (90, 90,
80) array

vol = CONGRID(vol, 90, 90, 80)

See Also

REBIN
IDL Reference Guide CONGRID

216
CONJ

The CONJ function returns the complex conjugate of X. The complex conjugate of
the real-imaginary pair (x, y) is (x, -y). If X is not complex, a complex-valued copy of
X is used.

Syntax

Result = CONJ(X)

Arguments

X

The value for which the complex conjugate is desired. If X is an array, the result has
the same structure, with each element containing the complex conjugate of the
corresponding element of X.

Example

Print the conjugate of the complex pair (4.0, 5.0) by entering:

PRINT, CONJ(COMPLEX(4.0, 5.0))

IDL prints:

(4.00000, -5.00000)

See Also

CINDGEN, COMPLEX, COMPLEXARR, DCINDGEN, DCOMPLEX,
DCOMPLEXARR
CONJ IDL Reference Guide

217
CONSTRAINED_MIN

The CONSTRAINED_MIN procedure solves nonlinear optimization problems of the
following form:

Minimize or maximize gp(X), subject to:

glbi ≤ gi(X) ≤ gubi for i = 0,...,nfuns-1, i ≠ p

xlbj ≤ xj ≤ xubj for j = 0,...,nvars-1

X is a vector of nvars variables, x0 ,...,xnvars-1, and G is a vector of nfuns functions
g0 ,...,gnfuns-1, which all depend on X. Any of these functions may be nonlinear. Any
of the bounds may be infinite and any of the constraints may be absent. If there are no
constraints, the problem is solved as an unconstrained optimization problem. The
program solves problems of this form by the Generalized Reduced Gradient Method.
See References 1-4.

CONSTRAINED_MIN uses first partial derivatives of each function gi with respect
to each variable xj. These are automatically computed by finite difference
approximation (either forward or central differences).

CONSTRAINED_MIN is based on an implementation of the GRG algorithm
supplied by Windward Technologies, Inc. See Reference 11.

Syntax

CONSTRAINED_MIN, X, Xbnd, Gbnd, Nobj, Gcomp, Inform [, ESPTOP=value]
[, LIMSER=value] [, /MAXIMIZE] [, NSTOP=value] [, REPORT=filename]
[, TITLE=string]

Arguments

X

An nvars-element vector. On input, X contains initial values for the variables. On
output, X contains final values of the variable settings determined by
CONSTRAINED_MIN.

Xbnd

Bounds on variables. Xbnd is an nvars x 2 element array.

• Xbnd[j,0] is the lower bound for variable x[j].

• Xbnd[j,1] is the upper bound for variable x[j].
IDL Reference Guide CONSTRAINED_MIN

218
• Use -1.0e30 to denote no lower bound and 1.0e30 for no upper bound.

Gbnd

Bounds on constraint functions. Gbnd is an nfuns x 2 element array.

• Gbnd[i,0] is the lower bound for function g[i].

• Gbnd[i,1] is the upper bound for function g[i].

• use -1.0e30 to denote no lower bound and 1.0e30 for no upper bound.

Bounds on the objective function are ignored; set them to 0.

Nobj

Index of the objective function.

Gcomp

A scalar string specifying the name of a user-supplied IDL function. This function
must accept an nvars-element vector argument x of variable values and return an
nfuns-element vector G of function values.

Inform

Termination status returned from CONSTRAINED_MIN.

Inform value Message

0 Kuhn-Tucker conditions satisfied.
This is the best possible indicator that an optimal point has
been found.

1 Fractional change in objective less than EPSTOP for NSTOP
consecutive iterations. See Keywords below.
This is not as good as Inform=0, but still indicates the
likelihood that an optimal point has been found.

2 All remedies have failed to find a better point.
User should check functions and bounds for consistency and,
perhaps, try other starting values.

Table 6: Inform argument values
CONSTRAINED_MIN IDL Reference Guide

219
3 Number of completed 1-dimensional searches exceeded
LIMSER. See Keywords below.
User should check functions and bounds for consistency and,
perhaps, try other starting values. It might help to increase
LIMSER. Use LIMSER=larger_value to do this.

4 Objective function is unbounded.

CONSTRAINED_MIN has observed dramatic change in the
objective function over several steps. This is a good indication
that the objective function is unbounded. If this is not the case,
the user should check functions and bounds for consistency.

5 Feasible point not found.
CONSTRAINED_MIN was not able to find a feasible point. If
the problem is believed to be feasible, the user should check
functions and bounds for consistency and perhaps try other
starting values.

6 Degeneracy has been encountered.
The point returned may be close to optimal. The user should
check functions and bounds for consistency and perhaps try
other starting values.

7 Noisy and nonsmooth function values. Possible singularity or
error in the function evaluations.

8 Optimization process terminated by user request.

9 Maximum number of function evaluations exceeded.

–1 Fatal Error. Some condition, such as nvars < 0, was
encountered. CONSTRAINED_MIN documented the
condition in the report and terminated. In this case, the user
needs to correct the input and rerun CONSTRAINED_MIN.

–2 Fatal Error. The report file could not be opened. Check the
filename specified via the REPORT keyword, and make sure
you have write privileges to the specified path.

Inform value Message

Table 6: Inform argument values
IDL Reference Guide CONSTRAINED_MIN

220
Keywords

EPSTOP

Set this keyword to specify the CONSTRAINED_MIN convergence criteria. If the
fractional change in the objective function is less than EPSTOP for NSTOP
consecutive iterations, the program will accept the current point as optimal.
CONSTRAINED_MIN will accept the current point as optimal if the Kuhn-Tucker
optimality conditions are satisfied to EPSTOP. By default, EPSTOP = 1.0e-4.

LIMSER

If the number of completed one dimensional searches exceeds LIMSER,
CONSTRAINED_MIN terminates and returns inform = 3. By default: LIMSER =
10000.

MAXIMIZE

By default, the CONSTRAINED_MIN procedure performs a minimization. Set the
MAXIMIZE keyword to perform a maximization instead.

NSTOP

Set this keyword to specify the CONSTRAINED_MIN convergence criteria. If the
fractional change in the objective function is less than EPSTOP for NSTOP
consecutive iterations, CONSTRAINED_MIN will accept the current point as
optimal. By default, NSTOP = 3.

REPORT

Set this keyword to specify a name for the CONSTRAINED_MIN report file. If the
specified file does not exist, it will be created. Note that if the file cannot be created,
no error message will be generated. If the specified file already exists, it will be
overwritten. By default, CONSTRAINED_MIN does not create a report file.

–3 Fatal Error. Same as Inform = –1. In this case, the REPORT
keyword was not specified. Specify the REPORT keyword and
rerun CONSTRAINED_MIN, then check the report file for
more detail on the error.

Inform value Message

Table 6: Inform argument values
CONSTRAINED_MIN IDL Reference Guide

221
TITLE

Set this keyword to specify a title for the problem in the CONSTRAINED_MIN
report.

Example

This example has 5 variables {X0, X1, ..., X4}, bounded above and below, a
quadratic objective function {G3}, and three quadratic constraints {G0, G1, G2},
with both upper and lower bounds. See the Himmelblau text [7], problem 11.

Minimize:

G3 = 5.3578547X2X2 + 0.8356891X0X4 + 37.293239X0 - 40792.141

Subject to:

0 < G0 = 85.334407 + 0.0056858X1X4 + 0.0006262X0X3 - 0.0022053X2X4 < 92

90 < G1 = 80.51249 + 0.0071317X1X4 + 0.0029955X0X1 + 0.0021813X2X2 < 110

20 < G2 = 9.300961 + 0.0047026X2X4 + 0.0012547X0X2 + 0.0019085X2X3 < 25

and,

78 < X0 < 102

33 < X1 < 45

27 < X2 < 45

27 < X3 < 45

27 < X4 < 45

This problem is solved starting from X = {78, 33, 27, 27, 27} which is infeasible
because constraint G2 is not satisfied at this point.

The constraint functions and objective function are evaluated by HMBL11:

; Himmelblau Problem 11
; 5 variables and 4 functions
FUNCTION HMBL11, x

g = DBLARR(4)
g[0] = 85.334407 + 0.0056858*x[1]*x[4] + 0.0006262*x[0] $

*x[3] - 0.0022053*x[2]*x[4]
g[1] = 80.51249 + 0.0071317*x[1]*x[4] + 0.0029955*x[0] $

*x[1] + 0.0021813*x[2]*x[2]
g[2] = 9.300961 + 0.0047026*x[2]*x[4] + 0.0012547*x[0]* $

x[2] + 0.0019085*x[2]*x[3]
IDL Reference Guide CONSTRAINED_MIN

222
g[3] = 5.3578547*x[2]*x[2] + 0.8356891*x[0]*x[4] $
+ 37.293239*x[0] - 40792.141

RETURN, g
END

; Example problem for CONSTRAINED_MIN
; Himmelblau Problem 11
; 5 variables and 3 constraints
; Constraints and objective defined in HMBL11
xbnd = [[78, 33, 27, 27, 27], [102, 45, 45, 45, 45]]
gbnd = [[0, 90, 20, 0], [92, 110, 25, 0]]
nobj = 3
gcomp = 'HMBL11'
title = 'IDL: Himmelblau 11'
report = 'hmbl11.txt'
x = [78, 33, 27, 27, 27]
CONSTRAINED_MIN, x, xbnd, gbnd, nobj, gcomp, inform, $

REPORT = report, TITLE = title
g = HMBL11(x)
; Print minimized objective function for HMBL11 problem:
PRINT, g[nobj]

References

1. Lasdon, L.S., Waren, A.D., Jain, A., and Ratner, M., “Design and Testing of a
Generalized Reduced Gradient Code for Nonlinear Programming”, ACM
Transactions on Mathematical Software, Vol. 4, No. 1, March 1978, pp. 34-50.

2. Lasdon, L.S. and Waren, A.D., “Generalized Reduced Gradient Software for
Linearly and Nonlinearly Constrained Problems”, in “Design and Implementation of
Optimization Software”, H. Greenberg, ed., Sijthoff and Noordhoff, pubs, 1979.

3. Abadie, J. and Carpentier, J. “Generalization of the Wolfe Reduced Gradient
Method to the Case of Nonlinear Constraints”, in Optimization, R. Fletcher (ed.),
Academic Press London; 1969, pp. 37-47.

4. Murtagh, B.A. and Saunders, M.A. “Large-scale Linearly Constrained
Optimization”, Mathematical Programming, Vol. 14, No. 1, January 1978, pp. 41-72.

5. Powell, M.J.D., “Restart Procedures for the Conjugate Gradient Method,”
Mathematical Programming, Vol. 12, No. 2, April 1977, pp. 241-255.

6. Colville, A.R., “A Comparative Study of Nonlinear Programming Codes,” I.B.M.
T.R. no. 320-2949 (1968).

7. Himmelblau, D.M., Applied Nonlinear Programming, McGraw-Hill Book Co.,
New York, 1972.
CONSTRAINED_MIN IDL Reference Guide

223
8. Fletcher, R., “A New Approach to Variable Metric Algorithms”, Computer
Journal, Vol. 13, 1970, pp. 317-322.

9. Smith, S. and Lasdon, L.S., Solving Large Sparse Nonlinear Programs Using
GRG, ORSA Journal on Computing, Vol. 4, No. 1,Winter 1992, pp. 1-15.

10. Luenbuerger, David G., Linear and Nonlinear Programming, Second Edition,
Addison-Wesley, Reading Massachusetts, 1984.

11. Windward Technologies, GRG2 Users’s Guide, 1997.
IDL Reference Guide CONSTRAINED_MIN

224
CONTINUE

The CONTINUE statement provides a convenient way to immediately start the next
iteration of the enclosing FOR, WHILE, or REPEAT loop.

Note
Do not confuse the CONTINUE statement described here with the .CONTINUE
executive command. The two constructs are not related, and serve completely
different purposes.

Note
CONTINUE is not allowed within CASE or SWITCH statements. This is in
contrast with the C language, which does allow this.

For more information on using CONTINUE and other IDL program control
statements, see Chapter 11, “Program Control” in Building IDL Applications.

Syntax

CONTINUE

Example

This example presents one way (not necessarily the best) to print the even numbers
between 1 and 10.

FOR I = 1,10 DO BEGIN
; If odd, start next iteration:
IF (I AND 1) THEN CONTINUE
PRINT, I

ENDFOR
CONTINUE IDL Reference Guide

225
CONTOUR

The CONTOUR procedure draws a contour plot from data stored in a rectangular
array or from a set of unstructured points. Both line contours and filled contour plots
can be created. Note that outline and fill contours cannot be drawn at the same time.
To create a contour plot with both filled contours and outlines, first create the filled
contour plot, then add the outline contours by calling CONTOUR a second time with
the OVERPLOT keyword.

Contours can be smoothed by using the MIN_CURVE_SURF function on the
contour data before contouring.

Using various keywords, described below, it is possible to specify contour levels,
labeling, colors, line styles, and other options. CONTOUR draws contours by
searching for each contour line and then following the line until it reaches a boundary
or closes.

Smoothing Contours

The MIN_CURVE_SURF function can be used to smoothly interpolate both
regularly and irregularly sampled surfaces before contouring. This function replaces
the older SPLINE keyword to CONTOUR, which was inaccurate and is no longer
supported. MIN_CURVE_SURF interpolates the entire surface to a relatively fine
grid before drawing the contours.

Syntax

CONTOUR, Z [, X, Y] [, C_CHARSIZE=value] [, C_CHARTHICK=integer]
[, C_COLORS=vector] [, C_LABELS=vector{each element 0 or 1}]
[, C_LINESTYLE=vector] [{, /FILL | , /CELL_FILL} |
[, C_ANNOTATION=vector_of_strings] [, C_ORIENTATION=degrees]
[, C_SPACING=value]] [, C_THICK=vector] [, /CLOSED] [, /DOWNHILL]
[, /FOLLOW] [, /IRREGULAR] [, LEVELS=vector] [, NLEVELS=integer{1 to 60}]
[, MAX_VALUE=value] [, MIN_VALUE=value] [, /OVERPLOT]
[{, /PATH_DATA_COORDS, PATH_FILENAME=string, PATH_INFO=variable,
PATH_XY=variable} | , TRIANGULATION=variable] [, /PATH_DOUBLE]
[, /XLOG] [, /YLOG] [, /ZAXIS] [, /ZLOG]

Graphics Keywords: Accepts all graphics keywords accepted by PLOT except for:
LINESTYLE, PSYM, SYMSIZE. See “Graphics Keywords Accepted” on page 235.
IDL Reference Guide CONTOUR

226
Arguments

Z

A one- or two-dimensional array containing the values that make up the contour
surface. If arguments X and Y are provided, the contour is plotted as a function of the
(X, Y) locations specified by their contents. Otherwise, the contour is generated as a
function of the two-dimensional array index of each element of Z.

If the IRREGULAR keyword is set, X, Y, and Z are treated as vectors. Each point has
a value of Zi and a location of (Xi, Yi)

This argument is converted to double-precision floating-point before plotting. Plots
created with CONTOUR are limited to the range and precision of double-precision
floating-point values.

X

A vector or two-dimensional array specifying the X coordinates for the contour
surface. If X is a vector, each element of X specifies the X coordinate for a column of
Z (e.g., X[0] specifies the X coordinate for Z[0,*]). If X is a two-dimensional array,
each element of X specifies the X coordinate of the corresponding point in Z (i.e., Xij
specifies the X coordinate for Zij).

Y

A vector or two-dimensional array specifying the Y coordinates for the contour
surface. If Y a vector, each element of Y specifies the Y coordinate for a row of Z
(e.g., Y[0] specifies the Y coordinate for Z[*,0]). If Y is a two-dimensional array,
each element of Y specifies the Y coordinate of the corresponding point in Z (Yij
specifies the Y coordinate for Zij).

Keywords

C_ANNOTATION

The label to be drawn on each contour. Usually, contours are labeled with their value.
This parameter, a vector of strings, allows any text to be specified. The first label is
used for the first contour drawn, and so forth. If the LEVELS keyword is specified,
the elements of C_ANNOTATION correspond directly to the levels specified,
otherwise, they correspond to the default levels chosen by the CONTOUR procedure.
If there are more contour levels than elements in C_ANNOTATION, the remaining
levels are labeled with their values.

Use of this keyword implies use of the FOLLOW keyword.
CONTOUR IDL Reference Guide

227
Note
This keyword has no effect if the FILL or CELL_FILL keyword is set (i.e., if the
contours are drawn with solid-filled or line-filled polygons).

Example

To produce a contour plot with three levels labeled “low”, “medium”, and “high”:

CONTOUR, Z, LEVELS = [0.0, 0.5, 1.0], $
C_ANNOTATION = ['low', 'medium', 'high']

C_CHARSIZE

The size of the characters used to annotate contour labels. Normally, contour labels
are drawn at 3/4 of the size used for the axis labels (specified by the CHARSIZE
keyword or !P.CHARSIZE system variable. This keyword allows the contour label
size to be specified directly. Use of this keyword implies use of the FOLLOW
keyword.

C_CHARTHICK

The thickness of the characters used to annotate contour labels. Set this keyword
equal to an integer value specifying the line thickness of the vector drawn font
characters. This keyword has no effect when used with the hardware drawn fonts.
The default value is 1. Use of this keyword implies use of the FOLLOW keyword.

C_COLORS

The color index used to draw each contour. This parameter is a vector, converted to
integer type if necessary. If there are more contour levels than elements in
C_COLORS, the elements of the color vector are cyclically repeated.

Example

If C_COLORS contains three elements, and there are seven contour levels to be
drawn, the colors c0, c1, c2, c0, c1, c2, c0 will be used for the seven levels. To call
CONTOUR and set the colors to [100,150,200], use the command:

CONTOUR, Z, C_COLORS = [100,150,200]

C_LABELS

Specifies which contour levels should be labeled. By default, every other contour
level is labeled. C_LABELS allows you to override this default and explicitly specify
the levels to label. This parameter is a vector, converted to integer type if necessary.
If the LEVELS keyword is specified, the elements of C_LABELS correspond
IDL Reference Guide CONTOUR

228
directly to the levels specified, otherwise, they correspond to the default levels
chosen by the CONTOUR procedure. Setting an element of the vector to zero causes
that contour label to not be labeled. A nonzero value forces labeling.

Use of this keyword implies use of the FOLLOW keyword.

Example

To produce a contour plot with four levels where all but the third level is labeled:

CONTOUR, Z, LEVELS = [0.0, 0.25, 0.75, 1.0], $
C_LABELS = [1, 1, 0, 1]

C_LINESTYLE

The line style used to draw each contour. As with C_COLORS, C_LINESTYLE is a
vector of line style indices. If there are more contour levels than line styles, the line
styles are cyclically repeated. See “LINESTYLE” on page 2405 for a list of available
styles.

Note
The cell drawing contouring algorithm draws all the contours in each cell, rather
than following contours. Since an entire contour is not drawn as a single operation,
the appearance of the more complicated linestyles will suffer. Use of the contour
following method (selected with the FOLLOW keyword) will give better looking
results in such cases.

Example

To produce a contour plot, with the contour levels directly specified in a vector V,
with all negative contours drawn with dotted lines, and with positive levels in solid
lines:

CONTOUR, Z, LEVELS = V, C_LINESTYLE = (V LT 0.0)

C_ORIENTATION

If the FILL keyword is set, this keyword can be set to the angle, in degrees
counterclockwise from the horizontal, of the lines used to fill contours. If neither
C_ORIENTATION nor C_SPACING are specified, the contours are solid filled.

C_SPACING

If the FILL keyword is set, this keyword can be used to control the distance, in
centimeters, between the lines used to fill the contours.
CONTOUR IDL Reference Guide

229
C_THICK

The line used to draw each contour level. As with C_COLORS, C_THICK is a vector
of line thickness values, although the values are floating point. If there are more
contours than thickness elements, elements are repeated. If omitted, the overall line
thickness specified by the THICK keyword parameter or !P.THICK is used for all
contours.

CELL_FILL

Set this keyword to produce a filled contour plot using a “cell filling” algorithm. Use
this keyword instead of FILL when you are drawing filled contours over a map, when
you have missing data, or when contours that extend off the edges of the contour plot.
CELL_FILL is less efficient than FILL because it makes one or more polygons for
each data cell. It also gives poor results when used with patterned (line) fills, because
each cell is assigned its own pattern. Otherwise, this keyword operates identically to
the FILL keyword, described below.

Tip
In order for CONTOUR to fill the contours properly when using a map projection,
the X and Y arrays (if supplied) must be arranged in increasing order. This ensures
that the polygons generated will be in counterclockwise order, as required by the
mapping graphics pipeline.

Warning
Do not draw filled contours over the poles on Cylindrical map projections. In this
case, the polar points map to lines on the map, and the interpolation becomes
ambiguous, causing errors in filling. One possible work-around is to limit the
latitudes to the range of -89.9 degrees to + 89.9 degrees, avoiding the poles.

CLOSED

Set this keyword to a nonzero value to close contours that intersect the plot
boundaries. After a contour hits a boundary, it follows the plot boundary until it
connects with its other boundary intersection. Set CLOSED=0 along with
PATH_INFO and/or PATH_XY to return path information for contours that are not
closed.
IDL Reference Guide CONTOUR

230
DOWNHILL

Set this keyword to label each contour with short, perpendicular tick marks that point
in the “downhill” direction, making the direction of the grade readily apparent. If this
keyword is set, the contour following method is used in drawing the contours.

FILL

Set this keyword to produce a filled contour plot. The contours are filled with solid or
line-filled polygons. For solid polygons, use the C_COLOR keyword to specify the
color index of the polygons for each contour level. For line fills, use
C_ORIENTATION, C_SPACING, C_COLOR, C_LINESTYLE, and/or C_THICK
to specify attributes for the lines.

If the current device is not a pen plotter, each polygon is erased to the background
color before the fill lines are drawn, to avoid superimposing one pattern over another.

Contours that are not closed can not be filled because their interior and exterior are
undefined. Contours created from data sets with missing data may not be closed;
many map projections can also produce contours that are not closed. Filled contours
should not be used in these cases.

Note
If the current graphics device is the Z-buffer, the algorithm used when the FILL
keyword is specified will not work when a Z value is also specified with the
graphics keyword ZVALUE. In this situation, use the CELL_FILL keyword instead
of the FILL keyword.

FOLLOW

In IDL version 5, CONTOUR always uses a line-following method. The FOLLOW
keyword remains available for compatibility with existing code, but is no longer
necessary. As in previous versions of IDL, setting FOLLOW will cause CONTOUR
to draw contour labels.

IRREGULAR

Set this keyword to indicate that the input data is irregularly gridded. Setting
IRREGULAR is the same as performing an explicit triangulation. That is:

CONTOUR, Z, X, Y, /IRREGULAR

is the same as

TRIANGULATE, X, Y, tri ;Get triangulation
CONTOUR, Z, X, Y, TRIANGULATION=tri
CONTOUR IDL Reference Guide

231
ISOTROPIC

Set this keyword to force the scaling of the X and Y axes to be equal.

Note
The X and Y axes will be scaled isotropically and then fit within the rectangle
defined by the POSITION keyword; one of the axes may be shortened. See
“POSITION” on page 2407 for more information.

LEVELS

Specifies a vector containing the contour levels drawn by the CONTOUR procedure.
A contour is drawn at each level in LEVELS.

Example

To draw a contour plot with levels at 1, 100, 1000, and 10000:

CONTOUR, Z, LEVELS = [1, 100, 1000, 10000]

To draw a contour plot with levels at 50, 60, ..., 90, 100:

CONTOUR, Z, LEVELS = FINDGEN(6) * 10 + 50

MAX_VALUE

Data points with values above this value are ignored (i.e., treated as missing data)
when contouring. Cells containing one or more corners with values above
MAX_VALUE will have no contours drawn through them. Note that the IEEE
floating-point value NaN is also treated as missing data. (See “Special Floating-Point
Values” in Chapter 17 of Building IDL Applications for more information on IEEE
floating-point values.)

MIN_VALUE

Data points with values less than this value are ignored (i.e., treated as missing data)
when contouring. Cells containing one or more corners with values below
MIN_VALUE will have no contours drawn through them. Note that the IEEE
floating-point value NaN is also treated as missing data. (See “Special Floating-Point
Values” in Chapter 17 of Building IDL Applications for more information on IEEE
floating-point values.)

NLEVELS

The number of equally spaced contour levels that are produced by CONTOUR. If the
LEVELS parameter, which explicitly specifies the value of the contour levels, is
IDL Reference Guide CONTOUR

232
present, this keyword has no effect. If neither parameter is present, approximately six
levels are drawn. NLEVELS should be a positive integer.

OVERPLOT

Set this keyword to make CONTOUR “overplot”. That is, the current graphics screen
is not erased, no axes are drawn and the previously established scaling remains in
effect. You must explicitly specify either the values of the contour levels or the
number of levels (via the NLEVELS keyword) when using this option, unless
geographic mapping coordinates are in effect.

PATH_DATA_COORDS

Set this keyword to cause the output contour positions to be measured in data units
rather than the default normalized units. This keyword is useful only if the
PATH_XY or PATH_FILENAME keywords are set.

PATH_DOUBLE

Set this keyword to indicate that the PATH_FILENAME, PATH_INFO, and
PATH_XY keywords should return vertex and contour value information as double-
precision floating-point values. The default is to return this information as single-
precision floating-point values.

PATH_FILENAME

Specifies the name of a file to contain the contour positions. If PATH_FILENAME is
present, CONTOUR does not draw the contours, but rather, opens the specified file
and writes the coordinates of the contours, into it. The file consists of a series of
logical records containing binary data. Each record is preceded with a header
structure defining the contour as follows:

If the PATH_DOUBLE keyword is not set:

{CONTOUR_HEADER, TYPE:0B, HIGH:0B, LEVEL:0, NUM:0L, VALUE:0.0}

If the PATH_DOUBLE keyword is set:

{CONTOUR_DBL_HEADER, TYPE:0B, HIGH:0B, LEVEL:0, NUM:0L,
VALUE:0.0D}
CONTOUR IDL Reference Guide

233
The fields are:

Following the header in each record are NUM X-coordinate values followed by
NUM Y-coordinate values. By default, these values are specified in normalized
coordinates unless the PATH_DATA_COORDS keyword is set.

PATH_INFO

Set this keyword to a named variable that will return path information for the
contours. This information can be used, along with data stored in a variable named by
the PATH_XY keyword, to trace closed contours. To get PATH_INFO and
PATH_XY with contours that are not closed, set the CLOSED keyword to 0. If
PATH_INFO is present, CONTOUR does not draw the contours, but rather records
the path information in an array of structures of the following type:

If the PATH_DOUBLE keyword is not set:

{CONTOUR_PATH_STRUCTURE, TYPE:0B, HIGH_LOW:0B, $
LEVEL:0, N:0L, OFFSET:0L, VALUE:0.0}

If the PATH_DOUBLE keyword is set:

{COUNTOUR_DBL_PATH_STRUCTURE, TYPE:0B, HIGH_LOW:0B, LEVEL:0,
N: 0L, OFFSET:0L, VALUE:0.0D}

Field Description

TYPE A byte that is zero if the contour is open, and one if it is
closed.

HIGH A byte that is 1 if the contour is closed and above its
surroundings, and is 0 if the contour is below. This field is
meaningless if the contour is not closed.

LEVEL A short integer with value greater or equal to zero (It is an
index into the LEVELS array).

NUM The longword number of data points in the contour.

VALUE The contour value. If the PATH_DOUBLE keyword is not
set, this is a single-precision floating-point value; if the
PATH_DOUBLE keyword is set, this is a double-
precision floating-point value.

Table 7: CONTOUR Fields
IDL Reference Guide CONTOUR

234
The fields are:

See the examples section below for an example using the PATH_INFO and
PATH_XY keywords to return contour path information.

PATH_XY

Set this keyword to a named variable that returns the coordinates of a set of closed
polygons defining the closed paths of the contours. This information can be used,
along with data stored in a variable named by the PATH_INFO keyword, to trace
closed contours. To get PATH_XY and PATH_INFO with contours that are not
closed, set the CLOSED keyword to 0. If PATH_XY is present, CONTOUR does not
draw the contours, but rather records the path coordinates in the named array. If the
PATH_DOUBLE keyword is not set, the array will contain single-precision floating
point values; if the PATH_DOUBLE keyword is set, the array will contain double-
precision floating point values. By default, the values in the array are specified in
normalized coordinates unless the PATH_DATA_COORDS keyword is set.

Field Description

TYPE A byte that is zero if the contour is open, and one if it is
closed. In the present implementation, all contours are
closed.

HIGH_LOW A byte that is 1 if the contour is above its surroundings,
and is 0 if the contour is below.

LEVEL A short integer indicating the index of the contour level,
from zero to the number of levels minus one.

N A long integer indicating the number of XY pairs in the
contour’s path.

OFFSET A long integer that is the offset into the array defined by
PATH_XY, representing the first XY coordinate for this
contour.

VALUE The contour value. If the PATH_DOUBLE keyword is not
set, this is a single-precision floating-point value; if the
PATH_DOUBLE keyword is set, this is a double-
precision floating-point value.

Table 8: PATH_INFO Fields
CONTOUR IDL Reference Guide

235
See the examples section below for an example using the PATH_INFO and
PATH_XY keywords to return contour path information.

TRIANGULATION

Set this keyword to a variable that contains an array of triangles returned from the
TRIANGULATE procedure. Providing triangulation data allows you to contour
irregularly gridded data directly, without gridding.

XLOG

Set this keyword to specify a logarithmic X axis.

YLOG

Set this keyword to specify a logarithmic Y axis.

ZAXIS

Set this keyword to draw a Z axis for the CONTOUR plot. CONTOUR draws no Z
axis by default. This keyword is of use only if a three-dimensional transformation is
established.

Graphics Keywords Accepted

See Appendix C, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above.

BACKGROUND, CHARSIZE, CHARTHICK, CLIP, COLOR, DATA, DEVICE,
FONT, NOCLIP, NODATA, NOERASE, NORMAL, POSITION, SUBTITLE, T3D,
THICK, TICKLEN, TITLE, [XYZ]CHARSIZE, [XYZ]GRIDSTYLE,
[XYZ]MARGIN, [XYZ]MINOR, [XYZ]RANGE, [XYZ]STYLE, [XYZ]THICK,
[XYZ]TICKFORMAT, [XYZ]TICKINTERVAL, [XYZ]TICKLAYOUT,
[XYZ]TICKLEN, [XYZ]TICKNAME, [XYZ]TICKS, [XYZ]TICKUNITS,
[XYZ]TICKV, [XYZ]TICK_GET, [XYZ]TITLE, ZVALUE.

Examples

Example 1

This example creates a contour plot with 10 contour levels where every other contour
is labeled:

;Create a simple dataset to plot:
Z = DIST(100)

;Draw the plot:
CONTOUR, Z, NLEVELS=10, /FOLLOW, TITLE='Simple Contour Plot'
IDL Reference Guide CONTOUR

236
Example 2

This example shows the use of polygon filling and smoothing.

;Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Create a surface to contour (2D array of random numbers):
A = RANDOMU(seed, 5, 6)

;Smooth the dataset before contouring:
B = MIN_CURVE_SURF(A)

;Load discrete colors for contours:
TEK_COLOR

;Draw filled contours:
CONTOUR, B, /FILL, NLEVELS=5, C_COLOR=INDGEN(5)+2

;Overplot the contour lines with tickmarks:
CONTOUR, B, NLEVELS=5, /DOWNHILL, /OVERPLOT

Alternatively, we could draw line-filled contours by replacing the last two commands
with:

CONTOUR, B, C_ORIENTATION=[0, 22, 45]

CONTOUR, B, /OVERPLOT, NLEVELS=5

Example 3

The following example saves the closed path information of a set of contours and
plots the result:

; Create a 2D array of random numbers:
A = RANDOMU(seed, 8, 10)

; Smooth the dataset before contouring:
B = MIN_CURVE_SURF(A)

; Compute contour paths:
CONTOUR, B, PATH_XY=xy, PATH_INFO=info
FOR I = 0, (N_ELEMENTS(info) - 1) DO BEGIN

S = [INDGEN(info(I).N), 0]

; Plot the closed paths:
PLOTS, xy(*,INFO(I).OFFSET + S), /NORM

ENDFOR
CONTOUR IDL Reference Guide

237
Example 4

This example contours irregularly-gridded data without having to call TRIGRID.
First, use the TRIANGULATE procedure to get the Delaunay triangulation of your
data, then pass the triangulation array to CONTOUR:

;Make 50 normal X, Y points:
x = RANDOMN(seed, 50)
y = RANDOMN(seed, 50)

;Make the Gaussian:
Z = EXP(-(x^2 + y^2))

;Get triangulation:
TRIANGULATE, X, Y, tri

;Draw the contours:
CONTOUR, Z, X, Y, TRIANGULATION = tri

See Also

IMAGE_CONT, SHADE_SURF, SHOW3, SURFACE
IDL Reference Guide CONTOUR

238
CONVERT_COORD

The CONVERT_COORD function transforms one or more sets of coordinates to and
from the coordinate systems supported by IDL. The result of the function is a (3, n)
vector containing the (x, y, z) components of the n output coordinates.

The input coordinates X and, optionally, Y and/or Z can be given in data, device, or
normalized form by using the DATA, DEVICE, or NORMAL keywords. The default
input coordinate system is DATA. The keywords TO_DATA, TO_DEVICE, and
TO_NORMAL specify the output coordinate system.

If the input points are in 3D data coordinates, be sure to set the T3D keyword.

Warning
For devices that support windows, CONVERT_COORD can only provide valid
results if a window is open and current. Also, CONVERT_COORD only applies to
Direct Graphics devices.

Syntax

Result = CONVERT_COORD(X [, Y [, Z]] [, /DATA | , /DEVICE | , /NORMAL]
[, /DOUBLE][, /T3D] [, /TO_DATA | , /TO_DEVICE | , /TO_NORMAL])

Arguments

X

A vector or scalar argument providing the X components of the input coordinates. If
only one argument is specified, X must be an array of either two or three vectors (i.e.,
(2,*) or (3,*)). In this special case, X[0,*] are taken as the X values, X[1,*] are
taken as the Y values, and, if present, X[2,*] are taken as the Z values.

Y

An optional argument providing the Y input coordinate(s).

Z

An optional argument providing the Z input coordinate(s).
CONVERT_COORD IDL Reference Guide

239
Keywords

DATA

Set this keyword if the input coordinates are in data space (the default).

DEVICE

Set this keyword if the input coordinates are in device space.

DOUBLE

Set this keyword to indicate that the returned coordinates should be double-precision.
If this keyword is not set, the default is to return single-precision coordinates (unless
double-precision arguments are input, in which case the returned coordinates will be
double-precision).

NORMAL

Set this keyword if the input coordinates are in normalized space.

T3D

Set this keyword if the 3D transformation !P.T is to be applied.

TO_DATA

Set this keyword if the output coordinates are to be in data space.

TO_DEVICE

Set this keyword if the output coordinates are to be in device space.

TO_NORMAL

Set this keyword if the output coordinates are to be in normalized space.

Example

Convert, using the currently established viewing transformation, 11 points along the
parametric line x = t, y = 2t, z = t2, along the interval [0, 1] from data coordinates to
device coordinates:

; Establish a valid transformation matrix:
SURFACE, DIST(20), /SAVE

; Make a vector of X values:
X = FINDGEN(11)/10.
IDL Reference Guide CONVERT_COORD

240
; Convert the coordinates. D will be a (3,11) element array:
D = CONVERT_COORD(X, 2*X, X^2, /T3D, /TO_DEVICE)

See Also

CV_COORD
CONVERT_COORD IDL Reference Guide

241
CONVOL

The CONVOL function convolves an array with a kernel, and returns the result.
Convolution is a general process that can be used for various types of smoothing,
signal processing, shifting, differentiation, edge detection, etc. The CENTER
keyword controls the alignment of the kernel with the array and the ordering of the
kernel elements. If CENTER is explicitly set to 0, convolution is performed in the
strict mathematical sense, otherwise the kernel is centered over each data point.

Syntax

Result = CONVOL(Array, Kernel [, Scale_Factor] [, /CENTER] [, /EDGE_WRAP]
[, /EDGE_TRUNCATE])

Using CONVOL

Assume R = CONVOL(A, K, S), where A is an n-element vector, K is an m-element
vector (m < n), and S is the scale factor. If the CENTER keyword is omitted or set to 1:

where the value m/2 is determined by integer division. This means that the result of
the division is the largest integer value less than or equal to the fractional number.

If CENTER is explicitly set to 0:

In the two-dimensional, zero CENTER case where A is an m by n-element array, and
K is the l by l element kernel; the result R is an m by n-element array:

The centered case is similar, except the t-i and u-j subscripts are replaced by t+i-l/2
and u+j-l/2.

Rt

1
S
--- At i m 2⁄–+ Kii 0=

m 1–∑ if m 2⁄ t n m 2⁄–<≤

0 otherwise

=

Rt

1
S
--- At i– Kii 0=

m 1–∑ if t m 1–≥

0 otherwise

=

IDL Reference Guide CONVOL

242
Arguments

Array

An array of any basic type except string. The result of CONVOL has the same type
and dimensions as Array.

If the Array parameter is of byte type, the result is clipped to the range of 0 to 255.
Negative results are set to 0, and values greater than 255 are set to 255.

Kernel

An array of any type except string. If the type of Kernel is not the same as Array, a
copy of Kernel is made and converted to the appropriate type before use. The size of
the kernel dimensions must be smaller than those of Array.

Scale_Factor

A scale factor that is divided into each resulting value. This argument allows the use
of fractional kernel values and avoids overflow with byte or integer arguments. If
omitted, a scale factor of 1 is used.

Keywords

CENTER

Set or omit this keyword to center the kernel over each array point. If CENTER is
explicitly set to zero, the CONVOL function works in the conventional mathematical
sense. In many signal and image processing applications, it is useful to center a
symmetric kernel over the data, thereby aligning the result with the original array.

Note that for the kernel to be centered, it must be symmetric about the point
K(FLOOR(m/2), where m is the number of elements in the kernel.

Rt u,

1
S
--- At i u j–,– Ki j,j 0=

l 1–∑i 0=
l 1–∑ if t l 1–≥ and u l 1–≥

0 otherwise

=

CONVOL IDL Reference Guide

243
EDGE_WRAP

Set this keyword to make CONVOL compute the values of elements at the edge of
Array by “wrapping” the subscripts of Array at the edge. For example, if CENTER is
set to zero:

where n is the number of elements in Array. The mod operator in the formula above
is defined as a mod b = a - b * floor(a/b). For example, -1 mod 5 is 4. If
neither EDGE_WRAP nor EDGE_TRUNCATE is set, CONVOL sets the values of
elements at the edges of Array to zero.

EDGE_TRUNCATE

Set this keyword to make CONVOL compute the values of elements at the edge of
Array by repeating the subscripts of Array at the edge. For example, if CENTER is
set to zero:

where n is the number of elements in Array. The “<” and “>” operators in the above
formula return the smaller and larger of their operands, respectively. If neither
EDGE_WRAP nor EDGE_TRUNCATE is set, CONVOL sets the values of elements
at the edges of Array to zero.

Example

Convolve a vector of random noise and a one-dimensional triangular kernel and plot
the result. Create a simple vector as the original dataset and plot it by entering:

A = RANDOMN(SEED, 100) & PLOT, A

Create a simple kernel by entering:

K = [1, 2, 3, 2, 1]

Rt
1
S
--- A t i–()mod n()()Kii 0=

m 1–∑[]

=

Rt
1
S
--- A t i–() 0 n 1–()<>()Kii 0=

m∑

=

IDL Reference Guide CONVOL

244
Convolve the two and overplot the result by entering:

OPLOT, CONVOL(A, K, TOTAL(K))

See Also

BLK_CON
CONVOL IDL Reference Guide

245
COORD2TO3

The COORD2TO3 function returns a three-element vector containing 3D data
coordinates given the normalized X and Y screen coordinates and one of the three
data coordinates.

Note
A valid 3D transform must exist in !P.T or be specified by the PTI keyword. The
axis scaling variables, !X.S, !Y.S and !Z.S must be valid.

This routine is written in the IDL language. Its source code can be found in the file
coord2to3.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = COORD2TO3(Mx, My, Dim, D0 [, PTI])

Arguments

Mx, My

The normalized X and Y screen coordinates.

Dim

A parameter used to specify which data coordinate is fixed. Use 0 for a fixed X data
coordinate, 1 for a fixed Y data coordinate, or 2 for a fixed Z data coordinate.

D0

The value of the fixed data coordinate.

PTI

The inverse of !P.T. If this parameter is not supplied, or set to 0, COORD2TO3
computes the inverse. If this routine is to be used in a loop, the caller should supply
PTI for highest efficiency.

Example

To return the data coordinates of the mouse, fixing the data Z value at 10, enter the
commands:

;Make sure a transformation matrix exists.
IDL Reference Guide COORD2TO3

246
CREATE_VIEW

;Get the normalized mouse coords.
CURSOR, X, Y, /NORM

;Print the 3D coordinates.
PRINT, COORD2TO3(X, Y, 2, 10.0)

See Also

CONVERT_COORD, CREATE_VIEW, CV_COORD, SCALE3, T3D
COORD2TO3 IDL Reference Guide

247
CORRELATE

The CORRELATE function computes the linear Pearson correlation coefficient of
two vectors or the correlation matrix of an m x n array. If vectors of unequal lengths
are specified, the longer vector is truncated to the length of the shorter vector and a
single correlation coefficient is returned. If an m x n array is specified, the result will
be an m x m array of linear Pearson correlation coefficients, with the element i,j
corresponding to correlation of the ith and jth columns of the input array.

Alternatively, this function computes the covariance of two vectors or the covariance
matrix of an m x n array.

This routine is written in the IDL language. Its source code can be found in the file
correlate.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CORRELATE(X [, Y] [, /COVARIANCE] [, /DOUBLE])

Arguments

X

A vector or an m x n array. X can be integer, single-, or double-precision floating-
point.

Y

An integer, single-, or double-precision floating-point vector. If X is an m x n array, Y
should not be supplied.

Keywords

COVARIANCE

Set this keyword to compute the sample covariance rather than the correlation
coefficient.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

Define the data vectors.
IDL Reference Guide CORRELATE

248
X = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71]
Y = [68, 66, 68, 65, 69, 66, 68, 65, 71, 67, 68, 70]

Compute the linear Pearson correlation coefficient of x and y. The result should be
0.702652:

PRINT, CORRELATE(X, Y)

IDL prints:

0.702652

Compute the covariance of x and y. The result should be 3.66667.

PRINT, CORRELATE(X, Y, /COVARIANCE)

IDL prints:

3.66667

Define an array with x and y as its columns.

A = TRANSPOSE([[X],[Y]])

Compute the correlation matrix.

PRINT, CORRELATE(A)

IDL prints:

1.00000 0.702652
0.702652 1.00000

See Also

A_CORRELATE, C_CORRELATE, M_CORRELATE, P_CORRELATE,
R_CORRELATE
CORRELATE IDL Reference Guide

249
COS

The periodic function COS returns the trigonometric cosine of X.

Syntax

Result = COS(X)

Arguments

X

The angle for which the cosine is desired, specified in radians. If X is double-
precision floating or complex, the result is of the same type. All other types are
converted to single-precision floating-point and yield floating-point results. When
applied to complex numbers:

COS(x) = COMPLEX(cos I cosh R, -sin R sinh (-I))

where R and I are the real and imaginary parts of x.

If X is an array, the result has the same structure, with each element containing the
cosine of the corresponding element of X.

Example

Find the cosine of 0.5 radians and print the result by entering:

PRINT, COS(.5)

IDL prints:

0.877583

See Also

ACOS, COSH
IDL Reference Guide COS

250
COSH

The COSH function returns the hyperbolic cosine of X.

Syntax

Result = COSH(X)

Arguments

X

The value for which the hyperbolic cosine is desired, specified in radians. If X is
double-precision floating, the result is also double- precision. Complex values are not
allowed. All other types are converted to single-precision floating-point and yield
floating-point results. COSH is defined as:

COSH(u) = (eu + e-u) / 2

If X is an array, the result has the same structure, with each element containing the
hyperbolic cosine of the corresponding element of X.

Example

Find the hyperbolic cosine of 0.5 radians and print the result by entering:

PRINT, COSH(.5)

IDL prints:

1.12763

See Also

ACOS, COS
COSH IDL Reference Guide

251
CRAMER

The CRAMER function solves an n by n linear system of equations using Cramer’s
rule.

This routine is written in the IDL language. Its source code can be found in the file
cramer.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CRAMER(A, B [, /DOUBLE] [, ZERO=value])

Arguments

A

An n by n single- or double-precision floating-point array.

B

An n-element single- or double-precision floating-point vector.

 Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

ZERO

Use this keyword to set the value of the floating-point zero. A floating-point zero on
the main diagonal of a triangular array results in a zero determinant. A zero
determinant results in a “Singular matrix” error and stops the execution of CRAMER.
For single-precision inputs, the default value is 1.0 × 10-6. For double-precision
inputs, the default value is 1.0 × 10-12.

Example

Define an array A and right-hand side vector B.

A = [[2.0, 1.0, 1.0], $
[4.0, -6.0, 0.0], $
[-2.0, 7.0, 2.0]]

B = [3.0, 10.0, -5.0]

;Compute the solution and print.
IDL Reference Guide CRAMER

252
PRINT, CRAMER(A,B)

IDL prints:

1.00000 -1.00000 2.00000

See Also

CHOLSOL, GS_ITER, LU_COMPLEX, LUSOL, SVSOL, TRISOL
CRAMER IDL Reference Guide

253
CREATE_STRUCT

The CREATE_STRUCT function creates a structure given pairs of tag names and
values. CREATE_STRUCT can also be used to concatenate structures.

Syntax

Result = CREATE_STRUCT([Tag1, Value1, ..., Tagn, Valuen])

or

Result = CREATE_STRUCT(NAME=string, [Tag1, ..., Tagn], Value1, ..., Valuen)

Arguments

Tags

The structure tag names. Tag names may be specified either as scalar strings or string
arrays. If scalar strings are specified, values alternate with tag names. If a string array
is provided, values must still be specified individually. Tag names must be enclosed
in quotes.

Note
If a tag name contains spaces, CREATE_STRUCT will replace the spaces with
underscores. For example, if you specify a tag name of 'my tag', the tag will be
created with the name 'my_tag'.

Values

The value of each field of the structure must be provided.

Keywords

NAME

Use this keyword to create a named structure using the specified string as the
structure name.

Examples

To create the anonymous structure { A: 1, B: 'xxx'} in the variable P, enter:

p = CREATE_STRUCT('A', 1, 'B', 'xxx')
IDL Reference Guide CREATE_STRUCT

254
To add the fields “FIRST” and “LAST” to the structure, enter the following:

p = CREATE_STRUCT('FIRST', 0, p, 'LAST', 3)

The resulting structure contains { FIRST: 0, A: 1, B: 'xxx', LAST: 3}.

Finally, the statement:

p = CREATE_STRUCT(name='list', ['A','B','C'], 1, 2, 3)

creates the structure { LIST, A: 1, B: 2, C: 3}.

See Also

N_TAGS, TAG_NAMES, Chapter 6, “Structures” in Building IDL Applications.
CREATE_STRUCT IDL Reference Guide

255
CREATE_VIEW

The CREATE_VIEW procedure sets the various system variables required to define
a coordinate system and a 3D view. This procedure builds the system viewing matrix
(!P.T) in such a way that the correct aspect ratio of the data is maintained even if the
display window is not square. CREATE_VIEW also sets the “Data” to “Normal”
coordinate conversion factors (!X.S, !Y.S, and !Z.S) so that center of the unit cube
will be located at the center of the display window.

CREATE_VIEW sets the following IDL system variables:

!P.T, !P.T3D, !P.Position, !P.Clip, !P.Region !X.S, !X.Style, !X.Range, !X.Margin
!Y.S, !Y.Style, !Y.Range, !Y.Margin, !Z.S, !Z.Style, !Z.Range, !Z.Margin.

This routine is written in the IDL language. Its source code can be found in the file
create_view.pro in the lib subdirectory of the IDL distribution.

Syntax

CREATE_VIEW [, AX=value] [, AY=value] [, AZ=value] [, PERSP=value]
[, /RADIANS] [, WINX=pixels] [, WINY=pixels] [, XMAX=scalar]
[, XMIN=scalar] [, YMAX=scalar] [, YMIN=scalar] [, ZFAC=value]
[, ZMAX=scalar] [, ZMIN=scalar] [, ZOOM=scalar or 3-element vector]

Arguments

This procedure has no required arguments.

Keywords

AX

A floating-point value specifying the orientation (X rotation) of the view. The default
is 0.0.

AY

A floating-point value specifying the orientation (Y rotation) of the view. The default
is 0.0.

AZ

A floating-point value specifying the orientation (Z rotation) of the view. The default
is 0.0.
IDL Reference Guide CREATE_VIEW

256
PERSP

A floating-point value specifying the perspective projection distance. A value of 0.0
indicates an isometric projection (NO perspective). The default is 0.0.

RADIANS

Set this keyword if AX, AY, and AZ are specified in radians. The default is degrees.

WINX

A long integer specifying the X size, in pixels, of the window that the view is being
set up for. The default is 640.

WINY

A long integer specifying the Y size, in pixels, of the window that the view is being
set up for. The default is 512.

XMAX

A scalar specifying the maximum data value on the X axis. The default is 1.0.

XMIN

A scalar specifying the minimum data value on the X axis. The default is 0.0.

YMAX

A scalar specifying the maximum data value on the Y axis. The default is 1.0.

YMIN

A scalar specifying the minimum data value on the Y axis. The default is 0.0.

ZFAC

Set this keyword to a floating-point value to expand or contract the view in the Z
dimension. The default is 1.0.

ZMAX

A scalar specifying the maximum data value on the Z axis. The default is 1.0.

ZMIN

A scalar specifying the minimum data value on the Z axis. The default is 0.0.
CREATE_VIEW IDL Reference Guide

257
ZOOM

A floating-point number or 3-element vector specifying the view zoom factor. If
zoom is a single value then the view will be zoomed equally in all 3 dimensions. If
zoom is a 3-element vector then the view will be scaled zoom[0] in X, zoom[1] in Y,
and zoom[2] in Z. The default is 1.0.

Example

Set up a view to display an iso-surface from volumetric data. First, create some data:

vol = FLTARR(40, 50, 30)
vol(3:36, 3:46, 3:26) = RANDOMU(S, 34, 44, 24)
FOR I = 0, 10 DO vol = SMOOTH(vol, 3)

Generate the iso-surface.

SHADE_VOLUME, vol, 0.2, polygon_list, vertex_list, /LOW

Set up the view. Note that the subscripts into the Vol array range from 0 to 39 in X, 0
to 49 in Y, and 0 to 29 in Z. As such, the 3-D coordinates of the iso-surface
(vertex_list) may have the same range. Set XMIN, YMIN, and ZMIN to zero (the
default), and set XMAX=39, YMAX=49, and ZMAX=29.

WINDOW, XSIZE = 600, YSIZE = 400
CREATE_VIEW, XMAX = 39, YMAX = 49, ZMAX = 29, $

AX = (-60.0), AZ = (30.0), WINX = 600, WINY = 400, $
ZOOM = (0.7), PERSP = (1.0)

Display the iso-surface in the specified view.

img = POLYSHADE(polygon_list, vertex_list, /DATA, /T3D)
TVSCL, img

See Also

SCALE3, T3D
IDL Reference Guide CREATE_VIEW

258
CROSSP

The CROSSP function returns a floating-point vector that is the vector (or cross)
product of two 3-element vectors, V1 and V2.

Syntax

Result = CROSSP(V1, V2)

Arguments

V1, V2

Three-element vectors.

See Also

“Matrix Multiplication” in Chapter 2 of Building IDL Applications.
CROSSP IDL Reference Guide

259
CRVLENGTH

The CRVLENGTH function computes the length of a curve with a tabular
representation, Y[i] = F(X[i]).

Warning
Data that is highly oscillatory requires a sufficient number of samples for an
accurate curve length computation.

This routine is written in the IDL language. Its source code can be found in the file
crvlength.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CRVLENGTH(X, Y [, /DOUBLE])

Arguments

X

An n-element single- or double-precision floating-point vector. X must contain at
least three elements, and values must be specified in ascending order. Duplicate X
values will result in a warning message.

Y

An n-element single- or double-precision floating-point vector.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

;Define a 21-element vector of X-values:
x = [-2.00, -1.50, -1.00, -0.50, 0.00, 0.50, 1.00, 1.50, 2.00, $
2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50, $
7.00, 7.50, 8.00]

;Define a 21-element vector of Y-values:
y = [-2.99, -2.37, -1.64, -0.84, 0.00, 0.84, 1.64, 2.37, 2.99, $
3.48, 3.86, 4.14, 4.33, 4.49, 4.65, 4.85, 5.13, 5.51, $
IDL Reference Guide CRVLENGTH

260
6.02, 6.64, 7.37]

;Compute the length of the curve:
result = CRVLENGTH(x, y)

Print, result

IDL prints:

14.8115

See Also

INT_TABULATED, PNT_LINE
CRVLENGTH IDL Reference Guide

261
CT_LUMINANCE

The CT_LUMINANCE function calculates the luminance of colors. The function
returns an array containing the luminance values of the specified colors. If the R, G,
and B parameters are not specified, or if R is of integer, byte or long type, the result is
a longword array with the same number of elements as the input arguments.
Otherwise, the result is a floating-point array with the same number of elements as
the input arguments.

This routine is written in the IDL language. Its source code can be found in the file
ct_luminance.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CT_LUMINANCE([R, G, B] [, BRIGHT=variable] [, DARK=variable]
[, /READ_TABLES])

Arguments

R

An array representing the red color table. If omitted, the color values from either the
COLORS common block, or the current color table are used.

G

An array representing the green color table. This parameter is optional.

B

An array representing the blue color table. This parameter is optional.

Keywords

BRIGHT

Set this keyword to a named variable in which the array index of the brightest color is
returned.

DARK

Set this keyword to a named variable in which the array index of the darkest color is
returned.
IDL Reference Guide CT_LUMINANCE

262
READ_TABLES

Set this keyword, and don’t specify the R, G, and B arguments, to read colors directly
from the current colortable (using TVLCT, /GET) instead of using the COLORS
common block.

See Also

GAMMA_CT, STRETCH
CT_LUMINANCE IDL Reference Guide

263
CTI_TEST

The CTI_TEST function constructs a “contingency table” from an array of observed
frequencies and tests the hypothesis that the rows and columns are independent using
an extension of the chi-square goodness-of-fit test. The result is a two-element vector
containing the chi-square test statistic X2 and the one-tailed probability of obtaining
a value of X2 or greater.

This routine is written in the IDL language. Its source code can be found in the file
cti_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CTI_TEST(Obfreq [, COEFF=variable] [, /CORRECTED]
[, CRAMV=variable] [, DF=variable] [, EXFREQ=variable]
[, RESIDUAL=variable])

Arguments

Obfreq

An m x n array containing observed frequencies. Obfreq can contain either integer,
single-, double-precision floating-point values.

Keywords

COEFF

Set this keyword to a named variable that will contain the Coefficient of
Contingency. The Coefficient of Contingency is a non-negative scalar, in the interval
[0.0, 1.0], which measures the degree of dependence within a contingency table. The
larger the value of COEFF, the greater the degree of dependence.

CORRECTED

Set this keyword to use the “Yate’s Correction for Continuity” when computing the
Chi-squared test statistic, X2. The Yate’s correction always decreases the magnitude
of X2. In general, this keyword should be set for small sample sizes.

CRAMV

Set this keyword to a named variable that will contain Cramer’s V. Cramer’s V is a
non-negative scalar, in the interval [0.0, 1.0], which measures the degree of
dependence within a contingency table.
IDL Reference Guide CTI_TEST

264
DF

Set this keyword to a named variable that will contain the number of degrees of
freedom used to compute the probability of obtaining the value of the Chi-squared
test statistic or greater. DF = (n - 1) * (m - 1) where m and n are the number of
columns and rows of the contingency table, respectively.

EXFREQ

Set this keyword to a named variable that will contain an array of m-columns and n-
rows containing expected frequencies. The elements of this array are often referred to
as the “cells” of the expected frequencies. The expected frequency of each cell is
computed as the product of row and column marginal frequencies divided by the
overall total of observed frequencies.

RESIDUAL

Set this keyword to a named variable that will contain an array of m-columns and n-
rows containing signed differences between corresponding cells of observed
frequencies and expected frequencies.

Example

Define a 5-column and 4-row array of observed frequencies.

obfreq = [[748, 821, 786, 720, 672], $
[74, 60, 51, 66, 50], $
[31, 25, 22, 16, 15], $
[9, 10, 6, 5, 7]]

Test the hypothesis that the rows and columns of “obfreq” contain independent data
at the 0.05 significance level.

result = CTI_TEST(obfreq, COEFF = coeff)

The result should be the two-element vector [14.3953, 0.276181].

The computed value of 0.276181 indicates that there is no reason to reject the
proposed hypothesis at the 0.05 significance level. The Coefficient of Contingency
returned in the parameter “coeff” (coeff = 0.0584860) also indicates the lack of
dependence between the rows and columns of the observed frequencies. Setting the
CORRECTED keyword returns the two-element vector [12.0032, 0.445420] and
(coeff = 0.0534213) resulting in the same conclusion of independence.

See Also

CORRELATE, M_CORRELATE, XSQ_TEST
CTI_TEST IDL Reference Guide

265
CURSOR

The CURSOR procedure is used to read the position of the interactive graphics
cursor from the current graphics device. Note that not all graphics devices have
interactive cursors. CURSOR enables the graphic cursor on the device and optionally
waits for the operator to position it. On devices that have a mouse, CURSOR
normally waits until a mouse button is pressed (or already down). If no mouse
buttons are present, CURSOR waits for a key on the keyboard to be pressed.

The system variable !MOUSE is set to the button status. Each mouse button is
assigned a bit in !MOUSE, bit 0 is the left most button, bit 1 the next, etc. See
“!MOUSE” on page 2427 for details.

Using CURSOR with Draw Widgets

Note that the CURSOR procedure is only for use with IDL graphics windows. It
should not be used with draw widgets. To obtain the cursor position and button state
information from a draw widget, examine the X, Y, PRESS, and RELEASE fields in
the structures returned by the draw widget in response to cursor events.

Using CURSOR with the TEK Device

Note that for the CURSOR procedure to work properly with Tektronix terminals, you
may need to execute the command, DEVICE, GIN_CHARS=6.

Syntax

CURSOR, X, Y [, Wait | [, /CHANGE | , /DOWN | , /NOWAIT | , /UP | , /WAIT]]
[, /DATA | , /DEVICE, | , /NORMAL]

Arguments

X

A named variable to receive the cursor’s current column position.

Y

A named variable to receive the cursor’s current row position.

Wait

An integer that specifies the conditions under which CURSOR returns. This
parameter can be used interchangeably with the keyword parameters listed below that
IDL Reference Guide CURSOR

266
specify the type of wait. The default value is 1. The table below describes each type
of wait.

Note that not all modes of waiting work with all display devices.

Keywords

CHANGE

Set this keyword to wait for pointer movement or button transition within the
currently selected window.

DATA

Set this keyword to return X and Y in data coordinates.

DOWN

Set this keyword to wait for a button down transition within the currently selected
window.

DEVICE

Set this keyword to return X and Y in device coordinates.

NORMAL

Set this keyword to return X and Y in normalized coordinates.

Wait
Value

Corresponding
Keyword Action

0 NOWAIT Return immediately.

1 WAIT Return if a button is down.

2 CHANGE Return if a button is pressed, released,
or the pointer is moved.

3 DOWN Return when a button down transition is
detected.

4 UP Return when a button up transition is
detected.

Table 9: Values for CURSOR Wait Parameter
CURSOR IDL Reference Guide

267
NOWAIT

Set this keyword to read the pointer position and button status and return
immediately. If the pointer is not within the currently selected window, the device
coordinates -1, -1 are returned.

UP

Set this keyword to wait for a button up transition within the current window.

WAIT

Set this keyword to wait for a button to be depressed within the currently selected
window. If a button is already pressed, return immediately.

Example

Activate the graphics cursor, select a point in the graphics window, and return the
position of the cursor in device coordinates. Enter:

CURSOR, X, Y, /DEVICE

Move the cursor over the graphics window and press the mouse button. The position
of the cursor in device coordinates is stored in the variables X and Y. To label the
location, enter:

XYOUTS, X, Y, 'X marks the spot.', /DEVICE

See Also

RDPIX, TVCRS, CURSOR_CROSSHAIR (and other CURSOR_ keywords),
WIDGET_DRAW, “!MOUSE” on page 2427
IDL Reference Guide CURSOR

268
CURVEFIT

The CURVEFIT function uses a gradient-expansion algorithm to compute a non-
linear least squares fit to a user-supplied function with an arbitrary number of
parameters. The user-supplied function may be any non-linear function where the
partial derivatives are known or can be approximated. Iterations are performed until
the chi square changes by a specified amount, or until a maximum number of
iterations have been performed.

This routine is written in the IDL language. Its source code can be found in the file
curvefit.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CURVEFIT(X, Y, Weights, A [, Sigma] [, CHISQ=variable] [, /DOUBLE]
[, FUNCTION_NAME=string] [, ITER=variable] [, ITMAX=value]
[, /NODERIVATIVE] [, TOL=value])

Return Value

CURVEFIT returns a vector of values for the dependent variables, as fitted by the
function fit. If A is double-precision or if the DOUBLE keyword is set, calculations
are performed in double-precision arithmetic, otherwise they are performed in single-
precision arithmetic.

Arguments

X

An n-element vector of independent variables.

Y

A vector of dependent variables. Y must have the same number of elements as F
returned by the user-defined function.

Weights

For instrumental (Gaussian) weighting, set Weightsi = 1.0/standard_deviation(Yi)
2.

For statistical (Poisson) weighting, Weightsi = 1.0/Yi. For no weighting, set
Weightsi = 1.0.
CURVEFIT IDL Reference Guide

269
A

A vector with as many elements as the number of terms in the user-supplied function,
containing the initial estimate for each parameter. On return, the vector A contains the
fitted model parameters.

Sigma

A named variable that will contain a vector of standard deviations for the elements of
the output vector A.

Keywords

CHISQ

Set this keyword equal to a named variable that will contain the value of the reduced
chi-squared.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

FUNCTION_NAME

Use this keyword to specify the name of the function to fit. If this keyword is omitted,
CURVEFIT assumes that the IDL procedure FUNCT is to be used. If FUNCT is not
already compiled, IDL compiles the function from the file funct.pro, located in the
lib subdirectory of the IDL distribution. FUNCT evaluates the sum of a Gaussian and
a second-order polynomial.

The function to be fit must be written as an IDL procedure and compiled prior to
calling CURVEFIT. The procedure must accept values of X (the independent
variable), and A (the fitted function’s initial parameter values). It must return values
for F (the function’s value at X), and optionally PDER (a 2D array of partial
derivatives).

The return value for F must have the same number of elements as Y. The return value
for PDER (if supplied) must be a 2D array with dimensions
[N_ELEMENTS(Y), N_ELEMENTS(A)].

See the Example section below for an example function.

ITER

Set this keyword equal to a named variable that will contain the actual number of
iterations performed.
IDL Reference Guide CURVEFIT

270
ITMAX

Set this keyword to specify the maximum number of iterations. The default value is
20.

NODERIVATIVE

If this keyword is set, the routine specified by the FUNCTION_NAME keyword will
not be requested to provide partial derivatives. The partial derivatives will be
estimated by CURVEFIT using forward differences. If analytical derivatives are
available they should always be used.

TOL

Use this keyword to specify the desired convergence tolerance. The routine returns
when the relative decrease in chi-squared is less than TOL in one iteration. The
default value is 1.0 × 10-3.

Example

Fit a function of the form F(x) = a * exp(b*x) + c to sample pairs contained
in arrays X and Y. The partial derivatives are easily computed symbolically:

df/da = exp(b*x)
df/db = a * x * exp(b*x)
df/dc = 1.0

First, define a procedure to return F(x) and the partial derivatives, given X. Note that
A is an array containing the values a, b, and c.

PRO gfunct, X, A, F, pder
bx = EXP(A[1] * X)
F = A[0] * bx + A[2]

;If the procedure is called with four parameters, calculate the
;partial derivatives.

IF N_PARAMS() GE 4 THEN $
pder = [[bx], [A[0] * X * bx], [replicate(1.0, N_ELEMENTS(X))]]

END

Compute the fit to the function we have just defined. First, define the independent
and dependent variables:

X = FLOAT(INDGEN(10))
Y = [12.0, 11.0, 10.2, 9.4, 8.7, 8.1, 7.5, 6.9, 6.5, 6.1]

;Define a vector of weights.
weights = 1.0/Y
CURVEFIT IDL Reference Guide

271
;Provide an initial guess of the function’s parameters.
A = [10.0,-0.1,2.0]

;Compute the parameters.
yfit = CURVEFIT(X, Y, weights, A, SIGMA, FUNCTION_NAME='gfunct')

;Print the parameters returned in A.
PRINT, 'Function parameters: ', A

IDL prints:

Function parameters: 9.91120 -0.100883 2.07773

Thus, the function that best fits the data is:

f (x) = 9.91120(e-0.100883x) + 2.07773

See Also

COMFIT, GAUSS2DFIT, GAUSSFIT, LMFIT, POLY_FIT, REGRESS, SFIT,
SVDFIT
IDL Reference Guide CURVEFIT

272
CV_COORD

The CV_COORD function converts 2D and 3D coordinates between the rectangular,
polar, cylindrical, and spherical coordinate systems.

This routine is written in the IDL language. Its source code can be found in the file
cv_coord.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CV_COORD([, /DEGREES] [, /DOUBLE] [, FROM_CYLIN=cyl_coords |
, FROM_POLAR=pol_coords | , FROM_RECT=rect_coords |
, FROM_SPHERE=sph_coords] [, /TO_CYLIN | , /TO_POLAR | , /TO_RECT |
, /TO_SPHERE])

Return Value

If the value specified in the “FROM_” keyword is double precision, or if the
DOUBLE keyword is set, then all calculations are performed in double precision and
the returned value is double precision. Otherwise, single precision is used. If none of
the “FROM_” keyword are specified, 0 is returned. If none of the “TO_” keywords
are specified, the input coordinates are returned.

Arguments

This function has no required arguments. All data is passed in via keywords.

Keywords

DEGREES

If set, then the input and output coordinates are in degrees (where applicable).
Otherwise, the angles are in radians.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

FROM_CYLIN

A vector of the form [angle, radius, z], or a (3, n) array of cylindrical coordinates to
convert.
CV_COORD IDL Reference Guide

273
FROM_POLAR

A vector of the form [angle, radius], or a (2, n) array of polar coordinates to convert.

FROM_RECT

A vector of the form [x, y] or [x, y, z], or a (2, n) or (3, n) array containing rectangular
coordinates to convert.

FROM_SPHERE

A vector of the form [longitude, latitude, radius], or a (3, n) array of spherical
coordinates to convert.

TO_CYLIN

If set, cylindrical coordinates are returned in a vector of the form [angle, radius, z], or
a (3, n) array.

TO_POLAR

If set, polar coordinates are returned in a vector of the form [angle, radius], or a (2, n)
array.

TO_RECT

If set, rectangular coordinates are returned in a vector of the form [x, y] or [x, y, z], or
a (2, n) or (3, n) array.

TO_SPHERE

If set, spherical coordinates are returned in a vector of the form [longitude, latitude,
radius], or a (3, n) array.

Examples

Convert from spherical to cylindrical coordinates:

sph_coord = [[45.0, -60.0, 10.0], [0.0, 0.0, 0.0]]
rect_coord = CV_COORD(FROM_SPHERE=sph_coord, /TO_CYLIN, /DEGREES)

Convert from rectangular to polar coordinates:

rect_coord = [10.0, 10.0]
polar_coord = CV_COORD(FROM_RECT=rect_coord, /TO_POLAR)

See Also

CONVERT_COORD, COORD2TO3, CREATE_VIEW, SCALE3, T3D
IDL Reference Guide CV_COORD

274
CVTTOBM

The CVTTOBM function converts a byte array in which each byte represents one
pixel into a “bitmap byte array” in which each bit represents one pixel. This is useful
when creating bitmap labels for buttons created with the WIDGET_BUTTON
function.

Bitmap byte arrays are monochrome; by default, CVTTOBM converts pixels that are
darker than the median value to black and pixels that are lighter than the median
value to white. You can supply a different threshold value via the THRESHOLD
keyword.

Most of IDL’s image file format reading functions (READ_BMP, READ_PICT, etc.)
return a byte array which must be converted before use as a button label. Note that
there is one exception to this rule; the READ_X11_BITMAP routine returns a bitmap
byte array that needs no conversion before use.

This routine is written in the IDL language. Its source code can be found in the file
cvttobm.pro in the lib subdirectory of the IDL distribution.

Note
IDL supports color bitmaps for button labels. The IDL GUIBuilder has a Bitmap
Editor that allows you to create color bitmaps for button labels. The BITMAP
keyword to WIDGET_BUTTON specifies that the button label is a color bitmap.

Syntax

Result = CVTTOBM(Array [, THRESHOLD=value{0 to 255}])

Arguments

Array

A 2-dimensional pixel array, one byte per pixel.

Keywords

THRESHOLD

A byte value (or an integer value between 0 and 255) to be used as a threshold value
when determining if a particular pixel is black or white. If THRESHOLD is not
specified, the threshold is calculated to be the average of the input array.
CVTTOBM IDL Reference Guide

275
Example

The following example creates a bitmap button label from a byte array:

; Create a byte array:
image = BYTSCL(DIST(100))
; Create a widget base:
base = WIDGET_BASE(/COLUMN)

; Use CVTTOBM to create a bitmap byte array for a button label:
button = WIDGET_BUTTON(base, VALUE = CVTTOBM(image))

; Realize the widget:
WIDGET_CONTROL, base, /REALIZE

See Also

WIDGET_BUTTON, “Using the Bitmap Editor” in Chapter 21 of Building IDL
Applications
IDL Reference Guide CVTTOBM

276
CW_ANIMATE

The CW_ANIMATE function creates a compound widget that displays an animated
sequence of images using off-screen windows knows as pixmaps. The speed and
direction of the display can be adjusted using the widget interface.

CW_ANIMATE provides the graphical interface used by the XINTERANIMATE
procedure, which is the preferred routine for displaying animation sequences in most
situations. Use this widget instead of XINTERANIMATE when you need to run
multiple instances of the animation widget simultaneously. Note that if more than one
animation widget is running, they will have to share resources and will display
images more slowly than a single instance of the widget.

This routine is written in the IDL language. Its source code can be found in the file
cw_animate.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CW_ANIMATE(Parent, Sizex, Sizey, Nframes [, /NO_KILL]
[, OPEN_FUNC=string] [, PIXMAPS=vector] [, /TRACK] [, UNAME=string]
[, UVALUE=value])

Return Value

This function returns the widget ID of the newly-created animation widget.

Using CW_ANIMATE

Unlike XINTERANIMATE, using the CW_ANIMATE widget requires calls to two
separate procedures, CW_ANIMATE_LOAD and CW_ANIMATE_RUN, to load
the images to be animated and to run the animation. Alternatively, you can supply a
vector of pre-existing pixmap window IDs, eliminating the need to use
CW_ANIMATE_LOAD. The vector of pixmaps is commonly obtained from a call to
CW_ANIMATE_GETP applied to a previous animation widget. Once the images are
loaded, they are displayed by copying the images from the pixmap or buffer to the
visible draw widget.

See the documentation for CW_ANIMATE_LOAD, CW_ANIMATE_RUN, and
CW_ANIMATE_GETP for more information.

The only event returned by CW_ANIMATE indicates that the user has clicked on the
“End Animation” button. The parent application should use this as a signal to kill the
animation widget via WIDGET_CONTROL. When the widget is destroyed, the
CW_ANIMATE IDL Reference Guide

277
pixmaps used in the animation are destroyed as well, unless they were saved by a call
to CW_ANIMATE_GETP.

See the animation widget’s help file (available by clicking the “Help” button on the
widget) for more information about the widget’s controls.

Arguments

Parent

The widget ID of the parent widget.

Sizex

The width of the displayed image, in pixels.

Sizey

The height of the displayed image, in pixels

Nframes

The number of frames in the animation sequence.

Keywords

NO_KILL

Set this keyword to omit the “End Animation” button from the animation widget.

OPEN_FUNC

Set this keyword equal to a scalar string specifying the name of a user-written
function that loads animation data. If a function is specified, an “Open ...” button is
added to the animation widget.

PIXMAPS

Use this keyword to provide the animation widget with a vector of pre-existing
pixmap (off screen window) IDs. This vector is usually obtained from a call to
CW_ANIMATE_GETP applied to a previous animation widget.

TRACK

Set this keyword to cause the frame slider to track the frame number of the currently-
displayed frame.
IDL Reference Guide CW_ANIMATE

278
UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

See “Compound Widgets” in Chapter 22 of Building IDL Applications for a more
complete discussion of controlling compound widgets using WIDGET_CONTROL
and WIDGET_INFO.

Widget Events Returned by the CW_ANIMATE Widget

The only event returned by this widget indicates that the user has pressed the DONE
button. The parent application should use this as a signal to kill the animation widget
via WIDGET_CONTROL.

Example

Assume the following event handler procedure exists:

PRO EHANDLER, EV
WIDGET_CONTROL, /DESTROY, EV.TOP
end

Tip
If you wish to create this event handler starting from the IDL command prompt,
remember to begin with the .RUN command.
CW_ANIMATE IDL Reference Guide

279
Enter the following commands to open the file ABNORM.DAT (a series of images of a
human heart) and load the images it contains into an array H.

OPENR, 1, FILEPATH('abnorm.dat', SUBDIR = ['examples','data'])
H = BYTARR(64, 64, 16)
READU, 1, H
CLOSE, 1
H = REBIN(H, 128, 128, 16)

Create an instance of the animation widget and load the frames. Note that because the
animation widget is realized before the call to CW_ANIMATE_LOAD, the frames
are displayed as they are loaded. This provides the user with an indication of how
things are progressing.

base = WIDGET_BASE(TITLE = 'Animation Widget')
animate = CW_ANIMATE(base, 128, 128, 16)
WIDGET_CONTROL, /REALIZE, base
FOR I=0,15 DO CW_ANIMATE_LOAD, animate, FRAME=I, IMAGE=H[*,*,I]

Save the pixmap window IDs for future use:

CW_ANIMATE_GETP, animate, pixmap_vect

Start the animation:

CW_ANIMATE_RUN, animate
XMANAGER, 'CW_ANIMATE Demo', base, EVENT_HANDLER = 'EHANDLER'

Pressing the “End Animation” button kills the application.

Figure 5: The animation interface created by CW_ANIMATE
IDL Reference Guide CW_ANIMATE

280
See Also

CW_ANIMATE_LOAD, CW_ANIMATE_RUN, CW_ANIMATE_GETP,
XINTERANIMATE
CW_ANIMATE IDL Reference Guide

281
CW_ANIMATE_GETP

The CW_ANIMATE_GETP procedure gets a copy of the vector of pixmap window
IDs being used by a CW_ANIMATE animation widget. If this routine is called,
CW_ANIMATE does not destroy the pixmaps when it is destroyed. You can then
provide the pixmaps to a later instance of CW_ANIMATE to re-use them, skipping
the pixmap creation and rendering step (CW_ANIMATE_LOAD).

CW_ANIMATE provides the graphical interface used by the XINTERANIMATE
procedure, which is the preferred routine for displaying animation sequences in most
situations. Use this widget instead of XINTERANIMATE when you need to run
multiple instances of the animation widget simultaneously. Note that if more than one
animation widget is running, they will have to share resources and will display
images more slowly than a single instance of the widget.

This routine is written in the IDL language. Its source code can be found in the file
cw_animate.pro in the lib subdirectory of the IDL distribution.

Syntax

CW_ANIMATE_GETP, Widget, Pixmaps [, /KILL_ANYWAY]

Arguments

Widget

The widget ID of the animation widget (created with CW_ANIMATE) that contains
the pixmaps.

Pixmaps

A named variable that will contain a vector of the window IDs of the pixmap
windows.

Keywords

KILL_ANYWAY

Set this keyword to ensure that the pixmaps are destroyed anyway when
CW_ANIMATE exits, despite the fact that CW_ANIMATE_GETP has been called.

Example

See “CW_ANIMATE” on page 276.
IDL Reference Guide CW_ANIMATE_GETP

282
See Also

CW_ANIMATE, CW_ANIMATE_LOAD, CW_ANIMATE_RUN,
XINTERANIMATE
CW_ANIMATE_GETP IDL Reference Guide

283
CW_ANIMATE_LOAD

The CW_ANIMATE_LOAD procedure creates an array of pixmaps which are
loaded into a CW_ANIMATE compound widget.

CW_ANIMATE provides the graphical interface used by the XINTERANIMATE
procedure, which is the preferred routine for displaying animation sequences in most
situations. Use this widget instead of XINTERANIMATE when you need to run
multiple instances of the animation widget simultaneously. Note that if more than one
animation widget is running, they will have to share resources and will display
images more slowly than a single instance of the widget.

This routine is written in the IDL language. Its source code can be found in the file
cw_animate.pro in the lib subdirectory of the IDL distribution.

Syntax

CW_ANIMATE_LOAD, Widget [, /CYCLE] [, FRAME=value{0 to NFRAMES}]
[, IMAGE=value] [, /ORDER] [, WINDOW=[window_num [, X0, Y0, Sx, Sy]]]
[, XOFFSET=pixels] [, YOFFSET=pixels]

Arguments

Widget

The widget ID of the animation widget (created with CW_ANIMATE) into which
the image should be loaded.

Keywords

CYCLE

Set this keyword to cause the animation to cycle. Normally, frames are displayed
going either forward or backward. If CYCLE is set, the animation reverses direction
after the last frame in either direction is displayed.

FRAME

The frame number to be loaded. This is a value between 0 and NFRAMES. If not
supplied, frame 0 is loaded.

IMAGE

The image to be loaded.
IDL Reference Guide CW_ANIMATE_LOAD

284
ORDER

Set this keyword to display images from the top down instead of the default bottom
up. This keyword is only used when loading images with the IMAGE keyword.

WINDOW

When this keyword is specified, an image is copied from an existing window to the
animation pixmap. Under some windowing systems, this technique is much faster
than reading from the display and then loading with the IMAGE keyword.

The value of this parameter is either an IDL window number (in which case the entire
window is copied), or a vector containing the window index and the rectangular
bounds of the area to be copied. For example:

WINDOW = [Window_Number, X0, Y0, Sx, Sy]

XOFFSET

The horizontal offset, in pixels from the left of the frame, of the image in the
destination window.

YOFFSET

The vertical offset, in pixels from the bottom of the frame, of the image in the
destination window.

Example

See the documentation for CW_ANIMATE for an example using this procedure.
Note that if the widget is realized before calls to CW_ANIMATE_LOAD, the frames
are displayed as they are loaded. This provides the user with an indication of how
things are progressing.

See Also

CW_ANIMATE, CW_ANIMATE_GETP, CW_ANIMATE_RUN,
XINTERANIMATE
CW_ANIMATE_LOAD IDL Reference Guide

285
CW_ANIMATE_RUN

The CW_ANIMATE_RUN procedure displays a series of images that have been
loaded into a CW_ANIMATE compound widget by a call to
CW_ANIMATE_LOAD.

CW_ANIMATE provides the graphical interface used by the XINTERANIMATE
procedure, which is the preferred routine for displaying animation sequences in most
situations. Use this widget instead of XINTERANIMATE when you need to run
multiple instances of the animation widget simultaneously. Note that if more than one
animation widget is running, they will have to share resources and will display
images more slowly than a single instance of the widget.

This routine is written in the IDL language. Its source code can be found in the file
cw_animate.pro in the lib subdirectory of the IDL distribution.

Syntax

CW_ANIMATE_RUN, Widget [, Rate{0 to 100}] [, NFRAMES=value] [, /STOP]

Arguments

Widget

The widget ID of the animation widget (created with CW_ANIMATE) that will
display the animation.

Rate

A value between 0 and 100 that represents the speed of the animation as a percentage
of the maximum display rate. The fastest animation has a value of 100 and the
slowest has a value of 0. The default animation rate is 100.

The animation rate can also be adjusted after the animation has begun by changing
the value of the “Animation Speed” slider.

Keywords

NFRAMES

Set this keyword equal to the number of frames to animate. This number must be less
than or equal to the Nframes argument to CW_ANIMATE.
IDL Reference Guide CW_ANIMATE_RUN

286
STOP

If this keyword is set, the animation is stopped.

Example

See “CW_ANIMATE” on page 276.

See Also

CW_ANIMATE, CW_ANIMATE_GETP, CW_ANIMATE_LOAD,
XINTERANIMATE
CW_ANIMATE_RUN IDL Reference Guide

287
CW_ARCBALL

The CW_ARCBALL function creates a compound widget for intuitively specifying
three-dimensional orientations.

The user drags a simulated track-ball with the mouse to interactively obtain arbitrary
rotations. Sequences of rotations may be cascaded. The rotations may be
unconstrained (about any axis), constrained to the view X, Y, or Z axes, or
constrained to the object’s X, Y, or Z axis.

This widget is based on “ARCBALL: A User Interface for Specifying Three-
Dimensional Orientation Using a Mouse,” by Ken Shoemake, Computer Graphics
Laboratory, University of Pennsylvania, Philadelphia, PA 19104.

This widget can generate any rotation about any axis. Note, however, that not all
rotations are compatible with the IDL SURFACE procedure, which is restricted to
rotations that project the object Z axis parallel to the view Y axis.

This routine is written in the IDL language. Its source code can be found in the file
cw_arcball.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CW_ARCBALL(Parent [, COLORS=array] [, /FRAME]
[, LABEL=string] [, RETAIN={0 | 1 | 2}] [, SIZE=pixels] [, /UPDATE]
[, UNAME=string] [, UVALUE=value] [, VALUE=array])

Return Value

This function returns the widget ID of the newly-created ARCBALL widget.

Using CW_ARCBALL

Use the command:

WIDGET_CONTROL, id, GET_VALUE = matrix

to return the current 3x3 rotation matrix in the variable matrix.

You can set the arcball to new rotation matrix using the command:

WIDGET_CONTROL, id, SET_VALUE = matrix

after the widget is initially realized.
IDL Reference Guide CW_ARCBALL

288
Arguments

Parent

The widget ID of the parent widget.

Keywords

COLORS

A 6-element array containing the color indices to be used.

• Colors[0] = view axis color,

• Colors[1] = object axis color,

• Colors[2] = XZ plane +Y side (body top) color,

• Colors[3] = YZ plane (fin) color,

• Colors[4] = XZ plane -Y side (body bottom),

• Colors[5] = background color.

For devices that are using indexed color (i.e., DECOMPOSED=0), the default value
for COLORS is [1,7,2,3,7,0], which yields good colors with the TEK_COLOR
table: (white, yellow, red, green, yellow, black). For devices that are using
decomposed color (i.e., DECOMPOSED=1), the default value is an array of
corresponding decomposed (rather than indexed) colors: (white, yellow, red, green,
yellow, black).

For more information on decomposed color, refer to the DECOMPOSED keyword to
the DEVICE routine.

FRAME

Set this keyword to draw a frame around the widget.

LABEL

Set this keyword to a string containing the widget’s label.

RETAIN

Set this keyword to zero, one, or two to specify how backing store should be handled
for the draw widget. RETAIN=0 specifies no backing store. RETAIN=1 requests that
the server or window system provide backing store. RETAIN=2 specifies that IDL
provide backing store directly. See “Backing Store” on page 2351 for details.
CW_ARCBALL IDL Reference Guide

289
SIZE

The size of the square drawable area containing the arcball, in pixels. The default is
192.

UPDATE

Set this keyword to cause the widget will send an event each time the mouse button is
released after a drag operation. By default, events are only sent when the “Update”
button is pressed.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

VALUE

Set this keyword to a 3 x 3 array that will be the initial value for the rotation matrix.
VALUE must be a valid rotation matrix (no translation or perspective) where
TRANSPOSE(VALUE) = INVERSE(VALUE). This can be the upper-left corner of
!P.T after executing the command

T3D, /RESET, ROTATE = [x,y,z].

The default is the identity matrix.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the 3 x 3 rotation matrix in the arcball widget.
IDL Reference Guide CW_ARCBALL

290
See “Compound Widgets” in Chapter 22 of Building IDL Applications for a more
complete discussion of controlling compound widgets using WIDGET_CONTROL
and WIDGET_INFO.

Widget Events Returned by the CW_ARCBALL Widget

Arcball widgets generate event structures with the following definition:

event = {ID:0L, TOP:0L, HANDLER:0L, VALUE:fltarr(3,3) }

The VALUE field contains the 3 x 3 array representing the new rotation matrix.

Example

See the procedure ARCBALL_TEST, contained in the cw_arcball.pro file. To test
CW_ARCBALL, enter the following commands:

.RUN cw_arcball
ARCBALL_TEST

This results in the following:

See Also

CREATE_VIEW, SCALE3, T3D

Figure 6: The CW_ARCBALL widget.
CW_ARCBALL IDL Reference Guide

291
CW_BGROUP

The CW_BGROUP function creates a widget base of buttons. It handles the details of
creating the proper base (standard, exclusive, or non-exclusive) and filling in the
desired buttons. Events for the individual buttons are handled transparently, and a
CW_BGROUP event returned. This event can return any one of the following:

• the index of the button within the base,

• the widget ID of the button,

• the name of the button,

• an arbitrary value taken from an array of user values.

Only buttons with textual names are handled by this widget. Bitmaps are not
understood.

This routine is written in the IDL language. Its source code can be found in the file
cw_bgroup.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CW_BGROUP(Parent, Names [, BUTTON_UVALUE=array]
[, COLUMN=value] [, EVENT_FUNC=string] [{, /EXCLUSIVE | ,
/NONEXCLUSIVE} | [, SPACE=pixels] [, XPAD=pixels] [, YPAD=pixels]]
[, FONT=font] [, FRAME=width] [, IDS=variable] [, /LABEL_LEFT | ,
/LABEL_TOP] [, /MAP] [, /NO_RELEASE] [, /RETURN_ID | , /RETURN_INDEX
| , /RETURN_NAME] [, ROW=value] [, /SCROLL] [, X_SCROLL_SIZE=width]
[, Y_SCROLL_SIZE=height] [, SET_VALUE=value] [, UNAME=string]
[, UVALUE=value] [, XOFFSET=value] [, XSIZE=width] [, YOFFSET=value]
[, YSIZE=value])

Return Value

This function returns the widget ID of the newly-created button group widget.

Arguments

Parent

The widget ID of the parent widget.
IDL Reference Guide CW_BGROUP

292
Names

A string array, one string per button, giving the name of each button.

Keywords

BUTTON_UVALUE

An array of user values to be associated with each button and returned in the event
structure. If this keyword is set, the user values are always returned, even if the any of
the RETURN_ID, RETURN_INDEX, or RETURN_NAME keywords are set.

COLUMN

Buttons will be arranged in the number of columns specified by this keyword.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget. This function is called with the return value structure
whenever a button is pressed, and follows the conventions for user-written event
functions.

EXCLUSIVE

Set this keyword to cause buttons to be placed in an exclusive base, in which only one
button can be selected at a time.

FONT

The name of the font to be used for the button titles. The font specified is a “device
font” (an X Windows font on Motif systems; a TrueType or PostScript font on
Windows or Macintosh systems). See “About Device Fonts” on page 2482 for details
on specifying names for device fonts. If this keyword is omitted, the default font is
used.

FRAME

Specifies the width of the frame to be drawn around the base.

IDS

A named variable in which the button IDs will be stored, as a longword vector.

LABEL_LEFT

Creates a text label to the left of the buttons.
CW_BGROUP IDL Reference Guide

293
LABEL_TOP

Creates a text label above the buttons.

MAP

Set this keyword to cause the base to be mapped when the widget is realized (the
default).

NONEXCLUSIVE

Set this keyword to cause buttons to be placed in an non-exclusive base, in which any
number of buttons can be selected at once.

NO_RELEASE

If set, button release events will not be returned.

RETURN_ID

Set this keyword to return the widget ID of the button in the VALUE field of returned
events. This keyword is ignored if the BUTTON_UVALUE keyword is set.

RETURN_INDEX

Set this keyword to return the zero-based index of the button within the base in the
VALUE field of returned events. This keyword is ignored if the
BUTTON_UVALUE keyword is set. THIS IS THE DEFAULT.

RETURN_NAME

Set this keyword to return the name of the button within the base in the VALUE field
of returned events. This keyword is ignored if the BUTTON_UVALUE keyword is
set.

ROW

Buttons will be arranged in the number of rows specified by this keyword.

SCROLL

If set, the base will include scroll bars to allow viewing a large base through a smaller
viewport.

SET_VALUE

Allows changing the current state of toggle buttons (i.e., exclusive and nonexclusive
groups of buttons). The behavior of SET_VALUE differs between EXCLUSIVE and
NONEXCLUSIVE CW_BGROUP widgets. With EXCLUSIVE CW_BGROUP
IDL Reference Guide CW_BGROUP

294
widgets, the argument to SET_VALUE is the id of the widget to be turned on. With
NONEXCLUSIVE CW_BGROUP widgets the argument to SET_VALUE should be
an array of on/off flags for the array of buttons.

SPACE

The space, in pixels, to be left around the edges of a row or column major base. This
keyword is ignored if EXCLUSIVE or NONEXCLUSIVE are specified.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

XOFFSET

The X offset of the widget relative to its parent.

XPAD

The horizontal space, in pixels, between children of a row or column major base. This
keyword is ignored if EXCLUSIVE or NONEXCLUSIVE are specified.

XSIZE

The width of the base.

X_SCROLL_SIZE

The width of the viewport if SCROLL is specified.

YOFFSET

The Y offset of the widget relative to its parent.

YPAD

The vertical space, in pixels, between children of a row or column major base. This
keyword is ignored if EXCLUSIVE or NONEXCLUSIVE are specified.
CW_BGROUP IDL Reference Guide

295
YSIZE

The height of the base.

Y_SCROLL_SIZE

The height of the viewport if SCROLL is specified.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the button group. The values for
different types of CW_BGROUP widgets is shown in the table below:

See “Compound Widgets” in Chapter 22 of Building IDL Applications for a more
complete discussion of controlling compound widgets using WIDGET_CONTROL
and WIDGET_INFO.

Widget Events Returned by the CW_BGROUP Widget

Button Group widgets generates event structures with the following definition:

event = {ID:0L, TOP:0L, HANDLER:0L, SELECT:0, VALUE:0 }

The SELECT field is passed through from the button event. VALUE is either the
INDEX, ID, NAME, or BUTTON_UVALUE of the button, depending on how the
widget was created.

See Also

CW_PDMENU, WIDGET_BUTTON

Type Value

normal None

exclusive Index of currently set button

non-exclusive Vector indicating the position
of each button (1-set, 0-unset)

Table 10: Button Group Values
IDL Reference Guide CW_BGROUP

296
CW_CLR_INDEX

The CW_CLR_INDEX function creates a compound widget for the selection of a
color index. A horizontal color bar is displayed. Clicking on the bar sets the color
index.

This routine is written in the IDL language. Its source code can be found in the file
cw_clr_index.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CW_CLR_INDEX(Parent [, COLOR_VALUES=vector |
[, NCOLORS=value] [, START_COLOR=value]]
[, EVENT_FUNC=‘function_name’] [, /FRAME] [, LABEL=string]
[, UNAME=string] [, UVALUE=value] [, VALUE=value] [, XSIZE=pixels]
[, YSIZE=pixels])

Return Value

This function returns the widget ID of the newly-created color index widget.

Arguments

Parent

The widget ID of the parent widget.

Keywords

COLOR_VALUES

A vector of color indices containing the colors to be displayed in the color bar. If
omitted, NCOLORS and START_COLOR specify the range of color indices.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget. This function is called with the return value structure
whenever a button is pressed, and follows the conventions for user-written event
functions.
CW_CLR_INDEX IDL Reference Guide

297
FRAME

If set, a frame will be drawn around the widget.

LABEL

A text label that appears to the left of the color bar.

NCOLORS

The number of colors to place in the color bar. The default is !D.N_COLORS.

START_COLOR

Set this keyword to the starting color index, placed at the left of the bar.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

VALUE

Set this keyword to the index of the color that is to be initially selected. The default is
the START_COLOR.

XSIZE

The width of the color bar in pixels. The default is 192.

YSIZE

The height of the color bar in pixels. The default is 12.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
IDL Reference Guide CW_CLR_INDEX

298
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the color selection widget. The
value of a CW_CLR_INDEX widget is the index of the color selected.

See “Compound Widgets” in Chapter 22 of Building IDL Applications for a more
complete discussion of controlling compound widgets using WIDGET_CONTROL
and WIDGET_INFO.

Widget Events Returned by the CW_CLR_INDEX Widget

This widget generates event structures with the following definition:

Event = {CW_COLOR_INDEX, ID: base, TOP: ev.top, HANDLER: 0L,
VALUE:c}

The VALUE field is the color index selected.

See Also

CW_COLORSEL, XLOADCT, XPALETTE
CW_CLR_INDEX IDL Reference Guide

299
CW_COLORSEL

The CW_COLORSEL function creates a compound widget that displays all the
colors in the current colormap in a 16 x 16 (320 x 320 pixels) grid. To select a color
index, the user moves the mouse pointer over the desired color square and presses
any mouse button. Alternatively, the color index can be selected by moving one of
the three sliders provided around the grid.

This routine is written in the IDL language. Its source code can be found in the file
cw_colorsel.pro in the lib subdirectory of the IDL distribution.

Using CW_COLORSEL

The command:

WIDGET_CONTROL, widgetID, SET_VALUE = -1

informs the widget to initialize itself and redraw. It should be called when any of the
following happen:

• the widget is realized,

• the widget needs redrawing,

• the brightest or darkest color has changed.

To set the current color index, use the command:

WIDGET_CONTROL, widgetID, SET_VALUE = index

To retrieve the current color index and store it in the variable var, use the command:

WIDGET_CONTROL, widgetID, GET_VALUE = var

Syntax

Result = CW_COLORSEL(Parent [, /FRAME] [, UNAME=string]
[, UVALUE=value] [, XOFFSET=value] [, YOFFSET=value])

Return Value

This function returns the widget ID of the newly-created color index widget.
IDL Reference Guide CW_COLORSEL

300
Arguments

Parent

The widget ID of the parent widget.

Keywords

FRAME

If set, a frame is drawn around the widget.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

XOFFSET

The X offset position

YOFFSET

The Y offset position

Widget Events Returned by the CW_COLORSEL Widget

This widget generates event structures with the following definition:

Event = {COLORSEL_EVENT, ID: base, TOP: ev.top, HANDLER: 0L,
VALUE:c}

The VALUE field is the color index selected.

See Also

CW_CLR_INDEX, XLOADCT, XPALETTE
CW_COLORSEL IDL Reference Guide

301
CW_DEFROI

The CW_DEFROI function creates a compound widget that allows the user to define
a region of interest within a widget draw window.

Warning
This is a modal widget. No other widget applications will be responsive while this
widget is in use. Also, since CW_DEFROI has its own event-handling loop, it
should not be created as a child of a modal base.

This routine is written in the IDL language. Its source code can be found in the file
cw_defroi.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CW_DEFROI(Draw [, IMAGE_SIZE=vector] [, OFFSET=vector]
[, /ORDER] [, /RESTORE] [, ZOOM=vector])

Return Value

The is function returns an array of subscripts defining the region. If no region is
defined, the scalar -1 is returned.

Arguments

Draw

The widget ID of draw window in which to draw the region. Note that the draw
window must have both BUTTON and MOTION events enabled (see
WIDGET_DRAW for more information).

Keywords

IMAGE_SIZE

The size of the underlying array, expressed as a two element vector: [columns, rows].
Default is the size of the draw window divided by the value of ZOOM.

OFFSET

The offset of lower left corner of image within the draw window. Default = [0,0].
IDL Reference Guide CW_DEFROI

302
ORDER

Set this keyword to return inverted subscripts, as if the array were output from top to
bottom.

RESTORE

Set this keyword to restore the draw window to its previous appearance on exit.
Otherwise, the regions remain on the drawable.

ZOOM

If the image array was expanded (using REBIN, for example) specify this two
element vector containing the expansion factor in X and Y. Default = [1,1]. Both
elements of ZOOM must be integers.

Widget Events Returned by the CW_DEFROI Widget

Region definition widgets do not return an event structure.

Example

The following two procedures create a region-of-interest widget and its event
handler. Create a file containing the program code using a text editor and compile
using the .RUN command, or type .RUN at the IDL prompt and enter the lines
interactively.

First, create the event handler:

PRO test_event, ev

; The common block holds variables that are shared between the
; routine and its event handler:
COMMON T, draw, dbutt, done, image

; Define what happens when you click the "Draw ROI" button:
IF ev.id EQ dbutt THEN BEGIN

; The ROI definition will be stored in the variable Q:
Q = CW_DEFROI(draw)
IF (Q[0] NE -1) then BEGIN

; Show the size of the ROI definition array:
HELP, Q
; Duplicate the original image.
image2 = image

; Set the points in the ROI array Q equal to a single
; color value:
image2(Q)=!P.COLOR-1
CW_DEFROI IDL Reference Guide

303
; Get the window ID of the draw widget:
WIDGET_CONTROL, draw, GET_VALUE=W

; Set the draw widget as the current graphics window:
WSET, W

; Load the image plus the ROI into the draw widget:
TV, image2

ENDIF
ENDIF

; Define what happens when you click the "Done" button:
IF ev.id EQ done THEN WIDGET_CONTROL, ev.top, /DESTROY

END

Next, create a draw widget that can call CW_DEFROI. Note that you must specify
both button events and motion events when creating the draw widget, if it is to be
used with CW_DEFROI.

PRO test
COMMON T, draw, dbutt, done, image

; Create a base to hold the draw widget and buttons:
base = WIDGET_BASE(/COLUMN)

; Create a draw widget that will return both button and
; motion events:
draw = WIDGET_DRAW(base, XSIZE=256, YSIZE=256, /BUTTON, /MOTION)
dbutt = WIDGET_BUTTON(base, VALUE='Draw ROI')
done = WIDGET_BUTTON(base, VALUE='Done')
WIDGET_CONTROL, base, /REALIZE

; Get the widget ID of the draw widget:
WIDGET_CONTROL, draw, GET_VALUE=W

; Set the draw widget as the current graphics window:
WSET, W

; Create an original image:
image = BYTSCL(SIN(DIST(256)))

; Display the image in the draw widget:
TV, image

; Start XMANAGER:
XMANAGER, "test", base

END
IDL Reference Guide CW_DEFROI

304
This results in the following:

See Also

DEFROI

Figure 7: The Region of Interest Definition Widget
CW_DEFROI IDL Reference Guide

305
CW_FIELD

The CW_FIELD function creates a widget data entry field. The field consists of a
label and a text widget. CW_FIELD can create string, integer, or floating-point
fields. The default is an editable string field.

This routine is written in the IDL language. Its source code can be found in the file
cw_field.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CW_FIELD(Parent [, /ALL_EVENTS] [, /COLUMN]
[, FIELDFONT=font] [, /FLOATING | , /INTEGER | , /LONG | , /STRING]
[, FONT=string] [, FRAME=pixels] [, /NOEDIT] [, /RETURN_EVENTS] [, /ROW]
[, /TEXT_FRAME] [, TITLE=string] [, UNAME=string] [, UVALUE=value]
[, VALUE=value] [, XSIZE=characters] [, YSIZE=lines])

Return Value

This function returns the widget ID of the newly-created field widget.

Arguments

Parent

The widget ID of the parent widget.

Keywords

ALL_EVENTS

Like RETURN_EVENTS but return an event whenever the contents of a text field
have changed.

COLUMN

Set this keyword to center the label above the text field. The default is to position the
label to the left of the text field.

FIELDFONT

A string containing the name of the font to use for the TEXT part of the field.
IDL Reference Guide CW_FIELD

306
FLOATING

Set this keyword to have the field accept only floating-point values. Any number or
string entered is converted to its floating-point equivalent.

FONT

A string containing the name of the font to use for the TITLE of the field. The font
specified is a “device font” (an X Windows font on Motif systems; a TrueType or
PostScript font on Windows or Macintosh systems). See “About Device Fonts” on
page 2482 for details on specifying names for device fonts. If this keyword is
omitted, the default font is used.

FRAME

The width, in pixels, of a frame to be drawn around the entire field cluster. The
default is no frame.

INTEGER

Set this keyword to have the field accept only integer values. Any number or string
entered is converted to its integer equivalent (using FIX). For example, if 12.5 is
entered in this type of field, it is converted to 12.

LONG

Set this keyword to have the field accept only long integer values. Any number or
string entered is converted to its long integer equivalent (using LONG).

NOEDIT

Normally, the value in the text field can be edited. Set this keyword to make the field
non-editable.

RETURN_EVENTS

Set this keyword to make CW_FIELD return an event when a carriage return is
pressed in a text field. The default is not to return events. Note that the value of the
text field is always returned when the following command is used:

WIDGET_CONTROL, field, GET_VALUE = X

ROW

Set this keyword to position the label to the left of the text field. This is the default.
CW_FIELD IDL Reference Guide

307
STRING

Set this keyword to have the field accept only string values. Numbers entered in the
field are converted to their string equivalents. This is the default.

TEXT_FRAME

Set this keyword to draw a frame around the text field. Note that on Windows, a
frame is always drawn around the text field.

TITLE

A string containing the text to be used as the label for the field. The default is “Input
Field”.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

VALUE

The initial value in the text widget. This value is automatically converted to the type
set by the STRING, INTEGER, and FLOATING keywords described below.

XSIZE

An explicit horizontal size (in characters) for the text input area. The default is to let
the window manager size the widget. Using the XSIZE keyword is not
recommended.

YSIZE

An explicit vertical size (in lines) for the text input area. The default is 1.
IDL Reference Guide CW_FIELD

308
Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the field. If one of the
FLOATING, INTEGER, LONG, or STRING keywords to CW_FIELD is set, values
set with the SET_VALUE keyword to WIDGET_CONTROL will be forced to the
appropriate type. Values returned by the GET_VALUE keyword to
WIDGET_CONTROL will be of the type specified when the field widget is created.
Note that if the field contains string information, returned values will be contained in
a string array even if the field contains only a single string.

See “Compound Widgets” in Chapter 22 of Building IDL Applications for a more
complete discussion of controlling compound widgets using WIDGET_CONTROL
and WIDGET_INFO.

Widget Events Returned by the CW_FIELD Widget

This widget generates event structures with the following definition:

event = { ID:0L, TOP:0L, HANDLER: 0L, VALUE:'', TYPE:0 , UPDATE:0}

The VALUE field is the value of the field. TYPE specifies the type of data contained
in the field and can be any of the following: 0=string, 1=floating-point, 2=integer,
3=long integer (the value of TYPE is determined by setting one of the STRING,
FLOAT, INTETER, or LONG keywords). UPDATE contains a zero if the field has
not been altered or a one if it has.

Example

The code below creates a main base with a field cluster attached to it. The cluster
accepts string input, has the title “Name”, and has a frame around it:

base = WIDGET_BASE()
field = CW_FIELD(base, TITLE = "Name", /FRAME)
WIDGET_CONTROL, base, /REALIZE

See Also

WIDGET_LABEL, WIDGET_TEXT
CW_FIELD IDL Reference Guide

309
CW_FILESEL

The CW_FILESEL function is a compound widget for file selection.

This routine is written in the IDL language. Its source code can be found in the file
cw_filesel.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CW_FILESEL (Parent [, /FILENAME] [, FILTER=string array]
[, /FIX_FILTER] [, /FRAME] [, /IMAGE_FILTER] [, /MULTIPLE | , /SAVE]
[, PATH=string] [, UNAME=string] [, UVALUE=value] [, /WARN_EXIST])

Return Value

CW_FILESEL returns its widget ID.

Arguments

Parent

The widget ID of the parent.

Keywords

FILENAME

Set this keyword to have the initial filename filled in the filename text area.

FILTER

Set this keyword to an array of strings determining the filter types. If not set, the
default is “All Files”. All files containing the chosen filter string will be displayed as
possible selections. “All Files” is a special filter which returns all files in the current
directory.

Example:

FILTER=["All Files", ".txt"]

Multiple filter types may be used per filter entry, using a comma as the separator.

Example:

FILTER=[".jpg, .jpeg", ".txt, .text"]
IDL Reference Guide CW_FILESEL

310
FIX_FILTER

If set, the user can not change the file filter.

FRAME

If set, a frame is drawn around the widget.

IMAGE_FILTER

If set, the filter “Image Files” will be added to the end of the list of filters. If set, and
FILTER is not set, “Image Files” will be the only filter displayed. Valid image files
are determined from QUERY_IMAGE.

MULTIPLE

If set, the file selection list will allow multiple filenames to be selected. The filename
text area will not be editable in this case. It is illegal to specify both /SAVE and
/MULTIPLE.

PATH

Set this keyword to the initial path the widget is to start in. The default is the current
directory.

SAVE

Set this keyword to create a widget with a “Save” button instead of an “Open” button.
It is illegal to specify both /SAVE and /MULTIPLE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The ‘user value’ to be assigned to the widget.
CW_FILESEL IDL Reference Guide

311
WARN_EXIST

Set this keyword to produce a question dialog if the user selects a file that already
exists. This keyword is useful when creating a “write” dialog. The default is to allow
any filename to be quietly accepted, whether it exists or not.

Keywords to WIDGET_CONTROL

You can use the GET_UVALUE and SET_UVALUE keywords to
WIDGET_CONTROL to obtain or set the user value of this widget. Use the
command to read the currently selected filename including the full path:

WIDGET_CONTROL, id, GET_VALUE=filename

To set the value of the filename, use the following command:

WIDGET_CONTROL, id, SET_VALUE=string

where string is the filename including the full path.

See “Compound Widgets” in Chapter 22 of Building IDL Applications for a more
complete discussion of controlling compound widgets using WIDGET_CONTROL
and WIDGET_INFO.

Widget Events Returned by CW_FILESEL

This widget generates event structures with the following definition:

Event = {FILESEL_EVENT, ID:0L, TOP:0L, HANDLER:0L,VALUE:'',
DONE:0L, FILTER:''}

The ID field is the widget ID of the CW_FILESEL widget. The TOP field contains
the widget ID of the top-level widget. The HANDLER field is always set to zero. The
VALUE field is a string containing the filename(s) selected, if any. The DONE field
can be any of the following:

• 0 = User selected a file but didn’t double-click, or the user changed filters (in
this case the VALUE field will be an empty string.)

• 1 = User pressed “Open”/“Save” or double-clicked on a file.

• 2 = User pressed “Cancel”.

The FILTER field is a string containing the current filter.
IDL Reference Guide CW_FILESEL

312
Example

This example creates a CW_FILESEL widget that is used to select image files for
display. Note how the DONE tag of the event structure returned by CW_FILESEL is
used to determine which button was pressed, and how the VALUE tag is used to
obtain the file that was selected:

PRO image_opener_event, event

WIDGET_CONTROL, event.top, GET_UVALUE=state, /NO_COPY

CASE event.DONE OF
0: BEGIN

state.file = event.VALUE
WIDGET_CONTROL, event.top, SET_UVALUE=state, /NO_COPY

END
1: BEGIN

IF (state.file NE '') THEN BEGIN
img = READ_IMAGE(state.file)
TV, img

ENDIF
WIDGET_CONTROL, event.top, SET_UVALUE=state, /NO_COPY

END
2: WIDGET_CONTROL, event.top, /DESTROY

ENDCASE

END

PRO image_opener

DEVICE, DECOMPOSED=0, RETAIN=2

base = WIDGET_BASE(TITLE ='Open Image', /COLUMN)
filesel = CW_FILESEL(base, /IMAGE_FILTER, FILTER='All Files')
file=''
state = {file:file}

WIDGET_CONTROL, base, /REALIZE
WIDGET_CONTROL, base, SET_UVALUE=state, /NO_COPY

XMANAGER, 'image_opener', base

END

See Also

DIALOG_PICKFILE, FILEPATH
CW_FILESEL IDL Reference Guide

313
CW_FORM

The CW_FORM function is a compound widget that simplifies creating small forms
which contain text, numeric fields, buttons, lists, and droplists. Event handling is also
simplified.

This routine is written in the IDL language. Its source code can be found in the file
cw_form.pro in the lib subdirectory of the IDL distribution.

Using CW_FORM

The form has a value that is a structure with a tag/value pair for each field in the form.
Use the command

WIDGET_CONTROL, id, GET_VALUE=v

to read the current value of the form. To set the value of one or more tags, use the
command

WIDGET_CONTROL, id, SET_VALUE={ Tag:value, ..., Tag:value}

Syntax

Result = CW_FORM([Parent,] Desc [, /COLUMN] [, IDS=variable]
[, TITLE=string] [, UNAME=string] [, UVALUE=value])

Return Value

If the argument Parent is present, the returned value of this function is the widget ID
of the newly-created form widget. If Parent is omitted, the form realizes itself as a
modal, top-level widget and CW_FORM returns a structure containing the value of
each field in the form when the user finishes.

Arguments

Parent

The widget ID of the parent widget. Omit this argument to created a modal, top-level
widget.

Desc

A string array describing the form. Each element of the string array contains two or
more comma-delimited fields. Each string has the following format:
IDL Reference Guide CW_FORM

314
'Depth, Item, Initial value, Settings'

Use the backslash character (“\”) to escape commas that appear within fields. To
include the backslash character, escape it with another backslash.

The fields are defined as follows:

• Depth

A digit defining the level at which the element will be placed on the form.
Nesting is used primarily for layout, with row or column bases.

This field must contain the digit 0, 1, or 2, with the following effects:

• 0 = continue the current nesting level.

• 1 = begin a new level under the current level.

• 2 = last element at the current level.

• Item

A label defining the type of element to be placed in the form. Item must be one
of the following: BASE, BUTTON, DROPLIST, FLOAT, INTEGER,
LABEL, LIST, or TEXT.

BASEs and LABELs do not return a value in the widget value structure. The
other items return the following value types:

Item Description

BUTTON An integer or integer array. For single buttons, the value
is 1 if the button is set, or 0 if it is not set. For exclusive
button groups, the value is the index of the currently set
button. For non-exclusive button groups, the value is an
array containing an element for each button. Array
elements are set to 1 if the corresponding button is set, or
0 if it is not set.

DROPLIST An integer. The value set in the widget value structure is
the zero-based index of the item is selected.

FLOAT A floating-point value. The value set in the widget value
structure is the floating-point value of the field.

Table 11: Values for the Item field
CW_FORM IDL Reference Guide

315
• Initial value

The initial value of the field. The Initial value field is left empty for BASEs.

For BUTTON, DROPLIST, and LIST items, the value field contains one or
more item names, separated by the | character. Strings do not need to be
enclosed in quotes. For example, the following line defines an exclusive button
group with buttons labeled “one,” “two,” and “three.”

'0, BUTTON, one|two|three, EXCLUSIVE'

For FLOAT, INTEGER, LABEL, and TEXT items, the value field contains
the initial value of the field.

• Settings

The Settings field contains one of the following keywords or keyword=value
pairs. Keywords are used to specify optional attributes or options. Any number
of keywords may be included in the description string.

Note that preceding keywords with a “/” character has no effect. Simply
including a keyword in the Settings field enables that option.

INTEGER An integer. The value set in the widget value structure is
the integer value of the field.

LIST An integer. The value set in the widget value structure is
the zero-based index of the item is selected.

TEXT A string. The value set in the widget value structure is
the string value of the field.

Keyword Description

CENTER Specifies alignment of LABEL items.

COLUMN If present, specifies column layout in BASES or
for BUTTON groups.

Table 12: Values for the Settings field

Item Description

Table 11: Values for the Item field
IDL Reference Guide CW_FORM

316
EXCLUSIVE If present, makes an exclusive set of BUTTONs.
The default is nonexclusive.

FONT=font name If present, the font for the item is specified. The
font specified is a “device font” (an X Windows
font on Motif systems; a TrueType or PostScript
font on Windows or Macintosh systems). See
“About Device Fonts” on page 2482 for details
on specifying names for device fonts. If this
keyword is omitted, the default font is used.

EVENT=function Specifies the name of a user-written event
function that is called whenever the element is
changed. The event function is called with the
widget event structure as a parameter. It may
return an event structure or zero to indicate that
no further event processing is desired.

FRAME If present, a frame is drawn around the item.
Valid only for BASEs.

LABEL_LEFT=label Place a label to the left of the item. This
keyword is valid with BUTTON, DROPLIST,
FLOAT, INTEGER and TEXT items.

LABEL_TOP=label Place a label above the item. This keyword is
valid with BUTTON, DROPLIST, FLOAT,
INTEGER and TEXT items.

LEFT Specifies alignment of LABEL items.

NO_RELEASE If present, exclusive and non-exclusive buttons
generate only select events. This keyword has
no effect on regular buttons.

Keyword Description

Table 12: Values for the Settings field
CW_FORM IDL Reference Guide

317
Keywords

COLUMN

Set this keyword to make the orientation of the form vertical. If COLUMN is not set,
the form is laid out in a horizontal row.

IDS

Set this keyword equal to a named variable into which the widget id of each widget
corresponding to an element in the Desc array is stored.

TITLE

Set this keyword equal to a scalar string containing the title of the top level base.
TITLE is not used if the form widget has a parent widget.

QUIT If the form widget is created as a top-level,
modal widget, when the user activates an item
defined with this keyword, the form is destroyed
and its widget value returned in the widget value
structure of CW_FORM. For non-modal form
widgets, events generated by changing this item
have their QUIT field set to 1.

RIGHT Specifies alignment of LABEL items.

ROW If present, specifies row layout in BASES or for
BUTTON groups.

SET_VALUE=value Sets the initial value of BUTTON groups or
DROPLISTs. For droplists and exclusive button
groups, value should be the zero-based index of
the item selected.

TAG=name The tag name of this element in the widget’s
value structure. If not specified, the tag name is
TAGnnn, where nnn is the zero-based index of
the item in the Desc array.

WIDTH=n Specifies the width, in characters, of a TEXT,
INTEGER, or FLOAT item.

Keyword Description

Table 12: Values for the Settings field
IDL Reference Guide CW_FORM

318
UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

Set this keyword equal to the user value associated with the form widget.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the form. The form has a value
that is a structure with a tag/value pair for each field in the form. Use the command

WIDGET_CONTROL, id, GET_VALUE=v

to read the current value of the form. To set the value of one or more tags, use the
command

WIDGET_CONTROL, id, SET_VALUE={ Tag:value, ..., Tag:value}

See “Compound Widgets” in Chapter 22 of Building IDL Applications for a more
complete discussion of controlling compound widgets using WIDGET_CONTROL
and WIDGET_INFO.

Widget Events Returned by the CW_FORM Widget

This widget generates event structures each time the value of the form is changed.
The event structure has the following definition:

Event = { ID:0L, TOP:0L, HANDLER:0L, TAG:'', VALUE:0, QUIT:0}

The ID field is the widget ID of the CW_FORM widget. The TOP field is the widget
ID of the top-level widget. The TAG field contains the tag name of the field that
CW_FORM IDL Reference Guide

319
changed. The VALUE field contains the new value of the changed field. The QUIT
field contains a zero if the quit flag is not set, or one if it is set.

Example

Define a form with a label, two groups of vertical buttons (one non-exclusive and the
other exclusive), a text field, an integer field, and “OK” and “Done” buttons. If either
the “OK” or “Done” buttons are pressed, the form exits.

Begin by defining a string array describing the form:

desc = [$
'0, LABEL, Centered Label, CENTER', $
'1, BASE,, ROW, FRAME', $
'0, BUTTON, B1|B2|B3, LABEL_TOP=Nonexclusive:,' $
+ 'COLUMN, TAG=bg1', $
'2, BUTTON, E1|E2|E2, EXCLUSIVE,LABEL_TOP=Exclusive:,' $
+ 'COLUMN,TAG=bg2', $
'0, TEXT, , LABEL_LEFT=Enter File name:, WIDTH=12,' $
+ 'TAG=fname', $
'0, INTEGER, 0, LABEL_LEFT=File size:, WIDTH=6, TAG=fsize', $
'1, BASE,, ROW', $
'0, BUTTON, OK, QUIT,' $
+ 'TAG=OK', $
'2, BUTTON, Cancel, QUIT']

To use the form as a modal widget:

a = CW_FORM(desc, /COLUMN)

When the form is exited, (when the user presses the OK or Cancel buttons), a
structure is returned as the function’s value. We can examine the structure by
entering:

HELP, /STRUCTURE, a

IDL Output Meaning

BG1 INT Array[3] Set buttons = 1, unset = 0.

BG2 INT 1 Second button of exclusive button
group was set.

FNAME STRING 'test.dat' Value of the text field

FSIZE LONG 120 Value of the integer field

Table 13: Output from HELP, /STRUCTURE
IDL Reference Guide CW_FORM

320
Note that if the “Cancel” button is pressed, the “OK” field is set to 0.

To use CW_FORM inside another widget:

a = WIDGET_BASE(TITLE='Testing')
b = CW_FORM(a, desc, /COLUMN)
WIDGET_CONTROL, a, /REALIZE
XMANAGER, 'Test', a

The event handling procedure (in this example, called TEST_EVENT), may use the
TAG field of the event structure to determine which field changed and perform any
data validation or special actions required. It can also get and set the value of the
widget by calling WIDGET_CONTROL.

OK LONG 1 This button was pressed

TAG8 LONG 0 This button wasn’t pressed

IDL Output Meaning

Table 13: Output from HELP, /STRUCTURE
CW_FORM IDL Reference Guide

321
CW_FSLIDER

The CW_FSLIDER function creates a slider that selects floating-point values.

This routine is written in the IDL language. Its source code can be found in the file
cw_fslider.pro in the lib subdirectory of the IDL distribution.

Using CW_FSLIDER

To get or set the value of a CW_FSLIDER widget, use the GET_VALUE and
SET_VALUE keywords to WIDGET_CONTROL.

Note
The CW_FSLIDER widget is based on the WIDGET_SLIDER routine, which
accepts only integer values. Because conversion between integers and floating-
point numbers necessarily involves round-off errors, the slider value returned by
CW_FSLIDER may not exactly match the input value, even when a floating-point
number is entered in the slider’s text field as an ASCII value. For more information
on floating-point issues, see “Accuracy & Floating-Point Operations” in Chapter 16
of Using IDL.

Syntax

Result = CW_FSLIDER(Parent [, /DRAG] [, /EDIT] [, FORMAT=string]
[, /FRAME] [, MAXIMUM=value] [, MINIMUM=value] [, SCROLL=units]
[, /SUPRESS_VALUE] [, TITLE=string] [, UNAME=string] [, UVALUE=value]
[, VALUE=initial_value] [, XSIZE=length | {, /VERTICAL [, YSIZE=height]}])

Return Value

This function returns the widget ID of the newly-created slider widget.

Arguments

Parent

The widget ID of the parent widget.
IDL Reference Guide CW_FSLIDER

322
Keywords

DRAG

Set this keyword to zero if events should only be generated when the mouse is
released. If DRAG is non-zero, events will be generated continuously when the slider
is adjusted. Note: On slow systems, /DRAG performance can be inadequate. The
default is DRAG = 0.

EDIT

Set this keyword to make the slider label be editable. The default is EDIT = 0.

FORMAT

Provides the format in which the slider value is displayed. This should be a format as
accepted by the STRING procedure. The default FORMAT is '(G13.6)'

FRAME

Set this keyword to have a frame drawn around the widget. The default is FRAME =
0.

MAXIMUM

The maximum value of the slider. The default is MAXIMUM = 100.

MINIMUM

The minimum value of the slider. The default is MINIMUM = 0.

SCROLL

Under the Motif window manager, the value provided for SCROLL specifies how
many units the scroll bar should move when the user clicks the left mouse button
inside the slider area, but not on the slider itself. This keyword has no effect under
other window systems.

SUPPRESS_VALUE

If this keyword is set, the current slider value is not displayed.

TITLE

Set this keyword to a string defining the title of slider.
CW_FSLIDER IDL Reference Guide

323
UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

VALUE

The initial value of the slider

VERTICAL

If set, the slider will be oriented vertically. The default is horizontal.

XSIZE

For horizontal sliders, sets the length.

YSIZE

For vertical sliders, sets the height.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the slider. Note that the
SET_SLIDER_MAX and SET_SLIDER_MIN keywords to WIDGET_CONTROL
and the SLIDER_MIN_MAX keyword to WIDGET_INFO do not work with floating
point sliders created with CW_FSLIDER.

See “Compound Widgets” in Chapter 22 of Building IDL Applications for a more
complete discussion of controlling compound widgets using WIDGET_CONTROL
and WIDGET_INFO.
IDL Reference Guide CW_FSLIDER

324
Widget Events Returned by the CW_FSLIDER Widget

This widget generates event structures with the following definition:

Event = { ID:0L, TOP:0L, HANDLER:0L, VALUE:0.0, DRAG:0}

The VALUE field is the floating-point value selected by the slider. The DRAG field
reports on whether events are generated continuously (when the DRAG keyword is
set) or only when the mouse button is released (the default).

See Also

WIDGET_SLIDER
CW_FSLIDER IDL Reference Guide

325
CW_LIGHT_EDITOR

The CW_LIGHT_EDITOR function creates a compound widget to edit properties of
existing IDLgrLight objects in a view. Lights cannot be added or removed from a
view using this widget. However, lights can be “turned off or on” by hiding or
showing them (i.e., HIDE property).

Syntax

Result = CW_LIGHT_EDITOR (Parent [, /DIRECTION_DISABLED]
[, /DRAG_EVENTS] [, FRAME=width] [, /HIDE_DISABLED]
[, LIGHT=objref(s)] [, /LOCATION_DISABLED] [, /TYPE_DISABLED]
[, UVALUE=value] [, XSIZE=pixels] [, YSIZE=pixels] [, XRANGE=vector]
[, YRANGE=vector] [, ZRANGE=vector])

Return Value

This function returns the widget ID of a newly-created light editor.

Arguments

Parent

The widget ID of the parent widget for the new light editor.

Keywords

DIRECTION_DISABLED

Set this keyword to make the direction widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.
The default is to allow this property to be changed.

DRAG_EVENTS

Set this keyword to cause events to be generated continuously while a slider in the
compound widget is being dragged or when the mouse cursor is being dragged across
the draw widget portion of the compound widget. By default, events are only
generated when the mouse comes to rest at its final position and the mouse button is
released.
IDL Reference Guide CW_LIGHT_EDITOR

326
When this keyword is set, a large number of events can be generated. On slower
machines, poor performance can result. Therefore, this option should only be used
when detailed or truly interactive control is required.

Note
Under Microsoft Windows and Macintosh, sliders do not generate these events, but
behave just like regular sliders.

FRAME

The value of this keyword specifies the width of a frame (in pixels) to be drawn
around the borders of the widget. Note that this keyword is only a ‘hint’ to the toolkit,
and may be ignored in some instances. The default is no frame.

HIDE_DISABLED

Set this keyword to make the hide widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.
The default is to allow this property to be changed.

LIGHT

Set this keyword to one or more object references to IDLgrLight to edit. This will
replace the current set of lights being edited with the list of lights from this keyword.

LOCATION_DISABLED

Set this keyword to make the location widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.
The default is to allow this property to be changed.

TYPE_DISABLED

Set this keyword to make the light type widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.
The default is to allow this property to be changed.

UNAME

Set this keyword to a string that can be used to identify the widget. You can associate
a name with each widget in a specific hierarchy, and then use that name to query the
widget hierarchy and get the correct widget ID.
CW_LIGHT_EDITOR IDL Reference Guide

327
To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The ‘user value’ to be assigned to the widget. Each widget can contain a user-
specified value of any data type and organization. This value is not used by the
widget in any way, but exists entirely for the convenience of the IDL programmer.
This keyword allows you to set this value when the widget is first created. If
UVALUE is not present, the widget's initial user value is undefined.

XRANGE

A two-element vector defining the data range in the x direction. This keyword is used
to determine the valid range for the light's location and direction properties

XSIZE

The width of the drawable area in pixels. The default width is 180.

YRANGE

A two-element vector defining the data range in the y direction. This keyword is used
to determine the valid range for the light's location and direction properties.

YSIZE

The height of the drawable area in pixels. The default height is 180.

ZRANGE

A two-element vector defining the data range in the z direction. This keyword is used
to determine the valid range for the light's location and direction properties

Light Editor Events

There are variations of the light editor event structure depending on the specific event
being reported. All of these structures contain the standard three fields (ID, TOP, and
HANDLER). The different light editor event structures are described below.

Light Selected

This is the type of structure returned when the light selected in the light list box is
modified by a user.

{ CW_LIGHT_EDITOR_LS, ID:0L, TOP:0L, HANDLER:0L, LIGHT:OBJ_NEW()}
IDL Reference Guide CW_LIGHT_EDITOR

328
LIGHT specifies the object ID of the new light selection.

Light Modified

This is the type of structure returned when the user has modified a light property.
This event maybe generated continuously if the DRAG_EVENTS keyword was set.
See DRAG_EVENTS above.

{ CW_LIGHT_EDITOR_LM, ID:0L, TOP:0L, HANDLER:0L}

The value of the light editor will need to be retrieved (i.e.,
CW_LIGHT_EDITOR_GET) in order to determine the extent of the actual user
modification.

WIDGET_CONTROL Keywords

The widget ID returned by this compound widget is actually the ID of the compound
widget's base widget. This means that many keywords to the WIDGET_CONTROL
and WIDGET_INFO routines that affect or return information on base widgets can
be used with this compound widget (e.g., UNAME, UVALUE).

GET_VALUE

Set this keyword to a named variable to contain the current value of the widget. An
IDLgrLight object reference of the currently selected light is returned. The value of a
widget can be set with the SET_VALUE keyword to this routine.

SET_VALUE

Sets the value of the specified light editor compound widget. This widget accepts an
IDLgrLight object reference of the light in the list of lights to make as the current
selection. The property values are retrieved from the light object and the light editor
controls are updated to reflect those properties.

See Also

CW_LIGHT_EDITOR_GET, CW_LIGHT_EDITOR_SET, IDLgrLight
CW_LIGHT_EDITOR IDL Reference Guide

329
CW_LIGHT_EDITOR_GET

The CW_LIGHT_EDITOR_GET procedure gets the CW_LIGHT_EDITOR
properties.

Syntax

CW_LIGHT_EDITOR_GET, WidgetID [, DIRECTION_DISABLED=variable]
[, DRAG_EVENTS=variable] [, HIDE_DISABLED=variable] [, LIGHT=variable]
[, LOCATION_DISABLED=variable] [, TYPE_DISABLED=variable]
[, XSIZE=variable] [, YSIZE=variable] [, XRANGE=variable]
[, YRANGE=variable] [, ZRANGE=variable]

Arguments

WidgetID

The widget ID of the CW_ LIGHT_EDITOR compound widget.

Keywords

DIRECTION_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the direction widget portion of the
compound widget unchangeable by the user. It will appear insensitive and will not
generate an event.

DRAG_ EVENTS

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to cause events to be generated continuously while a
slider in the compound widget is being dragged or when the mouse cursor is being
dragged across the draw widget portion of the compound widget.

When this keyword is set, a large number of events can be generated. On slower
machines, poor performance can result. Therefore, this option should only be used
when detailed or truly interactive control is required.

Note
Under Microsoft Windows and Macintosh, sliders do not generate these events, but
behave just like regular sliders.
IDL Reference Guide CW_LIGHT_EDITOR_GET

330
HIDE_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the hide widget portion of the compound
widget unchangeable by the user.

LIGHT

Set this keyword to a named variable that will contain one or more object references
to IDLgrLight.

LOCATION_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the location widget portion of the compound
widget unchangeable by the user.

TYPE_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the light type widget portion of the
compound widget unchangeable by the user.

XRANGE

Set this keyword to a named variable that will contain a two-element vector defining
the data range in the x direction.

XSIZE

Set this keyword to a named variable that will contain the width of the drawable area
in pixels.

YRANGE

Set this keyword to a named variable that will contain a two-element vector defining
the data range in the y direction.

YSIZE

Set this keyword to a named variable that will contain the height of the drawable area
in pixels.

ZRANGE

Set this keyword to a named variable that will contain a two-element vector defining
the data range in the z direction.
CW_LIGHT_EDITOR_GET IDL Reference Guide

331
See Also

CW_LIGHT_EDITOR, CW_LIGHT_EDITOR_SET, IDLgrLight
IDL Reference Guide CW_LIGHT_EDITOR_GET

332
CW_LIGHT_EDITOR_SET

The CW_LIGHT_EDITOR procedure sets the CW_LIGHT_EDITOR properties.

Syntax

CW_LIGHT_EDITOR_SET, WidgetID [, /DIRECTION_DISABLED]
[, /DRAG_EVENTS] [, /HIDE_DISABLED] [, LIGHT=objref(s)]
[, /LOCATION_DISABLED] [, /TYPE_DISABLED] [, XSIZE=pixels]
[, YSIZE=pixels] [, XRANGE=vector] [, YRANGE=vector] [, ZRANGE=vector]

Arguments

WidgetID

The widget ID of the CW_ LIGHT_EDITOR compound widget.

Keywords

DIRECTION_DISABLED

Set this keyword to make the direction widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.

DRAG_ EVENTS

Set this keyword to cause events to be generated continuously while a slider in the
compound widget is being dragged or when the mouse cursor is being dragged across
the draw widget portion of the compound widget.

When this keyword is set, a large number of events can be generated. On slower
machines, poor performance can result. Therefore, this option should only be used
when detailed or truly interactive control is required.

Note
Under Microsoft Windows and Macintosh, sliders do not generate these events, but
behave just like regular sliders.

HIDE_DISABLED

Set this keyword to make the hide widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.
CW_LIGHT_EDITOR_SET IDL Reference Guide

333
LIGHT

Set this keyword to one or more object references to IDLgrLight to edit. This will
replace the current set of lights being edited with the list of lights from this keyword.

LOCATION_DISABLED

Set this keyword to make the location widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.

TYPE_DISABLED

Set this keyword to make the light type widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.

XRANGE

A two-element vector defining the data range in the x direction. This keyword is used
to determine the valid range for the light's location and direction properties.

XSIZE

The width of the drawable area in pixels.

YRANGE

A two-element vector defining the data range in the y direction. This keyword is used
to determine the valid range for the light's location and direction properties.

YSIZE

The height of the drawable area in pixels.

ZRANGE

A two-element vector defining the data range in the z direction. This keyword is used
to determine the valid range for the light's location and direction properties.

See Also

CW_LIGHT_EDITOR, CW_LIGHT_EDITOR_GET, IDLgrLight
IDL Reference Guide CW_LIGHT_EDITOR_SET

334
CW_ORIENT

The CW_ORIENT function creates a compound widget that provides a means to
interactively adjust the three-dimensional drawing transformation and resets the !P.T
system variable field to reflect the changed orientation.

This routine is written in the IDL language. Its source code can be found in the file
cw_orient.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CW_ORIENT(Parent [, AX=degrees] [, AZ=degrees] [, /FRAME]
[, TITLE=string] [, UNAME=string] [, UVALUE=value] [, XSIZE=width]
[, YSIZE=height])

Return Value

This function returns the widget ID of the newly-created orientation-adjustment
widget.

Arguments

Parent

The widget ID of the parent widget.

Keywords

AX

The initial rotation in the X direction. The default is 30 degrees.

AZ

The initial rotation in the Z direction. The default is 30 degrees.

FRAME

Set this keyword to draw a frame around the widget.

TITLE

The title of the widget.
CW_ORIENT IDL Reference Guide

335
UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

XSIZE

Determines the width of the widget. The default is 100.

YSIZE

Determines the height of the widget. The default is 100.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

See “Compound Widgets” in Chapter 22 of Building IDL Applications for a more
complete discussion of controlling compound widgets using WIDGET_CONTROL
and WIDGET_INFO.

Widget Events Returned by the CW_ORIENT Widget

CW_ORIENT only returns events when the three dimensional drawing
transformation has been altered. The !P.T system variable field is automatically
updated to reflect the new orientation.

See Also

CW_ARCBALL, T3D
IDL Reference Guide CW_ORIENT

336
CW_PALETTE_EDITOR

The CW_PALETTE_EDITOR function creates a compound widget to display and
edit color palettes. The palette editor is a base that contains a drawable area to display
the color palette, a set of vectors that represent the palette and an optional histogram.

Syntax

Result = CW_PALETTE_EDITOR (Parent [, DATA=array] [, FRAME=width]
[, HISTOGRAM=vector] [, /HORIZONTAL] [, SELECTION=[start, end]]
[, UNAME=string] [, UVALUE=value] [, XSIZE=width] [, YSIZE=height])

Return Value

This function returns the widget ID of the newly created palette editor.

Graphics Area Components

Reference Color bar

A gray scale color bar is displayed at the top of the graphics area for reference
purposes.

Palette Colorbar

A color bar containing a display of the current palette is displayed below the
reference color bar.

Channel and Histogram Display

The palette channel vectors are displayed below the palette colorbar. The Red
channel is displayed in red, the Green channel in green, the Blue channel in blue, and
the optional Alpha channel in purple. The optional Histogram vector is displayed in
Cyan.

An area with a white background represents the current selection, with gray
background representing the area outside of the current selection. Yellow drag
handles are an additional indicator of the selection endpoints. These selection
endpoints represent the range for some editing operations. In addition, cursor X,Y
values and channel pixel values at the cursor location are displayed in a status area
below the graphics area.
CW_PALETTE_EDITOR IDL Reference Guide

337
Interactive Capabilities

Color Space

A droplist allows selection of RGB, HSV or HLS color spaces. RGB is the default
color space. Note that regardless of the color space in use, the color vectors retrieved
with the GET_VALUE keyword to widget control are always in the RGB color
space.

Editing Mode

A droplist allows selection of the editing mode. Freehand is the default editing mode.

Unless noted below, editing operations apply only to the channel vectors currently
selected for editing. Unless noted below, editing operations apply only to the portion
of the vectors within the selection indicators.

In Freehand editing mode the user can click and drag in the graphics area to draw a
new curve. Editable channel vectors will be modified to use the new curve for that
part of the X range within the selection that was drawn in Freehand mode.

In Line Segment editing mode a click, drag and release operation defines the start
point and end point of a line segment. Editable channel vectors will be modified to
use the new curve for that part of the X range within the selection that was drawn in
Line Segment mode.

In Barrel Shift editing mode click and drag operations in the horizontal direction
cause the editable curves to be shifted right or left, with the portion which is shifted
off the end of selection area wrapping around to appear on the other side of the
selection area. Only the horizontal component of drag movement is used.

In Slide editing mode click and drag operations in the horizontal direction cause the
editable curves to be shifted right or left. Unlike the Barrel Shift mode, the portion of
the curves shifted off the end of the selection area does not wrap around. Only the
horizontal component of drag movement is used.

In Stretch editing mode click and drag operations in the horizontal direction cause the
editable curves to be compressed or expanded. Only the horizontal component of
drag movement is used.

A number of buttons provide editing operations which do not require cursor input:

The Ramp operation causes the selected part of the editable curves to be replaced
with a linear ramp from 0 to 255.

The Smooth operation causes the selected part of the editable curves to be smoothed.
IDL Reference Guide CW_PALETTE_EDITOR

338
The Posterize operation causes the selected part of the editable curves to be replaced
with a series of steps.

The Reverse operation causes the selected part of the editable curves to be reversed in
the horizontal direction.

The Invert operation causes the selected part of the editable curves to be flipped in
the vertical direction.

The Duplicate operation causes the selected part of the editable curves to be
compressed by 50% and duplicated to produce two contiguous copies of the channel
vectors within the initial selection.

The Load PreDefined droplist choice leads to additional choices of pre-defined
palettes. Loading a pre-defined palette replaces only the selected portion of the
editable color channels, respecting of the settings of the selection endpoints and
editable checkboxes. This allows loading only a single channel or only a portion of a
pre-defined palette.

Channel Display and Edit

A row of checkboxes allows the user to indicate which channels of Red, Green, Blue
and the optional Alpha channel should be displayed. A second row of checkboxes
allows the user to indicate which channels should be edited by the current editing
operation. The checkboxes for the Alpha channel will be sensitive only if an Alpha
channel is loaded.

Zoom

Four buttons allow the user to zoom the display of the palette.

The “| |” button zooms to show the current selection.

The “+” button zooms in 50%.

The “-” button zooms out 100%.

The “1:1” button returns the display to the full palette.

Scrolling of the Palette Window

When the palette is zoomed to a scale greater than 1:1 the scroll bar at the bottom of
the graphics area can be used to view a different part of the palette.
CW_PALETTE_EDITOR IDL Reference Guide

339
Arguments

Parent

The widget ID of the parent widget for the new palette editor.

Keywords

DATA

A 3x256 byte array containing the initial color values for Red, Green and Blue
channels. The value supplied can also be a 4x256 byte array containing the initial
color values and the optional Alpha channel. The value supplied can also be an
IDLgrPalette object reference. If an IDLgrPalette object reference is supplied it is
used internally and is not destroyed on exit. If an object reference is supplied the
ALPHA keyword to the CW_PALETTE_EDITOR_SET routine can be used to
supply the data for the optional Alpha channel.

FRAME

The value of this keyword specifies the width of a frame (in pixels) to be drawn
around the borders of the widget. Note that this keyword is only a “hint” to the
toolkit, and may be ignored in some instances. The default is no frame.

HISTOGRAM

A 256 element byte vector containing the values for the optional histogram curve.

HORIZONTAL

Set this keyword for a horizontal layout for the compound widget. This consists of
the controls to the right of the display area. The default is a vertical layout with the
controls below the display area.

SELECTION

The selection is a two element vector defining the starting and ending point of the
selection region of color indexes. The default is [0,255].

UNAME

Set this keyword to a string that can be used to identify the widget. You can associate
a name with each widget in a specific hierarchy, and then use that name to query the
widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
IDL Reference Guide CW_PALETTE_EDITOR

340
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The ‘user value’ to be assigned to the widget. Each widget can contain a user-
specified value of any data type and organization. This value is not used by the
widget in any way, but exists entirely for the convenience of the IDL programmer.
This keyword allows you to set this value when the widget is first created. If
UVALUE is not present, the widget's initial user value is undefined.

XSIZE

The width of the drawable area in pixels. The default width is 256.

YSIZE

The height of the drawable area in pixels. The default height is 256.

Palette Editor Events

There are variations of the palette editor event structure depending on the specific
event being reported. All of these structures contain the standard three fields (ID,
TOP, and HANDLER). The different palette editor event structures are described
below.

Selection Moved

This is the type of structure returned when one of the vertical bars that define the
selection region is moved by a user.

{ CW_PALETTE_EDITOR_SM, ID:0L, TOP:0L, HANDLER:0L,
SELECTION:[0,255]}

SELECTION indicates a two element vector defining the starting and ending point of
the selection region of color indexes.

Palette Edited

This is the type of structure returned when the user has modified the color palette.

{ CW_PALETTE_EDITOR_PM, ID:0L, TOP:0L, HANDLER:0L}

The value of the palette editor will need to be retrieved (i.e., WIDGET_CONTROL,
GET_VALUE) in order to determine the extent of the actual user modification.
CW_PALETTE_EDITOR IDL Reference Guide

341
WIDGET_CONTROL Keywords for Palette Editor

The widget ID returned by this compound widget is actually the ID of the compound
widget's base widget. This means that many keywords to the WIDGET_CONTROL
and WIDGET_INFO routines that affect or return information on base widgets can
be used with this compound widget (e.g., UNAME, UVALUE).

GET_VALUE

Set this keyword to a named variable to contain the current value of the widget. A
3xn (RGB) or 4xn (i.e., RGB and ALPHA) array containing the palette is returned.

The value of a widget can be set with the SET_VALUE keyword to this routine.

SET_VALUE

Sets the value of the specified palette editor compound widget. This widget accepts a
3xn (RGB) or 4xn (i.e., RGB and ALPHA) array representing the value of the palette
to be set. Another type of argument accepted is an IDLgrPalette object reference. If
an IDLgrPalette object reference is supplied it is used internally and is not destroyed
on exit.

See Also

CW_PALETTE_EDITOR_GET, CW_PALETTE_EDITOR_SET, IDLgrPalette
IDL Reference Guide CW_PALETTE_EDITOR

342
CW_PALETTE_EDITOR_GET

The CW_PALETTE_EDITOR_GET procedure gets the CW_PALETTE_EDITOR
properties.

Syntax

CW_PALETTE_EDITOR_GET, WidgetID [, ALPHA=variable]
[, HISTOGRAM=variable]

Arguments

WidgetID

The widget ID of the CW_PALETTE_EDITOR compound widget.

Keywords

ALPHA

Set this keyword to a named variable that will contains the optional alpha curve.

HISTOGRAM

Set this keyword to a named variable that will contains the optional histogram curve.

See Also

CW_PALETTE_EDITOR, CW_PALETTE_EDITOR_SET, IDLgrPalette
CW_PALETTE_EDITOR_GET IDL Reference Guide

343
CW_PALETTE_EDITOR_SET

The CW_PALETTE_EDITOR_SET procedure sets the CW_PALETTE_EDITOR
properties.

Syntax

CW_PALETTE_EDITOR_SET, WidgetID [, ALPHA=byte_vector]
[, HISTOGRAM=byte_vector]

Arguments

WidgetID

The widget ID of the CW_PALETTE_EDITOR compound widget.

Keywords

ALPHA

A 256 element byte vector that describes the alpha component of the color palette.
The alpha value may also be set to the scalar value zero to remove the alpha curve
from the display.

HISTOGRAM

The histogram is an vector to be plotted below the color palette. This keyword can be
used to display a distribution of color index values to facilitate editing the color
palette. The histogram value may also be set to the scalar value zero to remove the
histogram curve from the display.

See Also

CW_PALETTE_EDITOR, CW_PALETTE_EDITOR_GET, IDLgrPalette
IDL Reference Guide CW_PALETTE_EDITOR_SET

344
CW_PDMENU

The CW_PDMENU function creates widget pulldown menus. It has a simpler
interface than the XPDMENU procedure, which it replaces. Events for the individual
buttons are handled transparently, and a CW_PDMENU event returned. This event
can return any one of the following:

• the Index of the button within the base

• the widget ID of the button

• the name of the button.

• the fully qualified name of the button. This allows different sub-menus to
contain buttons with the same name in an unambiguous way.

Only buttons with textual names are handled by this widget. Bitmaps are not
understood.

This routine is written in the IDL language. Its source code can be found in the file
cw_pdmenu.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CW_PDMENU(Parent, Desc [, /COLUMN] [, DELIMITER=string]
[, FONT=value] [, /MBAR [, /HELP]] [, IDS=variable] [, /RETURN_ID | ,
/RETURN_INDEX | , /RETURN_NAME | , /RETURN_FULL_NAME]
[, UNAME=string] [, UVALUE=value] [, XOFFSET=value] [, YOFFSET=value])

Return Value

This function returns the widget ID of the newly-created pulldown menu widget.

Arguments

Parent

The widget ID of the parent widget.

Desc

An array of strings or structures. If Desc is an array of strings, each element contains
the flag field, followed by a backslash character, followed by the name of the menu
item, optionally followed by another backslash character and the name of an event-
CW_PDMENU IDL Reference Guide

345
processing procedure for that element. A string element of the Desc array would look
like:

'n\item_name'

or

'n\item_name\event_proc'

where n is the flag field and item_name is the name of the menu item. The flag field
is a bitmask that controls how the button is interpreted; appropriate values for the flag
field are shown in the following table. If the event_proc field is present, it is the name
of an event-handling procedure for the menu element and all of its children.

If Desc is an array of structures, each structure has the following definition:

{CW_PDMENU_S, flags:0, name:''}

The name tag is a string field with the following components:

'item_name'

or

'item_name\event_proc'

where item_name is the name of the menu item. If the event_proc field is present, it is
the name of an event-handling procedure for the menu element and all of its children

The flags field is a bitmask that controls how the button is interpreted; appropriate
values for the flag field are shown in the following table. Note that if Desc is an array
of structures, you cannot specify individual event-handling procedures for each
element.

Value Meaning

0 This button is neither the beginning nor the end of a pulldown level.

1 This button is the root of a sub-pulldown menu. The sub-buttons start
with the next button.

2 This button is the last button at the current pulldown level. The next
button belongs to the same level as the current parent button. If the
name field is not specified (or is an empty string), no button is created,
and the next button is created one level up in the hierarchy.

3 This button is the root of a sub-pulldown menu, but it is also the last
entry of the current level.

Table 14: Button Flag Bit Meanings
IDL Reference Guide CW_PDMENU

346
Keywords

COLUMN

Set this keyword to create a vertical column of menu buttons. The default is to create
a horizontal row of buttons.

DELIMITER

The character used to separate the parts of a fully qualified name in returned events.
The default is to use the “.” character.

FONT

The name of the font to be used for the button titles. The font specified is a “device
font” (an X Windows font on Motif systems; a TrueType or PostScript font on
Windows or Macintosh systems). See “About Device Fonts” on page 2482 for details
on specifying names for device fonts. If this keyword is omitted, the default font is
used.

HELP

If the MBAR keyword is set, and one of the buttons on the menubar has the label
“help” (case insensitive) then that button is created with the /HELP keyword to give
it any special appearance it is supposed to have on a menubar. For example, Motif
expects help buttons to be on the right.

IDS

A named variable in which the button IDs will be stored as a longword vector.

MBAR

Set this keyword to create a menubar pulldown. If MBAR is set, Parent must be the
widget ID of a menubar belonging to a top-level base, and the return value of
CW_PDMENU is this widget ID. For an example demonstrating the use of the
MBAR keyword, see Example 2 below. Also see the MBAR keyword to
WIDGET_BASE.

RETURN_ID

If this keyword is set, the VALUE field of returned events will contain the widget ID
of the button.

RETURN_INDEX

If this keyword is set, the VALUE field of returned events will contain the zero-based
index of the button within the base. THIS IS THE DEFAULT.
CW_PDMENU IDL Reference Guide

347
RETURN_NAME

If this keyword is set, the VALUE field of returned events will be the name of the
selected button.

RETURN_FULL_NAME

Set this keyword and the VALUE field of returned events will be the fully qualified
name of the selected button. This means that the names of all the buttons from the
topmost button of the pulldown menu to the selected one are concatenated with the
delimiter specified by the DELIMITER keyword. For example, if the top button was
named COLORS, the second level button was named BLUE, and the selected button
was named LIGHT, the returned value would be

COLORS.BLUE.LIGHT

This allows different submenus to have buttons with the same name (e.g.,
COLORS.RED.LIGHT).

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget. If the MBAR keyword is set, the value
specified for UVALUE is also assigned as the UVALUE of the parent menu (i.e., the
widget specified by the Parent argument in the call to CW_PDMENU).

XOFFSET

The X offset of the widget relative to its parent.

YOFFSET

The Y offset of the widget relative to its parent.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
IDL Reference Guide CW_PDMENU

348
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

See “Compound Widgets” in Chapter 22 of Building IDL Applications for a more
complete discussion of controlling compound widgets using WIDGET_CONTROL
and WIDGET_INFO.

Widget Events Returned by the CW_PDMENU Widget

This widget generates event structures with the following definition:

event = { ID:0L, TOP:0L, HANDLER:0L, VALUE:0 }

VALUE is either the INDEX, ID, NAME, or FULL_NAME of the button, depending
on how the widget was created.

Examples

Example 1

The following is the description of a menu bar with two buttons: “Colors” and
“Quit”. Colors is a pulldown containing the colors “Red”, “Green”, Blue”, “Cyan”,
and “Magenta”. Blue is a sub-pulldown containing “Light”, “Medium”, “Dark”,
“Navy”, and “Royal.”

The following small program can be used with the above description to create the
specified menu:

PRO PD_EXAMPLE
desc = ['1\Colors' , $

'0\Red' , $
'0\Green' , $
'1\Blue' , $
'0\Light' , $
'0\Medium' , $
'0\Dark' , $
'0\Navy' , $
'2\Royal' , $
'0\Cyan' , $
'2\Magenta' , $
'2\Quit']

; Create the widget:
base = WIDGET_BASE()
menu = CW_PDMENU(base, desc, /RETURN_FULL_NAME)
WIDGET_CONTROL, /REALIZE, base

;Provide a simple event handler:
CW_PDMENU IDL Reference Guide

349
REPEAT BEGIN
ev = WIDGET_EVENT(base)
PRINT, ev.value

END UNTIL ev.value EQ 'Quit'
WIDGET_CONTROL, /DESTROY, base

END

The Desc array could also have been defined using a structure for each element. The
following array of structures creates the same menu as the array of strings shown
above. Note, however, that if the Desc array is composed of structures, you cannot
specify individual event-handling routines.

First, make sure CW_PDMENU_S structure is defined:

junk = {CW_PDMENU_S, flags:0, name:'' }

Define the menu:

desc = [{ CW_PDMENU_S, 1, 'Colors' }, $
{ CW_PDMENU_S, 0, 'Red' }, $
{ CW_PDMENU_S, 0, 'Green' }, $
{ CW_PDMENU_S, 1, 'Blue' }, $
{ CW_PDMENU_S, 0, 'Light' }, $
{ CW_PDMENU_S, 0, 'Medium' }, $
{ CW_PDMENU_S, 0, 'Dark' }, $
{ CW_PDMENU_S, 0, 'Navy' }, $
{ CW_PDMENU_S, 2, 'Royal' }, $
{ CW_PDMENU_S, 0, 'Cyan' }, $
{ CW_PDMENU_S, 2, 'Magenta' }, $
{ CW_PDMENU_S, 2, 'Quit' }]

Example 2

This example demonstrates the use of the MBAR keyword to CW_PDMENU to
populate the “Colors” menu item on a menu bar created using WIDGET_BASE.

PRO mbar_event, event

WIDGET_CONTROL, event.id, GET_UVALUE=uval

CASE uval OF
'Quit': WIDGET_CONTROL, /DESTROY, event.top

ELSE: PRINT, event.value
ENDCASE

END

PRO mbar
IDL Reference Guide CW_PDMENU

350
; Create the base widget:
base = WIDGET_BASE(TITLE = 'Example', MBAR=bar, XSIZE=200, $

UVALUE='base')

file_menu = WIDGET_BUTTON(bar, VALUE='File', /MENU)
file_bttn1=WIDGET_BUTTON(file_menu, VALUE='Quit', $

UVALUE='Quit')

colors_menu = WIDGET_BUTTON(bar, VALUE='Colors', /MENU)

; Define array for colors menu items:
desc = ['0\Red' , $

'0\Green' , $
'1\Blue' , $
'0\Light' , $
'0\Medium' , $
'0\Dark' , $
'0\Navy' , $
'2\Royal' , $
'0\Cyan' , $
'2\Magenta']

; Create colors menu items. Note that the Parent argument is
; set to the widget ID of the parent menu:
colors = CW_PDMENU(colors_menu, desc, /MBAR, $

/RETURN_FULL_NAME, UVALUE='menu')

WIDGET_CONTROL, /REALIZE, base

XMANAGER, 'mbar', base, /NO_BLOCK

END

See Also

CW_BGROUP, WIDGET_DROPLIST
CW_PDMENU IDL Reference Guide

351
CW_RGBSLIDER

The CW_RGBSLIDER function creates a compound widget that provides three
sliders for adjusting color values. The RGB, CMY, HSV, and HLS color systems can
all be used. No matter which color system is in use, the resulting color is always
supplied in RGB, which is the base system for IDL.

This routine is written in the IDL language. Its source code can be found in the file
cw_rgbslider.pro in the lib subdirectory of the IDL distribution.

Using CW_RGBSLIDER

The CW_RGBSLIDER widget consists of a pulldown menu which allows the user to
change between the supported color systems, and three color adjustment sliders,
allowing the user to select a new color value.

Syntax

Result = CW_RGBSLIDER(Parent [, /CMY | , /HSV | , /HLS | , /RGB]
[, /COLOR_INDEX | , GRAPHICS_LEVEL={1 | 2}] [, /DRAG] [, /FRAME]
[, LENGTH=value] [, UNAME=string] [, UVALUE=value] [, VALUE=[r, g, b]]
[, /VERTICAL])

Return Value

This function returns the widget ID of the newly-created color adjustment widget.

Arguments

Parent

The widget ID of the parent widget.

Keywords

CMY

If set, the initial color system used is CMY.

COLOR_INDEX

Set this keyword to display a small rectangle with the selected color. The color is
updated as the values are changed. The color initially displayed in this rectangle
corresponds to the value specified with the VALUE keyword. If using Object
IDL Reference Guide CW_RGBSLIDER

352
Graphics, it is recommended that you set the GRAPHICS_LEVEL keyword to 2, in
which case the COLOR_INDEX keyword is ignored.

DRAG

Set this keyword and events will be generated continuously when the sliders are
adjusted. If not set, events will only be generated when the mouse button is released.
Note: On slow systems, /DRAG performance can be inadequate. The default is
DRAG = 0.

FRAME

If set, a frame will be drawn around the widget. The default is FRAME = 0.

GRAPHICS_LEVEL

Set this keyword to 2 to use Object Graphics. Set to 1 for Direct Graphics (the
default). If set to 2, a small rectangle is displayed with the selected color. The color is
updated as the values are changed. The color initially displayed in this rectangle
corresponds to the value specified with the VALUE keyword. If this keyword is set,
the COLOR_INDEX keyword is ignored.

HSV

If set, the initial color system used is HSV.

HLS

If set, the initial color system used is HLS.

LENGTH

The length of the sliders. The default = 256.

RGB

If set, the initial color system used is RGB. This is the default.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.
CW_RGBSLIDER IDL Reference Guide

353
UVALUE

The “user value” to be assigned to the widget.

VALUE

Set this keyword to a 3-element [r, g, b] vector representing the initial RGB value for
the CW_RGBSLIDER widget. If the GRAPHICS_LEVEL keyword is set to 2, the
color swatch will also initially display this RGB value.

VERTICAL

If set, the sliders will be oriented vertically. The default is VERTICAL = 0.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

See “Compound Widgets” in Chapter 22 of Building IDL Applications for a more
complete discussion of controlling compound widgets using WIDGET_CONTROL
and WIDGET_INFO.

Widget Events Returned by the CW_RGBSLIDER Widget

This widget generates event structures with the following definition:

event = {ID:0L, TOP:0L, HANDLER:0L, R:0B, G:0B, B:0B }

The ‘R’, ‘G’, and ‘B’ fields contain the Red, Green and Blue components of the
selected color. Note that CW_RGBSLIDER reports back the Red, Green, and Blue
values no matter which color system is selected.

See Also

CW_CLR_INDEX, XLOADCT, XPALETTE
IDL Reference Guide CW_RGBSLIDER

354
CW_TMPL

The CW_TMPL procedure is a template for compound widgets that use the
XMANAGER. Use this template instead of writing your compound widgets from
“scratch”. This template can be found in the file cw_tmpl.pro in the lib
subdirectory of the IDL distribution.

Syntax

Result = CW_TMPL(Parent [, UNAME=string] [, UVALUE=value])

Arguments

Parent

The widget ID of the parent widget of the new compound widget.

Keywords

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

A user-specified value for the compound widget.

See Also

XMNG_TMPL
CW_TMPL IDL Reference Guide

355
CW_ZOOM

The CW_ZOOM function creates a compound widget that displays two images: an
original image in one window and a portion of the original image in another. The user
can select the center of the zoom region, the zoom scale, the interpolation style, and
the method of indicating the zoom center.

This routine is written in the IDL language. Its source code can be found in the file
cw_zoom.pro in the lib subdirectory of the IDL distribution.

Using CW_ZOOM

The value of the CW_ZOOM widget is the original, un-zoomed image to be
displayed (a two-dimensional array). To change the contents of the CW_ZOOM
widget, use the command:

WIDGET_CONTROL, id, SET_VALUE = array

where id is the widget ID of the CW_ZOOM widget and array is the image array.
The value of CW_ZOOM cannot be set until the widget has been realized. Note that
the size of the original window, set with the XSIZE and YSIZE keywords to
CW_ZOOM, must be the size of the input array.

To return the current zoomed image as displayed by CW_ZOOM in the variable
array, use the command:

WIDGET_CONTROL, id, GET_VALUE = array

Syntax

Result = CW_ZOOM(Parent [, /FRAME] [, MAX=scale] [, MIN=scale]
[, RETAIN={0 | 1 | 2}] [, SAMPLE=value] [, SCALE=value] [, /TRACK]
[, UNAME=string] [, UVALUE=value] [, XSIZE=width]
[, X_SCROLL_SIZE=width] [, X_ZSIZE=zoom_width] [, YSIZE=height]
[, Y_SCROLL_SIZE=height] [, Y_ZSIZE=zoom_height])

Return Value

This function returns the widget ID of the newly-created zoom widget.
IDL Reference Guide CW_ZOOM

356
Arguments

Parent

The widget ID of the parent widget.

Keywords

FRAME

If set, a frame will be drawn around the widget. The default is FRAME = 0.

MAX

The maximum zoom scale, which must be greater than or equal to 1. The default is
20.

MIN

The minimum zoom scale, which must be greater than or equal to 1. The default is 1.

RETAIN

Set this keyword to zero, one, or two to specify how backing store should be handled
for both windows. RETAIN=0 specifies no backing store. RETAIN=1 requests that
the server or window system provide backing store. RETAIN=2 specifies that IDL
provide backing store directly. See “Backing Store” on page 2351 for details.

SAMPLE

Set to zero for bilinear interpolation, or to a non-zero value for nearest neighbor
interpolation. Bilinear interpolation gives higher quality results, but requires more
time. The default is 0.

SCALE

The initial integer scale factor to use for the zoomed image. The default is SCALE =
4. The scale must be greater than or equal to 1.

TRACK

Set this keyword and events will be generated continuously as the cursor is moved
across the original image. If not set, events will only be generated when the mouse
button is released. Note: On slow systems, /TRACK performance can be inadequate.
The default is 0.
CW_ZOOM IDL Reference Guide

357
UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

XSIZE

The width of the window (in pixels) for the original image. The default is XSIZE =
500. Note that XSIZE must be set to the width of the original image array for the
image to display properly.

X_SCROLL_SIZE

The width of the visible part of the original image. This may be smaller than the
actual width controlled by the XSIZE keyword. The default is 0, for no scroll bar.

X_ZSIZE

The width of the window for the zoomed image. The default is 250.

YSIZE

The height of the window (in pixels) for the original image. The default is 500. Note
that YSIZE must be set to the height of the original image array for the image to
display properly.

Y_SCROLL_SIZE

The height of the visible part of the original image. This may be smaller than the
actual height controlled by the YSIZE keyword. The default is 0, for no scroll bar.

Y_ZSIZE

The height of the window for the zoomed image. The default is 250.
IDL Reference Guide CW_ZOOM

358
Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the zoom widget. The value of the
CW_ZOOM widget is the original, un-zoomed image to be displayed (a two-
dimensional array). To change the contents of the CW_ZOOM widget, use the
command:

WIDGET_CONTROL, id, SET_VALUE = array

where id is the widget ID of the CW_ZOOM widget and array is the image array.
The value of CW_ZOOM cannot be set until the widget has been realized. Note that
the size of the original window, set with the XSIZE and YSIZE keywords to
CW_ZOOM, must be the size of the input array.

To return the current zoomed image as displayed by CW_ZOOM in the variable
array, use the command:

WIDGET_CONTROL, id, GET_VALUE = array

See “Compound Widgets” in Chapter 22 of Building IDL Applications for a more
complete discussion of controlling compound widgets using WIDGET_CONTROL
and WIDGET_INFO.

Widget Events Returned by the CW_ZOOM Widget

When the “Report Zoom to Parent” button is pressed, this widget generates event
structures with the following definition:

event = {ZOOM_EVENT, ID:0L, TOP:0L, HANDLER:0L, $
XSIZE:0L, YSIZE:0L, X0:0L, Y0:0L, X1:0L, Y1:0L }

The XSIZE and YSIZE fields contain the dimensions of the zoomed image. The X0
and Y0 fields contain the coordinates of the lower left corner of the original image,
and the X1 and Y1 fields contain the coordinates of the upper right corner of the
original image.

Example

The following code samples illustrate a use of the CW_ZOOM widget.
CW_ZOOM IDL Reference Guide

359
First, create an event-handler. Note that clicking on the widget’s “Zoom” button
displays IDL’s help output on the console.

PRO widzoom_event, event

WIDGET_CONTROL, event.id, GET_UVALUE=uvalue
CASE uvalue OF

'ZOOM': HELP, /STRUCT, event
'DONE': WIDGET_CONTROL, event.top, /DESTROY

ENDCASE

END

Next, create the widget program:

PRO widzoom

OPENR, lun, FILEPATH('people.dat', $
SUBDIR = ['examples','data']), /GET_LUN

image=BYTARR(192,192)
READU, lun, image
FREE_LUN, lun
sz = SIZE(image)

base=WIDGET_BASE(/COLUMN)
zoom=CW_ZOOM(base, XSIZE=sz[1], YSIZE=sz[2], UVALUE='ZOOM')
done=WIDGET_BUTTON(base, VALUE='Done', UVALUE='DONE')
WIDGET_CONTROL, base, /REALIZE

WIDGET_CONTROL, zoom, SET_VALUE=image
XMANAGER, 'widzoom', base

END

Once you have entered these programs, type “widzoom” at the IDL command prompt
to run the widget application.

See Also

ZOOM, ZOOM_24
IDL Reference Guide CW_ZOOM

360
DBLARR

The DBLARR function returns a double-precision, floating-point vector or array.

Syntax

Result = DBLARR(D1, ..., D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, DBLARR sets every element of the result to zero. If NOZERO is set, this
zeroing is not performed and DBLARR executes faster.

Example

To create D, an 3-element by 3-element, double-precision, floating-point array with
every element set to 0.0, enter:

D = DBLARR(3, 3)

See Also

COMPLEXARR, DCOMPLEXARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
DBLARR IDL Reference Guide

361
DCINDGEN

The DCINDGEN function returns a complex, double-precision, floating-point array
with the specified dimensions. Each element of the array has its real part set to the
value of its one-dimensional subscript. The imaginary part is set to zero.

Syntax

Result = DCINDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Example

To create DC, a 4-element vector of complex values with the real parts set to the
value of their subscripts, enter:

DC = DCINDGEN(4)

See Also

BINDGEN, CINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN, SINDGEN,
UINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide DCINDGEN

362
DCOMPLEX

The DCOMPLEX function returns double-precision complex scalars or arrays given
one or two scalars or arrays. If only one parameter is supplied, the imaginary part of
the result is zero, otherwise it is set to the value of the Imaginary parameter.
Parameters are first converted to double-precision floating-point. If either or both of
the parameters are arrays, the result is an array, following the same rules as standard
IDL operators. If three parameters are supplied, DCOMPLEX extracts fields of data
from Expression.

Syntax

Result = DCOMPLEX(Real [, Imaginary])

or

Result = DCOMPLEX(Expression, Offset, Dim1 [, ..., Dim8])

Arguments

Real

Scalar or array to be used as the real part of the complex result.

Imaginary

Scalar or array to be used as the imaginary part of the complex result.

Expression

The expression from which data is to be extracted.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as complex data. See the
description in Chapter 3, “Constants and Variables” in Building IDL Applications for
details.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
The dimension parameters can be any scalar expression. Up to eight dimensions can
be specified. If no dimension arguments are given, the result is taken to be scalar.
DCOMPLEX IDL Reference Guide

363
When converting from a string argument, it is possible that the string does not contain
a valid floating-point value and no conversion is possible. The default action in such
cases is to print a warning message and return 0. The ON_IOERROR procedure can
be used to establish a statement to be jumped to in case of such errors.

Example

Create a complex array from two integer arrays by entering the following commands:

; Create the first integer array:
A = [1,2,3]

; Create the second integer array:
B = [4,5,6]

; Make A the real parts and B the imaginary parts of the new
; complex array:
C = DCOMPLEX(A, B)

; See how the two arrays were combined:
PRINT, C

IDL prints:

(1.0000000, 4.0000000)(2.0000000, 5.0000000)
(3.0000000, 6.0000000)

The real and imaginary parts of the complex array can be extracted as follows:

; Print the real part of the complex array C:
PRINT, 'Real Part: ', DOUBLE(C)

; Print the imaginary part of the complex array C:
PRINT, 'Imaginary Part: ', IMAGINARY(C)

IDL prints:

Real Part: 1.0000000 2.0000000 3.0000000
Imaginary Part: 4.0000000 5.0000000 6.0000000

See Also

BYTE, COMPLEX, CONJ, DOUBLE, FIX, FLOAT, IMAGINARY, LONG,
LONG64, STRING, UINT, ULONG, ULONG64
IDL Reference Guide DCOMPLEX

364
DCOMPLEXARR

The DCOMPLEXARR function returns a complex, double-precision, floating-point
vector or array.

Syntax

Result = DCOMPLEXARR(D1, ..., D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters may be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, DCOMPLEXARR sets every element of the result to zero. If the
NOZERO keyword is set, this zeroing is not performed, and DCOMPLEXARR
executes faster.

Example

To create an empty, 5-element by 5-element, complex array DC, enter:

DC = DCOMPLEXARR(5, 5)

See Also

COMPLEXARR, DBLARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
DCOMPLEXARR IDL Reference Guide

365
DEFINE_KEY

The DEFINE_KEY procedure programs the keyboard function Key with the string
Value, or with one of the actions specified by the available keywords.

DEFINE_KEY is primarily intended for use with IDL’s command line interface
(available under UNIX and VMS). IDL’s graphical interface (IDLDE), which is
available under all operating systems supported by IDL, uses different system-
specific mechanisms.

Syntax

DEFINE_KEY, Key [, Value] [, /MATCH_PREVIOUS] [, /NOECHO]
[, /TERMINATE]

UNIX Keywords: [, /BACK_CHARACTER] [, /BACK_WORD] [, /CONTROL | ,
/ESCAPE] [, /DELETE_CHARACTER] [, /DELETE_CURRENT]
[, /DELETE_EOL] [, /DELETE_LINE] [, /DELETE_WORD] [, /END_OF_LINE]
[, /END_OF_FILE] [, /ENTER_LINE] [, /FORWARD_CHARACTER]
[, /FORWARD_WORD] [, /INSERT_OVERSTRIKE_TOGGLE] [, /NEXT_LINE]
[, /PREVIOUS_LINE] [, /RECALL] [, /REDRAW] [, /START_OF_LINE]

Arguments

Key

A scalar string containing the name of a function key to be programmed. IDL
maintains an internal list of function key names and the escape sequences they send.

UNIX — Under UNIX, DEFINE_KEY allows you to set the values of two distinctly
different types of keys:

• Control characters: Any of the 26 control characters (CTRL+A through
CTRL+Z) can be associated with specific actions by specifying the
CONTROL keyword. Control characters are the unprintable ASCII characters
at the beginning of the ASCII character set. They are usually entered by
holding down the Control key while the corresponding letter key is pressed.

• Function keys: Most terminals (and terminal emulators) send escape sequences
when a function key is pressed. An escape sequence is a sequence of characters
starting the ASCII Escape character. Escape sequences follow strict rules that
allow applications such as IDL to determine when the sequence is complete.
For instance, the left arrow key on most machines sends the sequence
IDL Reference Guide DEFINE_KEY

366
<ESC>[D. The available function keys and the escape sequences they send
vary from keyboard to keyboard; IDL cannot be built to recognize all of the
different keyboards in existence. The ESCAPE keyword allows you to
program IDL with the escape sequences for your keyboard. When you press
the function key, IDL will recognize the sequence and take the appropriate
action.

UNIX — Under UNIX, if Key is not already on IDL’s internal list, you must use the
ESCAPE keyword to specify the escape sequence, otherwise, Key alone will suffice.
The available function keys and the escape sequences they send vary from keyboard
to keyboard. The SETUP_KEYS procedure should be used once at the beginning of
the session to enter the keys for the current keyboard. The following table describes
the standard key definitions.

Editing Key Function

Ctrl+A Move cursor to start of line

Ctrl+B Move cursor left one word

Ctrl+D EOF if current line is empty, EOL otherwise

Ctrl+E Move to end of line

Ctrl+F Move cursor right one word

Ctrl+K Erase from the cursor to the end of the line

Ctrl+N Move back one line in the recall buffer

Ctrl+R Retype current line

Ctrl+U Delete from current position to start of line

Ctrl+W Delete previous word

Ctrl+X Delete current character

Backspace, Delete Delete previous character

ESC-I Overstrike/insert toggle

ESC-Delete Delete previous word

Up Arrow Move back one line in the recall buffer

Down Arrow Move forward one line in the recall buffer

Table 15: Standard Key Definitions for UNIX
DEFINE_KEY IDL Reference Guide

367
VMS — Under VMS, the key names are those defined by the Screen Management
utility (SMG). The following table describes some of these keys. For a complete
description, refer to the VMS RTL Screen Management (SMG$) Manual.

Left Arrow Move left one character

Right Arrow Move right one character

R13 Move cursor left one word (Sun keyboards)

R15 Move cursor right one word (Sun keyboards)

^text Recall the first line containing text. If text is blank,
recall the previous line

Other Characters Insert character at the current cursor position

Key Name Description

DELETE Delete previous character.

PF1 Recall most recent command that matches
supplied string.

PF2—PF4 Top row of keypad.

KP0—KP9 Keypad keys 0 through 9

ENTER Keypad ENTER key

MINUS Keypad “-” key

COMMA Keypad “,” key

PERIOD Keypad “.” key

FIND Editing keypad FIND key

INSERT_HERE Editing keypad INSERT HERE key

REMOVE Editing keypad REMOVE key

SELECT Editing keypad SELECT key

Table 16: VMS Line Editing Keys

Editing Key Function

Table 15: Standard Key Definitions for UNIX
IDL Reference Guide DEFINE_KEY

368
Windows — Under Windows, function keys F2, F4, F11, and F12 can be
customized.

In IDL for Windows, three special variables can be used to expand the current
mouse selection, the current line, or the current filename into the output of
defined keys.

For example, to define F2 as a key that executes an IDL PRINT command with
the current mouse selection as its argument, use the command:

DEFINE_KEY, 'F2', 'PRINT, "%S"'

Dragging the mouse over any text in an IDL Editor or Output Log window and
pressing F1 causes the selected text to be printed. The %l and %f variables can
be used in a similar fashion.

Macintosh — DEFINE_KEY does not currently work with IDL for Macintosh.

Value

The scalar string that will be printed (as if it had been typed manually at the
keyboard) when Key is pressed. If Value is not present, and no function is specified
for the key with one of the keywords, the key is cleared so that nothing happens when
it is pressed.

PREV_SCREEN Editing keypad PREV_SCREEN key

NEXT_SCREEN Editing keypad NEXT_SCREEN key

Variable Expansion

%f filename of the currently-selected IDL Editor window

%l number of the current line in an IDL Editor window

%s Currently-selected text from an IDL Output Log or
Editor window

Table 17: Variable expansions for defined keys

Key Name Description

Table 16: VMS Line Editing Keys
DEFINE_KEY IDL Reference Guide

369
Keywords

MATCH_PREVIOUS

Set this keyword to program Key to prompt the user for a string, and then search the
saved command buffer for the most recently issued command that contains that
string. If a match is found, the matching command becomes the current command,
otherwise the last command entered is used. Under UNIX, the default match key is
the up caret “^” key when pressed in column 1. Under VMS, the default match key is
PF1.

NOECHO

Set this keyword to enter the Value assigned to Key when pressed, without echoing
the string to the screen. This feature is useful for defining keys that perform such
actions as erasing the screen. If NOECHO is set, TERMINATE is also assumed to be
set.

TERMINATE

If this keyword is set, and Value is present, pressing Key terminates the current input
operation after its assigned value is entered. Essentially, an implicit carriage return is
added to the end of Value.

UNIX Keywords

BACK_CHARACTER

Set this keyword to program Key to move the current cursor position left one
character.

BACK_WORD

Set this keyword to program Key to move the current cursor position left one word.

CONTROL

Set this keyword to indicate that Key is the name of a control key. The default is for
Key to define a function key escape sequence. To view the names used by IDL for the
control keys, type the following at the Command Input Line:

HELP, /ALL_KEYS

Warning
The CONTROL and ESCAPE keywords are mutually exclusive and cannot be
specified together.
IDL Reference Guide DEFINE_KEY

370
DELETE_CHARACTER

Set this keyword to program Key to delete the character to the left of the cursor.

DELETE_CURRENT

Set this keyword to program Key to delete the character directly underneath the
cursor.

DELETE_EOL

Set this keyword to program Key to delete from the cursor position to the end of the
line.

DELETE_LINE

Set this keyword to program Key to delete all characters to the left of the cursor.

DELETE_WORD

Set this keyword to programs Key to delete the word to the left of the cursor.

END_OF_LINE

Set this keyword to program Key to move the cursor to the end of the line.

END_OF_FILE

Set this keyword to program Key to exit IDL if the current line is empty, and to end
the current input line if the current line is not empty.

ENTER_LINE

Set this keyword to program Key to enter the current line (i.e., the action normally
performed by the “Return” key).

ESCAPE

A scalar string that specifies the escape sequence that corresponds to Key. See
“Defining New Function Keys” on page 372 for further details.

Warning
The CONTROL and ESCAPE keywords are mutually exclusive and cannot be
specified together.
DEFINE_KEY IDL Reference Guide

371
FORWARD_CHARACTER

Set this keyword to program Key to move the current cursor position right one
character.

FORWARD_WORD

Set this keyword to program Key to move the current cursor position right one word.

INSERT_OVERSTRIKE_TOGGLE

Set this keyword to program Key to toggle between “insert” and “overstrike” mode.
When characters are typed into the middle of a line, insert mode causes the trailing
characters to be moved to the right to make room for the new ones. Overstrike mode
causes the new characters to overwrite the existing ones.

NEXT_LINE

Set this keyword to program Key to move forward one command in the saved
command buffer and make that command the current one.

PREVIOUS_LINE

Set this keyword to program Key to move back one command in the saved command
buffer and make that command the current one.

RECALL

Set this keyword to program Key to prompt the user for a command number. The
saved command corresponding to the entered number becomes the current command.
In order to view the currently saved commands and the number currently associated
with each, enter the IDL command:

HELP, /RECALL COMMANDS

Example

The RECALL operation remembers the last command number entered, and if the
user simply presses return, it recalls the command currently associated with that
saved number. Since the number associated with a given command increases by one
each time a new command is saved, this feature can be used to quickly replay a
sequence of commands.

IDL> PRINT, 1
1
IDL> PRINT, 2
2
IDL> HELP, /RECALL_COMMANDS
Recall buffer length: 20
IDL Reference Guide DEFINE_KEY

372
1 PRINT, 2
2 PRINT, 1

User presses key tied to RECALL.

IDL>

Line 2 is requested.

Recall Line #: 2

Saved command 2 is recalled.

IDL> PRINT, 1
1

User presses return.

Recall Line #:

Saved command 2 is recalled again.

IDL> PRINT, 2
2

REDRAW

Set this keyword to program Key to retype the current line.

START_OF_LINE

Set this keyword to program Key to move the cursor to the start of the line.

Defining New Function Keys

Under VMS, IDL uses the SMG screen management package, which ensures that
IDL command editing behaves in the standard VMS way. Hence, it is not possible to
use a key SMG does not understand.

Under UNIX, IDL can handle arbitrary function keys. When adding a definition for a
function key that is not built into IDL’s default list of recognized keys, you must use
the ESCAPE keyword to specify the escape sequence it sends. For example, to add a
function key named “HELP” which sends the escape sequence <Escape>[28~, use
the command:

DEFINE_KEY, 'HELP', ESCAPE = '\033[28~'

This command adds the HELP key to the list of keys understood by IDL. Since only
the key name and escape sequence were specified, pressing the HELP key will do
nothing. The Value argument, or one of the keywords provided to specify command
DEFINE_KEY IDL Reference Guide

373
line editing functions, could have been included in the above statement to program it
with an action.

Once a key is defined using the ESCAPE keyword, it is contained in the internal list
of function keys. It can then be subsequently redefined without specifying the escape
sequence.

It is convenient to include commonly used key definitions in a startup file, so that
they will always be available. See “Startup File” in Chapter 2 of Using IDL.

Usually, the SETUP_KEYS procedure is used to define the function keys found on
the keyboard, so it is not necessary to specify the ESCAPE keyword. For example, to
program key “F2” on a Sun keyboard to redraw the current line:

SETUP_KEYS
DEFINE_KEY, 'F2', /REDRAW

The CONTROL keyword alters the action that IDL takes when it sees the specified
characters defining the control keys. IDL may not be able to alter the behavior of
some control characters. For example, CTRL+S and CTRL+Q are usually reserved
by the operating system for flow control. Similarly, CTRL+Z is usually The UNIX
suspend character.

Example

CTRL+D is the UNIX end-of-file character. It is a common UNIX convention
(followed by IDL) for programs to quit upon encountering CTRL+D.However,
CTRL+D is also used by some text editors to delete characters. To disable IDL
default handling of CTRL+D, type the following:

DEFINE_KEY, /CONTROL, '^D'

To print a reminder of how to exit IDL properly, type the following:

DEFINE_KEY, /CONTROL, '^D', "print, 'Enter EXIT to quit IDL'", $
/NOECHO, /TERMINATE

To use CTRL+D to delete characters, type the following:

DEFINE_KEY, /CONTROL, '^D', /DELETE_CURRENT

See Also

GET_KBRD
IDL Reference Guide DEFINE_KEY

374
DEFROI

The DEFROI function defines an irregular region of interest of an image using the
image display system and the cursor and mouse. The result is a vector of subscripts of
the pixels inside the region. The lowest bit in which the write mask is enabled is
changed.

DEFROI only works for interactive, pixel oriented devices with a cursor and an
exclusive or writing mode. Regions may have at most 1000 vertices.

Warning
DEFROI does not function correctly when used with draw widgets. See
CW_DEFROI.

This routine is written in the IDL language. Its source code can be found in the file
defroi.pro in the lib subdirectory of the IDL distribution.

Using DEFROI

After calling DEFROI, click in the image with the left mouse button to mark points
on the boundary of the region of interest. The points are connected in sequence.
Alternatively, press and hold the left mouse button and drag to draw a curved region.
Click the middle mouse button to erase points. The most recently-placed point is
erased first. Click the right mouse button to close the region. The function returns
after the region has been closed.

Syntax

Result = DEFROI(Sx, Sy [, Xverts, Yverts] [, /NOREGION] [, /NOFILL]
[, /RESTORE] [, X0=device_coord, Y0=device_coord] [, ZOOM=factor])

Arguments

Sx, Sy

Integers specifying the horizontal and vertical size of image, in pixels.

Xverts, Yverts

Named vectors that will contain the vertices of the enclosed region.
DEFROI IDL Reference Guide

375
Keywords

NOREGION

Set this keyword to inhibit the return of the pixel subscripts.

NOFILL

Set this keyword to inhibit filling of the defined region on completion.

RESTORE

Set this keyword to restore the display to its original state upon completion.

X0, Y0

Set these keywords equal to the coordinates of the lower left corner of the displayed
image (in device coordinates). If omitted, the default value (0,0) is used.

ZOOM

Set this keyword equal to the zoom factor. If not specified, a value of 1 is assumed.

Example

; Create an image:
TVSCL, DIST(200,200)

; Call DEFROI. The cursor becomes active in the graphics window.
; Define a region and click the right mouse button:
X = DEFROI(200, 200)

; Print subscripts of points included in the defined region:
PRINT, X

See Also

CW_DEFROI
IDL Reference Guide DEFROI

376
DEFSYSV

The DEFSYSV procedure creates a new system variable called Name initialized to
Value.

Syntax

DEFSYSV, Name, Value [, Read_Only] [, EXISTS=variable]

Arguments

Name

A scalar string containing the name of the system variable to be created. All system
variable names must begin with the character ‘!’.

Value

An expression from which the type, structure, and initial value of the new system
variable is taken. Value can be a scalar, array, or structure.

Read_Only

If the Read_Only argument is present and nonzero, the value of the newly-created
system variable cannot be changed (i.e., the system variable is read-only, like the !PI
system variable). Otherwise, the value of the new system variable can be modified.

Keywords

EXISTS

Set this keyword to a named variable that returns 1 if the system variable specified by
Name exists. If this keyword is specified, Value can be omitted. For example, the
following commands could be used to check that the system variable XYZ exists:

DEFSYSV, '!XYZ', EXISTS = i
IF i EQ 1 THEN PRINT, '!XYZ exists' ELSE PRINT, $

'!XYZ does not exist'

Example

To create a new, floating-point, scalar system variable called !NEWVAR with an
initial value of 2.0, enter:

DEFSYSV, '!NEWVAR', 2.0
DEFSYSV IDL Reference Guide

377
You can both define and use a system variable within a single procedure:

PRO foo
DEFSYSV, '!foo', $

'Rocky, watch me pull a squirrel out of my hat!'

; Print !foo after defining it:
PRINT, !foo

END

See Also

Appendix D, “System Variables”
IDL Reference Guide DEFSYSV

378
DELETE_SYMBOL

The DELETE_SYMBOL procedure deletes a DCL (Digital Command Language)
interpreter symbol for the current process.

Note
This procedure is available on VMS only.

Syntax

DELETE_SYMBOL, Name [, TYPE={1 | 2}]

Arguments

Name

A scalar string containing the name of the symbol to be deleted.

Keywords

TYPE

Indicates the table from which Name will be deleted. Set TYPE to 1 to specify the
local symbol table. Set TYPE to 2 to specify the global symbol table. The default is to
search the local table.

See Also

DELLOG, SET_SYMBOL, SETLOG
DELETE_SYMBOL IDL Reference Guide

379
DELLOG

The DELLOG procedure deletes a VMS logical name.

Note
This procedure is available on VMS only.

Syntax

DELLOG, Lognam [, TABLE=string]

Arguments

Lognam

A scalar string containing the name of the logical to be deleted.

Keywords

TABLE

A scalar string giving the name of the logical table from which to delete Lognam. If
TABLE is not specified, LNM$PROCESS_TABLE is used.

See Also

DELETE_SYMBOL, SET_SYMBOL, SETENV, SETLOG
IDL Reference Guide DELLOG

380
DELVAR

The DELVAR procedure deletes variables from the main IDL program level.
DELVAR frees any memory used by the variable and removes it from the main
program’s symbol table. The following restrictions apply:

• DELVAR can only be called from the main program level.

• Each time DELVAR is called, the main program is erased. Variables that are
not deleted remain unchanged.

Syntax

DELVAR, V1, ..., Vn

Arguments

Vi

One or more named variables to be deleted.

Example

Suppose that the variable Q is defined at the main program level. Q can be deleted by
entering:

DELVAR, Q

See Also

TEMPORARY
DELVAR IDL Reference Guide

381
DERIV

The DERIV function performs numerical differentiation using 3-point, Lagrangian
interpolation and returns the derivative.

Syntax

Result = DERIV([X,] Y)

Arguments

X

Differentiate with respect to this variable. If omitted, unit spacing for Y (i.e., Xi = i)
is assumed.

Y

The variable to be differentiated.

Example

X = [0.1, 0.3, 0.4, 0.7, 0.9]
Y = [1.2, 2.3, 3.2, 4.4, 6.6]
PRINT, DERIV(Y)
PRINT, DERIV(X,Y)

IDL prints:

1.20000 1.00000 1.05000 1.70000 2.70000
8.00000 6.66667 5.25000 6.80000 10.800

See Also

DERIVSIG
IDL Reference Guide DERIV

382
DERIVSIG

The DERIVSIG function computes the standard deviation of a derivative as found by
the DERIV function, using the input variables of DERIV and the standard deviations
of those input variables.

Syntax

Result = DERIVSIG([X, Y, Sigx,] Sigy)

Arguments

X

Differentiate with respect to this variable. If omitted, unit spacing for Y (i.e., Xi = i)
is assumed.

Y

The variable to be differentiated. Omit if X is omitted.

Sigx

The standard deviation of X (either vector or constant). Use “0.0” if the abscissa is
exact; omit if X is omitted.

Sigy

The standard deviation of Y. Sigy must be a vector if the other arguments are omitted,
but may be either a vector or a constant if X, Y, and Sigx are supplied.

See Also

DERIV
DERIVSIG IDL Reference Guide

383
DETERM

The DETERM function computes the determinant of an n by n array. LU
decomposition is used to represent the input array in triangular form. The determinant
is then computed as the product of diagonal elements of the triangular form. Row
interchanges are tracked during the LU decomposition to ensure the correct sign.

This routine is written in the IDL language. Its source code can be found in the file
determ.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = DETERM(A [, /CHECK] [, /DOUBLE] [, ZERO=value])

Arguments

A

An n by n single- or double-precision floating-point array.

Keywords

CHECK

Set this keyword to check A for singularity. The determinant of a singular array is
returned as zero if this keyword is set. Run-time errors may result if A is singular and
this keyword is not set.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

ZERO

Use this keyword to set the absolute value of the floating-point zero. A floating-point
zero on the main diagonal of a triangular array results in a zero determinant. For
single-precision inputs, the default value is 1.0 × 10-6. For double-precision inputs,
the default value is 1.0 × 10-12. Setting this keyword to a value less than the default
may improve the precision of the result.

Example

; Define an array A:
A = [[2.0, 1.0, 1.0], $

[4.0, -6.0, 0.0], $
IDL Reference Guide DETERM

384
[-2.0, 7.0, 2.0]]

; Compute the determinant:
PRINT, DETERM(A)

IDL prints:

-16.0000

See Also

COND, INVERT
DETERM IDL Reference Guide

385
DEVICE

The DEVICE procedure provides device-dependent control over the current graphics
device (as set by the SET_PLOT routine). The IDL graphics procedures and
functions are device-independent. That is, IDL presents the user with a consistent
interface to all devices. However, most devices have extra abilities that are not
directly available through this interface. DEVICE is used to access and control such
abilities. It is used by specifying various keywords that differ from device to device.

See Appendix B, “IDL Graphics Devices” for a description of the keywords available
for each graphics device.

Syntax

Note
Each keyword to DEVICE is followed by the device(s) to which it applies.

DEVICE

[, /AVANTGARDE | , /BKMAN | , /COURIER | , /HELVETICA | , /ISOLATIN1 | ,
/PALATINO | , /SCHOOLBOOK | , /SYMBOL | , TIMES | , ZAPFCHANCERY | ,
ZAPFDINGBATS {PS}]
[, /AVERAGE_LINES{REGIS}]
[, /BINARY | , /NCAR | , /TEXT {CGM}]
[, BITS_PER_PIXEL={1 | 2 | 4 | 8}{PS}]
[, /BOLD{PS}]
[, /BOOK{PS}]
[, /BYPASS_TRANSLATION{MAC, WIN, X}]
[, /CLOSE{Z}]
[, /CLOSE_DOCUMENT{PRINTER}]
[, /CLOSE_FILE{CGM, HP, LJ, METAFILE, PCL, PS, REGIS, TEK}]
[, /COLOR{PCL, PS}]
[, COLORS=value{CGM, TEK}]
[, COPY=[Xsource, Ysource, cols, rows, Xdest, Ydest [, Window_index]]{MAC,
WIN, X}]
[, /CURSOR_CROSSHAIR{WIN, X}]
[, CURSOR_IMAGE=value{16-element short int vector}{MAC, WIN, X}]
[, CURSOR_MASK=value{MAC, WIN, X}]
[, /CURSOR_ORIGINAL{MAC, WIN, X}]
[, CURSOR_STANDARD=value{MAC: crosshair=1}{WIN: arrow=32512,
IDL Reference Guide DEVICE

386
I-beam=32513, hourglass=32514, black cross=32515, up arrow=32516,
size(NT)=32640, icon(NT)=32641, size NW-SE=32642, size NE-SW=32643, size E-
W=32644, size N-S=32645}{X: one of the values in file cursorfonts.h}]
[, CURSOR_XY=[x,y]{MAC, WIN, X}]
[, /DECOMPOSED{MAC, WIN, X}]
[, DEPTH=value{significant bits per pixel}{LJ}]
[, /DIRECT_COLOR{X}]
[, EJECT={0 | 1 | 2}{HP}]
[, ENCAPSULATED={0 | 1}{PS}]
[, ENCODING={1 (binary) | 2 (text) | 3 (NCAR binary)}{CGM}]
[, FILENAME=filename{CGM, HP, LJ, METAFILE, PCL, PS, REGIS, TEK}]
[, /FLOYD{LJ, MAC, PCL, X}]
[, FONT_INDEX=integer{PS}]
[, FONT_SIZE=points{PS}]
[, GET_CURRENT_FONT=variable{MAC, METAFILE, PRINTER, WIN, X}]
[, GET_DECOMPOSED=variable{MAC, WIN, X}]
[, GET_FONTNAMES=variable{MAC, METAFILE, PRINTER, WIN, X}]
[, GET_FONTNUM=variable{MAC, METAFILE, PRINTER, WIN, X}]
[, GET_GRAPHICS_FUNCTION=variable{MAC, WIN, X, Z}]
[, GET_PAGESIZE=variable{PRINTER}]
[, GET_SCREEN_SIZE=variable{MAC, WIN, X}]
[, GET_VISUAL_DEPTH=variable{MAC, WIN, X}]
[, GET_VISUAL_NAME=variable{MAC, WIN, X}]
[, GET_WINDOW_POSITION=variable{MAC, WIN, X}]
[, GET_WRITE_MASK=variable{X, Z}]
[, GIN_CHARS=number_of_characters{TEK}]
[, GLYPH_CACHE=number_of_glyphs{MAC, METAFILE, PRINTER, PS, WIN,
Z}]
[, /INCHES{HP, LJ, PCL, METAFILE, PRINTER, PS}]
[, /INDEX_COLOR{METAFILE, PRINTER}]
[, /ITALIC{PS}]
[, /LANDSCAPE | , /PORTRAIT{HP, LJ, PCL, PRINTER, PS}]
[, /DEMI | , /LIGHT | , /MEDIUM | , /NARROW | , /OBLIQUE{PS}]
[, OPTIMIZE={0 | 1 | 2}{PCL}] [, /ORDERED{LJ, MAC, PCL, X}]
[, OUTPUT=scalar string{HP, PS}]
[, /PIXELS{LJ, PCL}]
[, PLOT_TO=logical unit num{REGIS, TEK}]
[, /PLOTTER_ON_OFF{HP}]
[, /POLYFILL{HP}]
[, PRE_DEPTH=value{PS}]
[, PRE_XSIZE=width{PS}]
DEVICE IDL Reference Guide

387
[, PRE_YSIZE=height{PS}]
[, /PREVIEW{PS}]
[, PRINT_FILE=filename{WIN}]
[, /PSEUDO_COLOR{MAC, X}]
[, RESET_STRING=string{TEK}]
[, RESOLUTION=value{LJ, PCL}]
[, RETAIN={0 | 1 | 2}{MAC, WIN, X}]
[, SCALE_FACTOR=value{PRINTER, PS}]
[, SET_CHARACTER_SIZE=[font size, line spacing]{CGM, HP, LJ, MAC,
METAFILE, PCL, PS, REGIS, TEK, WIN, X, Z}]
[, SET_COLORMAP=value{14739-element byte vector}{PCL}]
[, SET_COLORS=value{2 to 256}{Z}]
[, SET_FONT=scalar string{MAC, METAFILE, PRINTER, PS, WIN, Z}]
[, SET_GRAPHICS_FUNCTION=code{0 to 15}{MAC, WIN, X, Z}]
[, SET_RESOLUTION=[width, height]{Z}]
[, SET_STRING=string{TEK}]
[, SET_TRANSLATION=variable{X}]
[, SET_WRITE_MASK=value{0 to 2n-1 for n-bit system}{X, Z}]
[, STATIC_COLOR=value{bits per pixel}{X}]
[, STATIC_GRAY=value{bits per pixel}{X}]
[, /TEK4014{TEK}]
[, TEK4100{TEK}]
[, THRESHOLD=value{LJ, MAC, PCL, X}]
[, TRANSLATION=variable{MAC, WIN, X}]
[, TRUE_COLOR=value{bits per pixel}{MAC, METAFILE, PRINTER, X}]
[, /TT_FONT{MAC, METAFILE, PRINTER, WIN, X, Z}]
[, /TTY{REGIS, TEK}]
[, /VT240 | , /VT241 | , /VT340 | , /VT341 {REGIS}]
[, WINDOW_STATE=variable{MAC, WIN, X}]
[, XOFFSET=value{HP, LJ, PCL, PRINTER, PS}]
[, XON_XOFF={0 | 1 (default)}{HP}]
[, XSIZE=width{HP, LJ, METAFILE, PCL, PRINTER, PS}]
[, YOFFSET=value{HP, LJ, PCL, PRINTER, PS}]
[, YSIZE=height{HP, LJ, PCL, METAFILE, PRINTER, PS}]
[, Z_BUFFERING={0 | 1 (default)}{Z}]

Keywords

See “Keywords Accepted by the IDL Devices” on page 2311.
IDL Reference Guide DEVICE

388
Example

The following example retains the name of the current graphics device, sets plotting
to the PostScript device, makes a PostScript file, then resets plotting to the original
device:

; The NAME field of the !D system variable contains the name of the
; current plotting device.
mydevice = !D.NAME

; Set plotting to PostScript:
SET_PLOT, 'PS'

; Use DEVICE to set some PostScript device options:
DEVICE, FILENAME='myfile.ps', /LANDSCAPE

; Make a simple plot to the PostScript file:
PLOT, FINDGEN(10)

; Close the PostScript file:
DEVICE, /CLOSE

; Return plotting to the original device:
SET_PLOT, mydevice
DEVICE IDL Reference Guide

389
DFPMIN

The DFPMIN procedure minimizes a user-written function Func of two or more
independent variables using the Broyden-Fletcher-Goldfarb-Shanno variant of the
Davidon-Fletcher-Powell method, using its gradient as calculated by a user-written
function Dfunc.

DFPMIN is based on the routine dfpmin described in section 10.7 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

DFPMIN, X, Gtol, Fmin, Func, Dfunc [, /DOUBLE] [, EPS=value]
[, ITER=variable] [, ITMAX=value] [, STEPMAX=value] [, TOLX=value]

Arguments

X

On input, X is an n-element vector specifying the starting point. On output, it is
replaced with the location of the minimum.

Gtol

An input value specifying the convergence requirement on zeroing the gradient.

Fmin

On output, Fmin contains the value at the minimum-point X of the user-supplied
function specified by Func.

Func

A scalar string specifying the name of a user-supplied IDL function of two or more
independent variables to be minimized. This function must accept a vector argument
X and return a scalar result.

For example, suppose we wish to find the minimum value of the function

y = (x0 – 3)4 + (x1 – 2)2

To evaluate this expression, we define an IDL function named MINIMUM:

FUNCTION minimum, X
RETURN, (X[0] - 3.0)^4 + (X[1] - 2.0)^2
IDL Reference Guide DFPMIN

390

DFP
END

Dfunc

A scalar string specifying the name of a user-supplied IDL function that calculates
the gradient of the function specified by Func. This function must accept a vector
argument X and return a vector result.

For example, the gradient of the above function is defined by the partial derivatives:

We can write a function GRAD to express these relationships in the IDL language:

FUNCTION grad, X
RETURN, [4.0*(X[0] - 3.0)^3, 2.0*(X[1] - 2.0)]

END

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

EPS

Use this keyword to specify a number close to the machine precision. For single-
precision calculations, the default value is 3.0 × 10-8. For double-precision
calculations, the default value is 3.0 × 10-16.

ITER

Use this keyword to specify a named variable which returns the number of iterations
performed.

ITMAX

Use this keyword to specify the maximum number of iterations allowed. The default
value is 200.

STEPMAX

Use this keyword to specify the scaled maximum step length allowed in line searches.
The default value is 100.0

∂y
∂x0
-------- 4 x0 3–()3 ∂y

∂x1
--------, 2 x1 2–()= =
MIN IDL Reference Guide

391
TOLX

Use this keyword to specify the convergence criterion on X values. The default value
is 4 x EPS.

Example

To minimize the function MINIMUM:

PRO example_dfpmin

; Make an initial guess (the algorithm’s starting point):
X = [1.0, 1.0]

; Set the convergence requirement on the gradient:
Gtol = 1.0e-7

; Find the minimizing value:
DFPMIN, X, Gtol, Fmin, 'minimum', 'grad'

; Print the minimizing value:
PRINT, X

END

FUNCTION minimum, X
RETURN, (X[0] - 3.0)^4 + (X[1] - 2.0)^2

END

FUNCTION grad, X
RETURN, [4.0*(X[0] - 3.0)^3, 2.0*(X[1] - 2.0)]

END

IDL prints:

3.00175 2.00000

See Also

POWELL
IDL Reference Guide DFPMIN

392
DIALOG_MESSAGE

The DIALOG_MESSAGE function creates a modal (blocking) dialog box that can
be used to display information for the user. The dialog must be dismissed, by clicking
on one of its option buttons, before execution of the widget program can continue.

This function differs from widgets in a number of ways. The DIALOG_MESSAGE
dialog does not exist as part of a widget tree, has no children, does not exist in an
unrealized state, and generates no events. Instead, the dialog is displayed whenever
this function is called. While the DIALOG_MESSAGE dialog is displayed, widget
activity is limited because the dialog is modal. The function does not return to its
caller until the user selects one of the dialog’s buttons. Once a button has been
selected, the dialog disappears.

DIALOG_MESSAGE returns a string containing the text of the label that the user
selected.

There are four basic dialogs that can be displayed. The default type is “Warning”.
Other types can be selected by setting one of the keywords described below. Each
dialog type displays different buttons. Additionally any dialog can be made to show a
“Cancel” button by setting the CANCEL keyword. The four types of dialogs are
described in the table below:

Syntax

Result = DIALOG_MESSAGE(Message_Text [, /CANCEL]
[, /DEFAULT_CANCEL | , /DEFAULT_NO] [, DIALOG_PARENT=widget_id]
[, DISPLAY_NAME=string] [, /ERROR | , /INFORMATION | , /QUESTION]
[, RESOURCE_NAME=string] [, TITLE=string])

Dialog Type Default Buttons

Error OK

Warning OK

Question Yes, No

Information OK

Table 18: Types of DIALOG_MESSAGE Dialogs
DIALOG_MESSAGE IDL Reference Guide

393
Arguments

Message_Text

A scalar string or string array that contains the text of the message to be displayed. If
this argument is set to an array of strings, each array element is displayed as a
separate line of text.

Keywords

CANCEL

Set this keyword to add a “Cancel” button to the dialog.

DEFAULT_CANCEL

Set this keyword to make the “Cancel” button the default selection for the dialog. The
default selection is the button that is selected when the user presses the default
keystroke (usually Space or Return depending on the platform). Setting
DEFAULT_CANCEL implies that the CANCEL keyword is also set.

DEFAULT_NO

Set this keyword to make the “No” button the default selection for “Question”
dialogs. Normally, the default is “Yes”.

DIALOG_PARENT

Set this keyword to the widget ID of a widget over which the message dialog should
be positioned. When displayed, the DIALOG_MESSAGE dialog will be positioned
over the specified widget. Dialogs are often related to a non-dialog widget tree. The
ID of the widget in that tree to which the dialog is most closely related should be
specified.

This keyword is ignored on Macintosh platforms.

DISPLAY_NAME

Set this keyword equal to a string indicating the name of the X Windows display on
which the dialog is to appear. This keyword is ignored if the DIALOG_PARENT
keyword is specified. This keyword is also ignored on Microsoft Windows and
Macintosh platforms.

ERROR

Set this keyword to create an “Error” dialog. The default dialog type is “Warning”.
IDL Reference Guide DIALOG_MESSAGE

394
INFORMATION

Set this keyword to create an “Information” dialog. The default dialog type is
“Warning”.

QUESTION

Set this keyword to create a “Question” dialog. The default dialog type is “Warning”.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the dialog.
See “RESOURCE_NAME” on page 1544 for a complete discussion of this keyword.

TITLE

Set this keyword to a scalar string that contains the text of a title to be displayed in the
dialog frame. If this keyword is not specified, the dialog has the dialog type as its title
as shown in the table under DIALOG_MESSAGE. This keyword is ignored on
Macintosh platforms.

See Also

XDISPLAYFILE
DIALOG_MESSAGE IDL Reference Guide

395
DIALOG_PICKFILE

The DIALOG_PICKFILE function allows the user to interactively pick a file, or
multiple files, using the platform’s own native graphical file-selection dialog. The
user can also enter the name of a file that does not exist (see the description of the
WRITE keyword, below).

Syntax

Result = DIALOG_PICKFILE([, /DIRECTORY]
[, DIALOG_PARENT=widget_id] [, DISPLAY_NAME=string] [, FILE=string]
[, FILTER=string/string array] [, /FIX_FILTER] [, GET_PATH=variable]
[, GROUP=widget_id] [, /MULTIPLE_FILES] [, /MUST_EXIST] [, PATH=string]
[, /READ | , /WRITE] [, /RESOURCE_NAME] [, TITLE=string])

Return Value

DIALOG_PICKFILE returns a string array that contains the full path name of the
selected file or files. If no file is selected, DIALOG_PICKFILE returns a null string.

Keywords

DIALOG_PARENT

Set this keyword to the widget ID of a widget to be used as the parent of this dialog.

DIRECTORY

Set this keyword to display only the existing directories in the current directory.
Individual files are not displayed.

DISPLAY_NAME

Set this keyword equal to a string that specifies the name of the X Windows display
on which the dialog should be displayed. This keyword is ignored on Microsoft
Windows and Macintosh platforms.

FILE

Set this keyword to a scalar string that contains the name of the initial file selection.
This keyword is useful for specifying a default filename.
IDL Reference Guide DIALOG_PICKFILE

396
On Windows, this keyword also has the effect of filtering the file list if a wildcard is
used, but this keyword should be used to specify a specific filename. To list only files
of a certain type, use the FILTER keyword.

FILTER

Set this keyword to a string value or an array of strings specifying the file types to be
displayed in the file list. This keyword is used to reduce the number of files displayed
in the file list. The user can modify the filter unless the FIX_FILTER keyword is set.
If the value contains a vector of strings, multiple filters are used to filter the files. The
filter, *.*, is automatically added to any filter you specify.

Under Microsoft Windows, the user cannot modify the filter. (The user can, however,
enter a filter string in the filename field to filter the files displayed.)

On the Macintosh, the filter is not displayed if the WRITE keyword is set.

On UNIX, the FILTER keyword does not support specifying more than one filter. If
you specify more than one filter, all files in the current directory will be displayed.

For example, to display only files of type .jpg, .tif, or .png in the file selection
window, you could use the following code:

file = DIALOG_PICKFILE(/READ, $
FILTER = ['*.jpg', '*.tif', '*.png'])

FIX_FILTER

When this keyword is set, only files that satisfy the filter can be selected. The user
has no ability to modify the filter and the filter is not shown.

Under Microsoft Windows, the user cannot modify the filter even if FIX_FILTER is
not set. Note that the user can enter a filter string in the filename field of the dialog to
change the filter condition even if FIX_FILTER is set.

GET_PATH

Set this keyword to a named variable in which the path of the selection is returned.

GROUP

This keyword is obsolete and has been replaced by the DIALOG_PARENT keyword.
Code that uses the GROUP keyword will continue to function as before, but we
suggest that all new code use DIALOG_PARENT.

MULTIPLE_FILES

Set this keyword to allow for multiple file selection in the file-selection dialog. When
you set this keyword, the user can select multiple files using the platform-specific
DIALOG_PICKFILE IDL Reference Guide

397
selection method. The currently selected files appear in the selection text field of the
dialog. With this keyword set, DIALOG_PICKFILE can return a string array that
contains the full path name of the selected file or files.

MUST_EXIST

Set this keyword to allow only files that already exist to be selected.

PATH

Set this keyword to a string that contains the initial path from which to select files. If
this keyword is not set, the current working directory is used.

READ

Set this keyword to make the title of the dialog “Select File to Read”.

TITLE

Set this keyword to a scalar string to be used for the dialog title. If it is not specified,
the default title is “Please Select a File”. This keyword is ignored on Macintosh
platforms.

WRITE

Set this keyword to make the title of the dialog “Select File to Write”.

Note
On the Macintosh, you must set the WRITE keyword in order to be able to enter the
name of a file that does not exist. As a result, the FILTER and FIX_FILTER
keywords are ignored when the WRITE keyword is specified on a Macintosh.

Example

Create a DIALOG_PICKFILE dialog that lets users select only files with the
extension ‘pro’. Use the ‘Select File to Read’ title and store the name of the selected
file in the variable file. Enter:

file = DIALOG_PICKFILE(/READ, FILTER = '*.pro')

See Also

FILEPATH
IDL Reference Guide DIALOG_PICKFILE

398
DIALOG_PRINTERSETUP

The DIALOG_PRINTERSETUP function opens a native dialog for setting the
applicable properties for a particular printer. DIALOG_PRINTERSETUP returns a
nonzero value if the user pressed the “OK” button in the dialog, or zero otherwise.
You can use the result of this function to programmatically begin printing.

Syntax

Result = DIALOG_PRINTERSETUP([PrintDestination]
[, DIALOG_PARENT=widget_id] [, DISPLAY_NAME=string]
[, RESOURCE_NAME=string] [, TITLE=string])

Arguments

PrintDestination

An instance of the IDLgrPrinter object for which setup properties are to be set. If no
PrintDestination is specified, the printer used by the IDL Direct Graphics printer
device is modified.

Keywords

DIALOG_PARENT

Set this keyword to the widget ID of a widget to be used as the parent of this dialog.

DISPLAY_NAME

Set this keyword equal to a string indicating the name of the X Windows display on
which the dialog is to appear. This keyword is ignored if the DIALOG_PARENT
keyword is specified, and is also ignored on Windows and Macintosh platforms.

RESOURCE_NAME

Set this keyword equal to a string containing an X Window System resource name to
be applied to the dialog.

TITLE

Set this keyword equal to a string to be displayed on the dialog frame. This keyword
is ignored on Windows and Macintosh platforms.
DIALOG_PRINTERSETUP IDL Reference Guide

399
See Also

DIALOG_PRINTJOB, “The Printer Device” on page 2370
IDL Reference Guide DIALOG_PRINTERSETUP

400

DIAL
DIALOG_PRINTJOB

The DIALOG_PRINTJOB function opens a native dialog that allows you to set
parameters for a printing job (number of copies to print, for example).

Syntax

Result = DIALOG_PRINTJOB([PrintDestination]
[, DIALOG_PARENT=widget_id] [, DISPLAY_NAME=string]
[, RESOURCE_NAME=string] [, TITLE=string])

Return Value

DIALOG_PRINTJOB returns a nonzero value if the user pressed the “OK” button in
the dialog, or zero otherwise. You can use the result of this function to
programmatically begin printing.

Arguments

PrintDestination

An instance of the IDLgrPrinter object for which a printing job is to be initiated. If no
PrintDestination is specified, the printer used by the IDL Direct Graphics printer
device is modified.

Keywords

DIALOG_PARENT

Set this keyword to the widget ID of a widget to be used as the parent of this dialog.

DISPLAY_NAME

Set this keyword to a string indicating the name of the X Windows display on which
the dialog is to appear. This keyword is ignored if the DIALOG_PARENT keyword
is specified, and is also ignored on Windows and Macintosh platforms.

RESOURCE_NAME

Set this keyword to a string containing an X Window System resource name to be
applied to the dialog.

TITLE

Set this keyword to a string to be displayed on the dialog frame. This keyword is
ignored on Windows and Macintosh platforms.
OG_PRINTJOB IDL Reference Guide

401
See Also

DIALOG_PRINTERSETUP, “The Printer Device” on page 2370
IDL Reference Guide DIALOG_PRINTJOB

402
DIALOG_READ_IMAGE

The DIALOG_READ_IMAGE function is a graphical interface used for reading
image files. The interface is created as a modal dialog with an optional parent widget.

Syntax

Result = DIALOG_READ_IMAGE ([Filename] [, BLUE=variable]
[, DIALOG_PARENT=widget_id] [, FILE=variable] [, FILTER_TYPE=string]
[, /FIX_FILTER] [, GET_PATH=variable] [, GREEN=variable]
[, IMAGE=variable] [, PATH=string] [, QUERY=variable] [, RED=variable]
[,TITLE=string])

Return Value

This function returns 1 if the “Open” button was clicked, and 0 if the “Cancel” button
was clicked.

Arguments

Filename

An optional scalar string containing the full pathname of the file to be highlighted.

Keywords

BLUE

Set this keyword to a named variable that will contain the blue channel vector (if
any).

DIALOG_PARENT

The widget ID of a widget that calls DIALOG_READ_IMAGE. When this ID is
specified, a death of the caller results in the death of the DIALOG_READ_IMAGE
dialog. If DIALOG_PARENT is not specified, then the interface is created as a
modal, top-level widget.

FILE

Set this keyword to a named variable that will contain the selected filename with full
path when the dialog is created.
DIALOG_READ_IMAGE IDL Reference Guide

403
FILTER_TYPE

Set this keyword to a scalar string containing the format type the dialog filter should
begin with. The default is “Image Files”. The user cannot modify the filter if the
FIX_FILTER keyword is set. Valid values are obtained from the list of supported
image types returned from QUERY_IMAGE. In addition, there is also the “All Files”
type. If set to “All Files”, queries will only happen on filename clicks, making the
dialog much more efficient.

Example:

FILTER='.jpg, .tiff'

FIX_FILTER

When this keyword is set, only files that satisfy the filter can be selected. The user
has no ability to modify the filter.

GET_PATH

Set this keyword to a named variable in which the path of the selection is returned.

GREEN

Set this keyword to a named variable that will contain the green channel vector (if
any).

IMAGE

Set this keyword to a named variable that will contain the image array read. If Cancel
was clicked, no action is taken.

PATH

Set this keyword to a string that contains the initial path from which to select files. If
this keyword is not set, the current working directory is used.

QUERY

Set this keyword to a named variable that will return the QUERY_IMAGE structure
associated with the returned image. If the “Cancel” button was pressed, the variable
set to this keyword is not changed. If an error occurred during the read, the
FILENAME field of the structure will be a null string.

RED

Set this keyword to a named variable that will contain the red channel vector (if any).
IDL Reference Guide DIALOG_READ_IMAGE

404
TITLE

Set this keyword to a scalar string to be used for the dialog title. If it is not specified,
the default title is “Select Image File”.

See Also

DIALOG_WRITE_IMAGE
DIALOG_READ_IMAGE IDL Reference Guide

405
DIALOG_WRITE_IMAGE

The DIALOG_WRITE_IMAGE function is a graphical user interface used for
writing image files. The interface is created as a modal dialog with an optional parent
widget.

Syntax

Result = DIALOG_WRITE_IMAGE (Image [, R, G, B]
[, DIALOG_PARENT=widget_id] [, FILE=string] [, /FIX_TYPE] [, /NOWRITE]
[, OPTIONS=variable] [, PATH=string] [,TITLE=string] [, TYPE=variable]
[, /WARN_EXIST])

Return Value

This routine returns 1 if the “Save” button was clicked, and 0 if the “Cancel” button
was clicked.

Arguments

Image

The array to be written to the image file.

R, G, B

These are optional arguments defining the Red, Green, and Blue color tables to be
associated with the image array.

Keywords

DIALOG_PARENT

The widget ID of a widget that calls DIALOG_WRITE_IMAGE. When this ID is
specified, a death of the caller results in the death of the DIALOG_WRITE_IMAGE
dialog. If DIALOG_PARENT is not specified, then the interface is created as a
modal, top-level widget.

FILE

Set this keyword to a scalar string that contains the name of the initial file selection.
This keyword is useful for specifying a default filename.
IDL Reference Guide DIALOG_WRITE_IMAGE

406
FIX_TYPE

When this keyword is set, only files that satisfy the type can be selected. The user has
no ability to modify the type.

NOWRITE

Set this keyword to prevent the dialog from writing the file when “Save” is clicked.
No data conversions will take place when the save type is chosen.

OPTIONS

Set this keyword to a named variable to contain a structure of the chosen options by
the user, including the filename and image type chosen.

PATH

Set this keyword to a string that contains the initial path from which to select files. If
this keyword is not set, the current working directory is used.

TITLE

Set this keyword to a scalar string to be used for the dialog title. If it is not specified,
the default title is “Save Image File”.

TYPE

Set this keyword to a scalar string containing the format type the “Save as type” field
should begin with. The default is “TIFF”. The user can modify the type unless the
FIX_TYPE keyword is set. Valid values are obtained from the list of supported
image types returned from QUERY_IMAGE. The “Save as type” field will reflect
the type of the selected file (if one is selected).

WARN_EXIST

Set this keyword to produce a question dialog if the user selects a file that already
exists. The default is to quietly overwrite the file.

See Also

DIALOG_READ_IMAGE
DIALOG_WRITE_IMAGE IDL Reference Guide

407
DIGITAL_FILTER

The DIGITAL_FILTER function returns the coefficients of a non-recursive, digital
filter for evenly spaced data points. Frequencies are expressed in terms of the Nyquist
frequency, 1/2T, where T is the time between data samples. Highpass, lowpass,
bandpass and bandstop filters may be constructed with this function.

This routine is written in the IDL language. Its source code can be found in the file
digital_filter.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = DIGITAL_FILTER(Flow, Fhigh, A, Nterms)

Return Value

This function returns a vector of coefficients with (2 × Nterms + 1) elements.

Arguments

Flow

The lower frequency of the filter as a fraction of the Nyquist frequency

Fhigh

The upper frequency of the filter as a fraction of the Nyquist frequency. The
following conditions are necessary for various types of filters:

A

The filter power relative to the Gibbs phenomenon wiggles in decibels. 50 is a good
choice.

• No Filtering: Flow = 0, Fhigh = 1

• Low Pass: Flow = 0, 0 < Fhigh < 1

• High Pass: 0 < Flow < 1, Fhigh =1

• Band Pass: 0 < Flow < Fhigh < 1

• Band Stop: 0 < Fhigh < Flow < 1
IDL Reference Guide DIGITAL_FILTER

408
Nterms

The number of terms used to construct the filter.

Example

; Get coefficients:
Coeff = DIGITAL_FILTER(Flow, Fhigh, A, Nterms)
; Apply the filter:
Yout = CONVOL(Yin, Coeff)

See Also

CONVOL, LEEFILT, MEDIAN, SMOOTH
DIGITAL_FILTER IDL Reference Guide

409
DILATE

The DILATE function implements the morphologic dilation operator on both binary
and grayscale images. For details on using DILATE, see “Using DILATE” on
page 410.

Syntax

Result = DILATE(Image, Structure [, X0 [, Y0 [, Z0]]] [, /CONSTRAINED
[, BACKGROUND=value]] [, /GRAY [, /PRESERVE_TYPE | , /UINT |
, /ULONG]] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the dilation is to be performed.
If the parameter is not of byte type, a temporary byte copy is obtained. If neither of
the keywords GRAY or VALUES is present, the image is treated as a binary image
with all nonzero pixels considered as 1.

Structure

A one-, two-, or three-dimensional array that represents the structuring element.
Elements are interpreted as binary: values are either zero or nonzero. This argument
must have the same number of dimensions as Image.

X0, Y0, Z0

Optional parameters specifying the one-, two-, or three-dimensional coordinate of the
structuring element’s origin. If omitted, the origin is set to the center, ([Nx/2], [Ny/2],
[Nz/2]), where Nx, Ny, and Nz are the dimensions of the structuring element array. The
origin need not be within the structuring element.

Keywords

BACKGROUND

Set this keyword to the pixel value that is to be considered the background when
dilation is being performed in constrained mode. The default value is 0.
IDL Reference Guide DILATE

410
CONSTRAINED

If this keyword is set and grayscale dilation has been selected, the dilation algorithm
will operate in constrained mode. In this mode, a pixel is set to the value determined
by normal grayscale dilation rules in the output image only if the current value
destination pixel value matches the BACKGROUND pixel value. Once a pixel in the
output image has been set to a value other than the BACKGROUND value, it cannot
change.

GRAY

Set this keyword to perform grayscale, rather than binary, dilation. The nonzero
elements of the Structure parameter determine the shape of the structuring element
(neighborhood). If VALUES is not present, all elements of the structuring element
are 0, yielding the neighborhood maximum operator.

PRESERVE_TYPE

Set this keyword to return the same type as the input array. This keyword only applies
if the GRAY keyword is set.

UINT

Set this keyword to return an unsigned integer array. This keyword only applies if the
GRAY keyword is set.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword only
applies if the GRAY keyword is set.

VALUES

An array with the same dimensions as Structure providing the values of the
structuring element. The presence of this parameter implies grayscale dilation. Each
pixel of the result is the maximum of the sum of the corresponding elements of
VALUE and the Image pixel value. If the resulting sum is greater than 255, the return
value is 255.

Using DILATE

Mathematical morphology is a method of processing digital images on the basis of
shape. A discussion of this topic is beyond the scope of this manual. A suggested
reference is: Haralick, Sternberg, and Zhuang, “Image Analysis Using Mathematical
Morphology,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
DILATE IDL Reference Guide

411
Vol. PAMI-9, No. 4, July, 1987, pp. 532-550. Much of this discussion is taken from
that article.

Briefly, the DILATE function returns the dilation of Image by the structuring element
Structure. This operator is commonly known as “fill”, “expand”, or “grow.” It can be
used to fill “holes” of a size equal to or smaller than the structuring element.

Used with binary images, where each pixel is either 1 or 0, dilation is similar to
convolution. Over each pixel of the image, the origin of the structuring element is
overlaid. If the image pixel is nonzero, each pixel of the structuring element is added
to the result using the “or” operator.

Letting A ⊕ B represent the dilation of an image A by structuring element B, dilation
can be defined as:

where (A)b represents the translation of A by b. Intuitively, for each nonzero element
bi,j of B, A is translated by i,j and summed into C using the “or” operator. For
example:

In this example, the origin of the structuring element is at (0,0).

Used with grayscale images, which are always converted to byte type, the DILATE
function is accomplished by taking the maximum of a set of sums. It can be used to
conveniently implement the neighborhood maximum operator with the shape of the
neighborhood given by the structuring element.

Openings and Closings

The opening of image B by structuring element K is defined as (B ⊗ K) ⊕ K. The
closing of image B by K is defined as (B ⊕ K) ⊗ K where the “o times” symbol
represents the erosion operator implemented by the IDL ERODE function.

As stated by Haralick et al, the result of iteratively applied dilations and erosions is
an elimination of specific image detail smaller than the structuring element without
the global geometric distortion of unsuppressed features. For example, opening an

C A B⊕ A()b
b B∈
∪= =

0100

0100

0110

1000

0000

11⊕

0110

0110

0111

1100

0000

=

IDL Reference Guide DILATE

412
image with a disk structuring element smooths the contour, breaks narrow isthmuses,
and eliminates small islands and sharp peaks or capes.

Closing an image with a disk structuring element smooths the contours, fuses narrow
breaks and long thin gulfs, eliminates small holes, and fills gaps on the contours.

Note
MORPH_OPEN and MORPH_CLOSE can also be used to perform these tasks.

Examples

Example 1

This example thresholds a gray scale image at the value of 100, producing a binary
image. The result is then “opened” with a 3 pixel by 3 pixel square shape operator,
using the DILATE and ERODE operators. The effect is to remove holes, islands, and
peninsula smaller than the shape operator:

; Threshold and make binary image:
B = A GE

; Create the shape operator:
S = REPLICATE(1, 3, 3)

; "Opening" operator:
C = DILATE(ERODE(B, S), S)

; Show the result:
TVSCL, C

Example 2

For grayscale images, DILATE takes the neighborhood maximum, where the shape
of the neighborhood is given by the structuring element. Elements for which the
structuring element extends off the array are indeterminate. For example, assume you
have the following image and structuring element:

image = BYTE([2,1,3,3,3,3,1,2])
s = [1,1]

If the origin of the structuring element is not specified in the call to DILATE, the
origin defaults to one half the width of the structuring element, which is 1 in this case.
Therefore, for the first element in the image array, the structuring element is aligned
with the image as depicted below:
DILATE IDL Reference Guide

413
[2,1,3,3,3,3,1,2]
↑

[1,1]

This will cause an indeterminate value for the first element in the DILATE result. If
edge values are important, you must pad the image with as many zeros as there are
elements in the structuring element that extend off the array, in all dimensions. In this
case, you would need to pad the image with a single leading zero. If the structuring
element were s=[1,1,1,1], and you specified an origin of 2, the structuring
element would align with the image as follows:

[2,1,3,3,3,3,1,2]
↑ ↑

[1,1,1,1] [1,1,1,1]

Therefore, you would need to pad the image with at least two leading zeros and at
least one trailing zero. You would then perform the dilation operation on the padded
image, and remove the padding from the result.

The following code illustrates this method:

image = BYTE([2,1,3,3,3,3,1,2])
s = [1,1] ; Structuring element
PRINT, 'Image: '
PRINT, image

PRINT, 'Dilation using no padding: '
PRINT, DILATE(image, s, /GRAY)

result = DILATE([0, image], s, /GRAY)
PRINT, 'Dilation using padding: '
PRINT, result[1:N_ELEMENTS(image)]

IDL prints:

Image:
 2 1 3 3 3 3 1 2
Dilation using no padding:
 1 3 3 3 3 3 2 2
Dilation using padding:
 2 3 3 3 3 3 2 2

See Also

ERODE, MORPH_CLOSE, MORPH_DISTANCE, MORPH_GRADIENT,
MORPH_HITORMISS, MORPH_OPEN, MORPH_THIN, MORPH_TOPHAT
IDL Reference Guide DILATE

414
DINDGEN

The DINDGEN function returns a double-precision, floating-point array with the
specified dimensions. Each element of the array is set to the value of its one-
dimensional subscript.

Syntax

Result = DINDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters may be any scalar
expression. Up to eight dimensions may be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Example

To create D, a 100-element, double-precision, floating-point array with each element
set to the value of its subscript, enter:

D = DINDGEN(100)

See Also

BINDGEN, CINDGEN, DCINDGEN, FINDGEN, INDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
DINDGEN IDL Reference Guide

415
DISSOLVE

The DISSOLVE procedure provides a digital “dissolve” effect for images. The
routine copies pixels from the image (arranged into square tiles) to the display in
pseudo-random order. This routine is written in the IDL language. Its source code can
be found in the file dissolve.pro in the lib subdirectory of the IDL distribution.

Syntax

DISSOLVE, Image [, WAIT=seconds] [, /ORDER] [, SIZ=pixels] [, X0=pixels,
Y0=pixels]

Arguments

Image

The image to be displayed. It is assumed that the image is already scaled. Byte-
valued images display most rapidly.

Keywords

DELAY

The wait between displaying tiles. The default is 0.01 second.

ORDER

The Image display order: 0 = bottom up (the default), 1 = top-down.

SIZ

Size of square tile. The default is 32 x 32 pixels.

X0, Y0

The X and Y offsets of the lower-left corner of the image on screen, in pixels.

Example

Display an image using 16 x 16 pixel tiles:

DISSOLVE, DIST(200), SIZ=16

See Also

ERASE, TV
IDL Reference Guide DISSOLVE

416
DIST

The DIST function creates a rectangular array in which the value of each element is
proportional to its frequency. This array may be used for a variety of purposes,
including frequency-domain filtering and making pretty pictures.

This routine is written in the IDL language. Its source code can be found in the file
dist.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = DIST(N [, M])

Arguments

N

The number of columns in the resulting array.

M

The number of rows in the resulting array. If M is omitted, the resulting array will be
N by N.

Example

; Display the results of DIST as an image:
TVSCL, DIST(100)

See Also

FFT
DIST IDL Reference Guide

417
DLM_LOAD

Normally, IDL system routines that reside in dynamically loadable modules (DLMs)
are automatically loaded on demand when a routine from a DLM is called. The
DLM_LOAD procedure can be used to explicitly cause a DLM to be loaded.

Syntax

DLM_LOAD, DLMNameStr1 [, DLMNameStr2,..., DLMNameStrn]

Arguments

DLMNameStrn

A string giving the name of the DLM to be loaded. DLM_LOAD causes each named
DLM to be immediately loaded.

Keywords

None

Example

Force the JPEG DLM to be loaded:

DLM_LOAD, 'jpeg'

IDL prints:

% Loaded DLM: JPEG.
IDL Reference Guide DLM_LOAD

418
DLM_REGISTER

The DLM_REGISTER procedure registers a Dynamically Loadable Module (DLM)
in IDL that was not registered when starting IDL. This allows you to create DLMs
using the MAKE_DLL procedure and register them in your current session without
having to exit and restart IDL.

Note
DLM_REGISTER is not the recommended way to make dynamic link modules
known to your IDL session. The primary advantage of DLMs over the use of
LINKIMAGE is that IDL knows about the routines from your DLM before it
compiles a single line of PRO code. This avoids the LINKIMAGE pitfall in which
code that calls the routine gets compiled before the LINKIMAGE call, causing IDL
to interpret the call incorrectly. Use of DLM_REGISTER circumvents this benefit.

Syntax

DLM_REGISTER, DLMDefFilePath1 [, DLMDefFilePath2, ..., DLMDefFilePathn]

Arguments

DLMDefFilePathn

The name of the DLM module definition file to read.

Keywords

None.
DLM_REGISTER IDL Reference Guide

419
DO_APPLE_SCRIPT

The DO_APPLE_SCRIPT procedure compiles and executes an AppleScript script,
possibly returning a result. DO_APPLE_SCRIPT is only available in IDL for
Macintosh.

Syntax

DO_APPLE_SCRIPT, Script [, /AG_STRING] [, RESULT=variable]

Arguments

Script

A string or array of strings to be compiled and executed by AppleScript.

Keywords

AS_STRING

Set this keyword to cause the result to be returned as a decompiled string.
Decompiled strings have the same format as the “The Result” window of Apple’s
Script Editor.

RESULT

Set this keyword equal to a named variable that will contain the results of the script.

Example

Suppose you wish to retrieve a range of cell data from a Microsoft Excel spreadsheet.
The following AppleScript script and command retrieve the first through fifth rows
of the first two columns of a spreadsheet titled “Worksheet 1”, storing the result in
the IDL variable A:

script = ['tell application "Microsoft Excel"', $
'get Value of Range "R1C1:R5C2" of Worksheet 1', $
'end tell']

DO_APPLE_SCRIPT, script, RESULT = a

Similarly, the following lines would copy the contents of the IDL variable A to a
range within the spreadsheet:

A = [1, 2, 3, 4, 5]
script = ['tell application "IDL" to copy variable "A"', $
IDL Reference Guide DO_APPLE_SCRIPT

420
'into aVariable', $
'tell application "Excel" to copy aVariable to', $
'value of range "R1C1:R5C1" of worksheet 1']

DO_APPLE_SCRIPT, script

See Also

Chapter 5, “AppleScript Support”, in the IDL External Development Guide
DO_APPLE_SCRIPT IDL Reference Guide

421
DOC_LIBRARY

The DOC_LIBRARY procedure extracts documentation headers from one or more
IDL programs (procedures or functions). This command provides a standard interface
to the operating-system specific DL_DOS, DL_UNIX, and DL_VMS procedures.

The documentation header of the .pro file in question must have the following
format:

• The first line of the documentation block contains only the characters ;+,
starting in column 1.

• The last line of the documentation block contains only the characters ;-,
starting in column 1.

• All other lines in the documentation block contain a ; in column 1.

The file template.pro in the general subdirectory of the examples subdirectory
of the IDL distribution contains a template for creating your own documentation
headers.

This routine is supplied for users to view online documentation from their own IDL
programs. Though it could be used to view documentation headers from the lib
subdirectory of the IDL distribution, we do not recommend doing so. The
documentation headers on the files in the lib directory are used for historical
purposes—most do not contain the most current or accurate documentation for those
routines. The most current documentation for IDL’s built-in and library routines is
found in IDL’s online help system (enter ? at the IDL prompt).

This routine is written in the IDL language. Its source code can be found in the file
doc_library.pro in the lib subdirectory of the IDL distribution.

Syntax

DOC_LIBRARY [, Name] [, /PRINT]

UNIX keywords: [, DIRECTORY=string] [, /MULTI]

VMS keywords: [, /FILE] [, PATH=string] [, /OUTPUTS]
IDL Reference Guide DOC_LIBRARY

422
Arguments

Name

A string containing the name of the IDL routine in question. Under Windows or
UNIX, Name can be “*” to get information on all routines.

Keywords (All Platforms)

PRINT

Set this keyword to send the output of DOC_LIBRARY to the default printer. Under
UNIX, if PRINT is a string, it is interpreted as a shell command used for output with
the documentation from DOC_LIBRARY providing standard input (i.e.,
PRINT="cat > junk").

UNIX Keywords

DIRECTORY

A string containing the name of the directory to search. If omitted, the current
directory and !PATH are used.

MULTI

Set this keyword to allow printing of more than one file if the requested module
exists in more than one directory.

VMS Keywords

FILE

If this keyword is set, the output is left in the file userlib.doc, in the current
directory.

PATH

A string that describes an optional directory/library search path. This keyword uses
the same format and semantics as !PATH. If omitted, !PATH is used.

OUTPUTS

If this keyword is set, documentation is sent to the standard output unless the PRINT
keyword is set.
DOC_LIBRARY IDL Reference Guide

423
Example

To view the documentation header for the library function DIST, enter:

DOC_LIBRARY, 'DIST'

See Also

MK_HTML_HELP
IDL Reference Guide DOC_LIBRARY

424
DOUBLE

The DOUBLE function returns a result equal to Expression converted to double-
precision floating-point. If Expression is a complex number, DOUBLE returns the
real part.

Syntax

Result = DOUBLE(Expression[, Offset [, Dim1, ..., Dimn]])

Arguments

Expression

The expression to be converted to double-precision, floating-point.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as double-precision, floating-
point data. See the description in Chapter 3, “Constants and Variables” in Using IDL
for details.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
The dimension parameters can be any scalar expression. Up to eight dimensions can
be specified. If no dimension arguments are given, the result is taken to be scalar.

When converting from a string argument, it is possible that the string does not contain
a valid floating-point value and no conversion is possible. The default action in such
cases is to print a warning message and return 0. The ON_IOERROR procedure can
be used to establish a statement to be jumped to in case of such errors.

Example

Suppose that A contains the integer value 45. A double-precision, floating-point
version of A can be stored in B by entering:

B = DOUBLE(A)
PRINT, B

IDL prints:

45.000000
DOUBLE IDL Reference Guide

425
See Also

BYTE, COMPLEX, DCOMPLEX, FIX, FLOAT, LONG, LONG64, STRING,
UINT, ULONG, ULONG64
IDL Reference Guide DOUBLE

426
DRAW_ROI

The DRAW_ROI procedure draws a region or group of regions to the current Direct
Graphics device. The primitives used to draw each ROI are based on the TYPE
property of the given IDLanROI object. The TYPE property selects between points,
polylines, and filled polygons.

Syntax

DRAW_ROI, oROI [, /LINE_FILL] [, SPACING=value]

Graphics Keywords: [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, /NOCLIP]
[, ORIENTATION=ccw_degrees_from_horiz] [, PSYM=integer{0 to 10}]
[, SYMSIZE=value] [, /T3D] [, THICK=value]

Arguments

oROI

A reference to an IDLanROI object to be drawn.

Keywords

LINE_FILL

Set this keyword to indicate that polygonal regions are to be filled with parallel lines,
rather than using the default solid fill. When using a line fill, the thickness, linestyle,
orientation, and spacing of the lines may be specified by keywords.

SPACING

The spacing, in centimeters, between the parallel lines used to fill polygons.

Graphics Keywords Accepted

CLIP, COLOR, DATA, DEVICE, LINESTYLE, NOCLIP, NORMAL,
ORIENTATION, PSYM, SYMSIZE, T3D, THICK

Example

The following example displays an image and collects data for a region of interest.
The resulting ROI is displayed as a filled polygon.
DRAW_ROI IDL Reference Guide

427
PRO roi_ex
; Load and display an image.
img=READ_DICOM(FILEPATH('mr_knee.dcm',SUBDIR=['examples','data']))
TV, img

; Create a polygon region object.
oROI = OBJ_NEW('IDLanROI', TYPE=2)

; Print instructions.
PRINT,'To create a region:'
PRINT,' Left mouse: select points for the region.'
PRINT,' Right mouse: finish the region.'

; Collect first vertex for the region.
CURSOR, xOrig, yOrig, /UP, /DEVICE
oROI->AppendData, xOrig, yOrig
PLOTS, xOrig, yOrig, PSYM=1, /DEVICE

;Continue to collect vertices for region until right mouse button.
x1 = xOrig
y1 = yOrig
while !MOUSE.BUTTON ne 4 do begin

x0 = x1
y0 = y1
CURSOR, x1, y1, /UP, /DEVICE
PLOTS, [x0,x1], [y0,y1], /DEVICE
oROI->AppendData, x1, y1

endwhile
PLOTS, [x1,xOrig], [y1,yOrig], /DEVICE

; Draw the the region with a line fill.
DRAW_ROI, oROI, /LINE_FILL, SPACING=0.2, ORIENTATION=45, /DEVICE
END
IDL Reference Guide DRAW_ROI

428
EFONT

The EFONT procedure provides a simple widget-based vector font editor and
display. Use this procedure to read and/or modify a local copy of the file
hersh1.chr, located in the resource/fonts subdirectory of the main IDL
directory, which contains the vector fonts used by IDL in plotting. This is a very
rudimentary editor. Click the “Help” button on the EFONT main menu for more
information.

This routine is written in the IDL language. Its source code can be found in the file
efont.pro in the lib subdirectory of the IDL distribution.

Syntax

EFONT [, Init_Font] [, /BLOCK] [, GROUP=widget_id]

Arguments

Init_Font

The initial font index, from 3 to 29. The default is 3.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have EFONT
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

GROUP

The widget ID of the widget that calls EFONT. If GROUP is set, the death of the
caller results in the death of EFONT.
EFONT IDL Reference Guide

429
See Also

SHOWFONT, XFONT
IDL Reference Guide EFONT

430
EIGENQL

The EIGENQL function computes the eigenvalues and eigenvectors of an n-by-n
real, symmetric array using Householder reductions and the QL method with implicit
shifts.

Syntax

Result = EIGENQL(A [, /ABSOLUTE] [, /ASCENDING] [, /DOUBLE]
[, EIGENVECTORS=variable] [, /OVERWRITE | , RESIDUAL=variable])

Return Value

This function returns an n-element vector containing the eigenvalues.

Arguments

A

An n-by-n symmetric single- or double-precision floating-point array.

Keywords

ABSOLUTE

Set this keyword to sort the eigenvalues by their absolute value (their magnitude)
rather than by their signed value.

ASCENDING

Set this keyword to return eigenvalues in ascending order (smallest to largest). If not
set or set to zero, eigenvalues are returned in descending order (largest to smallest).
The eigenvectors are correspondingly reordered.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

EIGENVECTORS

Set this keyword equal to a named variable that will contain the computed
eigenvectors in an n-by-n array. The ith row of the returned array contains the ith

eigenvalue. If no variable is supplied, the array will not be computed.
EIGENQL IDL Reference Guide

431
OVERWRITE

Set this keyword to use the input array for internal storage and to overwrite its
previous contents.

RESIDUAL

Use this keyword to specify a named variable that will contain the residuals for each
eigenvalue/eigenvector (λ/x) pair. The residual is based on the definition Ax –
(λ)x = 0 and is an array of the same size as A and the same type as Result. The rows
of this array correspond to the residuals for each eigenvalue/eigenvector pair.

Note
If the OVERWRITE keyword is set, the RESIDUAL keyword has no effect.

Example

; Define an n-by-n real, symmetric array:
A = [[5.0, 4.0, 0.0, -3.0], $

[4.0, 5.0, 0.0, -3.0], $

[0.0, 0.0, 5.0, -3.0], $

[-3.0, -3.0, -3.0, 5.0]]

; Compute the eigenvalues and eigenvectors:
eigenvalues = EIGENQL(A, EIGENVECTORS = evecs, $

RESIDUAL = residual)

;Print the eigenvalues and eigenvectors:
PRINT, 'Eigenvalues: '
PRINT, eigenvalues
PRINT, 'Eigenvectors: '
PRINT, evecs

IDL prints:

Eigenvalues:
12.0915 6.18662 1.00000 0.721870

Eigenvectors:
-0.554531 -0.554531 -0.241745 0.571446
-0.342981 -0.342981 0.813186 -0.321646
0.707107 -0.707107 -6.13503e-008-6.46503e-008
0.273605 0.273605 0.529422 0.754979

The accuracy of each eigenvalue/eigenvector (λ/x) pair may be checked by printing
the residual array:
IDL Reference Guide EIGENQL

432
PRINT, residual

The RESIDUAL array has the same dimensions as the input array and the same type
as the result. The residuals are contained in the rows of the RESIDUAL array. All
residual values should be floating-point zeros.

See Also

EIGENVEC, TRIQL
EIGENQL IDL Reference Guide

433
EIGENVEC

The EIGENVEC function computes the eigenvectors of an n-by-n real, non-
symmetric array using Inverse Subspace Iteration. Use ELMHES and HQR to find
the eigenvalues of an n-by-n real, nonsymmetric array.

This routine is written in the IDL language. Its source code can be found in the file
eigenvec.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = EIGENVEC(A, Eval [, /DOUBLE] [, ITMAX=value]
[, RESIDUAL=variable])

Return Value

This function returns a complex array with a column dimension equal to n and a row
dimension equal to the number of eigenvalues.

Arguments

A

An n-by-n nonsymmetric, single- or double-precision floating-point array.

EVAL

An n-element complex vector of eigenvalues.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

ITMAX

The maximum number of iterations allowed in the computation of each eigenvector.
The default value is 4.

RESIDUAL

Use this keyword to specify a named variable that will contain the residuals for each
eigenvalue/eigenvector (λ/x) pair. The residual is based on the definition Ax – λx = 0
IDL Reference Guide EIGENVEC

434
and is an array of the same size and type as that returned by the function. The rows of
this array correspond to the residuals for each eigenvalue/eigenvector pair.

Example

; Define an n-by-n real, nonsymmetric array:
A = [[1.0, -2.0, -4.0, 1.0], $

[0.0, -2.0, 3.0, 4.0], $
[2.0, -6.0, -1.0, 4.0], $
[3.0, -3.0, 1.0, -2.0]]

; Compute the eigenvalues of A using double-precision complex
; arithmetic and print the result:
eval = HQR(ELMHES(A), /DOUBLE)
PRINT, 'Eigenvalues: '
PRINT, eval
evec = EIGENVEC(A, eval, RESIDUAL = residual)

; Print the eigenvectors:
PRINT, 'Eigenvectors:'
PRINT, evec[*,0], evec[*,1], evec[*,2], evec[*,3]

IDL prints:

Eigenvalues:
(0.26366255, -6.1925899)(0.26366255, 6.1925899)
(-4.9384492, 0.0000000)(0.41112406, 0.0000000)
Eigenvectors:
(0.0076733129, -0.42912489)(0.40651652, 0.32973069)
(0.54537624, -0.28856257)(0.33149359, -0.22632585)
(-0.42145884, -0.081113711)(0.23867007, 0.46584824)
(-0.39497143, 0.47402647)(-0.28990600, 0.27760747)
(-0.54965842, 0.0000000)(-0.18401243, 0.0000000)
(-0.58124548, 0.0000000)(0.57111192, 0.0000000)
(0.79297048, 0.0000000)(0.50289130, 0.0000000)
(-0.049618509, 0.0000000)(0.34034720, 0.0000000)

You can check the accuracy of each eigenvalue/eigenvector (λ/x) pair by printing the
residual array. All residual values should be floating-point zeros.

See Also

ELMHES, HQR, TRIQL, TRIRED
EIGENVEC IDL Reference Guide

435
ELMHES

The ELMHES function reduces a real, nonsymmetric n by n array A to upper
Hessenberg form. The result is an upper Hessenberg array with eigenvalues that are
identical to those of the original array A. The Hessenberg array is stored in elements
(j, i) with i ≤ j + 1. Elements with i > j + 1 are to be thought of as zero, but are
returned with random values. ELMHES is based on the routine elmhes described in
section 11.5 of Numerical Recipes in C: The Art of Scientific Computing (Second
Edition), published by Cambridge University Press, and is used by permission.

Syntax

Result = ELMHES(A [, /COLUMN] [, /DOUBLE] [, /NO_BALANCE])

Arguments

A

An n by n real, nonsymmetric array.

Keywords

COLUMN

Set this keyword if the input array A is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

NO_BALANCE

Set this keyword to disable balancing. By default, a balancing algorithm is applied to
A. Balancing a nonsymmetric array is recommended to reduce the sensitivity of
eigenvalues to rounding errors.

Example

See the description of HQR for an example using this function.

See Also

EIGENVEC, HQR, TRIQL, TRIRED
IDL Reference Guide ELMHES

436
EMPTY

The EMPTY procedure causes all buffered output for the current graphics device to
be written. IDL uses buffered output on many display devices for reasons of
efficiency. This buffering leads to rare occasions where a program needs to be certain
that data are not waiting in a buffer, but have actually been output. EMPTY is a low-
level graphics routine. IDL graphics routines generally handle flushing of buffered
data transparently to the user, so the need for EMPTY is very rare.

Syntax

EMPTY

See Also

FLUSH
EMPTY IDL Reference Guide

437
ENABLE_SYSRTN

The ENABLE_SYSRTN procedure enables/disables IDL system routines. This
procedure is intended for use by runtime and callable IDL applications, and is not
generally useful for interactive use.

Syntax

ENABLE_SYSRTN [, Routines] [, /DISABLE] [, /EXCLUSIVE] [, /FUNCTIONS]

Arguments

Routines

A string scalar or array giving the names of routines to be enabled or disabled. By
default, these are procedures, but this can be changed by setting the FUNCTIONS
keyword.

Keywords

DISABLE

By default, the Routines are enabled. Setting this keyword causes them to be disabled
instead.

EXCLUSIVE

By default, ENABLE_SYSRTN does not alter routines not listed in Routines. If
EXCLUSIVE is set, the specified routines are taken to be the only routines that
should be enabled or disabled, and all other routines have the opposite action applied.

Therefore, setting EXCLUSIVE and not DISABLE means that the routines in the
Routines argument are enabled and all other system routines of the same type
(function or procedure) are disabled. Setting EXCLUSIVE and DISABLE means that
all listed routines are disabled and all others are enabled.

FUNCTIONS

Normally, Routines specifies the names of procedures. Set the FUNCTIONS
keyword to manipulate functions instead.
IDL Reference Guide ENABLE_SYSRTN

438
Special Cases

The following is a list of cases in which ENABLE_SYSRTN is unable to enable or
disable a requested routine. All such attempts are simply ignored without issuing an
error, allowing the application to run without error in different IDL environments:

• Attempts to enable/disable non-existent system routines.

• Attempts to enable a system routine disabled due to the mode in which IDL is
licensed, as opposed to being disabled via ENABLE_SYSRTN, are quietly
ignored (e.g. demo mode).

• The routines CALL_FUNCTION, CALL_METHOD, CALL_PROCEDURE,
and EXECUTE cannot be disabled via ENABLE_SYSRTN. However,
anything that can be called from them can be disabled, so this is not a
significant drawback.

Examples

To disable the PRINT procedure:

ENABLE_SYSRTN, /DISABLE, 'PRINT'

To enable the PRINT procedure and disable all other procedures:

ENABLE_SYSRTN, /EXCLUSIVE, 'PRINT'

To ensure all possible functions are enabled:

ENABLE_SYSRTN, /DISABLE, /EXCLUSIVE, /FUNCTIONS

In the last example, all named functions should be disabled and all other functions
should be enabled. Since no Routines argument is provided, this means that all
routines become enabled.
ENABLE_SYSRTN IDL Reference Guide

439
EOF

The EOF function tests the specified file unit for the end-of-file condition. If the file
pointer is positioned at the end of the file, EOF returns true (1), otherwise false (0) is
returned.

Note
The EOF function cannot be used with files opened with the RAWIO keyword to
the OPEN routines. Many of the devices commonly used with RAWIO signal their
end-of-file by returning a zero transfer count to the I/O operation that encounters
the end-of-file.

Syntax

Result = EOF(Unit)

Arguments

Unit

The file unit to test for end-of-file.

Using EOF with VMS Files

Under VMS, the EOF function does not work with files accessed via DECNET, or
that do not have sequential organization (i.e., relative or indexed). The EOF
procedure cannot be used with such files as it will always return false. Instead, use
the ON_IOERROR procedure to detect when the end-of-file occurs.

Examples

If file unit number 1 is open, the end-of-file condition can be checked by examining
the value of the expression EOF(1). For example, the following IDL code reads and
prints a text file:

; Open the file test.lis:
OPENR, 1, 'test.lis'
; Define a string variable:
A = ''
; Loop until EOF is found:
WHILE NOT EOF(1) DO BEGIN

; Read a line of text:
IDL Reference Guide EOF

440
READF, 1, A
; Print the line:
PRINT,

ENDWHILE
; Close the file:
CLOSE, 1

See Also

POINT_LUN
EOF IDL Reference Guide

441
EOS_* Routines

See “Alphabetic Listing of EOS Routines” in the Scientific Data Formats manual.
IDL Reference Guide EOS_* Routines

442
ERASE

The ERASE procedure erases the screen of the currently selected graphics device (or
starts a new page if the device is a printer). The device is reset to alphanumeric mode
if it has such a mode (e.g., Tektronix terminals).

Syntax

ERASE [, Background_Color] [, CHANNEL=value] [, COLOR=value]

Arguments

Background_Color

The color index for the screen to be erased to. If this argument is omitted, ERASE
resets the screen to the default background color (normally 0) stored in the system
variable !P.BACKGROUND. Providing a value for Background_Color overrides the
default.

Warning
Not all devices support this feature.

Keywords

CHANNEL

The channel or channel mask for the erase operation. This parameter has meaning
only when used with devices that support TrueColor or multiple-display channels.
The default value is !P.CHANNEL.

COLOR

Specifies the background color. Using this keyword is analogous to using the
Background_Color argument.

Example

; Display a simple image in the current window:
TV, DIST(255)

; Erase the image from the window:
ERASE
ERASE IDL Reference Guide

443
See Also

SET_PLOT, WINDOW, WSET
IDL Reference Guide ERASE

444
ERODE

The ERODE function implements the erosion operator on binary and grayscale
images and vectors. For details on using ERODE, see “Using ERODE” on page 445.

Syntax

Result = ERODE(Image, Structure [, X0 [, Y0 [, Z0]]] [, /GRAY
[, /PRESERVE_TYPE | , /UINT | , /ULONG]] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the erosion is to be performed.
If this parameter is not of byte type, a temporary byte copy is obtained. If neither of
the keywords GRAY or VALUES is present, the image is treated as a binary image
with all nonzero pixels considered as 1.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element. The
elements are interpreted as binary values—either zero or nonzero. The structuring
element must have the same number of dimensions as Image.

X0, Y0, Z0

Optional parameters specifying the one-, two-, or three-dimensional coordinate of the
structuring element’s origin. If omitted, the origin is set to the center, ([Nx/2], [Ny/2],
[Nz/2]), where Nx, Ny, and Nz are the dimensions of the structuring element array.
The origin need not be within the structuring element.

Keywords

GRAY

Set this keyword to perform grayscale, rather than binary, erosion. Nonzero elements
of the Structure parameter determine the shape of the structuring element
(neighborhood). If VALUES is not present, all elements of the structuring element
are 0, yielding the neighborhood minimum operator.
ERODE IDL Reference Guide

445
PRESERVE_TYPE

Set this keyword to return the same type as the input array. This keyword only applies
if the GRAY keyword is set.

UINT

Set this keyword to return an unsigned integer array. This keyword only applies if the
GRAY keyword is set.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword only
applies if the GRAY keyword is set.

VALUES

An array of the same dimensions as Structure providing the values of the structuring
element. The presence of this keyword implies grayscale erosion. Each pixel of the
result is the minimum of Image less the corresponding elements of VALUE. If the
resulting difference is less than zero, the return value will be zero.

Using ERODE

See the description of the DILATE function for background on morphological
operators. Erosion is the dual of dilation. It does to the background what dilation does
to the foreground.

Briefly, the ERODE function returns the erosion of Image by the structuring element
Structure. This operator is commonly known as “shrink” or “reduce”. It can be used
to remove islands smaller than the structuring element.

Over each pixel of the image, the origin of the structuring element is overlaid. If each
nonzero element of the structuring element is contained in the image, the output pixel
is set to one. Letting A ⊗ B represent the erosion of an image A by structuring
element B, erosion can be defined as:

where (A)-b represents the translation of A by b. The structuring element B can be
visualized as a probe that slides across image A, testing the spatial nature of A at each
point. If B translated by i,j can be contained in A (by placing the origin of B at i,j),
then i,j belongs to the erosion of A by B. For example:

In this example, the origin of the structuring element is at (0, 0).

C A B⊗ A() b–
b B∈
∩= =
IDL Reference Guide ERODE

446
Used with grayscale images, which are always converted to byte type, the ERODE
function is accomplished by taking the minimum of a set of differences. It can be
used to conveniently implement the neighborhood minimum operator with the shape
of the neighborhood given by the structuring element.

Examples

Example 1

This example thresholds a grayscale image at the value of 100, producing a binary
image. The result is then “opened” with a 3 pixel by 3 pixel square shape operator,
using the ERODE and DILATE operators. The effect is to remove holes, islands, and
peninsula smaller than the shape operator:

; Threshold and make binary image:
B = A GE 100

; Create the shape operator:
S = REPLICATE(1, 3, 3)

; "Opening" operator:
C = DILATE(ERODE(B, S), S)

; Show the result:
TVSCL, C

Example 2

For grayscale images, ERODE takes the neighborhood minimum, where the shape of
the neighborhood is given by the structuring element. Elements for which the
structuring element extends off the array are indeterminate. For example, assume you
have the following image and structuring element:

image = BYTE([2,1,3,3,3,3,1,2])
s = [1,1]

If the origin of the structuring element is not specified in the call to ERODE, the
origin defaults to one half the width of the structuring element, which is 1 in this case.

0100

0100

1110

1000

0000

11⊗

0000

0000

1100

0000

0000

=

ERODE IDL Reference Guide

447
Therefore, for the first element in the image array, the structuring element is aligned
with the image as depicted below:

[2,1,3,3,3,3,1,2]
↑

[1,1]

This will cause an indeterminate value for the first element in the ERODE result. If
edge values are important, you must pad the image with as many elements as there
are elements in the structuring element that extend off the array, in all dimensions.
The value of the padding elements must be the maximum value in the image, since
ERODE calculates a neighborhood minimum. In this case, you would need to pad the
image with a single leading 3. If the structuring element were s=[1,1,1,1], and
you specified an origin of 2, the structuring element would align with the image as
follows:

[2,1,3,3,3,3,1,2]
↑ ↑

[1,1,1,1] [1,1,1,1]

Therefore, you would need to pad the image with at least two leading 3s and at least
one trailing 3. You would then perform the erosion operation on the padded image,
and remove the padding from the result.

The following code illustrates this method:

image = BYTE([2,1,3,3,3,3,1,2])
s = [1,1] ; Structuring element
PRINT, 'Image: '
PRINT, image

PRINT, 'Erosion using no padding: '
PRINT, ERODE(image, s, /GRAY)

result = ERODE([MAX(image), image], s, /GRAY)
PRINT, 'Erosion using padding: '
PRINT, result[1:N_ELEMENTS(image)]

IDL prints:

Image:
 2 1 3 3 3 3 1 2
Erosion using no padding:
 0 1 1 3 3 3 1 1
Erosion using padding:
 2 1 1 3 3 3 1 1
IDL Reference Guide ERODE

448
See Also

DILATE, MORPH_CLOSE, MORPH_DISTANCE, MORPH_GRADIENT,
MORPH_HITORMISS, MORPH_OPEN, MORPH_THIN, MORPH_TOPHAT
ERODE IDL Reference Guide

449
ERRORF

The ERRORF function returns the value of the error function:

The result is double-precision if the argument is double-precision. If the argument is
floating-point, the result is floating-point. The result always has the same structure as
X. The ERRORF function does not work with complex arguments.

Syntax

Result = ERRORF(X)

Arguments

X

The expression for which the error function is to be evaluated.

Example

To find the error function of 0.4 and print the result, enter:

PRINT, ERRORF(0.4)

IDL prints:

0.428392

See Also

GAMMA, IGAMMA, EXPINT

erf x() 2 π⁄ e
t2–

td

0

x

∫=
IDL Reference Guide ERRORF

450
ERRPLOT

The ERRPLOT procedure plots error bars over a previously drawn plot.

This routine is written in the IDL language. Its source code can be found in the file
errplot.pro in the lib subdirectory of the IDL distribution.

Syntax

ERRPLOT, [X,] Low, High [, WIDTH=value]

Arguments

X

A vector containing the abscissa values at which the error bars are to be plotted. X
only needs to be provided if the abscissa values are not the same as the index
numbers of the plotted points.

Low

A vector of lower estimates, equal to data - error.

High

A vector of upper estimates, equal to data + error.

Keywords

WIDTH

The width of the error bars. The default is 1% of plot width.

Examples

To plot symmetrical error bars where Y is a vector of data values and ERR is a
symmetrical error estimate, enter:

; Plot data:
PLOT, Y

; Overplot error bars:
ERRPLOT, Y-ERR, Y+ERR

If error estimates are non-symmetrical, provide actual error estimates in the upper
and lower arguments.
ERRPLOT IDL Reference Guide

451
; Plot data:
PLOT,Y

; Provide custom lower and upper bounds:
ERRPLOT, lower, upper

To plot Y versus a vector of abscissas:

; Plot data (X versus Y):
PLOT, X, Y

; Overplot error estimates:
ERRPLOT, X, Y-ERR, Y+ERR

See Also

OPLOTERR, PLOT, PLOTERR
IDL Reference Guide ERRPLOT

452
EXECUTE

The EXECUTE function compiles and executes one or more IDL statements
contained in a string at run-time. It also returns true (1) if the string was successfully
compiled and executed. If an error occurs during either phase, the result is false (0).

Like the CALL_PROCEDURE and CALL_FUNCTION routines, calls to
EXECUTE can be nested. However, compiling the string at run-time is inefficient.
CALL_FUNCTION and CALL_PROCEDURE provide much of the functionality of
EXECUTE without imposing this limitation, and should be used instead of
EXECUTE whenever possible.

Syntax

Result = EXECUTE(String [, QuietCompile])

Arguments

String

A string containing the command(s) to be compiled and executed.

QuietCompile

If this argument is set to a non-zero value, EXECUTE will not print the compiler
generated error messages (such as syntax errors). If QuietCompile is omitted or set to
0, EXECUTE will output such errors.

Example

Create a string that holds a valid IDL command by entering:

com = 'PLOT, [0,1]'

Execute the contents of the string by entering:

R = EXECUTE(com)

A plot should appear. You can confirm that the string was successfully compiled and
executed by checking that the value of R is 1.

See Also

CALL_FUNCTION, CALL_METHOD, CALL_PROCEDURE
EXECUTE IDL Reference Guide

453
EXIT

The EXIT procedure quits IDL and exits back to the operating system. All buffers are
flushed and open files are closed. The values of all variables that were not saved are
lost.

Syntax

EXIT [, /NO_CONFIRM] [, STATUS=code]

Keywords

NO_CONFIRM

Set this keyword to suppress any confirmation dialog that would otherwise be
displayed in a GUI version of IDL such as the IDL Development Environment.

STATUS

Set this keyword equal to an exit status code that will be returned when IDL exits. For
example, on a UNIX system using the Bourne shell:

Start IDL:

$ idl

Exit IDL specifying exit status 45:

IDL> exit, status=45

Display last exit status code:

$ echo $?

The following displays:

45

See Also

CLOSE, FLUSH, STOP, WAIT
IDL Reference Guide EXIT

454
EXP

The EXP function returns the natural exponential function of Expression.

Syntax

Result = EXP(Expression)

Arguments

Expression

The expression to be evaluated. If Expression is double-precision floating or
complex, the result is of the same type. All other types are converted to single-
precision floating-point and yield floating-point results. The definition of the
exponential function for complex arguments is:

EXP(x) = COMPLEX(eR cos I, eR sin I)

where:

R = real part of x, and I = imaginary part of x. If Expression is an array, the
result has the same structure, with each element containing the result for the
corresponding element of Expression.

Example

Plot a Gaussian with a 1/e width of 10 and a center of 50 by entering:

PLOT, EXP(-(FINDGEN(100)/10. - 5.0)^2)

See Also

ALOG
EXP IDL Reference Guide

455
EXPAND

The EXPAND procedure shrinks or expands a two-dimensional array, using bilinear
interpolation. It is similar to the CONGRID and REBIN routines.

This routine is written in the IDL language. Its source code can be found in the file
expand.pro in the lib subdirectory of the IDL distribution.

Syntax

EXPAND, A, Nx, Ny, Result [, FILLVAL=value] [, MAXVAL=value]

Arguments

A

A two-dimensional array to be magnified.

Nx

Desired size of the X dimension, in pixels.

Ny

Desired size of the Y dimension, in pixels.

Result

A named variable that will contain the magnified array.

Keywords

FILLVAL

Set this keyword equal to the value to use when elements larger than MAXVAL are
encountered. The default is -1.

MAXVAL

Set this keyword equal to the largest desired value. Elements greater than this value
are set equal to the value of the FILLVAL keyword.

See Also

CONGRID, REBIN
IDL Reference Guide EXPAND

456
EXPAND_PATH

The EXPAND_PATH function is used to expand a simple path-definition string into
a full path name for use with the !PATH system variable.!PATH is a list of locations
where IDL searches for currently undefined procedures and functions.

Syntax

Result = EXPAND_PATH(String [, /ALL_DIRS] [, /ARRAY] [, COUNT=variable]
[, /DLM] [, /HELP])

The Path Definition String

EXPAND_PATH accepts a single argument, a scalar string that contains a simple
path-definition string, that the function expands into a list of directories that can be
assigned to !PATH. This string uses the same format as the IDL_PATH environment
variable (UNIX, Windows) or logical name (VMS). This format is also used in the
path preferences dialog (Windows, Macintosh).

The path-definition string is a scalar string containing a list of directories (and in the
case of VMS, text library files that are prefixed with the “@” character), separated by
a special character (“:” for UNIX and Macintosh, “,” for VMS, and “;” for
Windows). Prepending a “+” character to a directory name causes all of its
subdirectories to be searched.

If a directory specified in the string does not have a “+” character prepended to it, it is
copied to the output string verbatim. However, if it does have a leading “+” then
EXPAND_PATH searches the directory and all of its subdirectories for files of the
appropriate type for the path. Any directory containing at least one file of the desired
type is added to the search path.

A Note on Order within !PATH

IDL ensures only that all directories containing IDL files are placed in !PATH. The
order in which they appear is completely unspecified, and does not necessarily
correspond to any specific order (such as top-down alphabetized). This allows IDL to
construct the path in the fastest possible way and speeds startup. This is only a
problem if two subdirectories in such a hierarchy contain a file with the same name.
Such hierarchies usually are a collection of cooperative routines designed to work
together, so such duplication is rare.

If the order in which “+” expands directories is a problem for your application, you
should add the directories to the path explicitly and not use “+”. Only the order of the
EXPAND_PATH IDL Reference Guide

457
files within a given “+” entry are determined by IDL. It never reorders !PATH in any
other way. You can therefore obtain any search order you desire by writing the path
explicitly.

UNIX — The directory name is expanded to remove wildcards (~ and *). This avoids
overhead IDL would otherwise incur as it searches for library routines. It is discarded
from the search path if any of the following is true:

• It is not a directory.

• The directory it names does not exist or cannot be accessed.

• The directory does not contain any .pro or .sav files.

VMS — The directory name is discarded from the search path if any of the following
is true:

• It is not a directory.

• The directory it names does not exist or cannot be accessed.

• The directory does not contain any .PRO or .SAV files).

In addition, any text library (.TLB) files are added to the result.

Windows — The directory name is expanded to remove wildcards (*). This avoids
overhead IDL would otherwise incur as it searches for library routines. It is discarded
from the search path if any of the following is true:

• It is not a directory.

• The directory it names does not exist or cannot be accessed.

• The directory does not contain any .PRO or .SAV files.

Macintosh — The folder name is expanded to remove wildcards (*). This avoids
overhead IDL would otherwise incur as it searches for library routines. It is discarded
from the search path if any of the following is true:

• It is not a folder.

• The folder it names does not exist or cannot be accessed.

• The folder does not contain any .pro or .sav files.
IDL Reference Guide EXPAND_PATH

458
Arguments

String

A scalar string containing the path-definition string to be expanded. See “The Path
Definition String” above for details.

Keywords

ALL_DIRS

Set this keyword to return all directories without concern for their contents,
otherwise, EXPAND_PATH only returns those directories that contain .pro or
.sav files.

ARRAY

Set this keyword to return the result as a string array with each element containing
one path segment. In this case, there is no need for a separator character and none is
supplied. Normally, the result is a string array with the various path segments
separated with the correct special delimiter character for the current operating
system.

COUNT

Set this keyword to a named variable which returns the number of path segments
contained in the result.

DLM

Set this keyword to return those directories that contain IDL Dynamically Loadable
Module (.dlm) description files.

HELP

Set this keyword to return those directories that contain help (.help or .hlp) files.

Example

Example 1

Assume you have the following directory structure:

/home
myfile.txt
/programs

/pro
myfile.pro
EXPAND_PATH IDL Reference Guide

459
Seach the /home directroy and all its subdirectories, and return the directories
containing .pro and .sav files:

PRINT, EXPAND_PATH('+/home')

IDL prints:

/home/programs/pro

Example 2

Search the same directory, but this time return all directories, not just those
containing .pro and .sav files:

PRINT, EXPAND_PATH('+home', /ALL_DIRS)

IDL prints:

/home/programs/pro:/home/programs

See Also

“Executing Program Files” in Chapter 2 of Using IDL and “IDL Environment System
Variables” on page 2429.
IDL Reference Guide EXPAND_PATH

460
EXPINT

The EXPINT function returns the value of the exponential integral En(x).

EXPINT is based on the routine expint described in section 6.3 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = EXPINT(N, X [, /DOUBLE] [, EPS=value] [, ITMAX=value])

Arguments

N

An integer specifying the order of En(x). N can be either a scalar or an array.

X

The value at which En(x) is evaluated. X can be either a scalar or an array.

Note: If an array is specified for both N and X, then EXPINT evaluates En(x) for each
Ni and Xi. If either N or X is a scalar and the other an array, the scalar is paired with
each array element in turn.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

EPS

Use this keyword to specify a number close to the desired relative error. For single-
precision calculations, the default value is 1.0 × 10-7. For double-precision
calculations, the default value is 1.0 × 10-14.

ITMAX

An input integer specifying the maximum allowed number of iterations. The default
value is 100.

Example

To compute the value of the exponential integral at the following X values:
EXPINT IDL Reference Guide

461
; Define the parametric X values:
X = [1.00, 1.05, 1.27, 1.34, 1.38, 1.50]

; Compute the exponential integral of order 1:
result = EXPINT(1, X)

; Print the result:
PRINT, result

IDL prints:

0.219384 0.201873 0.141911 0.127354 0.119803 0.100020

This is the exact solution vector to six-decimal accuracy.

See Also

ERRORF
IDL Reference Guide EXPINT

462
EXTRAC

The EXTRAC function returns as its result any rectangular sub-matrix or portion of
the parameter array. Note that it is usually more efficient to use the array subscript
ranges (the “:” operator; see “Subscript Ranges” in Chapter 5 of Building IDL
Applications) to perform such operations. The main advantage to EXTRAC is that,
when parts of the specified subsection lie outside the bounds of the array, zeros are
entered into these outlying elements.

EXTRAC was originally a built-in system procedure in the PDP-11 version of IDL,
and was retained in that form in the original VAX/VMS IDL for compatibility. Most
applications of the EXTRAC function are more concisely written using subscript
ranges (e.g., X(10:15)). EXTRAC has been rewritten as a library function that
provides the same interface as the previous versions.

Note
If you know that the subarray will never lie beyond the edges of the array, it is more
efficient to use array subscript ranges (the “:” operator) to extract the data instead of
EXTRAC.

This routine is written in the IDL language. Its source code can be found in the file
extrac.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = EXTRAC(Array, C1, C2, ..., Cn, S1, S2, ..., Sn)

Arguments

Array

The array from which the subarray will be copied.

Ci

The starting subscript in Array for the subarray. There should be one Ci for each
dimension of Array. These arguments must be integers.

Si

The size of each dimension. The result will have dimensions of (S1, S2, ..., Sn). There
should be one Si for each dimension of Array. These arguments must be non-
negative.
EXTRAC IDL Reference Guide

463
Examples

Extracting elements from a vector:

; Create a 1000 element floating-point vector with each element set
; to the value of its subscript:
A = FINDGEN(1000)
; Extract 300 points starting at A[200] and extending to A[499]:
B = EXTRAC(A, 200, 300)

In the next example, the first 49 points extracted — B[0] to B[49] — lie outside the
bounds of the vector and are set to 0. B[50] is gets the value of A[0], B[51] gets the
value of A[1]which is 1. Enter:

; Create a 1000 element vector:
A = FINDGEN(1000)
; Extract 50 elements, 49 of which lie outside the bounds of A:
B = EXTRAC(A, -50, 100)

The following commands illustrate the use of EXTRAC with multi-dimensional
arrays:

; Make a 64 by 64 array:
A = INTARR(64,64)
; Extract a 32 by 32 portion starting at A(20,30):
B = EXTRAC(A, 20, 30, 32, 32)

As suggested in the discussion above, a better way to perform the same operation as
the previous line is:

; Use the array subscript operator instead of EXTRAC:
B = A(20:51, 30:61)

Extract the 20th column and 32nd row of A:

; Extract 20th column of A:
B = EXTRAC(A, 19, 0, 1, 64)
; Extract 32nd row of A:
B = EXTRAC(A, 0, 31, 64, 1)

Take a 32 BY 32 matrix from A starting at A(40,50):

; Note that those points beyond the boundaries of A are set to 0:
B = EXTRAC(A, 40, 50, 32, 32)

See Also

“Subscript Ranges” in Chapter 5 of Building IDL Applications.
IDL Reference Guide EXTRAC

464
EXTRACT_SLICE

This EXTRACT_SLICE function returns a two-dimensional planar slice extracted
from 3D volumetric data. This function allows for a rotation or vector form of the
slice equation. In the vector form, the slice plane is governed by the plane equation
(ax+by+cz+d = 0) and a single vector which defines the x direction. This form is
more common throughout the IDL polygon interface. In the rotation form, the slicing
plane can be oriented at any angle and pass through any desired location in the
volume.

This function allows for a vertex grid to be generated without sampling the data. In
this form, the return value would be an array of [3,n] vertices which could be used to
sample additional dataset or used to form polygonal meshes. It would also be useful
to return the planar mesh connectivity in this case.

Support for anisotropic data volumes is included via an ANISOTROPY keyword.
This is an important feature in the proper interpolation of common medical imaging
data.

This routine is written in the IDL language. Its source code can be found in the file
extract_slice.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = EXTRACT_SLICE(Vol, Xsize, Ysize, Xcenter, Ycenter, Zcenter, Xrot, Yrot,
Zrot [, ANISOTROPY=[xspacing, yspacing, zspacing]] [, /CUBIC]
[, OUT_VAL=value] [, /RADIANS] [, /SAMPLE] [, VERTICES=variable])

or

Result = EXTRACT_SLICE(Vol, Xsize, Ysize, Xcenter, Ycenter, Zcenter,
PlaneNormal, Xvec [, ANISOTROPY=[xspacing, yspacing, zspacing]] [, /CUBIC]
[, OUT_VAL=value] [, /RADIANS] [, /SAMPLE] [, VERTICES=variable])

Arguments

PlaneNormal

Set this input argument to a 3 element array. The values are interpreted as the normal
of the slice plane.
EXTRACT_SLICE IDL Reference Guide

465
Xvec

Set this input argument to a 3 element array. The three values are interpreted as the 0
dimension directional vector. This should be a unit vector.

Vol

The volume of data to slice. This argument is a three-dimensional array of any type
except string or structure. The planar slice returned by EXTRACT_SLICE has the
same data type as Vol.

Xsize

The desired X size (dimension 0) of the returned slice. To preserve the correct aspect
ratio of the data, Xsize should equal Ysize. For optimal results, set Xsize and Ysize to
be greater than or equal to the largest of the three dimensions of Vol.

Ysize

The desired Ysize (dimension 1) of the returned slice. To preserve the correct aspect
ratio of the data, Ysize should equal Xsize. For optimal results, set Xsize and Ysize to
be greater than or equal to the largest of the three dimensions of Vol.

Xcenter

The X coordinate (index) of the point within the volume that the slicing plane passes
through. The center of the slicing plane passes through Vol at the coordinate
(Xcenter, YCenter, Zcenter).

Ycenter

The Y coordinate (index) of the point within the volume that the slicing plane passes
through. The center of the slicing plane passes through Vol at the coordinate
(Xcenter, YCenter, Zcenter).

Zcenter

The Z coordinate (index) of the point within the volume that the slicing plane passes
through. The center of the slicing plane passes through Vol at the coordinate
(Xcenter, YCenter, Zcenter).

Xrot

The X-axis rotation of the slicing plane, in degrees. Before transformation, the slicing
plane is parallel to the X-Y plane. The slicing plane transformations are performed in
the following order:

• Rotate Z_rot degrees about the Z axis.
IDL Reference Guide EXTRACT_SLICE

466
• Rotate Y_rot degrees about the Y axis.

• Rotate X_rot degrees about the X axis.

• Translate the center of the plane to Xcenter, Ycenter, Zcenter.

Yrot

The Y-axis rotation of the slicing plane, in degrees.

Zrot

The orientation Z-axis rotation of the slicing plane, in degrees.

Keywords

ANISOTROPY

Set this keyword to a three-element array. This array specifies the spacing between
the planes of the input volume in grid units of the (isotropic) output image.

CUBIC

Set this keyword to use cubic interpolation. The default is to use tri-linear
interpolation. If the SAMPLE keyword is set, then the CUBIC keyword is ignored.

OUT_VAL

Set this keyword to a value that will be assigned to elements of the returned slice that
lie outside of the original volume.

RADIANS

Set this keyword to indicate that Xrot, Yrot, and Zrot are in radians. The default is
degrees.

SAMPLE

Set this keyword to perform nearest neighbor sampling when computing the returned
slice. The default is to use bilinear interpolation. A small reduction in execution time
results when SAMPLE is set and the OUT_VAL keyword is not used.

VERTICES

Set this output keyword to a named variable in which to return a [3,Xsize,Ysize]
floating point array. This is an array of the x, y, z sample locations for each pixel in
the normal output.
EXTRACT_SLICE IDL Reference Guide

467
Example

Display an oblique slice through volumetric data:

; Create some data:
vol = RANDOMU(s, 40, 40, 40)

; Smooth the data:
FOR i=0, 10 DO vol = SMOOTH(vol, 3)

; Scale the smoothed part into the range of bytes:
vol = BYTSCL(vol(3:37, 3:37, 3:37))

; Extract a slice:
slice = EXTRACT_SLICE(vol, 40, 40, 17, 17, 17, 30.0, 30.0, 0.0, $

OUT_VAL=0B)

; Display the 2D slice as a magnified image:
TVSCL, REBIN(slice, 400, 400)

See Also

SLICER3
IDL Reference Guide EXTRACT_SLICE

468
F_CVF

The F_CVF function computes the cutoff value V in an F distribution with Dfn and
Dfd degrees of freedom such that the probability that a random variable X is greater
than V is equal to a user-supplied probability P.

This routine is written in the IDL language. Its source code can be found in the file
f_cvf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = F_CVF(P, Dfn, Dfd)

Arguments

P

A non-negative single- or double-precision floating-point scalar, in the interval [0.0,
1.0], that specifies the probability of occurrence or success.

Dfn

A positive integer, single- or double-precision floating-point scalar that specifies the
number of degrees of freedom of the F distribution numerator.

Dfd

A positive integer, single- or double-precision floating-point scalar that specifies the
number of degrees of freedom of the F distribution denominator.

Example

Use the following command to compute the cutoff value in an F distribution with ten
degrees of freedom in the numerator and six degrees of freedom in the denominator
such that the probability that a random variable X is greater than the cutoff value is
0.01. The result should be 7.87413:

PRINT, F_CVF(0.01, 10, 6)

See Also

CHISQR_CVF, F_PDF, GAUSS_CVF, T_CVF
F_CVF IDL Reference Guide

469
F_PDF

The F_PDF function computes the probability P that, in an F distribution with Dfn
and Dfd degrees of freedom, a random variable X is less than or equal to a user-
specified cutoff value V.

This routine is written in the IDL language. Its source code can be found in the file
f_pdf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = F_PDF(V, Dfn, Dfd)

Return Value

If all arguments are scalar, the function returns a scalar. If all arguments are arrays,
the function matches up the corresponding elements of V, Dfn, and Dfd, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other arguments are arrays, the function uses the scalar value with each element
of the arrays, and returns an array with the same dimensions as the smallest input
array.

If any of the arguments are double-precision, the result is double-precision, otherwise
the result is single-precision.

Arguments

V

A scalar or array that specifies the cutoff value(s).

Dfn

A positive scalar or array that specifies the number of degrees of freedom of the F
distribution numerator.

Dfd

A positive scalar or array that specifies the number of degrees of freedom of the F
distribution denominator.
IDL Reference Guide F_PDF

470
Example

Use the following command to compute the probability that a random variable X,
from the F distribution with five degrees of freedom in the numerator and 24 degrees
of freedom in the denominator, is less than or equal to 3.90. The result should be
0.990059:

PRINT, F_PDF(3.90, 5, 24)

See Also

BINOMIAL, CHISQR_PDF, F_CVF, GAUSS_PDF, T_PDF
F_PDF IDL Reference Guide

471
FACTORIAL

The FACTORIAL function computes the factorial N! For integers, the factorial is
computed as (N) ⋅ (N – 1) ⋅ (N – 2) ⋅ ... ⋅ 3 ⋅ 2 ⋅ 1. For non-integers the factorial is
computed using GAMMA(N+1).

This routine is written in the IDL language. Its source code can be found in the file
factorial.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = FACTORIAL(N [, /STIRLING] [, /UL64])

Arguments

N

A non-negative scalar or array of values.

Note
Large values of N will cause floating-point overflow errors. The maximum size of
N varies with machine architecture. On machines that support the IEEE standard for
floating-point arithmetic, the maximum value of N is 170. See MACHAR for a
discussion of machine-specific parameters affecting floating-point arithmetic.

Keywords

STIRLING

Set this keyword to use Stirling’s asymptotic formula to approximate N!:

where e is the base of the natural logarithm.

UL64

Set this keyword to return the results as unsigned 64-bit integers. This keyword is
ignored if STIRLING is set.

N! 2πN
N
e

N
=

IDL Reference Guide FACTORIAL

472
Note
Unsigned 64-bit integers will overflow for values of N greater than 20.

Example

Compute 20!:

PRINT, FACTORIAL(20)

IDL prints:

2.4329020e+18

See Also

BINOMIAL, TOTAL
FACTORIAL IDL Reference Guide

473
FFT

The FFT function returns a result equal to the complex, discrete Fourier transform of
Array. The result of this function is a single- or double-precision complex array.

The discrete Fourier transform, F(u), of an N-element, one-dimensional function,
f(x), is defined as:

And the inverse transform, (Direction > 0), is defined as:

If the keyword OVERWRITE is set, the transform is performed in-place, and the
result overwrites the original contents of the array.

The result returned by FFT is a complex array that has the same dimensions as the
input array. The output array is ordered in the same manner as almost all discrete
Fourier transforms. Element 0 contains the zero frequency component, F0. F1
contains the smallest nonzero positive frequency, which is equal to 1/(Ni Ti), where
Ni and Ti are the number of elements and the sampling interval of the ith dimension,
respectively. F2 corresponds to a frequency of 2/(Ni Ti). Negative frequencies are
stored in the reverse order of positive frequencies, ranging from the highest to lowest
negative frequencies (see storage scheme below).

Note
The FFT can be performed on functions of up to eight (8) dimensions in size. If a
function has n dimensions, IDL performs a transform in each dimension separately,
starting with the first dimension and progressing sequentially to dimension n. For
example, if the function has two dimensions, IDL first does the FFT row by row,
and then column by column.

F u()
1
N
---- f x()exp j2πux N⁄–[]

x 0=

N 1–

∑=

f x() F u()exp j2πux N⁄[]
u 0=

N 1–

∑=
IDL Reference Guide FFT

474
For an even number of points in the ith dimension, the storage scheme of returned
complex values is as follows:

For an odd number of points in the ith dimension, the storage scheme of returned
complex values is as follows:

Syntax

Result = FFT(Array [, Direction] [, /DOUBLE] [, /INVERSE] [, /OVERWRITE])

Arguments

Array

The array to which the Fast Fourier Transform should be applied. If Array is not of
complex type, it is converted to complex type. The dimensions of the result are
identical to those of Array. The size of each dimension may be any integer value and
does not necessarily have to be an integer power of 2, although powers of 2 are
certainly the most efficient.

Direction

Direction is a scalar indicating the direction of the transform, which is negative by
convention for the forward transform, and positive for the inverse transform. If
Direction is not specified, the forward transform is performed.

A normalization factor of 1/N, where N is the number of points, is applied during the
forward transform.

F0 1/(NiTi) ... (Ni-2)/2NiTi
1/(2Ti)

(Nyquist) -(Ni-2)/2NiTi ... -1/(NiTi)

Real, Imag Real, Imag Real, Imag Real, Imag Real, Imag Real, Imag

Table 19: Even Number of Points

F0 1/(NiTi) ... (Ni-1)/2NiTi -(Ni-1)/2NiTi ... -1/(NiTi)

Real, Imag Real, Imag Real, Imag Real, Imag Real, Imag

Table 20: Odd Number of Points
FFT IDL Reference Guide

475
Note
When transforming from a real vector to complex and back, it is slightly faster to
set Direction to 1 in the real to complex FFT.

Note also that the value of Direction is ignored if the INVERSE keyword is set.

Keywords

DOUBLE

Set this keyword to a value other than zero to force the computation to be done in
double-precision arithmetic, and to give a result of double-precision complex type. If
DOUBLE is set equal to zero, computation is done in single-precision arithmetic and
the result is single-precision complex. If DOUBLE is not specified, the data type of
the result will match the data type of Array.

INVERSE

Set this keyword to perform an inverse transform. Setting this keyword is equivalent
to setting the Direction argument to a positive value. Note, however, that setting
INVERSE results in an inverse transform even if Direction is specified as negative.

OVERWRITE

If this keyword is set, and the Array parameter is a variable of complex type, the
transform is done “in-place”. The result overwrites the previous contents of the
variable. For example, to perform a forward, in-place FFT on the variable a:

a = FFT(a, -1, /OVERWRITE)

Running Time

For a one-dimensional FFT, running time is roughly proportional to the total number
of points in Array times the sum of its prime factors. Let N be the total number of
elements in Array, and decompose N into its prime factors:

Running time is proportional to:

where T3 ~ 4T2. For example, the running time of a 263 point FFT is approximately
10 times longer than that of a 264 point FFT, even though there are fewer points. The

N 2K2 3K3 5K5...⋅ ⋅=

T0 N T1 2K2T2 T3 3K3 5K5 ...+ +()+ +()+
IDL Reference Guide FFT

476
sum of the prime factors of 263 is 264 (1 + 263), while the sum of the prime factors
of 264 is 20 (2 + 2 + 2 + 3 + 11).

Example

Display the log of the power spectrum of a 100-element index array by entering:

PLOT, /YLOG, ABS(FFT(FINDGEN(100), -1))

As a more complex example, display the power spectrum of a 100-element vector
sampled at a rate of 0.1 seconds per point. Show the 0 frequency component at the
center of the plot and label the abscissa with frequency:

; Define the number of points:
N = 100

; Define the interval:
T = 0.1

; Midpoint+1 is the most negative frequency subscript:
N21 = N/2 + 1

; The array of subscripts:
F = INDGEN(N)
; Insert negative frequencies in elements F(N/2 +1), ..., F(N-1):
F[N21] = N21 -N + FINDGEN(N21-2)

; Compute T0 frequency:
F = F/(N*T)

; Shift so that the most negative frequency is plotted first:
PLOT, /YLOG, SHIFT(F, -N21), SHIFT(ABS(FFT(F, -1)), -N21)

See Also

HILBERT
FFT IDL Reference Guide

477
FILE_CHMOD

The FILE_CHMOD procedure allows you to change the current access permissions
(sometimes known as modes on UNIX platforms) associated with a file or directory.
File modes are specified using the standard Posix convention of three protection
classes (user, group, other), each containing three attributes (read, write, execute).
These permissions can be specified as an octal bitmask in which desired permissions
have their associated bit set and unwanted ones have their bits cleared. This is the
same format familiar to users of the UNIX chmod(1) command).

Keywords are available to specify permissions without the requirement to specify a
bitmask, providing a simpler way to handle many situations. All of the keywords
share a similar behavior: Setting them to a non-zero value adds the specified
permission to the Mode argument. Setting the keyword to 0 removes that permission.

To find the current protection settings for a given file, you can use the GET_MODE
keyword to the FILE_TEST function.

Syntax

FILE_CHMOD, File [, Mode] [, /A_EXECUTE |, /A_READ |, /A_WRITE]
[, /G_EXECTUE | /G_READ | , /G_WRITE]
[, /O_EXECTUE | /O_READ | , /O_WRITE]
[, /U_EXECTUE | /U_READ | , /U_WRITE]

UNIX-Only Keywords: [, /SETGID] [, /SETUID] [, /STICKY_BIT]

Arguments

File

A scalar or array of file or directory names for which protection modes will be
changed.

Mode

An optional bit mask specifying the absolute protection settings to be applied to the
files. If Mode is not supplied, FILE_CHMOD looks up the current modes for the file
and uses it instead. Any additional modes specified via keywords are applied relative
to the value in Mode. Setting a keyword adds the necessary mode bits to Mode, and
clearing it by explicitly setting a keyword to 0 removes those bits from Mode.

The values of the bits in these masks correspond to those used by the UNIX
chmod(2) system call and chmod(1) user command, and are given in the following
IDL Reference Guide FILE_CHMOD

478
table. Since these bits are usually manipulated in groups of three, octal notation is
commonly used when referring to them. When constructing a mode, the following
platform specific considerations should be kept in mind:

• The setuid, setgid, and sticky bits are specific to the UNIX operating system,
and have no meaning elsewhere. FILE_CHMOD ignores them on non-UNIX
systems. The UNIX kernel may quietly refuse to set the sticky bit if you are not
the root user. Consult the chmod(2) man page for details.

• The VMS operating system has four permission classes, unlike the 3 supported
by UNIX. Furthermore, each class has an additional bit (DELETE) not
supported by UNIX. IDL uses the C runtime library chmod() function
supplied by the operating system to translate between the UNIX convention
used by IDL and the native VMS permission masks. It maps the VMS
SYSTEM and OWNER classes to the user class, GROUP to group, and
WORLD to other. The DELETE bit is combined with the WRITE bit.

• The Microsoft Windows and Macintosh operating systems do not have 3
permission classes like UNIX does. Therefore, setting for all three classes are
combined into a single request.

• The Microsoft Windows and Macintosh operating systems always allow read
access to any files visible to a program. FILE_CHMOD therefore ignores any
requests to remove read access.

• The Microsoft Windows and Macintosh operating systems do not maintain an
execute bit for their files. Windows uses the file suffix to decide if a file is
executable, and Macintosh IDL only considers files of type APPL to be
executable. Therefore, FILE_CHMOD cannot change the execution status of a
file on these platforms. Such requests are quietly ignored.

Bit Octal Mask Meaning

12 '4000'o Setuid: Set user ID on execution.

11 '2000'o Setgid: Set group ID on execution.

10 '1000'o Turn on sticky bit. See the UNIX documentation
on chmod(2) for details.

9 '0400'o Allow read by owner.

8 '0200'o Allow write by owner.

Table 21: UNIX chmod(2) mode bits
FILE_CHMOD IDL Reference Guide

479
Keywords

A_EXECUTE

Execute access for all three (user, group, other) categories.

A_READ

Read access for all three (user, group, other) categories.

A_WRITE

Write access for all three (user, group, other) categories.

G_EXECUTE

Execute access for the group category.

G_READ

Read access for the group category.

G_WRITE

Write access for the group category.

O_EXECUTE

Execute access for the other category.

O_READ

Read access for the other category.

7 '0100'o Allow execute by owner.

6 '0040'o Allow read by group.

5 '0020'o Allow write by group.

4 '0010'o Allow execute by group.

3 '0004'o Allow read by others.

2 '0002'o Allow write by others.

1 '0001'o Allow execute by others.

Bit Octal Mask Meaning

Table 21: UNIX chmod(2) mode bits
IDL Reference Guide FILE_CHMOD

480
O_WRITE

Write access for the other category.

U_EXECUTE

Execute access for the user category.

U_READ

Read access for the user category.

U_WRITE

Write access for the user category.

UNIX-Only Keywords

SETGID

The Set Group ID bit.

SETUID

The Set User ID bit.

STICKY_BIT

Sets the sticky bit.

Example

In the first example, we make the file moose.dat read only to everyone except the
owner of the file, but not change any other settings:

FILE_CHMOD, 'moose.dat', /U_WRITE, G_WRITE=0, O_WRITE=0

In the next example, we make the file readable and writable to the owner and group,
but read-only to anyone else, and remove any other modes:

FILE_CHMOD, 'moose.dat', '664'o
FILE_CHMOD IDL Reference Guide

481
FILE_DELETE

The FILE_DELETE procedure deletes a file or empty directory, if the process has the
necessary permissions to remove the file as defined by the current operating system.
FILE_CHMOD can be used to change file protection settings.

Syntax

FILE_DELETE, File1 [,... FileN] [, /QUIET]

Arguments

FileN

A scalar or array of file or directory names to be deleted, one name per string
element. Directories must be specified in the native syntax for the current operating
system. See “Operating System Syntax” below for additional details.

Keywords

QUIET

FILE_DELETE will normally issue an error if it is unable to remove a requested file
or directory. If QUIET is set, no error is issued and FILE_DELETE simply moves on
to the next requested item.

Operating System Syntax

The syntax used to specify directories for removal depends on the operating system
in use, and is in general the same as you would use when issuing commands to the
operating system command interpreter.

Microsoft Windows users must be careful to not specify a trailing backslash at the
end of a specification. For example:

FILE_DELETE, 'c:\mydir\myfile'

and not:

FILE_DELETE, 'c:\mydir\myfile\'

For VMS users, the syntax for creating a subdirectory (as with the
CREATE/DIRECTORY DCL command) is not symmetric with that used to delete it
(using the DELETE,/DIRECTORY). FILE_DELETE follows the same rules. For
IDL Reference Guide FILE_DELETE

482
instance, to create a subdirectory of the current working directory named
bullwinkle and then remove it:

FILE_MKDIR,'[.bullwinkle]'
FILE_DELETE,'bullwinkle.dir'

Example

In this example, we remove an empty directory named moose. On the Macintosh,
UNIX, or Windows operating systems:

FILE_DELETE, 'moose'

To do the same thing under VMS:

FILE_DELETE, 'moose.dir'
FILE_DELETE IDL Reference Guide

483
FILE_EXPAND_PATH

The FILE_EXPAND_PATH function expands a given file or partial directory name
to its fully qualified name regardless of the current working directory.

Note
This routine should be used only to make sure that file paths are fully qualified, but
not to expand wildcard characters (e.g. *). The behavior of FILE_EXPAND_PATH
when it encounters a wildcard is platform dependent, and should not be depended
on. These differences are due to the underlying operating system, and are beyond
IDL’s control. To expand wildcards and obtain fully qualified paths, combine the
FINDFILE function with FILE_EXPAND_PATH:

A = FILE_EXPAND_PATH(FINDFILE('*.pro'))

Syntax

Result = FILE_EXPAND_PATH (Path)

Return Value

FILE_EXPAND_PATH returns a fully qualified file path that completely specifies
the location of Path without the need to consider the user’s current working directory.

Arguments

Path

A scalar or array of file or directory names to be fully qualified.

Keywords

None.

Example

In this example, we change directories to the IDL lib directory and expand the file
path for the DIST function:

cd, FILEPATH('', SUBDIRECTORY=['lib'])
print, FILE_EXPAND_PATH('dist.pro')
IDL Reference Guide FILE_EXPAND_PATH

484
This results in the following if run on a UNIX system:

/usr/local/rsi/idl_5.4/lib/dist.pro

See Also

FINDFILE
FILE_EXPAND_PATH IDL Reference Guide

485
FILE_MKDIR

The FILE_MKDIR procedure creates a new directory, or directories, with the default
access permissions for the current process.

Note
Use the FILE_CHMOD procedure to alter access permissions.

If a specified directory has non-existent parent directories, FILE_MKDIR
automatically creates all the intermediate directories as well.

Syntax

FILE_MKDIR, File1 [,... FileN]

Arguments

FileN

A scalar or array of directory names to be created, one name per string element.
Directories must be specified in the native syntax for the current operating system.

Keywords

None.

Example

To create a subdirectory named moose in the current working directory on the
Macintosh, UNIX, or Windows operating systems:

FILE_MKDIR, 'moose'

To do the same thing under VMS:

FILE_MKDIR, '[.moose]'
IDL Reference Guide FILE_MKDIR

486
FILE_TEST

The FILE_TEST function checks files for existence and other attributes without
having to first open the file.

Syntax

Result = FILE_TEST(File [, /DIRECTORY | , /EXECUTABLE | , /READ |
, /REGULAR | , /WRITE | , /ZERO_LENGTH] [, GET_MODE=variable])

UNIX-Only Keywords: [, /BLOCK_SPECIAL | , /CHARACTER_SPECIAL |
, /DANGLING_SYMLINK | , /NAMED_PIPE | , /SETGID | , /SETUID | , /SOCKET
| , /STICKY_BIT | , /SYMLINK]

UNIX and VMS-Only Keywords: [, /GROUP | , /USER]

Return Value

FILE_TEST returns 1 (true), if the specified file exists and all of the attributes
specified by the keywords are also true. If no keywords are present, a simple test for
existence is performed. If the file does not exist or one of the specified attributes is
not true, then FILE_TEST returns 0 (false).

Arguments

File

A scalar or array of file names to be tested. The result is of type integer with the same
number of elements as File.

Keywords

DIRECTORY

Set this keyword to return 1 (true) if File exists and is a directory.

EXECUTABLE

Set this keyword to return 1 (true) if File exists and is executable. The source of this
information differs between operating systems:

• UNIX and VMS: IDL checks the per-file information (the execute bit)
maintained by the operating system.
FILE_TEST IDL Reference Guide

487
• Microsoft Windows: The determination is made on the basis of the file name
extension (e.g. .exe).

• Macintosh: Files of type ‘APPL’ (proper applications) are reported as
executable. This corresponds to "Double Clickable" applications.

GET_MODE

Set this keyword to a named variable to receive the UNIX style mode (permission)
mask for the specified file. The bits in these masks correspond to those used by the
UNIX chmod(2) system call, and are explained in detail in the description of the
Mode argument to the FILE_CHMOD procedure. When interpreting the value
returned by this keyword, the following platform specific details should be kept in
mind:

• The setuid, setgid, and sticky bits are specific to the UNIX operating system,
and will never be returned on any other platform. Consult the chmod(2) man
page and/or other UNIX programming documentation for more details.

• The VMS operating system has four permission classes, unlike the three
supported by UNIX. Furthermore, each class has an additional bit (DELETE)
not supported by UNIX. IDL uses the C runtime library stat() function
supplied by the operating system to translate between the UNIX convention
used by IDL and the native VMS permission masks. It maps the VMS
OWNER to the user class, GROUP to group, and WORLD to other. The
DELETE bit is combined with the WRITE bit.

• The Microsoft Windows and Macintosh operating systems do not have 3
permission classes like UNIX does. Therefore, IDL returns the same settings
for all three classes.

• The Microsoft Windows and Macintosh operating systems to not maintain an
execute bit for their files. Windows uses the file suffix to decide if a file is
executable, and Macintosh IDL only considers files of type ‘APPL’ to be
executable.

READ

Set this keyword to return 1 (true) if File exists and is readable by the user.

REGULAR

Set this keyword to return 1 (true) if File exists and is a regular disk file and not a
directory, pipe, socket, or other special file type.
IDL Reference Guide FILE_TEST

488
WRITE

Set this keyword to return 1 (true) if File exists and is writable by the user.

ZERO_LENGTH

Set this keyword to return 1 (true) if File exists and has zero length.

Note
The length of a directory is highly system dependent and does not necessarily
correspond to the number of files it contains. In particular, it is possible for an
empty directory to report a non-zero length. RSI does not recommend using the
ZERO_LENGTH keyword on directories, as the information returned cannot be
used in a meaningful way.

UNIX-Only Keywords

BLOCK_SPECIAL

Set this keyword to return 1 (true) if File exists and is a block special device.

CHARACTER_SPECIAL

Set this keyword to return 1 (true) if File exists and is a character special device.

DANGLING_SYMLINK

Set this keyword to return 1 (true) if File is a symbolic link that points at a non-
existent file.

NAMED_PIPE

Set this keyword to return 1 (true) if File exists and is a named pipe (fifo) device.

SETGID

Set this keyword to return 1 (true) if File exists and has its Set-Group-ID bit set.

SETUID

Set this keyword to return 1 (true) if File exists and has its Set-User-ID bit set.

SOCKET

Set this keyword to return 1 (true) if File exists and is a UNIX domain socket.
FILE_TEST IDL Reference Guide

489
STICKY_BIT

Set this keyword to return 1 (true) if File exists and has its sticky bit set.

SYMLINK

Set this keyword to return 1 (true) if File exists and is a symbolic link that points at an
existing file.

UNIX and VMS-Only Keywords

GROUP

Set this keyword to return 1 (true) if File exists and belongs to the same effective
group ID (GID) as the IDL process.

USER

Set this keyword to return 1 (true) if File exists and belongs to the same effective user
ID (UID) as the IDL process.

Example

Does my IDL distribution support the IRIX operating system?

result = FILE_TEST(!DIR + '/bin/bin.sgi', /DIRECTORY)
PRINT, 'IRIX IDL Installed: ', result ? 'yes' : 'no'
IDL Reference Guide FILE_TEST

490

FILE
_WHICH IDL Reference Guide

FILE_WHICH

The FILE_WHICH function separates a specified file path into its component
directories, and searches each directory in turn for a specific file. This command is
modeled after the UNIX which(1) command.

This routine is written in the IDL language. Its source code can be found in the file
file_which.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = FILE_WHICH([Path,] File [, /INCLUDE_CURRENT_DIR])

Return Value

Returns the path for the first file for the given name found by searching the specified
path. If FILE_WHICH does not find the desired file, a NULL string is returned.

Arguments

Path

A search path to be searched. If Path is not present, the value of the IDL !PATH
system variable is used.

File

The file to look for in the directories given by Path.

Keywords

INCLUDE_CURRENT_DIR

If set, FILE_WHICH looks in the current directory before starting to search Path for
File. When IDL searches for a routine to compile, it looks in the current working
directory before searching !PATH. The INCLUDE_CURRENT_DIR keyword
allows FILE_WHICH to mimic this behavior.

Example

To find the location of this routine:

Result = FILE_WHICH('file_which.pro')

To find the location of the UNIX ls command:

Result = FILE_WHICH(getenv('PATH'), 'ls')

491
FILEPATH

The FILEPATH function returns the fully-qualified path to a file found in the IDL
distribution. Operating system dependencies are taken into consideration. This
routine is used by Research Systems to make the library routines portable. This
routine is written in the IDL language. Its source code can be found in the file
filepath.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = FILEPATH(Filename [, ROOT_DIR=string]
[, SUBDIRECTORY=string/string_array] [, /TERMINAL] [, /TMP])

Arguments

Filename

A string containing the name of the file to be found. The file should be specified in all
lowercase characters. No device or directory information should be included.

Keywords

ROOT_DIR

A string containing the name of the directory from which the resulting path should be
based. If not present, the value of !DIR is used. This keyword is ignored if
TERMINAL or TMP are specified.

SUBDIRECTORY

The name of the subdirectory in which the file should be found. If this keyword is
omitted, the main IDL directory is used. This variable can be either a scalar string or
a string array with the name of each level of subdirectory depth represented as an
element of the array.

For example, to get a path to the file filepath.pro in IDL’s lib subdirectory,
enter:

path = FILEPATH('filepath.pro',SUBDIR=['lib'])

TERMINAL

Set this keyword to return the filename of the user’s terminal.
IDL Reference Guide FILEPATH

492
TMP

Set this keyword to indicate that the specified file is a scratch file. Returns a path to
the proper place for temporary files under the current operating system.

On the Macintosh, this keyword accesses a true temporary directory. This creates an
invisible Temp folder which follows the Macintosh convention for temporary files.

Under Microsoft Windows, FILEPATH checks to see if the following environment
variables are set—TMP, TEMP, WINDIR—and uses the value of the first one it
finds. If none of these environment variables exists, \TMP is used as the temporary
directory.

Example

Open the IDL distribution file people.dat:

OPENR, 1, FILEPATH('people.dat', SUBDIRECTORY=['examples','data'])

See Also

FINDFILE
FILEPATH IDL Reference Guide

493
FINDFILE

The FINDFILE function returns a string array containing the names of all files
matching File_Specification.

All matched filenames are returned in a string array, one file name per array element.
If no files exist with names matching the File_Specification, a null scalar string is
returned instead of a string array. Except for VMS, described below, FINDFILE
returns the full path only if the path itself is specified in File_Specification. See the
“Examples” section below for details.

Note
Platform specific differences are described below:

• Under Macintosh, FINDFILE function brackets the returned filename in
colons if the file is a folder (e.g., :lib:)

• Under UNIX, to include all the files in any subdirectories, use the * wildcard
character in the File_Specification, such as in
result = FINDFILE('/path/*'). If File_Specification contains only a
directory, with no file information, only files in that directory are returned.

• Under VMS, FINDFILE returns the full path specification for any file it finds.

• Under Windows, FINDFILE appends a “\” character to the end of the returned
file name if the file is a directory. To refer to all the files in a specific directory
only, use result = FINDFILE('\path*').

Syntax

Result = FINDFILE(File_Specification [, COUNT=variable])

Arguments

File_Specification

A scalar string used to find files. The string can contain any valid command-
interpreter wildcard characters. If File_Specification contains path information, that
path information is included in the returned value. If File_Specification is omitted,
the names of all files in the current directory are returned.
IDL Reference Guide FINDFILE

494
Keywords

COUNT

A named variable into which the number of files found is placed. If no files are
found, a value of 0 is returned.

Examples

To print the file names of all the UNIX files with “dat” extensions in the current
directory, use the command:

PRINT, FINDFILE('*.dat')

To print the full path names of all .pro files in the IDL lib directory that begin with
the letter “x”, use the command:

PRINT, FINDFILE('/usr/local/rsi/idl/lib/x*.pro')

To print the path names of all .pro files in the profiles subdirectory of the current
directory (a relative path), use the command:

PRINT, FINDFILE('profiles/*.pro')

Note that the values returned are (like the File_Specification) relative path names.
Use caution when comparing values against this type of relative path specification.

See Also

FILEPATH
FINDFILE IDL Reference Guide

495
FINDGEN

The FINDGEN function returns a single-precision, floating-point array with the
specified dimensions. Each element of the array is set to the value of its one-
dimensional subscript.

Syntax

Result = FINDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Example

To create F, a 6-element vector of single-precision, floating-point values where each
element is set to the value of its subscript, enter:

F = FINDGEN(6)

The value of F[0] is 0.0, F[1] is 1.0, and so on.

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, INDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide FINDGEN

496
FINITE

The FINITE function returns 1 (True) if its argument is finite. If the argument is
infinite or not a defined number (NaN), 0 (False) is returned. (See “Special Floating-
Point Values” in Chapter 17 of Building IDL Applications for more information on
IEEE floating-point values.) The result is a byte expression of the same structure as
the argument X.

Syntax

Result = FINITE(X [, /INFINITY] [, /NAN])

Arguments

X

A floating-point, double-precision, or complex scalar or array expression. Strings are
first converted to floating-point. This function is meaningless for byte, integer, or
longword arguments.

Keywords

INFINITY

If INFINITY is set, FINITE returns True if X is positive or negative infinity, and it
returns False otherwise.

NAN

If NAN is set, FINITE returns True if X is “Not A Number” (NaN), otherwise it
returns False.

Examples

Example 1

To find out if the logarithm of 5.0 is finite, enter:

PRINT, FINITE(ALOG(5.0))

IDL prints “1” because the argument is finite.

Example 2

To determine which elements of an array are infinity or NaN (Not a Number) values:
FINITE IDL Reference Guide

497
A = FLTARR(10)

; Set A[5] to NaN:
A[5] = !VALUES.F_NAN

; Find all values in A that are Infinity:
B = FINITE(A, /INFINITY)
PRINT, B

IDL prints the following, indicating that none of the elements are equal to infinity:

 0 0 0 0 0 0 0 0 0 0

; Find all values in A that are NaN:
B = FINITE(A, /NAN)
PRINT, B

IDL prints the following, indicating that A[5] is NaN:

 0 0 0 0 0 1 0 0 0 0

; Set A[5] to infinity:
A[5] = !VALUES.F_INFINITY

; Find all values in A that are NaN:
B = FINITE(A, /NAN)
PRINT, B

IDL prints the following, indicating that none of the elements are equal to NaN:

0 0 0 0 0 0 0 0 0 0

; Find all values in A that are Infinity:
B = FINITE(A, /INFINITY)
PRINT, B

IDL prints the following, indicating that A[5] is equal to infinity:

 0 0 0 0 0 1 0 0 0 0

See Also

CHECK_MATH, MACHAR, !VALUES, “Special Floating-Point Values” on
page 434.
IDL Reference Guide FINITE

498
FIX

The FIX function returns a result equal to Expression converted to integer type.
Optionally, the conversion type can be specified at runtime, allowing flexible runtime
type-conversion to arbitrary types.

Syntax

Result = FIX(Expression [, Offset [, Dim1, ..., Dim8]] [, /PRINT] [, TYPE=type
code{0 to 15}])

Arguments

Expression

The expression to be converted.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as integer data. See the
description in Chapter 3, “Constants and Variables” in Building IDL Applications for
details.

The Offset and Dimi arguments are not allowed when converting to or from the string
type.

Dimi

When extracting fields of data, the Di arguments specify the dimensions of the result.
The dimension parameters can be any scalar expression. Up to eight dimensions can
be specified. If no dimension arguments are given, the result is taken to be scalar.

The Offset and Dimi arguments are not allowed when converting to or from the string
type.

When converting from a string argument, it is possible that the string does not contain
a valid integer and no conversion is possible. The default action in such cases is to
print a warning message and return 0. The ON_IOERROR procedure can be used to
establish a statement to be jumped to in case of such errors.
FIX IDL Reference Guide

499
Keywords

PRINT

Set this keyword to specify that any special-case processing when converting
between string and byte data, or the reverse, should be suppressed. The PRINT
keyword is ignored unless the TYPE keyword is used to convert to these types.

TYPE

FIX normally converts Expression to the integer type. If TYPE is specified, it is the
type code to set the type of the conversion. This feature allows dynamic type
conversion, where the desired type is not known until runtime, to be carried out
without the use of large CASE or IF...THEN logic. When TYPE is specified, FIX
behaves as if the appropriate type conversion routine for the desired type had been
called. See the “See Also” list below for the complete list of such routines.

When using the TYPE keyword to convert BYTE data to STRING or the reverse, you
should be aware of the special-case processing that the BYTE and STRING functions
do in this case. To prevent this, and get a simple type conversion in these cases, you
must specify the PRINT keyword.

Example

Convert the floating-point array [2.2, 3.0, 4.5] to integer type and store the new array
in the variable I by entering:

I = FIX([2.2, 3.0, 4.5])

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FLOAT, LONG, LONG64, STRING,
UINT, ULONG, ULONG64
IDL Reference Guide FIX

500
FLICK

The FLICK procedure causes the display to flicker between two output images at a
given rate.

This routine is written in the IDL language. Its source code can be found in the file
flick.pro in the lib subdirectory of the IDL distribution.

Syntax

FLICK, A, B [, Rate]

Arguments

A

Byte image number 1, scaled from 0 to 255.

B

Byte image number 2, scaled from 0 to 255.

Rate

The flicker rate. The default is 1.0 sec/frame

See Also

CW_ANIMATE, XINTERANIMATE
FLICK IDL Reference Guide

501
FLOAT

The FLOAT function returns a result equal to Expression converted to single-
precision floating-point. If Expression is a complex number, FLOAT returns the real
part.

Syntax

Result = FLOAT(Expression [, Offset [, Dim1, ..., Dim8]])

Arguments

Expression

The expression to be converted to single-precision floating-point.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as single-precision floating
point data.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
The dimension parameters can be any scalar expression. Up to eight dimensions can
be specified. If no dimension arguments are given, the result is taken to be scalar.

When converting from a string argument, it is possible that the string does not contain
a valid floating-point value and no conversion is possible. The default action in such
cases is to print a warning message and return 0. The ON_IOERROR procedure can
be used to establish a statement to be jumped to in case of such errors.

Example

If A contains the integer value 6, it can be converted to floating-point and stored in
the variable B by entering:

B = FLOAT(A)

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, LONG, LONG64, STRING,
UINT, ULONG, ULONG64
IDL Reference Guide FLOAT

502
FLOOR

The FLOOR function returns the closest integer less than or equal to its argument.

Syntax

Result = FLOOR(X [, /L64])

Return Value

If the input argument X is an integer type, Result has the same value and type as X.
Otherwise, Result is a 32-bit longword integer with the same structure as X.

Arguments

X

The value for which the FLOOR function is to be evaluated. This value can be any
numeric type (integer, floating, or complex).

Keywords

L64

If set, the result type is 64-bit integer regardless of the input type. This is useful for
situations in which a floating point number contains a value too large to be
represented in a 32-bit integer.

Example

To print the floor function of 5.9, enter:

PRINT, FLOOR(5.9)
; IDL prints:
5

To print the floor function of 3000000000.1, the result of which is too large to
represent in a 32-bit integer:

PRINT, FLOOR(3000000000.1D, /L64)
; IDL prints:
3000000000
FLOOR IDL Reference Guide

503
See Also

CEIL, COMPLEXROUND, ROUND
IDL Reference Guide FLOOR

504
FLOW3

The FLOW3 procedure draws lines representing a 3D flow/velocity field. Note that
the 3D scaling system must be in place before calling FLOW3. This procedure works
best with Z buffer output device.

This routine is written in the IDL language. Its source code can be found in the file
flow3.pro in the lib subdirectory of the IDL distribution.

Syntax

FLOW3, Vx, Vy, Vz [, ARROWSIZE=value] [, /BLOB] [, LEN=value]
[, NSTEPS=value] [, NVECS=value] [, SX=vector, SY=vector, SZ=vector]

Arguments

Vx, Vy, Vz

3D arrays containing X, Y, and Z components of the field.

Keywords

ARROWSIZE

Size of arrowheads (default = 0.05).

BLOB

Set this keyword to draw a blob at the beginning of each flow line and suppress the
arrows.

LEN

Length of each step used to follow flow lines (default = 2.0). Expressed in units of
largest field vector (i.e., the length of the longest step is set to len times the grid
spacing.

NSTEPS

Number of steps used to follow the flow lines (default = largest dimension of Vx / 5).

NVECS

Number of random flow lines to draw (default = 200). Only used if Sx, Sy, Sz are not
present.
FLOW3 IDL Reference Guide

505
SX, SY, SZ

Optional vectors containing the starting coordinates of the flow lines. If omitted
random starting points are chosen.

Example

; Create a set of random three-dimensional arrays to represent
; the field:
vx = RANDOMU(seed, 5, 5, 5)
vy = RANDOMU(seed, 5, 5, 5)
vz = RANDOMU(seed, 5, 5, 5)

; Set up the 3D scaling system:
SCALE3, xr=[0,4], yr=[0,4], zr = [0,4]

; Plot the vector field:
FLOW3, vx, vy, vz

See Also

VEL, VELOVECT
IDL Reference Guide FLOW3

506
FLTARR

The FLTARR function returns a single-precision, floating-point vector or array.

Syntax

Result = FLTARR(D1, ..., D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, FLTARR sets every element of the result to zero. Set this keyword to
inhibit zeroing of the array elements and cause FLTARR to execute faster.

Example

Create F, a 3-element by 3-element floating-point array with each element set to 0.0
by entering:

F = FLTARR(3, 3)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, INTARR, LON64ARR,
LONARR, MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
FLTARR IDL Reference Guide

507
FLUSH

The FLUSH procedure causes all buffered output on the specified file units to be
written. IDL uses buffered output for reasons of efficiency. This buffering leads to
rare occasions where a program needs to be certain that output data are not waiting in
a buffer, but have actually been output.

Syntax

FLUSH, Unit1, ..., Unitn

Arguments

Uniti

The file units (logical unit numbers) to flush.

See Also

CLOSE, EMPTY, EXIT
IDL Reference Guide FLUSH

508
FOR

The FOR statement executes one or more statements repeatedly, incrementing or
decrementing a variable with each repetition, until a condition is met.

Note
For more information on using FOR and other IDL program control statements, see
Chapter 11, “Program Control” in Building IDL Applications.

Syntax

FOR variable = init, limit [, Increment] DO statement

or

FOR variable = init, limit [, Increment] DO BEGIN

statements

ENDFOR

Example

The following example iterates over the elements of an array, printing the value of
each element:

array = ['one', 'two', 'three']
n = N_ELEMENTS(array)
FOR i=0,n-1 DO BEGIN
 PRINT, array[i]
ENDFOR
FOR IDL Reference Guide

509
FORMAT_AXIS_VALUES

The FORMAT_AXIS_VALUES function accepts a vector of numeric values as an
input argument, and returns a vector of formatted string values. This routine uses the
same rules for formatting as do the axis routines that label tick marks given a set of
tick values.

Syntax

Result = FORMAT_AXIS_VALUES(Values)

Arguments

Values

Set this argument to a vector of numeric values to be formatted.

Keywords

None.

Example

Suppose we have a vector of axis values:

axis_values = [7.9, 12.1, 15.3, 19.0]

Convert these values into an array of strings:

new_values = FORMAT_AXIS_VALUES(axis_values)
HELP, new_values
PRINT, new_values
PRINT, axis_values

IDL prints:

NEW_VALUES STRING = Array[4]
7.9 12.1 15.3 19.0
7.90000 12.1000 15.3000 19.0000
IDL Reference Guide FORMAT_AXIS_VALUES

510
FORWARD_FUNCTION

The FORWARD_FUNCTION statement causes argument(s) to be interpreted as
functions rather than variables (versions of IDL prior to 5.0 used parentheses to
declare arrays).

Note
For information on using the FORWARD_FUNCTION statement, see Chapter 12,
“Procedures and Functions” in Building IDL Applications.

Syntax

FORWARD_FUNCTION Name1, Name2, ..., Namen
FORWARD_FUNCTION IDL Reference Guide

511
FREE_LUN

The FREE_LUN procedure deallocates previously-allocated file units. This routine is
usually used with file units allocated with GET_LUN, but it will also close any other
specified file unit. If the specified file units are open, they are closed prior to the
deallocation.

Syntax

FREE_LUN [, Unit1, ..., Unitn] [, EXIT_STATUS=variable] [, /FORCE]

Arguments

Uniti

The IDL file units (logical unit numbers) to deallocate.

Keywords

EXIT_STATUS

Set this keyword to a named variable that will contain the exit status reported by a
UNIX child process started via the UNIT keyword to SPAWN. This value is the exit
value reported by the process by calling EXIT, and is analogous to the value returned
by $? under most UNIX shells.

FORCE

Set this keyword to override the IDL file output buffer and force the file to be closed
no matter what errors occur in the process.

IDL buffers file output for performance reasons. If it is not possible to properly flush
this data when a file close is requested, an error is normally issued and the file
remains open. An example of this might be that your disk does not have room to write
the remaining data. This default behavior prevents data from being lost. To override
it and force the file to be closed no matter what errors occur in the process, specify
FORCE.

Example

See the example for the GET_LUN procedure.
IDL Reference Guide FREE_LUN

512
See Also

CLOSE, GET_LUN
FREE_LUN IDL Reference Guide

513
FSTAT

The FSTAT function returns status information about a specified file unit.

Syntax

Result = FSTAT(Unit)

Return Value

The FSTAT function returns a structure expression of type FSTAT (or FSTAT64 in
the case of files that are longer than 2^31-1 bytes in length) containing status
information about a specified file unit. The contents of this structure are documented
in “The FSTAT Function” in Chapter 8 of Building IDL Applications.

Fields of the FSTAT Structure

The following descriptions are of fields in the structure returned by the FSTAT
function. They are not keywords to FSTAT.

• UNIT — The IDL logical unit number (LUN).

• NAME — The name of the file.

• OPEN — Nonzero if the file unit is open. If OPEN is zero, the remaining
fields in FSTAT will not contain useful information.

• ISATTY — Nonzero if the file is actually a terminal instead of a normal file.
For example, if you are using an xterm window on a UNIX system and you
invoke FSTAT on logical unit 0 (standard input), ISATTY will be set to 1.

• ISAGUI — Nonzero if the file is actually a Graphical User Interface (for
example, a logical unit associated with the IDL Development Environment).
Thus, if you are using the IDLDE and you invoke FSTAT on logical unit 0
(standard input), ISAGUI will be set to 1.

• INTERACTIVE — Nonzero if either ISATTY or ISAGUI is nonzero.

• XDR — Nonzero if the file was opened with the XDR keyword, and is
therefore considered to contain data in the XDR format.

• COMPRESS — Nonzero if the file was opened with the COMPRESS
keyword, and is therefore considered to contain compressed data in the GZIP
format.

• READ — Nonzero if the file is open for read access.
IDL Reference Guide FSTAT

514
• WRITE — Nonzero if the file is open for write access.

• ATIME, CTIME, MTIME — The date of last access, date of creation, and
date of last modification given in seconds since 1 January 1970 UTC. Use the
SYSTIME function to convert these dates into a textual representation.

Note
Some file systems do not maintain all of these dates (e.g. MS DOS FAT file
systems), and may return 0. On some non-UNIX operating systems, access time is
not maintained, and ATIME and MTIME will always return the same date.

• TRANSFER_COUNT — The number of scalar IDL data items transferred in
the last input/output operation on the unit. This is set by the following IDL
routines: READU, WRITEU, PRINT, PRINTF, READ, and READF.
TRANSFER_COUNT is useful when attempting to recover from input/output
errors.

• CUR_PTR — The current position of the file pointer, given in bytes from the
start of the file. If the device is a terminal (ISATTY is nonzero), the value of
CUR_PTR will not contain useful information. When reporting on file units
opened with the COMPRESS keyword to OPEN, the position reported by
CUR_PTR is the “logical” position—the position it would be at in the
uncompressed version of the same file.

• SIZE — The current length of the file in bytes. If the device is a terminal
(ISATTY is nonzero), the value of SIZE will not contain useful information.
When reporting on file units opened with the COMPRESS keyword to OPEN,
the size reported by SIZE is the compressed size of the actual file, and not the
logical length of the uncompressed data contained within. This is inconsistent
with the position reported by CUR_PTR. The reason for reporting the size in
this way is that the logical length of the data cannot be known without reading
the entire file from beginning to end and counting the uncompressed bytes, and
this would be extremely inefficient.

Warning
VMS variable length records have a 2-byte record-length descriptor at the
beginning of each record. Because the SIZE field contains the length of the data file
including the record descriptors, reading a file with VMS variable length records
into a byte array of the size returned by FSTAT will result in an RMS EOF error.
FSTAT IDL Reference Guide

515
• REC_LEN — If the file is record-oriented (VMS), this field contains the
record length; otherwise, it is zero.

Arguments

Unit

The file unit about which information is required. This parameter can be an integer or
an associated variable, in which case information about the variable’s associated file
is returned.

Keywords

None.

Examples

If file unit number 1 is open, the FSTAT information on that unit can be seen by
entering:

PRINT, FSTAT(1)

Specific information can be obtained by referring to single fields within the structure
returned by FSTAT. The following code prints the name and length of the file open
on unit 1:

; Put FSTAT information in variable A:
A = FSTAT(1)

; Print the name and size fields:
PRINT, 'File: ', A.NAME, ' is ', A.SIZE, ' bytes long.'

See Also

ASSOC, OPEN
IDL Reference Guide FSTAT

516
FULSTR

The FULSTR restores a row-indexed sparse array to full storage mode. If the sparse
array was created with the SPRSIN function using the THRESH keyword, any values
in the original array that were below the specified threshold are replaced with zeros.

Syntax

Result = FULSTR(A)

Arguments

A

A row-indexed sparse array created by the SPRSIN function.

Example

Suppose we have converted an array to sparse storage format with the following
commands:

A = [[5.0, -0.2, 0.1], $
[3.0, -2.0, 0.3], $
[4.0, -1.0, 0.0]]

; Convert to sparse storage mode. All elements of the array A that
; have absolute values less than THRESH are set to zero:
sparse = SPRSIN(A, THRESH=0.5)

The variable SPARSE now contains a representation of the array A in structure form.
To restore the array from the sparse-format structure:

; Restore the array:
result = FULSTR(sparse)

; Print the result:
PRINT, result

IDL prints:

5.00000 0.00000 0.00000
3.00000 -2.00000 0.00000
4.00000 -1.00000 0.00000

Note that the elements with an absolute value less than the specified threshold have
been set to zero.
FULSTR IDL Reference Guide

517
See Also

LINBCG, SPRSAB, SPRSAX, SPRSIN, SPRSTP, READ_SPR, WRITE_SPR
IDL Reference Guide FULSTR

518
FUNCT

The FUNCT procedure evaluates the sum of a Gaussian and a 2nd-order polynomial
and optionally returns the value of its partial derivatives. Normally, this function is
used by CURVEFIT to fit the sum of a line and a varying background to actual data.

This routine is written in the IDL language. Its source code can be found in the file
funct.pro in the lib subdirectory of the IDL distribution.

Syntax

FUNCT, X, A, F [, Pder]

Arguments

X

A vector of values for the independent variable.

A

A vector of coefficients for the equations:

F

A named variable that will contain the value of the function at each Xi.

Pder

A named variable that will contain an array of the size (N_ELEMENTS(X),6) that
contains the partial derivatives. Pder(i,j) represents the derivative at the ith point with
respect to jth parameter.

See Also

CURVEFIT

F A0e
Z2– 2⁄

A3 A4X A5X2+ + +=

Z X A1–() A2⁄=
FUNCT IDL Reference Guide

519
FUNCTION

The FUNCTION statement defines a function.

Note
For information on using the FUNCTION statement, see Chapter 12, “Procedures
and Functions” in Building IDL Applications.

Syntax

FUNCTION Function_Name, parameter1, ..., parametern
IDL Reference Guide FUNCTION

520
FV_TEST

The FV_TEST function computes the F-statistic and the probability that two sample
populations X and Y have significantly different variances. X and Y may be of
different lengths. The result is a two-element vector containing the F-statistic and its
significance. The significance is a value in the interval [0.0, 1.0]; a small value (0.05
or 0.01) indicates that X and Y have significantly different variances. This type of test
is often referred to as the F-variance test.

The F-statistic formula for sample populations x and y with means x and y is defined
as:

where x = (x0, x1, x2, ..., xN-1) and y = (y0, y1, y2 ..., yM-1)

This routine is written in the IDL language. Its source code can be found in the file
fv_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = FV_TEST(X, Y)

Arguments

X

An n-element integer, single- or double-precision floating-point vector.

Y

An m-element integer, single- or double-precision floating-point vector.

Example

; Define two n-element sample populations:
X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, $

305, 270, 260, 251, 275, 288, 242, 304, 267]

F
M 1–
N 1–

xj x–()

2 1
N
---- xj x–()

j 0=

N 1–

∑
2

–
j 0=

N 1–

∑

yj y–()
2 1

M
----- yj y–()

j 0=

M 1–

∑
2

–
j 0=

M 1–

∑
---=
FV_TEST IDL Reference Guide

521
Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, $
271, 214, 216, 175, 192, 208, 150, 281, 196]

; Compute the F-statistic (of X and Y) and its significance:
PRINT, FV_TEST(X, Y)

IDL prints:

2.48578 0.0540116

The result indicates that X and Y have significantly different variances.

See Also

KW_TEST, MOMENT, RS_TEST, S_TEST, TM_TEST
IDL Reference Guide FV_TEST

522
FX_ROOT

The FX_ROOT function computes real and complex roots of a univariate nonlinear
function using an optimal Müller’s method.

This routine is written in the IDL language. Its source code can be found in the file
fx_root.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = FX_ROOT(X, Func [, /DOUBLE] [, ITMAX=value] [, /STOP]
[, TOL=value])

Arguments

X

A 3-element real or complex initial guess vector. Real initial guesses may result in
real or complex roots. Complex initial guesses will result in complex roots.

Func

A scalar string specifying the name of a user-supplied IDL function that defines the
univariate nonlinear function. This function must accept the vector argument X.

For example, suppose we wish to find a root of the following function:

We write a function FUNC to express the function in the IDL language:

FUNCTION func, X
RETURN, EXP(SIN(X)^2 + COS(X)^2 - 1) - 1

END

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

ITMAX

The maximum allowed number of iterations. The default is 100.

y e
x2 x2 1–cos+sin()

1–=
FX_ROOT IDL Reference Guide

523
STOP

Use this keyword to specify the stopping criterion used to judge the accuracy of a
computed root r(k). Setting STOP = 0 (the default) checks whether the absolute value
of the difference between two successively-computed roots, | r(k) - r(k+1) | is less
than the stopping tolerance TOL. Setting STOP = 1 checks whether the absolute
value of the function FUNC at the current root, | FUNC(r(k)) |, is less than TOL.

TOL

Use this keyword to specify the stopping error tolerance. The default is 1.0 × 10-4.

Example

This example finds the roots of the function FUNC defined above:

; First define a real 3-element initial guess vector:
x = [0.0, -!pi/2, !pi]

; Compute a root of the function using double-precision
; arithmetic:
root = FX_ROOT(X, 'FUNC', /DOUBLE)

; Check the accuracy of the computed root:
PRINT, EXP(SIN(ROOT)^2 + COS(ROOT)^2 - 1) - 1

IDL prints:

0.0000000

We can also define a complex 3-element initial guess vector:

x = [COMPLEX(-!PI/3, 0), COMPLEX(0, !PI), COMPLEX(0, -!PI/6)]

; Compute the root of the function:
root = FX_ROOT(x, 'FUNC')

; Check the accuracy of the computed complex root:
PRINT, EXP(SIN(ROOT)^2 + COS(ROOT)^2 - 1) - 1

IDL prints:

(0.00000, 0.00000)

See Also

BROYDEN, NEWTON, FZ_ROOTS
IDL Reference Guide FX_ROOT

524
FZ_ROOTS

The FZ_ROOTS function is used to find the roots of an m-degree complex
polynomial, using Laguerre’s method. The result is an m-element complex vector.

FZ_ROOTS is based on the routine zroots described in section 9.5 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = FZ_ROOTS(C [, /DOUBLE] [, EPS=value] [, /NO_POLISH])

Arguments

C

A vector of length m+1 containing the coefficients of the polynomial, in ascending
order (see example). The type can be real or complex.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

EPS

The desired fractional accuracy. The default value is 2.0 × 10-6.

NO_POLISH

Set this keyword to suppress the usual polishing of the roots by Laguerre’s method.

Examples

Example 1: Real coefficients yielding real roots.

Find the roots of the polynomial:

P (x) = 6x3 - 7x2 - 9x - 2

The exact roots are -1/2, -1/3, 2.0.

coeffs = [-2.0, -9.0, -7.0, 6.0]
roots = FZ_ROOTS(coeffs)
PRINT, roots
FZ_ROOTS IDL Reference Guide

525
IDL prints:

(-0.500000, 0.00000)(-0.333333, 0.00000)(2.00000, 0.00000)

Example 2: Real coefficients yielding complex roots.

Find the roots of the polynomial:

P (x) = x4 + 3x2 + 2

The exact roots are:

, , ,
coeffs = [2.0, 0.0, 3.0, 0.0, 1.0]
roots = FZ_ROOTS(coeffs)
PRINT, roots

IDL Prints:

(0.00000, -1.41421)(0.00000, 1.41421)
(0.00000, -1.00000)(0.00000, 1.00000)

Example 3: Real and complex coefficients yielding real and complex roots.

Find the roots of the polynomial:

P (x) = x3 + (–4 – i4)x2 +s (–3 + i4)x + (18 + i24)

The exact roots are –2.0, 3.0, (3.0 + i4.0)

coeffs = [COMPLEX(18,24), COMPLEX(-3,4), COMPLEX(-4,-4), 1.0]
roots = FZ_ROOTS(coeffs)
PRINT, roots

IDL Prints:

(-2.00000, 0.00000) (3.00000, 0.00000) (3.00000, 4.00000)

See Also

FX_ROOT, BROYDEN, NEWTON, POLY

0.0 i 2.0– 0.0 i 2.0+ 0.0 i– 0.0 i+
IDL Reference Guide FZ_ROOTS

526
GAMMA

The GAMMA function returns the gamma function of X.

The gamma function is defined as:

If X is double-precision, the result is double-precision, otherwise the argument is
converted to floating-point and the result is floating-point.

Use the LNGAMMA function to obtain the natural logarithm of the gamma function
when there is a possibility of overflow.

Syntax

Result = GAMMA(X)

Arguments

X

The expression for which the gamma function will be evaluated.

Example

Plot the gamma function over the range 0.01 to 1.0 with a step size of 100 by
entering:

X = FINDGEN(99)/100. + 0.01
PLOT, X, GAMMA(X)

See Also

BETA, IBETA, IGAMMA, LNGAMMA

Γ x() tx 1– e t– td

0

∞

∫≡
GAMMA IDL Reference Guide

527
GAMMA_CT

The GAMMA_CT procedure applies gamma correction to a color table.

This routine is written in the IDL language. Its source code can be found in the file
gamma_ct.pro in the lib subdirectory of the IDL distribution.

Syntax

GAMMA_CT, Gamma [, /CURRENT] [, /INTENSITY]

Arguments

Gamma

The value of gamma correction. A value of 1.0 indicates a linear ramp (i.e., no
gamma correction). Higher values of Gamma give more contrast. Values less than 1.0
yield lower contrast.

Keywords

CURRENT

Set this keyword to apply correction from the “current” color table (i.e., the values
R_CURR, G_CURR, and B_CURR in the COLORS common block). Otherwise,
correction is applied from the “original” color table (i.e., the values R_ORIG,
G_ORIG, and B_ORIG in the COLORS common block). The gamma corrected color
table is always saved in the “current” table (R_CURR, G_CURR, B_CURR) and the
new table is loaded.

INTENSITY

Set this keyword to correct the individual intensities of each color in the colortable.
Otherwise, the colors are shifted according to the gamma function.

See Also

PSEUDO, STRETCH, XLOADCT
IDL Reference Guide GAMMA_CT

528
GAUSS_CVF

The GAUSS_CVF function computes the cutoff value V in a standard Gaussian
(normal) distribution with a mean of 0.0 and a variance of 1.0 such that the
probability that a random variable X is greater than V is equal to a user-supplied
probability P.

This routine is written in the IDL language. Its source code can be found in the file
gauss_cvf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = GAUSS_CVF(P)

Arguments

P

A non-negative single- or double-precision floating-point scalar, in the interval [0.0,
1.0], that specifies the probability of occurrence or success.

Example

Use the following command to compute the cutoff value in a Gaussian distribution
such that the probability that a random variable X is greater than the cutoff value is
0.025:

PRINT, GAUSS_CVF(0.025)

IDL prints:

1.95997

See Also

CHISQR_CVF, F_CVF, GAUSS_PDF, T_CVF
GAUSS_CVF IDL Reference Guide

529
GAUSS_PDF

The GAUSS_PDF function computes the probability P that, in a standard Gaussian
(normal) distribution with a mean of 0.0 and a variance of 1.0, a random variable X is
less than or equal to a user-specified cutoff value V.

This routine is written in the IDL language. Its source code can be found in the file
gauss_pdf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = GAUSS_PDF(V)

Return Value

This function returns a scalar or array with the same dimensions as V. If V is double-
precision, the result is double-precision, otherwise the result is single-precision.

Arguments

V

A scalar or array that specifies the cutoff value(s).

Examples

Example 1

Compute the probability that a random variable X, from the standard Gaussian
(normal) distribution, is less than or equal to 2.44:

PRINT, GAUSS_PDF(2.44)

IDL Prints:

0.992656

Example 2

Compute the probability that a random variable X, from the standard Gaussian
(normal) distribution, is less than or equal to 10.0 and greater than or equal to 2.0:

PRINT, GAUSS_PDF(10.0) - GAUSS_PDF(2.0)

IDL Prints:

0.0227501
IDL Reference Guide GAUSS_PDF

530
Example 3

Compute the probability that a random variable X, from the Gaussian (normal)
distribution with a mean of 0.8 and a variance of 4.0, is less than or equal to 2.44:

PRINT, GAUSS_PDF((2.44 - 0.80)/SQRT(4.0))

IDL Prints:

0.793892

See Also

BINOMIAL, CHISQR_PDF, F_PDF, GAUSS_CVF, T_PDF
GAUSS_PDF IDL Reference Guide

531
GAUSS2DFIT

The GAUSS2DFIT function fits a two-dimensional, elliptical Gaussian equation to
rectilinearly gridded data.

Z = F(x, y)

where:

And the elliptical function is:

The parameters of the ellipse U are:

• Axis lengths are 2a and 2b, in the unrotated X and Y axes, respectively.

• Center is at (h, k).

• Rotation of T radians from the X axis, in the clockwise direction.

The rotated coordinate system is defined as:

The rotation is optional, and can be forced to 0, making the major and minor axes of
the ellipse parallel to the X and Y axes.

Coefficients of the computed fit are returned in argument A.

Procedure Used and Other Notes

The peak/valley is found by first smoothing Z and then finding the maximum or
minimum, respectively. GAUSSFIT is then applied to the row and column running
through the peak/valley to estimate the parameters of the Gaussian in X and Y.
Finally, CURVEFIT is used to fit the 2D Gaussian to the data.

Be sure that the 2D array to be fit contains the entire peak/valley out to at least 5 to 8
half-widths, or the curve-fitter may not converge.

This is a computationally-intensive routine. The time required is roughly proportional
to the number of elements in Z.

F x y,() A0 A1e
U 2⁄–

+=

U x' a⁄()2
y' b⁄()2

+=

x' x h–() T y k–() Tsin–cos=

y' x h–() T y k–() Tcos+sin=
IDL Reference Guide GAUSS2DFIT

532
This routine is written in the IDL language. Its source code can be found in the file
gauss2dfit.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = GAUSS2DFIT(Z, A [, X, Y] [, /NEGATIVE] [, /TILT])

Arguments

Z

The dependent variable. Z should be a two-dimensional array with dimensions (Nx,
Ny). Gridding in the array must be rectilinear.

A

A named variable in which the coefficients of the fit are returned. A is returned as a
seven element vector the coefficients of the fitted function. The meanings of the
seven elements in relation to the discussion above is:

• A[0] = A0 = constant term

• A[1] = A1 = scale factor

• A[2] = a = width of Gaussian in the X direction

• A[3] = b = width of Gaussian in the Y direction

• A[4] = h = center X location

• A[5] = k = center Y location.

• A[6] = T = Theta, the rotation of the ellipse from the X axis in radians, counter-
clockwise.

X

An optional vector with Nx elements that contains the X values of Z (i.e., Xi is the X
value for Zi,j. If this argument is omitted, a regular grid in X is assumed, and the X
location of Zi,j = i.

Y

An optional vector with Ny elements that contains the Y values of Z (i.e., Yj is the Y
value for Zi,j. If this argument is omitted, a regular grid in Y is assumed, and the Y
location of Zi,j = j.
GAUSS2DFIT IDL Reference Guide

533
Keywords

NEGATIVE

Set this keyword to indicate that the Gaussian to be fitted is a valley (such as an
absorption line). By default, a peak is fit.

TILT

Set this keyword to allow the orientation of the major and minor axes of the ellipse to
be unrestricted. The default is that the axes of the ellipse must be parallel to the X and
Y axes. Therefore, in the default case, A[6] is always returned as 0.

Example

This example creates a 2D gaussian, adds random noise and then applies
GAUSS2DFIT.

; Define array dimensions:
nx = 128 & ny = 100
; Define input function parameters:
A = [5., 10., nx/6., ny/10., nx/2., .6*ny]
; Create X and Y arrays:
X = FINDGEN(nx) # REPLICATE(1.0, ny)
Y = REPLICATE(1.0, nx) # FINDGEN(ny)
; Create an ellipse:
U = ((X-A[4])/A[2])^2 + ((Y-A[5])/A[3])^2
; Create gaussian Z:
Z = A[0] + A[1] * EXP(-U/2)
; Add random noise, SD = 1:
Z = Z + RANDOMN(seed, nx, ny)
; Fit the function, no rotation:
yfit = GAUSS2DFIT(Z, B)
; Report results:
PRINT, 'Should be: ', STRING(A, FORMAT='(6f10.4)')
PRINT, 'Is: ', STRING(B(0:5), FORMAT='(6f10.4)')

See Also

COMFIT, GAUSSFIT, POLY_FIT, REGRESS, SFIT, SVDFIT
IDL Reference Guide GAUSS2DFIT

534
GAUSSFIT

The GAUSSFIT function computes a non-linear least-squares fit to a function f (x)
with from three to six unknown parameters. f (x) is a linear combination of a
Gaussian and a quadratic; the number of terms is controlled by the keyword
parameter NTERMS.

This routine is written in the IDL language. Its source code can be found in the file
gaussfit.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = GAUSSFIT(X, Y [, A] [, ESTIMATES=array] [, NTERMS=integer{3 to
6}])

Arguments

X

An n-element vector of independent variables.

Y

A vector of dependent variables, the same length as X.

A

A named variable that will contain the coefficients A of the fit.

Keywords

ESTIMATES

Set this keyword equal to an array of starting estimates for the parameters of the
equation. If the NTERMS keyword is specified, the ESTIMATES array should have
NTERMS elements. If NTERMS is not specified, the ESTIMATES array should
have six elements. If the ESTIMATES array is not specified, estimates are calculated
by the GAUSSFIT routine.
GAUSSFIT IDL Reference Guide

535
NTERMS

Set this keyword to an integer value between three and six to specify the function to
be used for the fit. The values correspond to the functions shown below. In all cases:

NTERMS=6

NTERMS=6 is the default setting. Here, A0 is the height of the Gaussian, A1 is the
center of the Gaussian, A2 is the width of the Gaussian, A3 is the constant term, A4 is
the linear term, and A5 is the quadratic term.

NTERMS=5

NTERMS=4

NTERMS=3

Example

; Define the independent variables:
X = FINDGEN(13)/5 - 1.2

; Define the dependent variables:
Y = [0.0, 0.1, 0.2, 0.5, 0.8, 0.9, $

0.99, 0.9, 0.8, 0.5, 0.2, 0.1, 0.0]

; Fit the data to the default function, storing coefficients in A:

z
x A1–

A2
---------------=

f x() A0e

z2–
2

A3 A4x A5x
2

+ + +=

f x() A0e

z2–
2

A3 A4x+ +=

f x() A0e

z2–
2

A3+=

f x() A0e

z2–
2

=

IDL Reference Guide GAUSSFIT

536
yfit = GAUSSFIT(X, Y, A)

; Print the coefficients:
PRINT, A

IDL prints:

2.25642 -1.62041e-07 0.703372 -1.25634 3.04487e-07
0.513596

We can compare original and fitted data by plotting one on top of the other:

; Load an appropriate color table:
LOADCT, 30

; Plot the original data:
PLOT, X, Y

; Overplot the fitted data in a different color:
OPLOT, X, yfit, COLOR = 100

See Also

COMFIT, CURVEFIT, GAUSS2DFIT, POLY_FIT, REGRESS, SFIT, SVDFIT
GAUSSFIT IDL Reference Guide

537
GAUSSINT

The GAUSSINT function evaluates the integral of the Gaussian probability function
and returns the result.

The Gaussian integral is defined as:

If X is double-precision, the result is double-precision, otherwise the argument is
converted to floating-point and the result is floating-point. The result has the same
structure as the input argument, X.

Syntax

Result = GAUSSINT(X)

Arguments

X

The expression for which the Gaussian integral is to be evaluated.

Example

Plot the Gaussian probability function over the range -5 to 5 with a step size of 0.1by
entering:

X = FINDGEN(101)/10. - 5.
PLOT, X, GAUSSINT(X)

See Also

GAUSS_CVF, GAUSS_PDF

Gaussint x()
1

2π
---------- e t2– 2⁄ td

∞–

x

∫≡
IDL Reference Guide GAUSSINT

538
GET_DRIVE_LIST

The GET_DRIVE_LIST function returns a string array of the names of valid drives /
volumes for the file system (Windows / Macintosh only).

Syntax

Result = GET_DRIVE_LIST()

Return Value

This function returns a string array of the names of valid drives/volumes for the file
system.

Arguments

None.

Keywords

None.
GET_DRIVE_LIST IDL Reference Guide

539
GET_KBRD

The GET_KBRD function returns the next character available from the standard
input (IDL file unit 0) as a one-character string.

Syntax

Result = GET_KBRD(Wait)

Arguments

Wait

If Wait is zero, GET_KBRD returns the null string if there are no characters in the
terminal type-ahead buffer. If it is nonzero, the function waits for a character to be
typed before returning.

Examples

To wait for keyboard input and store one character in the variable R, enter:

R = GET_KBRD(1)

Press any key to return to the IDL prompt. To see the character that was typed, enter:

PRINT, R

The following code fragment reads one character at a time and echoes that
character’s numeric code. It quits when a “q” is entered:

REPEAT BEGIN
A = GET_KBRD(1)
PRINT, BYTE(A)

ENDREP UNTIL A EQ 'q'

Note
The GET_KBRD function can be used to return Windows special characters (in
addition to standard keyboard characters), created by holding down the Alt key and
entering the character’s ANSI equivalent. For example, to return the paragraph
marker (¶), ANSI number 0182, enter:

C = GET_KBRD(1)

While GET_KBRD is waiting, press and hold the Alt key and type 0182 on the
numeric keypad. When the IDL prompt returns, enter:
IDL Reference Guide GET_KBRD

540
PRINT, C

IDL prints the paragraph marker,“¶”.

GET_KBRD cannot be used to return control characters or other editing keys (e.g.,
Delete, Backspace, etc.). These characters are used for keyboard shortcuts and
command line editing only. GET_KBRD can be used to return the Enter key.

See Also

READ/READF
GET_KBRD IDL Reference Guide

541
GET_LUN

The GET_LUN procedure allocates a file unit from a pool of free units. Instead of
writing routines to assume the use of certain file units, IDL functions and procedures
should use GET_LUN to reserve unit numbers in order to avoid conflicts with other
routines. Use FREE_LUN to free the file units when finished.

Syntax

GET_LUN, Unit

Arguments

Unit

The named variable into which GET_LUN should place the file unit number. Unit is
converted into a longword integer in the process. The file unit number obtained is in
the range 100 to 128.

Example

Instead of explicitly specifying a file unit number that may already be used, use
GET_LUN to obtain a free one and store the result in the variable U by entering:

GET_LUN, U

Now U can be used in opening a file:

OPENR, U, 'file.dat'

Once the data from “file.dat” has been read, the file can be closed and the file unit can
be freed with the command:

FREE_LUN, U

Note also that OPENR has a GET_LUN keyword that allows you to simultaneously
obtain a free file unit and open a file. The following command performs the same
tasks as the first two commands above:

OPENR, U, 'file.dat', /GET_LUN

See Also

FREE_LUN, OPEN
IDL Reference Guide GET_LUN

542
GET_SCREEN_SIZE

The GET_SCREEN_SIZE function returns a two-element vector of the form [width,
height] that represents the dimensions, measured in device units, of the screen.

Syntax

Result = GET_SCREEN_SIZE([Display_name] [, RESOLUTION=variable])

X Windows Keywords: [, DISPLAY_NAME=string]

Arguments

Display_name (X Only)

A string indicating the name of the X WIndows display that should be used to
determine the screen size.

Keywords

DISPLAY_NAME (X Only)

Set this keyword equal to a string indicating the name of the X WIndows display that
should be used to determine the screen size. Setting this keyword is equivalent to
setting the optional Display_name argument.

RESOLUTION

Set this keyword equal to a named variable that will contain a two-element vector,
[xres, yres], specifying the screen resolution in cm/pixel.

Example

You can find the dimensions and screen resolution of your screen by entering the
following:

dimensions = GET_SCREEN_SIZE(RESOLUTION=resolution)
PRINT, dimensions, resolution

For the screen on which this was tested, IDL prints:

1280.00 1024.00
0.0282031 0.0281250
GET_SCREEN_SIZE IDL Reference Guide

543
GET_SYMBOL

The GET_SYMBOL function returns the value of a VMS DCL (Digital Command
Language) interpreter symbol as a scalar string. If the symbol is undefined, the null
string is returned.

Note
This procedure is available on VMS only.

Syntax

Result = GET_SYMBOL(Name [, TYPE={1 | 2}])

Arguments

Name

A scalar string containing the name of the symbol to be translated.

Keywords

TYPE

The table from which Name is translated. Set TYPE to 1 to specify the local symbol
table. A value of 2 specifies the global symbol table. The default is to search the local
table.

See Also

GETENV
IDL Reference Guide GET_SYMBOL

544
GETENV

The GETENV function returns the equivalence string for Name from the
environment of the IDL process.

Syntax

Result = GETENV(Name)

UNIX-Only Keywords: [, /ENVIRONMENT]

Return Value

Returns the equivalence string for Name from the environment of the IDL process, or
a null string if Name does not exist in the environment.

Arguments

Name

The scalar string for which an equivalence string from the environment is desired.

UNIX-Only Keywords

ENVIRONMENT

If set, returns a string array containing all entries in the current process, one variable
per entry, in the SETENV format (Variable=Value).

If ENVIRONMENT is set, the Name argument should not be supplied.

Environment Variables Under VMS

VMS does not directly support the concept of environment variables. Instead, it is
emulated (by using the standard C getenv() function) as described below, enabling
you to use GETENV portably between UNIX and VMS:

• If Name is one of HOME, TERM, PATH, or USER, an appropriate response is
generated. This mimics the most common UNIX environment variables.

• An attempt is made to translate Name as a logical name. All four logical name
tables are searched in the standard order.

• An attempt is made to translate Name as a command-language interpreter
symbol.
GETENV IDL Reference Guide

545
Special Handling of the IDL_TMPDIR Environment Variable

If you specify 'IDL_TMPDIR' as the value of Name, and an environment variable
with that name exists, GETENV returns its defined value as usual. However, if
TMP_DIR is not defined, GETENV returns the path of the location where IDL's
internals believe temporary files should be written on your system. Using
IDL_TMPDIR in this manner makes it simple for code written in IDL to follow the
same conventions as IDL itself, and provides the user with an easy way to override
this decision.

The actual location used is system dependent. When possible, IDL tries to follow
operating system and vendor conventions.

Example

To print the name of the current UNIX shell, enter the command:

PRINT, 'The current shell is: ', GETENV('SHELL')

See Also

GET_SYMBOL, SETENV, TRNLOG

The UNIX Environment

Every UNIX process has an environment. The environment consists of environment
variables, each of which has a string value associated with it. Some environment
variables always exist, such as PATH that tells the shell where to look for programs
or TERM that specifies the kind of terminal being used. Others can be added by the
user, usually from an interactive shell and often from the .login file that is
executed when you log in.

When a process is created, it is given a copy of the environment from its parent
process. IDL is no exception to this; when started, it inherits a copy of its parent’s
environment. The parent process to IDL is usually the interactive shell from which it
was started. In turn, any child process created by IDL (such as those from the
SPAWN procedure) inherits a copy of IDL’s current environment.

Note
It is important to realize that environment variables are not an IDL feature; they are
part of every UNIX process. Although they can serve as a form of global memory, it
is best to avoid using them in that way. Instead, IDL heap variables (pointers or
object references), IDL system variables, or common blocks should be used in that
IDL Reference Guide GETENV

546
role. This will make your IDL code portable to non-UNIX-based IDL systems.
Environment variables should be used for communicating with child processes.
One example is setting the value of the SHELL environment variable prior to
calling SPAWN to change the shell executed by SPAWN.

IDL provides two routines for manipulating the environment:

GETENV

The GETENV function returns the equivalence string from the environment of the
IDL process. It has the form:

GETENV(Name)

where Name is the name of the environment variable for which the translation is
desired. If Name does not exist in the environment, a null string is returned. For
example, to determine the type of terminal being used, you can enter the IDL
statement:

PRINT, 'The terminal type is: ', GETENV('TERM')

Executing this statement on a Sun workstation give the following result:

The terminal type is: sun

SETENV

The SETENV function adds a new environment variable or changes the value of an
existing environment variable in the IDL process. It has the form:

SETENV, Environment_Expression

where Environment_Expression is a scalar string containing an environment
expression to be added to the environment.

For example, you can change the shell used by SPAWN by changing the value of the
SHELL environment variable. An IDL statement to change to using the Bourne shell
/bin/sh would be:

SETENV, 'shell=/bin/sh'
GETENV IDL Reference Guide

547
GOTO

The GOTO statement transfers program control to point specified by a label. The
GOTO statement is generally considered to be a poor programming practice that
leads to unwieldy programs. Its use should be avoided. However, for those cases in
which the use of a GOTO is appropriate, IDL does provide the GOTO statement.

Note that using a GOTO to jump into the middle of a loop results in an error.

Warning
You must be careful in programming with GOTO statements. It is not difficult to
get into a loop that will never terminate, especially if there is not an escape (or test)
within the statements spanned by the GOTO.

For information on using GOTO and other IDL program control statements, see
Chapter 11, “Program Control” in Building IDL Applications.

Syntax

GOTO, label

Example

In the following example, the statement at label JUMP1 is executed after the GOTO
statement, skipping any intermediate statements:

GOTO, JUMP1
PRINT, 'Skip this' ; This statement is skipped
PRINT, 'Skip this' ; This statement is also skipped
JUMP1: PRINT, 'Do this'

The label can also occur before the GOTO statement that refers to the label, but you
must be careful to avoid an endless loop. GOTO statements are frequently the
subjects of IF statements, as in the following statement:

IF A NE G THEN GOTO, MISTAKE
IDL Reference Guide GOTO

548
GRID_TPS

The GRID_TPS function uses thin plate splines to interpolate a set of values over a
regular two dimensional grid, from irregularly sampled data values. Thin plate
splines are ideal for modeling functions with complex local distortions, such as
warping functions, which are too complex to be fit with polynomials.

Given n points, (xi, yi) in the plane, a thin plate spline can be defined as:

with the constraints:

where ri
2 = (x-xi)

2 + (y-yi)
2. A thin plate spline (TPS) is a smooth function, which

implies that it has continuous first partial derivatives. It also grows almost linearly
when far away from the points (xi, yi). The TPS surface passes through the original
points: f(xi, yi) = zi.

Note
GRID_TPS requires at least 7 noncolinear points.

Syntax

Interp = GRID_TPS (Xp, Yp, Values [, COEFFICIENTS=variable]
[, NGRID=[nx, ny]] [, START=[x0, y0]] [, DELTA=[dx, dy]])

Return Value

The function returns an array of dimension (nx, ny) of interpolated values. If the
values argument is a two-dimensional array, the output array has dimensions (nz, nx,
ny), where nz is the leading dimension of the values array allowing for the
interpolation of arbitrarily sized vectors in a single call. Keywords can be used to
specify the grid dimensions, size, and location.

f x y,() a0 a+ 1x a2y
1
2
--- biri

2
ri

2
log

i 0=

n 1–

∑+ +=

bi
i 1=

n 1–

∑ bixi biyi 0=
i 0=

n 1–

∑=
i 1=

n 1–

∑=
GRID_TPS IDL Reference Guide

549
Arguments

Xp

A vector of x points.

Yp

A vector of y points, with the same number of elements as the Xp argument.

Values

A vector or two-dimensional array of values to interpolate. If values are a two-
dimensional array, the leading dimension is the number of values for which
interpolation is performed.

Keywords

COEFFICIENTS

A named variable in which to store the resulting coefficients of the thin plate spline
function for the last set of Values. The first N elements, where N is the number of
input points, contain the coefficients bi, in the previous equation. Coefficients with
subscripts n, n+1, and n+2, contain the values of a0, a1, and a2, in the above equation.

DELTA

A two-element array of the distance between grid points (dx, dy). If a scalar is passed,
the value is used for both dx and dy. The default is the range of the xp and yp arrays
divided by (nx – 1, ny – 1).

NGRID

A two-element array of the size of the grid to interpolate (nx, ny). If a scalar is passed,
the value is used for both nx and ny. The default value is [25, 25].

START

A two-element array of the location of grid point (x0, y0). If a scalar is passed, the
value is used for both x0 and y0. The default is the minimum values in the xp and yp
arrays.

References

I. Barrodale, et al, “Note: Warping digital images using thin plate splines”, Pattern
Recognition, Vol 26, No. 2, pp 375-376, 1993.
IDL Reference Guide GRID_TPS

550
M. J. D. Powell, “Tabulation of thin plate splines on a very fine two-dimensional
grid”, Report No. DAMTP 1992/NA2, University of Cambridge, Cambridge, U.K.
(1992).

Example

The following example creates a set of 25 random values defining a surface on a
square, 100 units on a side, starting at the origin. Then, we use GRID_TPS to create a
regularly gridded surface, with dimensions of 101 by 101 over the square, which is
then displayed. The same data set is then interpolated using TRIGRID, and the two
results are displayed for comparison.

;X values
x = RANDOMU(seed, 25) * 100

;Y values
y = RANDOMU(seed, 25) * 100

;Z values
z = RANDOMU(seed, 25) * 10

z1 = GRID_TPS(x, y, z, NGRID=[101, 101], START=[0,0], DELTA=[1,1])

;Show the result
LIVE_SURFACE, z1, TITLE=’TPS’

;Grid using TRIGRID
TRIANGULATE, x, y, tr, bounds

z2 = TRIGRID(x, y, z, tr, [1,1], [0,0,100, 100], $
EXTRAPOLATE=bounds)

;Show triangulated surface
LIVE_SURFACE, z2, TITLE=’TRIGRID - Quintic’

See Also

MIN_CURVE_SURF
GRID_TPS IDL Reference Guide

551
GRID3

The GRID3 function fits a smooth function to a set of 3D scattered nodes (xi, yi, zi)
with associated data values (fi). The function can be sampled over a set of user-
specified points, or over an arbitrary 3D grid which can then be viewed using the
SLICER3 procedure.

GRID3 uses the method described in Renka, R. J., “Multivariate Interpolation of
Large Sets of Scattered Data,” ACM Transactions on Mathematical Software, Vol.
14, No. 2, June 1988, Pages 139-148, which has been referred to as the Modified
Shepard’s Method. The function described by this method has the advantages of
being equal to the values of fi, at each (xi, yi, zi), and being smooth (having
continuous first partial derivatives).

If no optional or keyword parameters are supplied, GRID3 produces a regularly-
sampled volume with dimensions of (25, 25, 25), made up of single-precision,
floating-point values, enclosing the original data points.

Syntax

Result = GRID3(X, Y, Z, F, Gx, Gy, Gz [, DELTA=scalar/vector] [, DTOL=value]
[, GRID=value] [, NGRID=value] [, START=[x, y, z]])

Arguments

X, Y, Z and F

Arrays containing the locations of the data points, and the value of the variable to be
interpolated at that point. X, Y, Z, and F must have the same number of elements
(with a minimum of 10 elements per array) and are converted to floating-point if
necessary.

Note: For the greatest possible accuracy, the arrays X, Y, and Z should be scaled to fit
in the range [0,1].

Gx, Gy, and Gz

Optional arrays containing the locations within the volume to be sampled (if the
GRID keyword is not set), or the locations along each axis of the sampling grid (if the
GRID keyword is set). If these parameters are supplied, the keywords DELTA,
NGRID, and START are ignored.
IDL Reference Guide GRID3

552
If the keyword GRID is not set, the result has the same number of elements as Gx, Gy,
and Gz. The ith element of the result contains the value of the interpolate at (Gxi, Gyi,
Gzi). The result has the same dimensions as Gx.

If the GRID keyword is set, the result of GRID3 is a three-dimensional, single-
precision, floating-point array with dimensions of (Nx, Ny, Nz), where Nx, Ny, and Nz
are the number of elements in Gx, Gy, and Gz, respectively.

Keywords

DELTA

Set this keyword to a three-element vector or a scalar that specifies the grid spacing
in the X, Y, and Z dimensions. The default spacing produces NGRID samples within
the range of each axis.

DTOL

The tolerance for detecting an ill-conditioned system of equations. The default value
is 0.01, which is appropriate for small ranges of X, Y, and Z. For large ranges of X, Y,
or Z, it may be necessary to decrease the value of DTOL. If you receive the error
message “GRID3: Ill-conditioned matrix or all nodes co-planar,” try decreasing the
value of DTOL.

GRID

This keyword specifies the interpretation of Gx, Gy, and Gz. The default value for
GRID is zero if Gx, Gy, and Gz are supplied, otherwise a regularly-gridded volume is
produced.

NGRID

The number of samples along each axis. NGRID can be set to a scalar, in which case
each axis has the same number of samples, or to a three-element array containing the
number of samples for each axis. The default value for NGRID is 25.

START

A three-element array that specifies the starting value for each grid. The default value
for START is the minimum value in the respective X, Y, and Z array.

Examples

Produce a set random points within the (0,1) unit cube and simulate a function:

; Number of irregular samples:
N = 300
GRID3 IDL Reference Guide

553
; Generate random values between 0 and 1:
X = RANDOMU(SEED, N)
Y = RANDOMU(SEED, N)
Z = RANDOMU(SEED, N)

; The function to simulate:
F = (X-.5)^2 + (Y-.5)^2 + Z

; Return a cube with 25 equal-interval samples along each axis:
Result = GRID3(X, Y, Z, F)

; Return a cube with 11 elements along each dimension, which
; samples each axis at (0, 0.1, ..., 1.0):
Result = GRID3(X, Y, Z, F, START=[0., 0., 0], $

DELTA=0.1, NGRID=10)

The same result is produced by the statements:

; Create sample values:
S = FINDGEN(11) / 10.
Result = GRID3(X, Y, Z, F, S, S, S, /GRID)

See Also

SLICER3
IDL Reference Guide GRID3

554
GS_ITER

The GS_ITER function solves an n by n linear system of equations using Gauss-
Seidel iteration with over- and under-relaxation to enhance convergence.

Note that the equations must be entered in diagonally dominant form to guarantee
convergence. A system is diagonally dominant if the diagonal element in a given row
is greater than the sum of the absolute values of the non-diagonal elements in that
row.

This routine is written in the IDL language. Its source code can be found in the file
gs_iter.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = GS_ITER(A, B [, /CHECK] [, /DOUBLE] [, LAMBDA=value{0.0 to 2.0}]
[, MAX_ITER=value] [, TOL=value] [, X_0=vector])

Arguments

A

An n by n integer, single-, or double-precision floating-point array. On output, A is
divided by its diagonal elements. Integer input values are converted to single-
precision floating-point values.

B

A vector containing the right-hand side of the linear system Ax=b. On output, B is
divided by the diagonal elements of A.

Keywords

CHECK

Set this keyword to check the array A for diagonal dominance. If A is not in
diagonally dominant form, GS_ITER reports the fact but continues processing on the
chance that the algorithm may converge.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
GS_ITER IDL Reference Guide

555
LAMBDA

A scalar value in the range: [0.0, 2.0]. This value determines the amount of
relaxation. Relaxation is a weighting technique used to enhance convergence.

• If LAMBDA = 1.0, no weighting is used. This is the default.

• If 0.0 ≤ LAMBDA < 1.0, convergence improves in oscillatory and non-
convergent systems.

• If 1.0 < LAMBDA ≤ 2.0, convergence improves in systems already known to
converge.

MAX_ITER

The maximum allowed number of iterations. The default value is 30.

TOL

The relative error tolerance between current and past iterates calculated as:
 ((current-past)/current) . The default is 1.0 × 10-4.

X_0

An n-element vector that provides the algorithm’s starting point. The default is [1.0,
1.0, ... , 1.0].

Example

; Define an array A:
A = [[1.0, 7.0, -4.0], $

[4.0, -4.0, 9.0], $
[12.0, -1.0, 3.0]]

; Define the right-hand side vector B:
B = [12.0, 2.0, -9.0]

; Compute the solution to the system:
RESULT = GS_ITER(A, B, /CHECK)

IDL prints:

Input matrix is not in Diagonally Dominant form.
Algorithm may not converge.
% GS_ITER: Algorithm failed to converge within given parameters.

Since the A represents a system of linear equations, we can reorder it into diagonally
dominant form by rearranging the rows:

A = [[12.0, -1.0, 3.0], $
IDL Reference Guide GS_ITER

556
[1.0, 7.0, -4.0], $
[4.0, -4.0, 9.0]]

; Make corresponding changes in the ordering of B:
B = [-9.0, 12.0, 2.0]

; Compute the solution to the system:
RESULT = GS_ITER(A, B, /CHECK)

IDL prints:

-0.999982 2.99988 1.99994

See Also

CRAMER, LU_COMPLEX, CHOLSOL, LUSOL, SVSOL, TRISOL
GS_ITER IDL Reference Guide

557
H_EQ_CT

The H_EQ_CT procedure histogram-equalizes the color tables for an image or a
region of the display. A pixel-distribution histogram is obtained, the cumulative
integral is taken and scaled, and the result is applied to the current color table.

This routine is written in the IDL language. Its source code can be found in the file
h_eq_ct.pro in the lib subdirectory of the IDL distribution.

Syntax

H_EQ_CT [, Image]

Arguments

Image

A two-dimensional byte array representing the image whose histogram is to be used
in determining the new color tables. If this value is omitted, the user is prompted to
mark the diagonal corners of a region of the display. If Image is specified, it is
assumed that the image is loaded into the current IDL window. Image must be scaled
the same way as the image loaded to the display.

See Also

H_EQ_INT
IDL Reference Guide H_EQ_CT

558
H_EQ_INT

The H_EQ_INT procedure interactively histogram-equalizes the color tables of an
image or a region of the display. By moving the cursor across the screen, the amount
of histogram-equalization can be varied.

Either the image parameter or a region of the display marked by the user is used to
obtain a pixel-distribution histogram. The cumulative integral is taken and scaled and
the result is applied to the current color tables.

This routine is written in the IDL language. Its source code can be found in the file
h_eq_int.pro in the lib subdirectory of the IDL distribution.

Using the H_EQ_INT Interface

A window is created and the histogram equalization function is plotted. A linear ramp
is overplotted. Move the cursor from left to right to vary the amount of histogram
equalization applied to the color tables from 0 to 100%. Press the right mouse button
to exit.

Syntax

H_EQ_INT [, Image]

Arguments

Image

A two-dimensional byte array representing the image whose histogram is to be used
in determining the new color tables. If this value is omitted, the user is prompted to
mark the diagonal corners of a region of the display. If Image is specified, it is
assumed that the image is loaded into the current IDL window. Image must be scaled
the same way as the image loaded to the display.

See Also

H_EQ_CT
H_EQ_INT IDL Reference Guide

559
HANNING

The HANNING function is used to create a “window” for Fourier Transform
filtering. It can be used to create both Hanning and Hamming windows.

This routine is written in the IDL language. Its source code can be found in the file
hanning.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = HANNING(N1 [, N2] [, ALPHA=value{0.5 to 1.0}] [, /DOUBLE])

Return Value

If only N1 is specified, this function returns an array of dimensions [N1]. If both N1
and N2 are specified, this function returns an array of dimensions [N1, N2]. If any of
the inputs are double-precision or if the DOUBLE keyword is set, the result is
double-precision, otherwise the result is single-precision.

Arguments

N1

The number of columns in the resulting array.

N2

The number of rows in the resulting array.

Keywords

ALPHA

Set this keyword equal to the width parameter of a generalized Hamming window.
ALPHA must be in the range of 0.5 to 1.0. If ALPHA = 0.5 (the default) the function
is called a “Hanning” window. If ALPHA = 0.54, the result is called a “Hamming”
window.

DOUBLE

Set this keyword to force the computations to be done in double-precision arithmetic.

See Also

FFT
IDL Reference Guide HANNING

560
HDF_* Routines

See “Alphabetical Listing of HDF Routines” in the Scientific Data Formats manual.
The HDF_BROWSER and HDF_READ functions are described on the following
pages.
HDF_* Routines IDL Reference Guide

561
HDF_BROWSER

The HDF_BROWSER function presents a graphical user interface (GUI) that allows
the user to view the contents of a Hierarchical Data Format (HDF), HDF-EOS, or
NetCDF file, and prepare a template for the extraction of HDF data and metadata into
IDL. The output template is an IDL structure that may be used when reading HDF
files with the HDF_READ routine. If you have several HDF files of identical form,
the returned template from HDF_BROWSER may be reused to extract data from
these files with HDF_READ. If you do not need a multi-use template, you may call
HDF_READ directly.

Syntax

Template = HDF_BROWSER([Filename] [, CANCEL=variable]
[, GROUP=widget_id] [, PREFIX=string])

Return Value

Returns a template structure containing heap variable references, or 0 if no file was
selected. The user is required to clean up the heap variable references when done with
them.

Arguments

Filename

A string containing the name of an HDF file to browse. If Filename is not specified, a
dialog allows you to choose a file.

Keywords

CANCEL

Set this keyword to a named variable that will contain the byte value 1 (one) if the
user clicked the “Cancel” button or the byte value 0 (zero) otherwise.

GROUP

Set this keyword to the widget ID of a widget that calls HDF_BROWSER. When this
ID is specified, a death of the caller results in the death of the HDF_BROWSER. The
following example demonstrates how to use the GROUP keyword to properly call
HDF_BROWSER from within a widget application. To run this example, save the
following code as browser_example.pro:
IDL Reference Guide HDF_BROWSER

562
PRO BROWSER_EXAMPLE_EVENT,ev

WIDGET_CONTROL,ev.id,GET_VALUE=val
CASE val of

'Browser':BEGIN
a=HDF_BROWSER(GROUP=ev.top)
HELP,a,/st

END
'Exit': WIDGET_CONTROL,ev.top,/DESTROY

ENDCASE

END

PRO BROWSER_EXAMPLE

a=WIDGET_BASE(/ROW)
b=WIDGET_BUTTON(a,VALUE='Browser')
c=WIDGET_BUTTON(a,VALUE='Exit')
WIDGET_CONTROL,a,/REALIZE
XMANAGER,'browser_example',a

END

PREFIX

When HDF_BROWSER reviews the contents of an HDF file, it creates default
output names for the various data elements. By default these default names begin
with a prefix derived from the filename. Set this keyword to a string value to be used
in place of the default prefix.

Graphical User Interface Menu Options

The following options are available from the graphical user interface menus.

Pulldown Menu

The following table shows the options available with the pulldown menu.

Menu Selection Description

HDF/NetCDF Summary

DF24 (24-bit Images) 24-bit images and their attributes

DFR8 (8-bit Images) 8-bit images and their attributes

Table 22: HDF_BROWSER Pulldown Menu Options
HDF_BROWSER IDL Reference Guide

563
Preview Button

If you have selected an image, 2D data set, or 3xnxm data set from the pulldown
menu, click on this button to view the image. If you have selected a data item that can
be plotted in two dimensions, click on this button to view a 2D plot of the data (the
default) or click on the “Surface” radio button to display a surface plot, click on the
“Contour” radio button to display a contour plot, or click on the “Show3” radio
button for an image, surface, and contour display. You can also select the “Fit to
Window” checkbox to fit the image to the window.

Read Checkbox

Select this checkbox to extract the current data or metadata item from the HDF file.

Extract As

Specify a name for the extracted data or metadata item

Note
The Read Checkbox must be selected for the item to be extracted. Default names
are generated for all data items, but may be changed at any time by the user.

DFP (Palettes) Image palettes

SD (Variables/Attributes) Scientific Datasets and attributes

AN (Annotations) Annotations

GR (Generic Raster) Images

GR Global (File) Attributes Image attributes

VGroups Generic data groups

VData Generic data and attributes

HDF-EOS Summary

Point EOS point data and attributes

Swath EOS swath data and attributes

Grid EOS grid data and attributes

Menu Selection Description

Table 22: HDF_BROWSER Pulldown Menu Options
IDL Reference Guide HDF_BROWSER

564
Example

template = HDF_BROWSER('test.hdf')
output_structure = HDF_READ(TEMPLATE=template)

or,

output_structure = HDF_READ('test.hdf', TEMPLATE=template)

See Also

HDF_READ
HDF_BROWSER IDL Reference Guide

565
HDF_READ

The HDF_READ function allows extraction of Hierarchical Data Format (HDF),
HDF-EOS, and NetCDF data and metadata into an output structure based upon
information provided through a graphical user interface or through a file template
generated by HDF_BROWSER. The output structure is a single level structure
corresponding to the data elements and names specified by HDF_BROWSER or its
output template. Templates generated by HDF_BROWSER may be re-used for HDF
files of identical format.

Syntax

Result = HDF_READ([Filename] [, DFR8=variable] [, DF24=variable]
[, PREFIX=string] [, TEMPLATE =value])

Arguments

Filename

A string containing the name of a HDF file to extract data from. If Filename is not
specified, a dialog allows you to specify a file. Note that if a template is specified, the
template must match the HDF file selected.

Keywords

DFR8

Set this keyword to a named variable that will contain a 2 x n string array of extracted
DFR8 images and their palettes. The first column will contain the extracted DFR8
image names, while the second column will contain the extracted name of the
associated palette. If no palette is associated with a DFR8 image the palette name will
be set to the null string. If no DFR8 images were extracted from the HDF file, this
returned string will be the null string array ['', ''].

DF24

Set this keyword to a named variable that will contain a string array of the names of
all the extracted DF24 24-bit images. This is useful in determining whether a (3,n,m)
extracted data element is a 24-bit image or another type of data. If no DF24 24-bit
images were extracted from the HDF file, the returned string will be the null string
('').
IDL Reference Guide HDF_READ

566
PREFIX

When HDF_READ is called without a template, it calls HDF_BROWSER to review
the contents of an HDF file and create the default output names for the various data
elements. By default, these names begin with a prefix derived from the filename. Set
this keyword to a string value to be used in place of the default prefix.

TEMPLATE

Set this keyword to specify the HDF file template (generated by the function
HDF_BROWSER), that defines which data elements to extract from the selected
HDF file. Templates may be used on any files that have a format identical to the file
the template was created from.

Graphical User Interface Menu Options

The following options are available from the graphical user interface menus.

Pulldown Menu

The following table shows the options available with the pulldown menu.

Menu Selection Description

HDF/NetCDF Summary

DF24 (24-bit Images) 24-bit images and their attributes

DFR8 (8-bit Images) 8-bit images and their attributes

DFP (Palettes) Image palettes

SD (Variables/Attributes) Scientific Datasets and attributes

AN (Annotations) Annotations

GR (Generic Raster) Images

GR Global (File) Attributes Image attributes

VGroups Generic data groups

VData Generic data and attributes

HDF-EOS Summary

Point EOS point data and attributes

Table 23: HDF_BROWSER Pulldown Menu Options
HDF_READ IDL Reference Guide

567
Preview Button

If you have selected an image, 2D data set, or 3xnxm data set from the pulldown
menu, click on this button to view the image. If you have selected a data item that can
be plotted in two dimensions, click on this button to view a 2D plot of the data (the
default) or click on the “Surface” radio button to display a surface plot, click on the
“Contour” radio button to display a contour plot, or click on the “Show3” radio
button for an image, surface, and contour display. You can also select the “Fit to
Window” checkbox to fit the image to the window.

Read Checkbox

Select this checkbox to extract the current data or metadata item from the HDF file.

Extract As

Specify a name for the extracted data or metadata item

Note
The Read Checkbox must be selected for the item to be extracted. Default names
are generated for all data items, but may be changed at any time by the user.

Example

template = HDF_BROWSER('my.hdf')
output_structure = HDF_READ(TEMPLATE=template)

or,

output_structure = HDF_READ('my.hdf')

or,

;Select'my.hdf' with the file locator
output_structure = HDF_READ()

or,

output_structure = HDF_READ('just_like_my.hdf', TEMPLATE=template)

Swath EOS swath data and attributes

Grid EOS grid data and attributes

Menu Selection Description

Table 23: HDF_BROWSER Pulldown Menu Options
IDL Reference Guide HDF_READ

568
See Also

HDF_BROWSER
HDF_READ IDL Reference Guide

569
HEAP_GC

The HEAP_GC procedure performs garbage collection on heap variables. It searches
all current IDL variables (including common blocks, widget user values, etc.) for
pointers and object references and determines which heap variables have become
inaccessible. Pointer heap variables are freed (via PTR_FREE) and all memory used
by the heap variable is released. Object heap variables are destroyed (via
OBJ_DESTROY), also freeing all used memory.

The default action is to perform garbage collection on all heap variables regardless of
type. Use the POINTER and OBJECT keywords to remove only specific types.

Note
Garbage collection is an expensive operation. When possible, applications should
be written to avoid losing pointer and object references and avoid the need for
garbage collection.

Warning
HEAP_GC uses a recursive algorithm to search for unreferenced heap variables. If
HEAP_GC is used to manage certain data structures, such as large linked lists, a
potentially large number of operations may be pushed onto the system stack. If so
many operations are pushed that the stack runs out of room, IDL will crash.

Syntax

HEAP_GC [, /OBJ | , /PTR] [, /VERBOSE]

Keywords

OBJ

Set this keyword to perform garbage collection on object heap variables only.

PTR

Set this keyword to perform garbage collection on pointer heap variables only.

Note
Setting both the PTR and OBJ keywords is the same a setting neither.
IDL Reference Guide HEAP_GC

570
VERBOSE

If this keyword is set, HEAP_GC writes a one line description of each heap variable,
in the format used by the HELP procedure, as the variable is destroyed. This is a
debugging aid that can be used by program developers to check for heap variable
leaks that need to be located and eliminated.
HEAP_GC IDL Reference Guide

571
HELP

The HELP procedure gives the user information on many aspects of the current IDL
session. The specific area for which help is desired is selected by specifying the
appropriate keyword. If no arguments or keywords are specified, the default is to
show the current nesting of procedures and functions, all current variables at the
current program level, and open files. Only one keyword can be specified at a time.

Syntax

HELP, Expression1, ..., Expressionn [, /ALL_KEYS] [, /BREAKPOINTS]
[, /BRIEF] [, CALLS=variable] [, /DEVICE] [, /DLM] [, /FILES] [, /FULL]
[, /FUNCTIONS] [, /HEAP_VARIABLES] [, /KEYS] [, /LAST_MESSAGE]
[, /MEMORY] [, /MESSAGES] [, NAMES=string_of_variable_names]
[, /OBJECTS] [, OUTPUT=variable] [, /PROCEDURES]
[, /RECALL_COMMANDS] [, /ROUTINES] [, /SOURCE_FILES]
[, /STRUCTURES] [, /SYSTEM_VARIABLES] [, /TRACEBACK]

Arguments

Expression(s)

The arguments are interpreted differently depending on the keyword selected. If no
keyword is selected, HELP displays basic information for its parameters. For
example, to see the type and structure of the variable A, enter:

HELP, A

Keywords

Note that the use of some of the following keywords causes any arguments to HELP
to be ignored and HELP provides other types of information instead. If the
description of the keyword does not explicitly mention the arguments, the arguments
are ignored.

ALL_KEYS

Set this keyword to show current function-key definitions as set by DEFINE_KEY. If
no arguments are supplied, information on all function keys is displayed. If
arguments are provided, they must be scalar strings containing the names of function
keys, and information on the specified keys is given. Under UNIX, this keyword is
different from KEYS because every key is displayed, no matter what its current
programming. Under VMS and Windows, the two keywords mean the same thing.
IDL Reference Guide HELP

572
On the Macintosh, keys cannot be defined via DEFINE_KEY. ALL_KEYS is
equivalent to "/KEYS, /FULL".

BREAKPOINTS

Set this keyword to display the breakpoint table which shows the program module
and location for each breakpoint.

BRIEF

If set in conjunction with one of the following keywords, BRIEF produces very terse
summary style output instead of the output normally displayed by those keywords:

CALLS

Set this keyword to a named variable in which to store the procedure call stack. Each
string element contains the name of the program module, source file name, and line
number. Array element zero contains the information about the caller of HELP,
element one contains information about its caller, etc. This keyword is useful for
programs that require traceback information.

DEVICE

Set this keyword to show information about the currently selected graphics device.
This information is dependent on the abilities of the current device, but the name of
the device is always given. Arguments to HELP are ignored when DEVICE is
specified.

DLM

Set this keyword to display all known dynamically loadable modules and their state
(loaded or not loaded).

FILES

Set this keyword to display information about file units. If no arguments are supplied
in the call to HELP, information on all open file units (except the special units 0, -1,
and -2) is displayed. If arguments are provided, they are taken to be integer file unit
numbers, and information on the specified file units is given.

• DLM • HEAP_VARIABLES

• MESSAGES • OBJECTS

• ROUTINES • SOURCE_FILES

• STRUCTURES • SYSTEM_VARIABLES
HELP IDL Reference Guide

573
For example, the command:

HELP, /FILES, -2, -1, 0

gives information below about the default file units:

Unit Attributes Name
-2 Write, Truncate, Tty, Reserved <stderr>
-1 Write, Truncate, Tty, Reserved <stdout>
0 Read, Tty, Reserved <stdin>

The attributes column tells about the characteristics of the file. For instance, the file
connected to logical file unit 2 is called “stderr” and is the standard error file. It is
opened for write access (Write), is a new file (Truncate), is a terminal (Tty), and
cannot be closed by the CLOSE command (Reserved).

FULL

By default, HELP filters its output in an attempt to only display information likely to
be of use to the IDL end user. Specify FULL to see all available information on a
given topic without any such filtering. The filtering applied by default depends on the
type of information being requested:

• Function keys: By default, IDL will not display undefined function keys.

• Structure Definitions And Objects: Structures and objects that have had
their definition hidden using the STRUCT_HIDE procedure are not usually
listed.

• Functions and Procedures: Functions and procedures compiled with the
COMPILE_OPT HIDDEN directive are not usually included in HELP output.

FUNCTIONS

Normally, the ROUTINES or SOURCE_FILES keywords produce information on
both functions and procedures. If FUNCTIONS is specified, only output on functions
is produced. If FUNCTIONS is used without either ROUTINES or
SOURCE_FILES, ROUTINES is assumed.

HEAP_VARIABLES

Set this keyword to display help information for all the current heap variables.

KEYS

Set this keyword to show current function key definitions as set by DEFINE_ KEY,
for those function keys that are currently programmed to perform a function. Under
UNIX, this keyword is different from ALL_KEYS because that keyword displays
every key, no matter what its current programming. Under VMS and Windows, the
IDL Reference Guide HELP

574
two keywords mean the same thing. On the Macintosh, keys cannot be defined via
DEFINE_KEY. If no arguments are supplied, information on all function keys is
displayed. If arguments are provided, they must be scalar strings containing the
names of function keys, and information on the specified keys is given.

LAST_MESSAGE

Set this keyword to display the last error message issued by IDL.

MEMORY

Set this keyword to see a report on the amount of dynamic memory (in bytes)
currently in use by the IDL session; the maximum amount of dynamic memory
allocated since the last call to HELP, /MEMORY; and the number of times dynamic
memory has been allocated and deallocated. Arguments to HELP are ignored when
MEMORY is specified.

MESSAGES

Set this keyword to display all known message blocks and the error space range into
which they are loaded.

NAMES

A string used to determine the names of the variables, whose values are to be printed.
A string match (equivalent to the STRMATCH function with the FOLD_CASE
keyword set) is used to decide if a given variable will be displayed. The match string
can contain any wildcard expression supported by STRMATCH, including “*” and
“?”.

For example, to print only the values of variables beginning with “A”, use the
command HELP,/NAME='a*'. Similarly, HELP,NAME='?' prints the values of all
variables with a single-character name.

NAMES also works with the output from the following keywords:

• DLM • HEAP_VARIABLES

• MESSAGES • OBJECTS

• ROUTINES • SOURCE_FILES

• STRUCTURES • SYSTEM_VARIABLES
HELP IDL Reference Guide

575
OBJECTS

Set this keyword to display information on defined object classes. If no arguments are
provided, all currently-defined object classes are shown. If no arguments are
provided, and the information you are looking for is not displayed, use the FULL
keyword to prevent HELP from filtering the output. If arguments are provided, the
definition of the object class for the heap variables referred to is displayed.

Information is provided on inherited superclasses and all known methods. A method is
known to IDL only if it has been compiled in the current IDL session and called by its
own class or a subclass. Methods that have not been compiled yet will not be shown.
Thus, the list of methods displayed by HELP is not necessarily a complete list of all
possible method for the object class.

If called within a class’ method, the OBJECTS keyword also displays the instance
data of the object on which it was called.

OUTPUT

Set this keyword equal to a named variable that will contain a string array containing
the formatted output of the HELP command. Each line of formatted output becomes a
single element in the string array.

Warning
The OUTPUT keyword is primarily for use in capturing HELP output in order to
display it someplace else, such as in a text widget. This keyword is not intended to
be used in obtaining programmatic information about the IDL session, and is
formatted to be human readable. Research Systems reserves the right to change the
format and content of this text at any time, without warning. If you find yourself
using OUTPUT for a non-display purpose, you should consider submitting an
enhancement request for a function that will provide the information you require in
a safe form.

PROCEDURES

Normally, the ROUTINES or SOURCE_FILES keywords produce information on
both functions and procedures. If PROCEDURES is specified, only output on
procedures is produced. If PROCEDURES is used without either ROUTINES or
SOURCE_FILES, ROUTINES is assumed.

RECALL_COMMANDS

Set this keyword to display the saved commands in the command input buffer. By
default, IDL saves the last 20 lines of input in a buffer from which they can be
IDL Reference Guide HELP

576
recalled for command line editing. Arguments to HELP are ignored when RECALL
is specified.

The number of lines saved can be changed by assigning the desired number of lines
to the environment variable !EDIT_INPUT in the IDL startup file. See
“!EDIT_INPUT” on page 2429 for details.

ROUTINES

Set this keyword to show a list of all compiled procedures and functions with their
parameter names. Keyword parameters accepted by each module are shown to the
right of the routine name. If no arguments are provided, and the information you are
looking for is not displayed, use the FULL keyword to prevent HELP from filtering
the output.

SOURCE_FILES

Set this keyword to display information on procedures and functions written in the
IDL language that have been compiled during the current IDL session. Full path
names (relative to the current directory) of compiled .pro files are displayed. If no
arguments are provided, and the information you are looking for is not displayed, use
the FULL keyword to prevent HELP from filtering the output.

STRUCTURES

Set this keyword to display information on structure-type variables. If no arguments
are provided, all currently-defined structures are shown. If no arguments are
provided, and the information you are looking for is not displayed, use the FULL
keyword to prevent HELP from filtering the output. If arguments are provided, the
structure definition for those expressions is displayed. It is often more convenient to
use HELP, /STRUCTURES instead of PRINT to look at the contents of a structure
variable because it shows the names of the fields as well as the data.

SYSTEM_VARIABLES

Set this keyword to display information on all system variables. Arguments are
ignored.

TRACEBACK

Set this keyword to display the current nesting of procedures and functions.

Example

To see general information on the current IDL session, enter:

HELP
HELP IDL Reference Guide

577
To see information on the structure definition of the system variable !D, enter:

HELP, !D, /STRUCTURES

See Also

“Online Help” in the Getting Started with IDL manual.
IDL Reference Guide HELP

578
HILBERT

The HILBERT function returns a series that has all periodic terms phase-shifted by
90 degrees. The output is a complex-valued vector with the same size as the input
vector. This transform has the interesting property that the correlation between a
series and its own Hilbert transform is mathematically zero.

HILBERT generates the fast Fourier transform using the FFT function, and shifts the
first half of the transform products by +90 degrees and the second half by -90
degrees. The constant elements in the transform are not changed. Angle shifting is
accomplished by multiplying or dividing by the complex number, i = (0.0000,
1.0000). The shifted vector is then submitted to FFT for transformation back to the
“time” domain and the output is divided by the number elements in the vector to
correct for multiplication effect peculiar to the FFT algorithm.

Note: Because HILBERT uses FFT, it exhibits the same side effects with respect to
input arguments as that function.

This routine is written in the IDL language. Its source code can be found in the file
hilbert.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = HILBERT(X [, D])

Arguments

X

An n-element floating-point or complex-valued vector.

D

A flag for rotation direction. Set D = +1 for a positive rotation (the default). Set D = -
1 for a negative rotation.

See Also

FFT
HILBERT IDL Reference Guide

579
HIST_2D

The HIST_2D function returns the two dimensional density function (histogram) of
two variables, a longword array of dimensions (MAX(V1)+1, MAX(V2)+1).
Result(i,j) is equal to the number of simultaneous occurrences of V1 = i and V2 = j at
the specified element.

This routine is written in the IDL language. Its source code can be found in the file
hist_2d.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = HIST_2D(V1, V2 [, BIN1=width] [, BIN2=height] [, MAX1=value]
[, MAX2=value] [, MIN1=value] [, MIN2=value])

Arguments

V1, V2

Arrays containing the variables. V1 and V2 must be of byte, integer, or longword
type, and must contain no negative elements.

Keywords

BIN1

The size of each bin in the V1 direction (column width). If this keyword is not
specified, the size is set to 1.

BIN2

The size of each bin in the V2 direction (row height). If this keyword is not specified,
the size is set to 1.

MAX1

MAX1 is the maximum V1 value to consider. If this keyword is not specified, then
V1 is searched for its largest value.

MAX2

MAX2 is the maximum V2 value to consider. If this keyword is not specified, then
V2 is searched for its largest value.
IDL Reference Guide HIST_2D

580
MIN1

MIN1 is the minimum V1 value to consider. If this keyword is not specified, then it is
set to 0.

MIN2

MIN2 is the minimum V2 value to consider. If this keyword is not specified, then it is
set to 0.

Example

To return the 2D histogram of two byte images:

R = HIST_2D(image1, image2)

To return the 2D histogram made from two floating point images with range of -1 to
+1, and with 100 bins:

R = HIST_2D(LONG((F1+1) * 50), LONG((F2+1) * 50))

See Also

H_EQ_CT, H_EQ_INT, HIST_EQUAL, HISTOGRAM
HIST_2D IDL Reference Guide

581
HIST_EQUAL

The HIST_EQUAL function returns a histogram-equalized byte array.

The HISTOGRAM function is used to obtain the density distribution of the input
array. The histogram is integrated to obtain the cumulative density-probability
function and finally the lookup function is used to transform to the output image.

Note
The first element of the histogram is always zeroed to remove the background.

This routine is written in the IDL language. Its source code can be found in the file
hist_equal.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = HIST_EQUAL(A [, BINSIZE=value] [, /HISTOGRAM_ONLY]
[, MAXV=value] [, MINV=value] [, OMAX=variable] [, OMIN=variable]
[, PERCENT=value] [, TOP=value])

Return Value

This function returns a histogram-equalized array of type byte, with the same
dimensions as the input array. If the HISTOGRAM_ONLY keyword is set, then the
output will be a vector of type LONG.

Arguments

A

The array to be histogram-equalized.

Keywords

BINSIZE

Set this keyword to the size of the bin to use. The default is BINSIZE=1 if A is a byte
array, or, for other input types, the default is (MAXV – MINV)/5000.

HISTOGRAM_ONLY

Set this keyword to return a vector of type LONG containing the cumulative
distribution histogram, rather than the histogram equalized array.
IDL Reference Guide HIST_EQUAL

582
MAXV

Set this keyword to the maximum value to consider. The default is 255 if A is a byte
array, otherwise the maximum data value is used. Input elements greater than or
equal to MAXV are output as 255.

MINV

Set this keyword to the minimum value to consider. The default is 0 if A is a byte
array, otherwise the minimum data value is used. Input elements less than or equal to
MINV are output as 0.

OMAX

Set this keyword to a named variable that, upon exit, will contain the maximum data
value used in constructing the histogram.

OMIN

Set this keyword to a named variable that, upon exit, will contain the minimum data
value used in constructing the histogram.

PERCENT

Set this keyword to a value between 0 and 100 to stretch the image histogram. The
histogram will be stretched linearly between the limits that exclude the PERCENT
fraction of the lowest values, and the PERCENT fraction of the highest values. This
is an automatic, semi-robust method of contrast enahncement.

TOP

The maximum value of the scaled result. If TOP is not specified, 255 is used. Note
that the minimum value of the scaled result is always 0.

Example

Create a sample image using the DIST function and display it:

image = DIST(100)
TV, image

Create a histogram-equalized version of the byte array, image, and display the new
version. Use a minimum input value of 10, a maximum input value of 200, and limit
the top value of the output array to 220:

new = HIST_EQUAL(image, MINV = 10, MAXV = 200, TOP = 220)
TV, new
HIST_EQUAL IDL Reference Guide

583
See Also

H_EQ_CT, H_EQ_INT, HIST_2D, HISTOGRAM
IDL Reference Guide HIST_EQUAL

584
HISTOGRAM

The HISTOGRAM function computes the density function of Array. In the simplest
case, the density function, at subscript i, is the number of Array elements in the
argument with a value of i.

Let Fi= the value of element i, 0 ≤ i < n. Let Hv = result of histogram function, an
integer vector. The definition of the histogram function becomes:

Warning
There may not always be enough virtual memory available to find the density
functions of arrays that contain a large number of bins.

For bivariate probability distributions, use the HIST_2D function.

HISTOGRAM can optionally return an array containing a list of the original array
subscripts that contributed to each histogram bin. This list, commonly called the
reverse (or backwards) index list, efficiently determines which array elements are
accumulated in a set of histogram bins. A typical application of the reverse index list
is reverse histogram or scatter plot interrogation—a histogram bin or 2D scatter plot
location is marked with the cursor and the original data items within that bin are
highlighted.

Syntax

Result = HISTOGRAM(Array [, BINSIZE=value] [, INPUT=variable]
[, MAX=value] [, MIN=value] [, /NAN] [, NBINS=value] [, OMAX=variable]
[, OMIN=variable] [, /L64 | REVERSE_INDICES=variable])

Return Value

Returns a 32-bit or a 64-bit integer vector equal to the density function of the input
Array.

Hv P Fi v,(),
i 0=

n 1–

∑= v 0 1 2 ... Max Min–
Binsize

---------------------------, , , ,=

P Fi v,()
1, v Fi Min–() Binsize⁄ v 1+<≤

0, Otherwise

=

HISTOGRAM IDL Reference Guide

585
Arguments

Array

The vector or array for which the density function is to be computed.

Keywords

BINSIZE

Set this keyword to the size of the bin to use. If this keyword is not specified, and
NBINS is not set, then a bin size of 1 is used. If NBINS is set, the default is
BINSIZE = (MAX – MIN) / (NBINS – 1).

Note
The data type of the value specified for BINSIZE should match the data type of the
Array argument. Since BINSIZE is converted to the data type of Array, specifying
mismatched data types may produce undesired results.

INPUT

Set this keyword to a named variable that contains an array to be added to the output
of HISTOGRAM. The density function of Array is added to the existing contents of
INPUT and returned as the result. The array is converted to longword type if
necessary and must have at least as many elements as are required to form the
histogram. Multiple histograms can be efficiently accumulated by specifying partial
sums via this keyword.

L64

By default, the return value of HISTOGRAM is 32-bit integer when possible, and 64-
bit integer if the number of elements being processed requires it. Set L64 to force 64-
bit integers to be returned in all cases. L64 controls the type of Result as well as the
output from the REVERSE_INDICES keyword.

Note
Only 64-bit versions of IDL are capable of creating variables requiring a 64-bit
result. Check the value of !VERSION.MEMORY_BITS to see if your IDL is 64-bit
or not.
IDL Reference Guide HISTOGRAM

586
MAX

Set this keyword to the maximum value to consider. If this keyword is not specified,
Array is searched for its largest value.

Note
The data type of the value specified for MAX should match the data type of the
input array. Since MAX is converted to the data type of the input array, specifying
mismatched data types may produce undesired results.

Note
If NBINS is specified, the value for MAX will be adjusted to NBINS*BINSIZE +
MIN. This ensures that the last bin has the same width as the other bins.

MIN

Set this keyword to the minimum value to consider. If this keyword is not specified,
and Array is of type byte, 0 is used. If this keyword is not specified and Array is not
of byte type, Array is searched for its smallest value.

Note
The data type of the value specified for MIN should match the data type of the input
array. Since MIN is converted to the data type of the input array, specifying
mismatched data types may produce undesired results.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN (not a number) in the input data. Elements with the value NaN are
treated as missing data. (See “Special Floating-Point Values” in Chapter 17 of
Building IDL Applications for more information on IEEE floating-point values.)

NBINS

Set this keyword to the number of bins to use. If BINSIZE is specified, the number of
bins in Result is NBINS, starting at MIN and ending at MIN+(NBINS–1)*BINSIZE.
If MAX is specified, the bins will be evenly spaced between MIN and MAX. It is an
error to specify NBINS with both BINSIZE and MAX.
HISTOGRAM IDL Reference Guide

587
OMAX

Set this keyword to a named variable that will contain the maximum data value used
in constructing the histogram.

OMIN

A named variable that, upon exit, contains the minimum data value used in
constructing the histogram.

REVERSE_INDICES

Set this keyword to a named variable in which the list of reverse indices is returned.
When possible, this list is returned as a 32-bit integer vector whose number of
elements is the sum of the number of elements in the histogram, N, and the number of
array elements included in the histogram, plus one. If the number of elements is too
large to be contained in a 32-bit integer, or if the L64 keyword is set,
REVERSE_INDICES is returned as a 64-bit integer.

The subscripts of the original array elements falling in the ith bin, 0 ≤ i < N, are given
by the expression: R(R[i] : R[i+1]-1), where R is the reverse index list. If R[i] is equal
to R[i+1], no elements are present in the ith bin.

For example, make the histogram of array A:

H = HISTOGRAM(A, REVERSE_INDICES = R)

;Set all elements of A that are in the ith bin of H to 0.
IF R[i] NE R[i+1] THEN A[R[R[I] : R[i+1]-1]] = 0

The above is usually more efficient than the following:

bini = WHERE(A EQ i, count)
IF count NE 0 THEN A[bini] = 0

Examples

; Create a simple, 2D dataset:
D = DIST(200)
; Plot the histogram of D with a bin size of 1 and the default
; minimum and maximum:
PLOT, HISTOGRAM(D)
; Plot a histogram considering only those values from 10 to 50
; using a bin size of 4:
PLOT, HISTOGRAM(D, MIN = 10, MAX = 50, BINSIZE = 4)

The HISTOGRAM function can also be used to increment the elements of one vector
whose subscripts are contained in another vector. To increment those elements of
vector A indicated by vector B, use the command:
IDL Reference Guide HISTOGRAM

588

HIST
A = HISTOGRAM(B, INPUT=A, MIN=0, MAX=N_ELEMENTS(A)-1)

This method works for duplicate subscripts, whereas the following statement never
adds more than 1 to any element, even if that element is duplicated in vector B:

A[B] = A[B]+1

For example, for the following commands:

A = LONARR(5)
B = [2,2,3]
PRINT, HISTOGRAM(B, INPUT=A, MIN=0, MAX=4)

IDL prints:

0 0 2 1 0

The commands:

A = LONARR(5)
A[B] = A[B]+1
PRINT, A

give the result:

0 0 1 1 0

The following example demonstrates how to use HISTOGRAM:

PRO t_histogram
data = [[-5, 4, 2, -8, 1], $

[3, 0, 5, -5, 1], $
[6, -7, 4, -4, -8], $
[-1, -5, -14, 2, 1]]

hist = HISTOGRAM(data)
bins = FINDGEN(N_ELEMENTS(hist)) + MIN(data)
PRINT, MIN(hist)
PRINT, bins
PLOT, bins, hist, YRANGE = [MIN(hist)-1, MAX(hist)+1], PSYM = 10, $

XTITLE = 'Bin Number', YTITLE = 'Density per Bin'
END

IDL prints:

0

-14.0000 -13.0000 -12.0000 -11.0000 -10.0000 -
9.00000
-8.00000 -7.00000 -6.00000 -5.00000 -4.00000 -
3.00000
-2.00000 -1.00000 0.00000 1.00000 2.00000
3.00000
 4.00000 5.00000 6.00000
OGRAM IDL Reference Guide

589
See Also

H_EQ_CT, H_EQ_INT, HIST_2D, HIST_EQUAL
IDL Reference Guide HISTOGRAM

590
HLS

The HLS procedure creates a color table based on the HLS (Hue, Lightness,
Saturation) color system.

Using the input parameters, a spiral through the double-ended HLS cone is traced.
Points along the cone are converted from HLS to RGB. The current colortable (and
the COLORS common block) contains the new colortable on exit.

This routine is written in the IDL language. Its source code can be found in the file
hls.pro in the lib subdirectory of the IDL distribution.

Syntax

HLS, Litlo, Lithi, Satlo, Sathi, Hue, Loops [, Colr]

Arguments

Litlo

Starting lightness, from 0 to 100%.

Lithi

Ending lightness, from 0 to 100%.

Satlo

Starting saturation, from 0 to 100%.

Sathi

Ending saturation, from 0 to 100%.

Hue

Starting Hue, from 0 to 360 degrees. Red = 0 degs, green = 120, blue = 240.

Loops

The number of loops through the color spiral. This parameter does not have to be an
integer. A negative value causes the loops to traverse the spiral in the opposite
direction.
HLS IDL Reference Guide

591
Colr

An optional (256,3) integer array in which the new R, G, and B values are returned.
Red = Colr[*,0], green = Colr[*,1], blue = Colr[*,2].

See Also

COLOR_CONVERT, HSV, PSEUDO
IDL Reference Guide HLS

592

HOU
HOUGH

The HOUGH function implements the Hough transform, used to detect straight lines
within a two-dimensional image. This function can be used to return either the Hough
transform, which transforms each nonzero point in an image to a sinusoid in the
Hough domain, or the Hough backprojection, where each point in the Hough domain
is transformed to a straight line in the image.

Syntax

Hough Transform:

Result = HOUGH(Array [, /DOUBLE] [, DRHO=scalar] [, DX=scalar]
[, DY=scalar] [, /GRAY] [, NRHO=scalar] [, NTHETA=scalar] [, RHO=variable]
[, RMIN=scalar] [, THETA=variable] [, XMIN=scalar] [, YMIN=scalar])

Hough Backprojection:

Result = HOUGH(Array, /BACKPROJECT, RHO=variable, THETA=variable
[, /DOUBLE] [, DX=scalar] [, DY=scalar] [, NX=scalar] [, NY=scalar]
[, XMIN=scalar] [, YMIN=scalar])

Return Value

The result of this function is a two-dimensional floating-point array, or a complex
array if the input image is complex. If Array is double-precision, or if the DOUBLE
keyword is set, the result is double-precision, otherwise, the result is single-precision.

Hough Transform Theory

The Hough transform is defined for a function A(x, y) as:

where δ is the Dirac delta-function. With A(x, y), each point (x, y) in the original
image, A, is transformed into a sinusoid ρ = xcosθ – ysinθ, where ρ is the
perpendicular distance from the origin of a line at an angle θ:

H θ ρ,() A
∞–

∞
∫∞–

∞
∫= x y(,) δ ρ x θcos– y θsin–() dx dy
GH IDL Reference Guide

593
Points that lie on the same line in the image will produce sinusoids that all cross at a
single point in the Hough transform. For the inverse transform, or backprojection,
each point in the Hough domain is transformed into a straight line in the image.

Usually, the Hough function is used with binary images, in which case H(θ, ρ) gives
the total number of sinusoids that cross at point (θ, ρ), and hence, the total number of
points making up the line in the original image. By choosing a threshold T for
H(θ, ρ), and using the inverse Hough function, you can filter the original image to
keep only lines that contain at least T points.

How IDL Implements the Hough Transform

Consider an image Amn of dimensions M by N, with array indices m = 0,..., M–1 and
n = 0,..., N–1.

 The discrete formula for the HOUGH function for Amn is:

where the brackets [] indicate rounding to the nearest integer, and

Figure 8: Hough Transform

H θ ρ(,) A
n
∑

m
∑= mn δ ρ ρ'[],()

ρ' m∆x xmin+() θcos n∆y ymin+() θsin+=
IDL Reference Guide HOUGH

594
The pixels are assumed to have spacing ∆x and ∆y in the x and y directions. The
delta-function is defined as:

How IDL Implements the Hough Backprojection

The backprojection, Bmn, contains all of the straight lines given by the (θ, ρ) points
given in H(θ, ρ). The discrete formula is

where the slopes and offsets are given by:

Arguments

Array

The two-dimensional array of size M by N which will be transformed. If the keyword
GRAY is not set, then, for the forward transform, Array is treated as a binary image
with all nonzero pixels considered as 1.

Keywords

BACKPROJECT

If set, the backprojection is computed, otherwise, the forward transform is computed.
When BACKPROJECT is set, Result will be an array of dimension NX by NY.

δ ρ ρ'[](,) 1 ρ ρ'[]=

0 otherwise

=

Bmn

H
ρ
∑

θ
∑ θ ρ(,) δ n am b+[](,)

H
ρ
∑

θ
∑ θ ρ(,) δ m a'n b'+[](,)

θsin
2

2
------->

θsin
2

2
-------≤

=

a
∆x
∆y
------ θcos

θsin
------------– b

ρ xmin– θcos ymin– θsin

∆y θsin
--==

a'
1
a
--- b'

ρ xmin– θcos ymin– θsin

∆x θcos
--==
HOUGH IDL Reference Guide

595
Note
The Hough transform is not one-to-one: each point (x, y) is not mapped to a single
(θ, ρ). Therefore, instead of the original image, the backprojection, or inverse
transform, returns an image containing the set of all lines given by the (θ, ρ) points.

DOUBLE

Set this keyword to force the computation to be done using double-precision
arithmetic.

DRHO

Set this keyword equal to a scalar specifying the spacing ∆ρ between ρ coordinates,
expressed in the same units as Array. The default is 1/SQRT(2) times the diagonal
distance between pixels, [(DX2 + DY2)/2]1/2 . A larger value produces a coarser
resolution by mapping multiple pixels onto a single ρ; this is useful for images that
do not contain perfectly straight lines. A smaller value may produce undersampling
by trying to map fractional pixels onto ρ, and is not recommended. If
BACKPROJECT is specified, this keyword is ignored.

DX

Set this keyword equal to a scalar specifying the spacing between the horizontal (X)
coordinates. The default is 1.0.

DY

Set this keyword equal to a scalar specifying the spacing between the vertical (Y)
coordinates. The default is 1.0.

GRAY

Set this keyword to perform a weighted Hough transform, with the weighting given
by the pixel values. If GRAY is not set, the image is treated as a binary image with all
nonzero pixels considered as 1. If BACKPROJECT is specified, this keyword is
ignored.

NRHO

Set this keyword equal to a scalar specifying the number of ρ coordinates to use. The
default is 2 CEIL([MAX(X2 + Y2)]1/2 / DRHO) + 1. If BACKPROJECT is
specified, this keyword is ignored.
IDL Reference Guide HOUGH

596
NTHETA

Set this keyword equal to a scalar specifying the number of θ coordinates to use over
the interval [0,π]. The default is CEIL(π [MAX(X2 + Y2)]1/2 / DRHO). A larger
value will produce smoother results, and is useful for filtering before backprojection.
A smaller value will result in broken lines in the transform, and is not recommended.
If BACKPROJECT is specified, this keyword is ignored.

NX

If BACKPROJECT is specified, set this keyword equal to a scalar specifying the
number of horizontal coordinates in the output array. The default is
FLOOR(2 MAX(|RHO|)(DX2 + DY2)–1/2 + 1). For the forward transform this
keyword is ignored.

NY

If BACKPROJECT is specified, set this keyword equal to a scalar specifying the
number of vertical coordinates in the output array. The default is
FLOOR(2 MAX(|RHO|)(DX2 + DY2)–1/2 + 1). For the forward transform, this
keyword is ignored.

RHO

For the forward transform, set this keyword to a named variable that, on exit, will
contain the radial (ρ) coordinates. If BACKPROJECT is specified, this keyword must
contain the ρ coordinates of the input Array.

RMIN

Set this keyword equal to a scalar specifying the minimum ρ coordinate to use for the
forward transform. The default is –0.5(NRHO – 1) DRHO. If BACKPROJECT is
specified, this keyword is ignored.

THETA

For the forward transform, set this keyword to a named variable containing a vector
of angular (θ) coordinates to use for the transform. If NTHETA is specified instead,
and THETA is set to a named variable, then on exit THETA will contain the θ
coordinates. If BACKPROJECT is specified, this keyword must contain the θ
coordinates of the input Array.

XMIN

Set this keyword equal to a scalar specifying the X coordinate of the lower-left corner
of the input Array. The default is –(M–1)/2, where Array is an M by N array. If
BACKPROJECT is specified, set this keyword equal to a scalar specifying the X
HOUGH IDL Reference Guide

597
coordinate of the lower-left corner of the Result. In this case the default is
–DX (NX–1)/2.

YMIN

Set this keyword equal to a scalar specifying the Y coordinate of the lower-left corner
of the input Array. The default is –(N–1)/2, where Array is an M by N array. If
BACKPROJECT is specified, set this keyword equal to a scalar specifying the Y
coordinate of the lower-left corner of the Result. In this case the default is
–DY (NY–1)/2.

Example

This example computes the Hough transform of a random set of pixels:

PRO hough_example

;Create an image with a random set of pixels
seed = 12345 ; remove this line to get different random images
array = RANDOMU(seed,128,128) GT 0.95

;Draw three lines in the image
x = FINDGEN(32)*4
array[x,0.5*x+20] = 1b
array[x,0.5*x+30] = 1b
array[-0.5*x+100,x] = 1b

;Create display window, set graphics properties
WINDOW, XSIZE=330,YSIZE=630, TITLE='Hough Example'
!P.BACKGROUND = 255 ; white
!P.COLOR = 0 ; black
!P.FONT=2
ERASE

XYOUTS, .1, .94, 'Noise and Lines', /NORMAL
;Display the image. 255b changes black values to white:
TVSCL, 255b - array, .1, .72, /NORMAL

;Calculate and display the Hough transform
result = HOUGH(array, RHO=rho, THETA=theta)
XYOUTS, .1, .66, 'Hough Transform', /NORMAL
TVSCL, 255b - result, .1, .36, /NORMAL

;Keep only lines that contain more than 20 points:
result = (result - 20) > 0

;Find the Hough backprojection and display the output
backproject = HOUGH(result, /BACKPROJECT, RHO=rho, THETA=theta)
IDL Reference Guide HOUGH

598
XYOUTS, .1, .30, 'Hough Backprojection', /NORMAL
TVSCL, 255b - backproject, .1, .08, /NORMAL

END

The following figure displays the output of this example. The top image shows three
lines drawn within a random array of pixels that represent noise. The center image
shows the Hough transform, displaying sinusoids for points that lie on the same line
in the original image. The bottom image shows the Hough backprojection, after
setting the threshold to retain only those lines that contain more than 20 points. The
Hough inverse transform, or backprojection, transforms each point in the Hough
domain into a straight line in the image.

See Also

RADON

Figure 9: HOUGH example showing random pixels (top), Hough transform
(center) and Hough backprojection (bottom)
HOUGH IDL Reference Guide

599
References

1. Gonzalez, R.C., and R.E. Woods. Digital Image Processing. Reading, MA:
Addison Wesley, 1992.

2. Jain, Anil K. Fundamentals of Digital Image Processing. Englewood Cliffs,
NJ: Prentice-Hall, 1989.

3. Toft, Peter. The Radon Transform: Theory and Implementation. Denmark:
Technical University; 1996. Ph.D. Thesis.

4. Weeks, Arthur. R. Fundamentals of Electronic Image Processing. New York:
SPIE Optical Engineering Press, 1996.
IDL Reference Guide HOUGH

600
HQR

The HQR function returns all eigenvalues of an upper Hessenberg array. Using the
output produced by the ELMHES function, this function finds all eigenvalues of the
original real, nonsymmetric array. The result is an n-element complex vector.

HQR is based on the routine hqr described in section 11.6 of Numerical Recipes in
C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

Result = HQR(A [, /COLUMN] [, /DOUBLE])

Arguments

A

An n by n upper Hessenberg array. Typically, A would be an array resulting from an
application of ELMHES.

Keywords

COLUMN

Set this keyword if the input array A is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

To compute the eigenvalues of a real, non-symmetric unbalanced array, first define
the array A:

A = [[1.0, 2.0, 0.0, 0.0, 0.0], $
[-2.0, 3.0, 0.0, 0.0, 0.0], $
[3.0, 4.0, 50.0, 0.0, 0.0], $
[-4.0, 5.0, -60.0, 7.0, 0.0], $
[-5.0, 6.0, -70.0, 8.0, -9.0]]

; Compute the upper Hessenberg form of the array:
hes = ELMHES(A)
HQR IDL Reference Guide

601
; Compute the eigenvalues:
evals = HQR(hes)

; Sort the eigenvalues into ascending order based on their
; real components:
evals = evals(SORT(FLOAT(evals)))

;Print the result.
PRINT, evals

IDL prints:

(-9.00000, 0.00000)(2.00000, -1.73205)
(2.00000, 1.73205)(7.00000, 0.00000)
(50.0000, 0.00000)

This is the exact solution vector to five-decimal accuracy.

See Also

EIGENVEC, ELMHES, TRIQL, TRIRED
IDL Reference Guide HQR

602
HSV

The HSV procedure creates a color table based on the HSV (Hue and Saturation
Value) color system.

Using the input parameters, a spiral through the single-ended HSV cone is traced.
Points along the cone are converted from HLS to RGB. The current colortable (and
the COLORS common block) contains the new colortable on exit.

This routine is written in the IDL language. Its source code can be found in the file
hsv.pro in the lib subdirectory of the IDL distribution.

Syntax

HSV, Vlo, Vhi, Satlo, Sathi, Hue, Loops [, Colr]

Arguments

Vlo

Starting value, from 0 to 100%.

Vhi

Ending value, from 0 to 100%.

Satlo

Starting saturation, from 0 to 100%.

Sathi

Ending saturation, from 0 to 100%.

Hue

Starting Hue, from 0 to 360 degrees. Red = 0 degs, green = 120, blue = 240.

Loops

The number of loops through the color spiral. This parameter does not have to be an
integer. A negative value causes the loops to traverse the spiral in the opposite
direction.
HSV IDL Reference Guide

603
Colr

An optional (256,3) integer array in which the new R, G, and B values are returned.
Red = Colr[*,0], green = Colr[*,1], blue = Colr[*,2].

See Also

COLOR_CONVERT, HLS, PSEUDO
IDL Reference Guide HSV

604
IBETA

The IBETA function computes the incomplete beta function.

This routine is written in the IDL language. Its source code can be found in the file
ibeta.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = IBETA(A, B, X [, /DOUBLE] [, EPS=value] [, ITER=variable]
[, ITMAX=value])

Return Value

If all arguments are scalar, the function returns a scalar. If all arguments are arrays,
the function matches up the corresponding elements of A, B, and X, returning an array
with the same dimensions as the smallest array. If one argument is a scalar and the
other arguments are arrays, the function uses the scalar value with each element of
the arrays, and returns an array with the same dimensions as the smallest input array.

If any of the arguments are double-precision or if the DOUBLE keyword is set, the
result is double-precision, otherwise the result is single-precision.

Arguments

A

A positive scalar or array that specifies the parametric exponent of the integrand.

B

A positive scalar or array that specifies the parametric exponent of the integrand.

X

A scalar or array, in the interval [0, 1], that specifies the upper limit of integration.

Ix a b,()
ta 1– 1 t–()b 1– td

0

x

∫
ta 1– 1 t–()b 1– td

0

1

∫
--≡
IBETA IDL Reference Guide

605
Keywords

DOUBLE

Set this keyword to force the computation to be done in double precision.

EPS

Set this keyword to the desired relative accuracy, or tolerance. The default tolerance
is 3.0e-7 for single precision, and 3.0d-12 for double precision.

ITER

Set this keyword to a named variable that will contain the actual number of iterations
performed.

ITMAX

Set this keyword to specify the maximum number of iterations. The default value is
100.

Example

Compute the incomplete beta function for the corresponding elements of A, B, and X.

; Define an array of parametric exponents:
A = [0.5, 0.5, 1.0, 5.0, 10.0, 20.0]
B = [0.5, 0.5, 0.5, 5.0, 5.0, 10.0]

; Define the upper limits of integration:
X = [0.01, 0.1, 0.1, 0.5, 1.0, 0.8]
; Compute the incomplete beta functions:
result = IBETA(A, B, X)
PRINT, result

IDL prints:

[0.0637686, 0.204833, 0.0513167, 0.500000, 1.00000, 0.950736]

See Also

BETA, GAMMA, IGAMMA, LNGAMMA
IDL Reference Guide IBETA

606
IDENTITY

The IDENTITY function returns an n by n identity array (an array with ones along
the main diagonal and zeros elsewhere).

This routine is written in the IDL language. Its source code can be found in the file
identity.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = IDENTITY(N [, /DOUBLE])

Arguments

N

The desired column and row dimensions.

Keywords

DOUBLE

Set this keyword to return a double-precision identity array.

Example

; Define an array, A:
A = [[2.0, 1.0, 1.0, 1.5], $

[4.0, -6.0, 0.0, 0.0], $
[-2.0, 7.0, 2.0, 2.5], $
[1.0, 0.5, 0.0, 5.0]]

; Compute the inverse of A using the INVERT function:
inverse = INVERT(A)

; Verify the accuracy of the computed inverse using the
; mathematical identity, A x A^-1 - I(4) = 0, where A^-1 is the
; inverse of A, I(4) is the 4 by 4 identity array and 0 is a 4 by 4
; array of zeros:
PRINT, A ## inverse - IDENTITY(4)

See Also

FINDGEN, FLTARR
IDENTITY IDL Reference Guide

607
IDL_Container Object Class

See Appendix A, “IDL Object Class & Method Reference”.
IDL Reference Guide IDL_Container Object Class

608
IDLanROI Object Class

See Appendix A, “IDL Object Class & Method Reference”.
IDLanROI Object Class IDL Reference Guide

609
IDLanROIGroup Object Class

See Appendix A, “IDL Object Class & Method Reference”
IDL Reference Guide IDLanROIGroup Object Class

610
IDLffDICOM Object Class

See Appendix A, “IDL Object Class & Method Reference”
IDLffDICOM Object Class IDL Reference Guide

611
IDLffDXF Object Class

See Appendix A, “IDL Object Class & Method Reference”
IDL Reference Guide IDLffDXF Object Class

612
IDLffLanguageCat Object Class

See Appendix A, “IDL Object Class & Method Reference”
IDLffLanguageCat Object Class IDL Reference Guide

613
IDLffShape Object Class

See Appendix A, “IDL Object Class & Method Reference”
IDL Reference Guide IDLffShape Object Class

614
IDLgr* Object Classes

The following IDLgr* object classes are documented in Appendix A, “IDL
Object Class & Method Reference”:

• IDLgrAxis • IDLgrModel • IDLgrROIGroup • IDLgrVRML

• IDLgrBuffer • IDLgrMPEG • IDLgrScene • IDLgrWindow

• IDLgrClipboard • IDLgrPalette • IDLgrSurface

• IDLgrColorbar • IDLgrPattern • IDLgrSymbol

• IDLgrContour • IDLgrPlot • IDLgrTessellator

• IDLgrFont • IDLgrPolygon • IDLgrText

• IDLgrImage • IDLgrPolyline • IDLgrView

• IDLgrLegend • IDLgrPrinter • IDLgrViewgroup

• IDLgrLight • IDLgrROI • IDLgrVolume
IDLgr* Object Classes IDL Reference Guide

615
IF...THEN...ELSE

The IF...THEN...ELSE statement conditionally executes a statement or block of
statements.

Note
For information on using IF...THEN...ELSE and other IDL program control
statements, see Chapter 11, “Program Control” in Building IDL Applications.

Syntax

IF expression THEN statement [ELSE statement]

or

IF expression THEN BEGIN

statements

ENDIF [ELSE BEGIN

statements

ENDELSE]

Example

The following example illustrates the use of the IF statement using the ELSE clause.
Notice that the IF statement is ended with ENDIF, and the ELSE statement is ended
with ENDELSE. Also notice that the IF statement can be used with or without the
BEGIN...END block:

A = 2
B = 4

IF (A EQ 2) AND (B EQ 3) THEN BEGIN
 PRINT, 'A = ', A
 PRINT, 'B = ', B
ENDIF ELSE BEGIN
 IF A NE 2 THEN PRINT, 'A <> 2' ELSE PRINT, 'B <> 3'
ENDELSE

IDL Prints:

B <> 3
IDL Reference Guide IF...THEN...ELSE

616
IGAMMA

The IGAMMA function computes the incomplete gamma function.

IGAMMA uses either a power series representation or a continued fractions method.
If X is less than or equal to A+1, a power series representation is used. If X is greater
than A+1, a continued fractions method is used.

This routine is written in the IDL language. Its source code can be found in the file
igamma.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = IGAMMA(A, X [, /DOUBLE] [, EPS=value] [, ITER=variable]
[, ITMAX=value] [, METHOD=variable])

Return Value

If both arguments are scalar, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of A and X, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the input array.

If any of the arguments are double-precision or if the DOUBLE keyword is set, the
result is double-precision, otherwise the result is single-precision.

Arguments

A

A positive scalar or array that specifies the parametric exponent of the integrand.

X

A scalar or array that specifies the upper limit of integration.

Px a()
e t– ta 1– td

0

x

∫
e t– ta 1– td

0

∞
∫
-----------------------------≡
IGAMMA IDL Reference Guide

617
Keywords

DOUBLE

Set this keyword to force the computation to be done in double precision.

EPS

Set this keyword to the desired relative accuracy, or tolerance. The default tolerance
is 3.0e-7 for single precision, and 3.0d-12 for double precision.

ITER

Set this keyword to a named variable that will contain the actual number of iterations
performed.

ITMAX

Set this keyword to specify the maximum number of iterations. The default value is
100.

METHOD

Set this keyword to a named variable that will contain the method used to compute
the incomplete gamma function. A value of 0 indicates that a power series
representation was used. A value of 1 indicates that a continued fractions method was
used.

Example

Compute the incomplete gamma function for the corresponding elements of A and X.

; Define an array of parametric exponents:
A = [0.10, 0.50, 1.00, 1.10, 6.00, 26.00]

; Define the upper limits of integration:
X = [0.0316228, 0.0707107, 5.00000, 1.04881, 2.44949, 25.4951]

; Compute the incomplete gamma functions:
result = IGAMMA(A, X)

PRINT, result

IDL prints:

[0.742026, 0.293128, 0.993262, 0.607646, 0.0387318, 0.486387]
IDL Reference Guide IGAMMA

618
See Also

BETA, GAMMA, IBETA, LNGAMMA
IGAMMA IDL Reference Guide

619
IMAGE_CONT

The IMAGE_CONT procedure overlays an image with a contour plot.

This routine is written in the IDL language. Its source code can be found in the file
image_cont.pro in the lib subdirectory of the IDL distribution.

Syntax

IMAGE_CONT, A [, /ASPECT] [, /INTERP] [, /WINDOW_SCALE]

Arguments

A

The two-dimensional array to display and overlay.

Keywords

ASPECT

Set this keyword to retain the image’s aspect ratio. Square pixels are assumed. If
WINDOW_SCALE is set, the aspect ratio is automatically retained.

INTERP

If this keyword is set, bilinear interpolation is used if the image is resized.

WINDOW_SCALE

Set this keyword to scale the window size to the image size. Otherwise, the image
size is scaled to the window size. This keyword is ignored when outputting to devices
with scalable pixels (e.g., PostScript).

Example

; Create an image to display:
A = BYTSCL(DIST(356))

; Display image and overplot contour lines:
IMAGE_CONT, A, /WINDOW

See Also

CONTOUR, TV
IDL Reference Guide IMAGE_CONT

620
IMAGE_STATISTICS

The IMAGE_STATISTICS procedure computes sample statistics for a given array of
values. An optional mask may be specified to restrict computations to a spatial subset
of the input data.

Syntax

IMAGE_STATISTICS, Data
[, /LABELED | [, /WEIGHTED] [, WEIGHT_SUM=variable]] [, /VECTOR]
[, LUT=array] [, MASK=array] [, COUNT=variable] [, MEAN=variable]
[, STDDEV=variable] [, DATA_SUM=variable] [, SUM_OF_SQUARES=variable]
[, MINIMUM=variable] [, MAXIMUM=variable] [, VARIANCE=variable]

Arguments

Data

An N-dimensional input data array.

Keywords

COUNT

Set this keyword to a named variable to contain the number of samples that
correspond to nonzero values within the mask.

DATA_SUM

Set this keyword to a named variable to contain the sum of the samples that lie within
the mask.

LABELED

When set, this keyword indicates values in the mask representing region labels,
where each pixel of the mask is set to the index of the region in which that pixel
belongs (see the LABEL_REGION function in the IDL Reference Guide). If the
LABELED keyword is set, each statistic’s value is computed for each region index.
Thus, a vector containing the results is provided for each statistic with one element
per region. By default, this keyword is set to zero, indicating that all samples with a
corresponding nonzero mask value are used to form a scalar result for each statistic.
IMAGE_STATISTICS IDL Reference Guide

621
Note
The LABELED keyword cannot be used with either the WEIGHT_SUM or the
WEIGHTED keywords.

LUT

Set this keyword to a one-dimensional array. For non-floating point input Data, the
pixel values are looked up through this table before being used in any of the statistical
computations. This allows an integer image array to be calibrated to any user
specified intensity range for the sake of calculations. The length of this array must
include the range of the input array. This keyword may not be set with floating point
input data. When signed input data types are used, they are first cast to the
corresponding IDL unsigned type before being used to access this array. For
example, the integer value –1 looks up the value 65535 in the LUT array.

MASK

An array of N, or N–1 (when the VECTOR keyword is used) dimensions representing
the mask array. If the LABELED keyword is set, MASK contains the region indices
of each pixel; otherwise statistics are only computed for data values where the
MASK array is non-zero.

MAXIMUM

Set this keyword to a named variable to contain the maximum value of the samples
that lie within the mask.

MEAN

Set this keyword to a named variable to contain the mean of the samples that lie
within the mask.

MINIMUM

Set this keyword to a named variable to contain the minimum value of the samples
that lie within the mask.

STDDEV

Set this keyword to a named variable to contain the standard deviation of the samples
that lie within the mask.

SUM_OF_SQUARES

Set this keyword to a named variable to contain the sum of the squares of the samples
that lie within the mask.
IDL Reference Guide IMAGE_STATISTICS

622
VARIANCE

Set this keyword to a named variable to contain the variance of the samples that lie
within the mask.

VECTOR

Set this keyword to specify that the leading dimension of the input array is not to be
considered spatial but consists of multiple data values at each pixel location. In this
case, the leading dimension is treated as a vector of samples at the spatial location
determined by the remainder of the array dimensions.

WEIGHT_SUM

Set the WEIGHT_SUM keyword to a named variable to contain the sum of the
weights in the mask.

Note
The WEIGHT_SUM keyword cannot be used if the LABELED keyword is
specified.

WEIGHTED

If the WEIGHTED keyword is set, the values in the MASK array are used to weight
individual pixels with respect to their count value. If a MASK array is not provided,
all pixels are assigned a weight of 1.0.

Note
The WEIGHTED keyword cannot be used if the LABELED keyword is specified.
IMAGE_STATISTICS IDL Reference Guide

623
IMAGINARY

The IMAGINARY function returns the imaginary part of its complex-valued
argument. If the complex-valued argument is double-precision, the result will be
double-precision, otherwise the result will be single-precision floating-point.

Syntax

Result = IMAGINARY(Complex_Expression)

Arguments

Complex_Expression

The complex-valued expression for which the imaginary part is desired.

Example

; Create an array of complex values:
C = COMPLEX([1,2,3],[4,5,6])

; Print just the imaginary parts of each element in C:
PRINT, IMAGINARY(C)

IDL prints:

 4.00000 5.00000 6.00000

Tip
The real part of a complex number can be returned using one of IDL’s type
conversion functions. For example, FLOAT can be used to return the real part of a
complex number in single precision, and DOUBLE can be used to return the real
part of a complex number in double precision. See COMPLEX and DCOMPLEX
for examples of extracting the real part of a complex number.

See Also

COMPLEX, DCOMPLEX
IDL Reference Guide IMAGINARY

624
INDGEN

The INDGEN function returns an integer array with the specified dimensions. Each
element of the array is set to the value of its one-dimensional subscript.

Syntax

Result = INDGEN(D1, ..., D8) [, /BYTE | , /COMPLEX | , /DCOMPLEX | ,
/DOUBLE | , /FLOAT | , /L64 | , /LONG | , /STRING | , /UINT | , /UL64 | , /ULONG]
[, TYPE=value]

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Keywords

BYTE

Set this keyword to create a byte array.

COMPLEX

Set this keyword to create a complex, single-precision, floating-point array.

DCOMPLEX

Set this keyword to create a complex, double-precision, floating-point array.

DOUBLE

Set this keyword to create a double-precision, floating-point array.

FLOAT

Set this keyword to create a single-precision, floating-point array.

L64

Set this keyword to create a 64-bit integer array.
INDGEN IDL Reference Guide

625
LONG

Set this keyword to create a longword integer array.

STRING

Set this keyword to create a string array.

TYPE

The type code to set the type of the result. See the description of the SIZE function
for a list of IDL type codes.

UINT

Set this keyword to create an unsigned integer array.

UL64

Set this keyword to create an unsigned 64-bit integer array.

ULONG

Set this keyword to create an unsigned longword integer array.

Example

Create I, a 5-element vector of integer values with each element set to the value of its
subscript by entering:

I = INDGEN(5)

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide INDGEN

626
INT_2D

The INT_2D function computes the double integral of a bivariate function using
iterated Gaussian quadrature. The algorithm’s transformation data is provided in
tabulated form with 15 decimal accuracy.

This routine is written in the IDL language. Its source code can be found in the file
int_2d.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = INT_2D(Fxy, AB_Limits, PQ_Limits, Pts [, /DOUBLE] [, /ORDER])

Arguments

Fxy

A scalar string specifying the name of a user-supplied IDL function that defines the
bivariate function to be integrated. The function must accept X and Y and return a
scalar result.

For example, if we wish to integrate the following function:

We define a function FXY to express this relationship in the IDL language:

FUNCTION fxy, X, Y
RETURN, EXP(-X^2. -Y^2.)

END

AB_Limits

A two-element vector containing the lower (A) and upper (B) limits of integration
with respect to the variable x.

PQ_Limits

A scalar string specifying the name of a user-supplied IDL function that defines the
lower (P(x)) and upper (Q(x)) limits of integration with respect to the variable y. The
function must accept x and return a two-element vector result.

For example, we might write the following IDL function to represent the limits of
integration with respect to y:

FUNCTION PQ_limits, X
RETURN, [-SQRT(16.0 - X^2), SQRT(16.0 - X^2)]

END

f x y,() e x2– y2–=
INT_2D IDL Reference Guide

627
Pts

The number of transformation points used in the computation. Possible values are: 6,
10, 20, 48, or 96.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

ORDER

A scalar value of either 0 or 1. If set to 0, the integral is computed using a dy-dx order
of integration. If set to 1, the integral is computed using a dx-dy order of integration.

Example

Example 1

Compute the double integral of the bivariate function.

; Define the limits of integration for y as a function of x:
FUNCTION PQ_Limits, x

RETURN, [0.0, x^2]
END

; Define limits of integration for x:
AB_Limits = [0.0, 2.0]

; Using the function and limits defined above, integrate with 48
; and 96 point formulas using a dy-dx order of integration and
; double-precision arithmetic:
PRINT, INT_2D('Fxy', AB_Limits, 'PQ_Limits', 48, /DOUBLE)
PRINT, INT_2D('Fxy', AB_Limits, 'PQ_Limits', 96, /DOUBLE)

INT_2D with 48 transformation points yields: 0.055142668

INT_2D with 96 transformation points yields: 0.055142668

Example 2

Compute the double integral of the bivariate function:

; Define the limits of integration for y as a function of x:
FUNCTION PQ_Limits, y

I y x
5()cos⋅ yd xd

y 0.0=

y x2=

∫x 0.0=

x 2.0=

∫=
IDL Reference Guide INT_2D

628
RETURN, [sqrt(y), 2.0]
END

; Define limits of integration for x:
AB_Limits = [0.0, 4.0]

; Using the function and limits defined above, integrate with 48
; and 96 point formulas using a dy-dx order of integration and
; double-precision arithmetic:
PRINT, INT_2D('Fxy', AB_Limits, 'PQ_Limits', 48, /DOUBLE, /ORDER)
PRINT, INT_2D('Fxy', AB_Limits, 'PQ_Limits', 96, /DOUBLE, ORDER)

INT_2D with 48 transformation points yields: 0.055142678

INT_2D with 96 transformation points yields: 0.055142668

The exact solution (7 decimal accuracy) is: 0.055142668

See Also

INT_3D, INT_TABULATED, QROMB, QROMO, QSIMP

I y x
5()cos⋅ xd yd

y 0.0=

y x2=

∫x 0.0=

x 2.0=

∫=
INT_2D IDL Reference Guide

629
INT_3D

The INT_3D function computes the triple integral of a trivariate function using
iterated Gaussian quadrature. The algorithm’s transformation data is provided in
tabulated form with 15 decimal accuracy.

This routine is written in the IDL language. Its source code can be found in the file
int_3d.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = INT_3D(Fxyz, AB_Limits, PQ_Limits, UV_Limits, Pts [, /DOUBLE])

Arguments

Fxyz

A scalar string specifying the name of a user-supplied IDL function that defines the
trivariate function to be integrated. The function must accept X, Y, and Z, and return
a scalar result.

For example, if we wish to integrate the following function:

We define a function FXY to express this relationship in the IDL language:

FUNCTION fxyz, X, Y, Z
RETURN, z*(x^2+y^2+z^2)^1.5

END

AB_Limits

A two-element vector containing the lower (A) and upper (B) limits of integration
with respect to the variable x.

PQ_Limits

A scalar string specifying the name of a user-supplied IDL function that defines the
lower (P(x)) and upper (Q(x)) limits of integration with respect to the variable y. The
function must accept x and return a two-element vector result.

For example, we might write the following IDL function to represent the limits of
integration with respect to y:

FUNCTION PQ_limits, X

f x y z, ,() z x2 y2 z2+ +()3 2/⋅=
IDL Reference Guide INT_3D

630
RETURN, [-SQRT(4.0 - X^2), SQRT(4.0 - X^2)]
END

UV_Limits

A scalar string specifying the name of a user-supplied IDL function that defines the
lower (U(x,y)) and upper (V(x,y)) limits of integration with respect to the variable z.
The function must accept x and y and return a two-element vector result.

For example, we might write the following IDL function to represent the limits of
integration with respect to z:

FUNCTION UV_limits, X, Y
RETURN, [0, SQRT(4.0 - X^2 - Y^2)]

END

Pts

The number of transformation points used in the computation. Possible values are: 6,
10, 20, 48, or 96.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

Compute the triple integral of the trivariate function

Using the functions and limits defined above, integrate with 10, 20, 48, and 96 point
formulas (using double-precision arithmetic):

PRINT, INT_3D('Fxyz', [-2.0, 2.0], 'PQ_Limits', 'UV_Limits', 10,$
/D)

PRINT, INT_3D('Fxyz', [-2.0, 2.0], 'PQ_Limits', 'UV_Limits', 20,$
/D)

PRINT, INT_3D('Fxyz', [-2.0, 2.0], 'PQ_Limits', 'UV_Limits', 48,$
/D)

PRINT, INT_3D('Fxyz', [-2.0, 2.0], 'PQ_Limits', 'UV_Limits', 96,$
/D)

INT_3D with 10 transformation points yields: 57.444248

I z x2 y2 z2+ +()3 2/⋅ zd yd xd
z 0=

z 4 x2– y2–=

∫
y 4 x2––=

y 4 x2–=

∫x 2–=

x 2=

∫=
INT_3D IDL Reference Guide

631
INT_3D with 20 transformation points yields: 57.446201

INT_3D with 48 transformation points yields: 57.446265

INT_3D with 96 transformation points yields: 57.446266

The exact solution (6 decimal accuracy) is: 57.446267

See Also

INT_2D, INT_TABULATED, QROMB, QROMO, QSIMP
IDL Reference Guide INT_3D

632
INT_TABULATED

The INT_TABULATED function integrates a tabulated set of data { xi , fi } on the
closed interval [MIN(x) , MAX(x)], using a five-point Newton-Cotes integration
formula.

Warning
Data that is highly oscillatory requires a sufficient number of samples for an
accurate integral approximation.

This routine is written in the IDL language. Its source code can be found in the file
int_tabulated.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = INT_TABULATED(X, F [, /DOUBLE] [, /SORT])

Arguments

X

The tabulated single- or double-precision floating-point x-value data. Data may be
irregularly gridded and in random order. (If the data is randomly ordered, set the
SORT keyword.)

Warning
Each X value must be unique; if duplicate X values are detected, the routine will exit
and display a warning message.

F

The tabulated single- or double-precision floating-point f-value data. Upon input to
the function, xi and fi must have corresponding indices for all values of i. If x is
reordered, f is also reordered.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
INT_TABULATED IDL Reference Guide

633
SORT

Set this keyword to sort the tabulated x-value data into ascending order. If SORT is
set, both x and f values are sorted.

Example

Define 11 x-values on the closed interval [0.0 , 0.8]:

X = [0.0, .12, .22, .32, .36, .40, .44, .54, .64, .70, .80]

Define 11 f-values corresponding to xi:

F = [0.200000, 1.30973, 1.30524, 1.74339, 2.07490, 2.45600, $
2.84299, 3.50730, 3.18194, 2.36302, 0.231964]

result = INT_TABULATED(X, F)

In this example, the f-values are generated from a known function

f = 0.2 + 25x - 200x2 + 675x3 - 900x4 + 400x5

which allows the determination of an exact solution. A comparison of methods yields
the following results:

• The Multiple Application Trapezoid Method yields: 1.5648

• The Multiple Application Simpson’s Method yields: 1.6036

• INT_TABULATED yields: 1.6271

The exact solution (4 decimal accuracy) is: 1.6405

See Also

INT_2D, INT_3D, QROMB, QROMO, QSIMP
IDL Reference Guide INT_TABULATED

634
INTARR

The INTARR function returns an integer vector or array.

Syntax

Result = INTARR(D1, ..., D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, INTARR sets every element of the result to zero. If NOZERO is nonzero,
this zeroing is not performed and INTARR executes faster.

Example

Create I, a 3-element by 3-element integer array with each element set to 0 by
entering:

I = INTARR(3, 3)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, LON64ARR,
LONARR, MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
INTARR IDL Reference Guide

635
INTERPOL

The INTERPOL function performs linear, quadratic, or spline, interpolation on
vectors with a regular or irregular grid. The result is a single- or double-precision
floating-point vector, or a complex vector if the input vector is complex.

This routine is written in the IDL language. Its source code can be found in the file
interpol.pro in the lib subdirectory of the IDL distribution.

Syntax

For regular grids: Result = INTERPOL(V, N [, /LSQUADRATIC]
[, /QUADRATIC] [, /SPLINE])

For irregular grids: Result = INTERPOL(V, X, U [, /LSQUADRATIC]
[, /QUADRATIC] [, /SPLINE])

Arguments

V

An input vector of any type except string.

N

The number of points in the result when both input and output grids are regular. The
abscissa values for the output grid will contain the same endpoints as the input.

X

The abscissa values for V, in the irregularly-gridded case. X must have the same
number of elements as V, and the values must be monotonically ascending or
descending.

U

The abscissa values for the result. The result will have the same number of elements
as U. U does not need to be monotonic.
IDL Reference Guide INTERPOL

636
Keywords

LSQUADRATIC

If set, interpolate using a least squares quadratic fit to the equation y = a + bx + cx2,
for each 4 point neighborhood (x[i-1], x[i], x[i+1], x[i+2]) surrounding the interval of
the interpolate, x[i] ≤ u < x[i+1].

QUADRATIC

If set, interpolate by fitting a quadratic y = a + bx + cx2, to the three point
neighborhood (x[i-1], x[i], x[i+1]) surrounding the interval x[i] ≤ u < x[i+1].

SPLINE

If set, interpolate by fitting a cubic spline to the 4 point neighborhood (x[i-1], x[i],
x[i+1], x[i+2]) surrounding the interval, x[i] ≤ u < x[i+1].

Note
If LSQUADRATIC or QUADRATIC or SPLINE is not set, the default is to use
linear interpolation.

Example

Create a floating-point vector of 61 elements in the range [-3, 3].

X = FINDGEN(61)/10 - 3

; Evaluate V[x] at each point:
V = SIN(X)

; Define X-values where interpolates are desired:
U = [-2.50, -2.25, -1.85, -1.55, -1.20, -0.85, -0.50, -0.10, $

0.30, 0.40, 0.75, 0.85, 1.05, 1.45, 1.85, 2.00, 2.25, 2.75]

; Interpolate:
result = INTERPOL(V, X, U)

; Plot the function:
PLOT, X, V

; Plot the interpolated values:
OPLOT, U, result

See Also

BILINEAR, INTERPOLATE, KRIG2D
INTERPOL IDL Reference Guide

637
INTERPOLATE

The INTERPOLATE function returns an array of linear, bilinear or trilinear
interpolates, depending on the dimensions of the input array P. Linear interpolates
are returned in the one-dimensional case, bilinear in the two-dimensional case and
trilinear interpolates in the three-dimensional case. The returned array has the same
type as P and its dimensions depend on those of the location parameters X, Y, and Z,
as explained below.

Interpolates outside the bounds of P can be set to a user-specified value by using the
MISSING keyword.

Syntax

Result = INTERPOLATE(P, X [, Y [, Z]] [, CUBIC=value{-1 to 0}] [, /GRID]
[, MISSING=value])

Arguments

P

The array of data values. P can be an array of any dimensions. Interpolation occurs in
the M rightmost indices of P, where M is the number of interpolation arrays.

X, Y, Z

Arrays of numeric type containing the locations for which interpolates are desired.
For linear interpolation (P is a vector), the result has the same dimensions as X. The i-
th element of the result is P interpolated at location Xi. The Y and Z parameters should
be omitted.

For bilinear interpolation Z should not be present.

Note
INTERPOLATE considers location points with values between zero and n, where n
is the number of values in the input array P, to be valid. Location points outside this
range are considered missing data. Location points x in the range n-1 ≤ x < n return
the last data value in the array P.

If the keyword GRID is not set, all location arrays must have the same number of
elements. See the description of the GRID keyword below for more details on how
interpolates are computed from P and these arrays.
IDL Reference Guide INTERPOLATE

638
Keywords

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Setting
this keyword equal to a value greater than zero specifies a value of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest that a
value of -0.5 significantly improves the reconstruction properties of this algorithm.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal, f, is a band-limited signal, with no frequency
component larger than ω0, and f is sampled with spacing less than or equal to 1/(2ω0),
then f can be reconstructed by convolving with a sinc function: sinc(x) = sin(πx) /
(πx).

The number of neighboring points used varies according to the dimension:

• 1-dimensional: 4 points

• 2-dimensional: 16 points

• 3-dimensional: not supported

Note
Cubic convolution interpolation is significantly slower than bilinear interpolation.
Also note that cubic interpolation is not supported for three-dimensional data.

For further details see:

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniques for
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redondo
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubic
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

GRID

The GRID keyword controls how the location arrays specify where interpolates are
desired. This keyword has no effect in the case of linear interpolation.

If GRID is not set: The location arrays, X, Y, and, if present, Z must have the same
number of elements. The result has the same structure and number of elements as X.
INTERPOLATE IDL Reference Guide

639
In the case of bilinear interpolation, the result is obtained as follows: Let l = Xi and
k = Yi . Element i of the result is computed by interpolating between P(l, k), P(l+1,
k), P(l, k+1), and P(l+1, k+1). to obtain the estimated value at (Xi, Yi). Trilinear
interpolation is a direct extension of the above.

If GRID is set: Let Nx be the number of elements in X, let Ny be the number of
elements in Y, and Nz be the number of elements in Z. The result has dimensions (Nx,
Ny) for bilinear interpolation, and (Nx, Ny, Nz) for trilinear interpolation. For bilinear
interpolation, element (i,j) of the result contains the value of P interpolated at
position (Xi, Yi). For trilinear interpolation, element (i, j, k) of the result is P
interpolated at (Xi, Yi, Zi).

MISSING

The value to return for elements outside the bounds of P. If this keyword is not
specified, interpolated positions that fall outside the bounds of the array P—that is,
elements of the X, Y, or Z arguments that are either less than zero or greater than the
largest subscript in the corresponding dimension of P—are set equal to the value of
the nearest element of P.

Examples

The example below computes bilinear interpolates with the keyword GRID set:

p = FINDGEN(4,4)
PRINT, INTERPOLATE(p, [.5, 1.5, 2.5], [.5, 1.5, 2.5], /GRID)

and prints the 3 by 3 array:

2.50000 3.50000 4.50000
6.50000 7.50000 8.50000
10.5000 11.5000 12.5000

corresponding to the locations:

(.5,.5), (1.5, .5), (2.5, .5),
(.5,1.5), (1.5, 1.5), (2.5, 1.5),
(.5,2.5), (1.5, 2.5), (2.5, 2.5)

Another example computes interpolates, with GRID not set and a parameter outside
the bounds of P:

PRINT, INTERPOLATE(p, [.5, 1.5, 2.5, 3.1], [.5, 1.5, 2.5, 2])

and prints the result:

2.50000 7.50000 12.5000 11.0000
IDL Reference Guide INTERPOLATE

640
corresponding to the locations (.5,.5), (1.5, 1.5), (2.5, 2.5) and (3.1, 2.0). Note that the
last location is outside the bounds of P and is set from the value of the last column.
The following command uses the MISSING keyword to set such values to -1:

PRINT, INTERPOLATE(p, [.5, 1.5, 2.5, 3.1], [.5, 1.5, 2.5, 2], $
MISSING = -1)

and gives the result:

 2.50000 7.50000 12.5000 -1.00000

See Also

BILINEAR, INTERPOL, KRIG2D
INTERPOLATE IDL Reference Guide

641
INVERT

The INVERT function uses the Gaussian elimination method to compute the inverse
of a square array. Errors from singular or near-singular arrays are accumulated in the
optional Status argument.

Syntax

Result = INVERT(Array [, Status] [, /DOUBLE])

Return Value

The result is a single- or double-precision array of floating or complex values.

Arguments

Array

The array to be inverted. Array must have two dimensions of equal size (i.e., a square
array) and can be of any type except string. Note that the resulting array will be
composed of single- or double-precision floating-point or complex values, depending
on whether the DOUBLE keyword is set.

Status

A named variable to receive the status of the operation. Possible status values are:

• 0 = Successful completion.

• 1 = Singular array (which indicates that the inversion is invalid).

• 2 = Warning that a small pivot element was used and that significant accuracy
was probably lost.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

; Create an array A:
A = [[5.0, -1.0, 3.0], $

[2.0, 0.0, 1.0], $
IDL Reference Guide INVERT

642
[3.0, 2.0, 1.0]]
result = INVERT(A)

; We can check the accuracy of the inversion by multiplying the
; inverted array by the original array. The result should be a 3 x
; 3 identity array.
PRINT, result # A

IDL prints:

 1.00000 0.00000 0.00000
 0.00000 1.00000 0.00000
 0.00000 9.53674e-07 1.00000

See Also

COND, DETERM, INVERT, REVERSE, ROTATE, TRANSPOSE
INVERT IDL Reference Guide

643
IOCTL

The IOCTL function provides a thin wrapper over the UNIX ioctl(2) system call.
IOTCL performs special functions on the specified file. The set of functions actually
available depends on your version of UNIX and the type of file (tty, tape, disk file,
etc.) referred to.

To use IOCTL, read the C programmer’s documentation describing the ioctl(2)
function for the desired device and convert all constants and data to their IDL
equivalents.

The value returned by the system ioctl function is returned as the value of the IDL
IOCTL function.

Syntax

Result = IOCTL(File_Unit [, Request, Arg] [, /BY_VALUE] [, /MT_OFFLINE]
[, /MT_REWIND] [, MT_SKIP_FILE=[-]number_of_files]
[, MT_SKIP_RECORD=[-]number_of_records] [, /MT_WEOF]
[, /SUPRESS_ERROR])

Arguments

File_Unit

The IDL logical unit number (LUN) for the open file on which the ioctl request is
made.

Request

A longword integer that specifies the ioctl request code. These codes are usually
contained in C language header files provided by the operating system, and are not
generally portable between UNIX versions. If one of the “MT” keywords is used, this
argument can be omitted.

Arg

A named variable through which data if passed to and from ioctl. IOCTL requests
usually request data from the system or supply the system with information. The user
must make Arg the correct type and size. Errors in typing or sizing Arg can corrupt
the IDL address space and/or make IDL crash. If one of the MT keywords is used,
this argument can be omitted.
IDL Reference Guide IOCTL

644
Keywords

Note that the keywords below that start with “MT” can be used to issue commonly
used magnetic tape ioctl() calls. When these keywords are used, the Request and Arg
arguments are ignored and an be omitted. Magnetic tape operations not available via
these keywords can still be executed by supplying the appropriate Request and Arg
values. When issuing magnetic tape IOCTL calls, be aware that different devices
have different rules for which ioctl calls are allowed, and when. The documentation
for your computer system explains those rules.

BY_VALUE

If this keyword is set, Arg is converted to a scalar longword and this longword is
passed by value. Normally, Arg is passed to ioctl by reference (i.e., by address).

MT_OFFLINE

Set this keyword to rewind and unload a tape.

MT_REWIND

Set this keyword to rewind a tape.

MT_SKIP_FILE

Use this keyword to skip files on a tape. A positive value skips forward that number
of files. A negative value skips backward.

MT_SKIP_RECORD

Use this keyword to skip records on tape. A positive value skips forward that number
of files. A negative value skips backward.

MT_WEOF

Set this keyword to write an end of file (“tape mark”) on the tape at the current
location.

SUPPRESS_ERROR

Set this keyword to log errors quietly and cause a value of -1 to be returned. The
default is for IDL to notice any failures associated with the use of ioctl and issue
the appropriate IDL error and halt execution.
IOCTL IDL Reference Guide

645
Example

The following example prints the size of the terminal being used by the current IDL
session. It is known to work under SunOS 4.1.2. Changes may be necessary for other
operating systems or even other versions of SunOS.

; Variable to receive result. This structure is described in
; Section 4 of the SunOS manual pages under termios(4):
winsize = { row:0, col:0, xpixel:0, ypixel:0 }

; The request code for obtaining the tty size, as determined by
; reading the termios(4) documentation, and reading the system
; include files in the /usr/include/sys directory:
TIOCGWINSZ = 1074295912L

; Make the information request. -1 is the IDL logical file unit for
; the standard output:
ret = IOCTL(-1, TIOCGWINSZ, winsize)

; Output the results:
PRINT,winsize.row, winsize.col, $

format='("TTY has ", I0," rows and ", I0," columns.")'

The following points should be noted in this example:

• Even though we only want the number of rows and columns, we must include
all the fields required by the TIOCGWINSIZ ioctl in the winsize variable (as
documented in the termio(4) manual page). Not providing a large enough
result buffer would cause IDL’s memory to be corrupted.

• The value of TIOCGWINSZ was determined by examining the system header
files provided in the /usr/include/sys directory. Such values are not
always portable between major operating system releases.

See Also

OPEN
IDL Reference Guide IOCTL

646
ISHFT

The ISHFT function performs the bit shift operation on bytes, integers and
longwords. If P2 is positive, P1 is left shifted P2 bit positions with 0 bits filling
vacated positions. If P2 is negative, P1 is right shifted with 0 bits filling vacated
positions.

Syntax

Result = ISHFT(P1, P2)

Arguments

P1

The scalar or array to be shifted.

P2

The scalar or array containing the number of bit positions and direction of the shift.

Example

Bit shift each element of the integer array [1, 2, 3, 4, 5] three bits to the left and store
the result in B by entering:

B = ISHFT([1,2,3,4,5], 3)

The resulting array B is [8, 16, 24, 32, 40].

See Also

SHIFT
ISHFT IDL Reference Guide

647
ISOCONTOUR

The ISOCONTOUR procedure interprets the contouring algorithm found in the
IDLgrContour object. The algorithm allows for contouring on arbitrary meshes and
returns line or orientated tessellated polygonal output. The interface will also allow
secondary data values to be interpolated and returned at the output vertices as well.

Syntax

ISOCONTOUR, Values, Outverts, Outconn
[, AUXDATA_IN=array, AUXDATA_OUT=variable] [, C_VALUE=scalar or
vector][, /DOUBLE][, GEOMX=vector] [, GEOMY=vector] [, GEOMZ=vector]
[, /FILL] [, LEVEL_VALUES=variable] [, N_LEVELS=levels]
[, OUTCONN_INDICES=variable] [, POLYGONS=array of polygon descriptions]

Arguments

Values

An input vector or a two-dimensional array specifying the values to be contoured.

Outconn

Output variable to contain the connectivity information of the contour geometry in
the form: [n0, i(0, 0), i(0, 1)..., i(0, n0–1), n1, i(1, 0), ...].

Outverts

Output variable to contain the contour vertices. The vertices are returned in double-
precision floating point if the DOUBLE keyword is specified with a non-zero value.
Otherwise, the vertices are returned in single-precision floating point.

Keywords

AUXDATA_IN

The auxiliary values to be interpolated at contour vertices. If p is the dimensionality
of the auxiliary values, set this argument to a p-by-n array (if the Values argument is
a vector of length n), or to a p-by-m-by-n array (if the Values argument is an m-by-n
two-dimensional array).
IDL Reference Guide ISOCONTOUR

648
AUXDATA_OUT

If the AUXDATA_IN keyword was specified, set this keyword to a named output
variable to contain the interpolated auxiliary values at the contour vertices. If p is the
dimensionality of the auxiliary values, the output is a p-by-n array of values, where n
is the number of vertices in Outverts.

C_VALUE

Set this keyword to a scalar value or a vector of values for which contour levels are to
be generated. If this keyword is set to 0, contour levels will be evenly sampled across
the range of the Values argument, using the value of the N_LEVELS keyword to
determine the number of samples.

DOUBLE

Set this keyword to use double-precision to compute the contours. IDL converts any
data supplied by the Values argument or GEOMX, GEOMY, and GEOMZ keywords
to double precision and returns the Outverts argument in double precision. The
default behavior is to convert the input to single precision and return the Outverts in
single precision.

FILL

Set this keyword to generate an output connectivity as a set of polygons (Outconn is
in the form used by the IDLgrPolygon POLYGONS keyword). The resulting
representation is as a set of filled contours. The default is to generate line contours
(Outconn is in the form used by the IDLgrPolyline POLYLINES keyword).

GEOMX

Set this keyword to a vector or two-dimensional array specifying the X coordinates of
the geometry with which the contour values correspond. If X is a vector, it must
match the number of elements in the Values argument, or it must match the first of
the two dimensions of the Values argument (in which case the X coordinates will be
repeated for each column of data values).

GEOMY

Set this keyword to a vector or two-dimensional array specifying the Y coordinates of
the geometry with which the contour values correspond. If Y is a vector, it must
match the number of elements in the Values argument, or it must match the first of
the two dimensions of the Values argument (in which case the Y coordinates will be
repeated for each column of data values).
ISOCONTOUR IDL Reference Guide

649
GEOMZ

Set this keyword to a vector or two-dimensional array specifying the Z coordinates of
the geometry with which the contour values correspond.

If GEOMZ is a vector or an array, it must match the number of elements in the Values
argument.

If GEOMZ is not set, the geometry will be derived from the Values argument (if it is
set to a two-dimensional array). In this case connectivity is implied. The X and Y
coordinates match the row and column indices of the array, and the Z coordinates
match the data values.

LEVEL_VALUES

Set this keyword to a named output variable to receive a vector of values
corresponding to the values used to generate the contours. The length of this vector is
equal to the number of contour levels generated. This vector is returned in double
precision floating point.

N_LEVELS

Set this keyword to the number of contour levels to generate. This keyword is ignored
if the C_VALUE keyword is set to a vector, in which case the number of levels is
derived from the number of elements in that vector. Set this keyword to 0 to indicate
that IDL should compute a default number of levels based on the range of data
values. This is the default.

OUTCONN_INDICES

Set this keyword to a named output variable to receive an array of beginning and
ending indices of connectivity for each contour level.

The output array is of the form: [start0, end0, start1, end1, ..., startnc–1, endnc–1], where
nc is the number of contour levels. If a level has no contour lines, the start and stop
pair is set to 0 and 0 for that level.

POLYGONS

Set this keyword to an array of polygonal descriptions that represents the
connectivity information for the data to be contoured (as specified in the Values
argument). A polygonal description is an integer or long array of the form: [n, i0, i1,
..., in–1], where n is the number of vertices that define the polygon, and i0...in–1 are
indices into the GEOMX, GEOMY, and GEOMZ keywords that represent the
polygonal vertices. To ignore an entry in the POLYGONS array, set the vertex count,
n to 0. To end the drawing list, even if additional array space is available, set n to –1.
IDL Reference Guide ISOCONTOUR

650
ISOSURFACE

The ISOSURFACE procedure algorithm expands on the SHADE_VOLUME
algorithm. It returns topologically consistent triangles by using oriented tetrahedral
decomposition internally. This also allows the algorithm to isosurface any arbitrary
tetrahedral mesh. If the user provides an optional auxiliary array, the data in this array
is interpolated onto the output vertices and is returned as well. This auxiliary data
array is allowed to have more than one value at each vertex. Any size leading
dimension is allowed as long as the number of values in the subsequent dimensions
matches the number of elements in the input Data array.

Syntax

ISOSURFACE, Data, Value, Outverts, Outconn
[, GEOM_XYZ=array, TETRAHEDRA=array]
[, AUXDATA_IN=array, AUXDATA_OUT=variable]

Arguments

Data

Input three-dimensional array of scalars which are to be contoured.

Value

Input scalar contour value. This value specifies the constant-density surface (also
called an iso-surface) to be extracted.

Outverts

A named variable to contain an output [3, n] array of floating point vertices making
up the triangle surfaces.

Outconn

A named variable to contain an output array of polygonal connectivity values (see
IDLgrPolygon, POLYGONS keyword). If no polygons were extracted, this argument
returns the array [–1].
ISOSURFACE IDL Reference Guide

651
Keywords

AUXDATA_IN

Input array of auxiliary data with trailing dimensions being the number of values in
Data.

Note
If AUXDATA_IN is specified then AUXDATA_OUT must also be specified.

AUXDATA_OUT

Set this keyword to a named variable that will contain an output array of auxiliary
data sampled at the locations in Outverts.

Note
If AUXDATA_OUT is specified then AUXDATA_IN must also be specified.

GEOM_XYZ

A [3,n] input array of vertex coordinates (one for each value in the Data array). This
array is used to define the spatial location of each scalar. If this keyword is omitted,
Data must be a three-dimensional array and the scalar locations are assumed to be on
a uniform grid.

Note
If GEOM_XYZ is specified then TETRAHEDRA must also be specified if either is
to be specified.

TETRAHEDRA

An input array of tetrahedral connectivity values. If this array is not specified, the
connectivity is assumed to be a rectilinear grid over the input three-dimensional
array. If this keyword is specified, the input data array need not be a three-
dimensional array. Each tetrahedron is represented by four values in the connectivity
array. Every four values in the array correspond to the vertices of a single
tetrahedron.

See Also

SHADE_VOLUME, XVOLUME
IDL Reference Guide ISOSURFACE

652
JOURNAL

The JOURNAL procedure provides a record of an interactive session by saving, in a
file, all text entered from the terminal in response to the IDL prompt. The first call to
JOURNAL starts the logging process. The read-only system variable !JOURNAL is
set to the file unit used. To stop saving commands and close the file, call JOURNAL
with no parameters. If logging is in effect and JOURNAL is called with a parameter,
the parameter is simply written to the journal file.

Syntax

JOURNAL [, Arg]

Arguments

Arg

A string containing the name of the journal file to be opened or text to be written to
an open journal file. If Arg is not supplied, and a journal file is not already open, the
file idlsave.pro is used. Once journaling is enabled, a call to JOURNAL with Arg
supplied causes Arg to be written into the journal file. Calling JOURNAL without
Arg while journaling is in progress closes the journal file and ends the logging
process.

Example

To begin journaling to the file myjournal.pro, enter:

JOURNAL, 'myjournal.pro'

Any commands entered at the IDL prompt are recorded in the file until IDL is exited
or the JOURNAL command is entered without an argument.

See Also

RESTORE, SAVE
JOURNAL IDL Reference Guide

653
JULDAY

The JULDAY function calculates the Julian Day Number (which begins at noon) for
the specified date. This is the inverse of the CALDAT procedure.

Note
The Julian calendar, established by Julius Caesar in the year 45 BCE, was corrected
by Pope Gregory XIII in 1582, excising ten days from the calendar. The CALDAT
procedure reflects the adjustment for dates after October 4, 1582. See the example
below for an illustration.

Note
A small offset is added to the returned Julian date to eliminate roundoff errors when
calculating the day fraction from hours, minutes, seconds. This offset is given by
the larger of EPS and EPS*Julian, where Julian is the integer portion of the Julian
date, and EPS is the EPS field from MACHAR. For typical Julian dates, this offset
is approximately 6x10–10 (which corresponds to 5x10–5 seconds). This offset
ensures that if the Julian date is converted back to hour, minute, and second, then
the hour, minute, and second will have the same integer values as were originally
input.

Note
Calendar dates must be in the range 1 Jan 4716 B.C.E. to 31 Dec 5000000, which
corresponds to Julian values -1095 and 1827933925, respectively.

This routine is written in the IDL language. Its source code can be found in the file
julday.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = JULDAY(Month, Day, Year, Hour, Minute, Second)

Return Value

Result is of type double-precision if Hour, Minute, or Second is specified, otherwise
Result is of type long integer. If all arguments are scalar, the function returns a scalar.
If all arguments are arrays, the function matches up the corresponding elements of the
arrays, returning an array with the same dimensions as the smallest array. If the
IDL Reference Guide JULDAY

654
inputs contain both scalars and arrays, the function uses the scalar value with each
element of the arrays, and returns an array with the same dimensions as the smallest
input array.

Arguments

Month

Number of the desired month (1 = January, ..., 12 = December). Month can be either
a scalar or an array.

Day

Number of the day of the month (1-31). Day can be either a scalar or an array.

Year

Number of the desired year (e.g., 1994). Year can be either a scalar or an array.

Hour

Number of the hour of the day (0-23). Hour can be either a scalar or an array.

Minute

Number of the minute of the hour (0-59). Minute can be either a scalar or an array.

Second

Number of the second of the minute (0-59). Second can be either a scalar or an array.

Example

In 1582, Pope Gregory XIII adjusted the Julian calendar to correct for its inaccuracy
of slightly more than 11 minutes per year. As a result, the day following October 4,
1582 was October 15, 1582. JULDAY follows this convention, as illustrated by the
following commands:

PRINT, JULDAY(10,4,1582), JULDAY(10,5,1582), JULDAY(10,15,1582)

IDL prints:

2299160 2299161 2299161

Using arrays, this can also be calculated as follows:

PRINT, JULDAY(10, [4, 5, 15], 1582)

If you are using JULDAY to calculate an absolute number of days elapsed, be sure to
account for the Gregorian adjustment.
JULDAY IDL Reference Guide

655
See Also

BIN_DATE, CALDAT, SYSTIME
IDL Reference Guide JULDAY

656
KEYWORD_SET

The KEYWORD_SET function returns a nonzero value if Expression is defined and
nonzero or an array, otherwise zero is returned. This function is especially useful in
user-written procedures and functions that process keywords that are interpreted as
being either true (keyword is present and nonzero) or false (keyword was not used, or
was set to zero).

Syntax

Result = KEYWORD_SET(Expression)

Arguments

Expression

The expression to be tested. Expression is usually a named variable.

Example

Suppose that you are writing an IDL procedure that has the following procedure
definition line:

PRO myproc, KEYW1 = keyw1, KEYW2 = keyw2

The following command could be used to execute a set of commands only if the
keyword KEYW1 is set (i.e., it is present and nonzero):

IF KEYWORD_SET(keyw1) THEN BEGIN

The commands to be executed only if KEYW1 is set would follow.

See Also

N_ELEMENTS, N_PARAMS
KEYWORD_SET IDL Reference Guide

657
KRIG2D

The KRIG2D function interpolates a regularly- or irregularly-gridded set of points
z = f (x, y) using kriging. It returns a two dimensional floating-point array containing
the interpolated surface, sampled at the grid points.

The parameters of the data model – the range, nugget, and sill – are highly dependent
upon the degree and type of spatial variation of your data, and should be determined
statistically. Experimentation, or preferably rigorous analysis, is required.

For n data points, a system of n+1 simultaneous equations are solved for the
coefficients of the surface. For any interpolation point, the interpolated value is:

The following formulas are used to model the variogram functions:

d(i,j) = the distance from point i to point j.

V = the variance of the samples.

C(i,j) = the covariance of sample i with sample j.

C(x0,y0,x1,y1) = the covariance of point (x0,y0) with point (x1,y1).

Exponential covariance:

Spherical covariance:

Note
The accuracy of this function is limited by the single-precision floating-point
accuracy of the machine.

This routine is written in the IDL language. Its source code can be found in the file
krig2d.pro in the lib subdirectory of the IDL distribution.

f x y,() wi C xi yi x y, , ,()⋅∑=

C d() C1 e 3 d A⁄⋅–() if d 0≠⋅

C1 C0 if d = 0+
=

C d()
1.0 1.5 d A⁄⋅()– 0.5 d A⁄()3⋅() if d < a+

C1 C0 if d = 0+

0 if d > a

=

IDL Reference Guide KRIG2D

658
Syntax

Result = KRIG2D(Z [, X, Y] [, EXPONENTIAL=vector] [, SPHERICAL=vector]
[, /REGULAR] [, XGRID=[xstart, xspacing]] [, XVALUES=array]
[, YGRID=[ystart, yspacing]] [, YVALUES=array] [, GS=[xspacing, yspacing]]
[, BOUNDS=[xmin, ymin, xmax, ymax]] [, NX=value] [, NY=value])

Arguments

Z, X, Y

Arrays containing the Z, X, and Y coordinates of the data points on the surface. Points
need not be regularly gridded. For regularly gridded input data, X and Y are not used:
the grid spacing is specified via the XGRID and YGRID (or XVALUES and
YVALUES) keywords, and Z must be a two dimensional array. For irregular grids,
all three parameters must be present and have the same number of elements.

Keywords

Model Parameters:

EXPONENTIAL

Set this keyword to a two- or three-element vector of model parameters [A,C0, C1] to
use an exponential semivariogram model. The model parameters are as follows:

• A — The range. At distances beyond A, the semivariogram or covariance
remains essentially constant.

• C0 — The nugget, which provides a discontinuity at the origin.

• C1 — If specified, C1 is the covariance value for a zero distance, and the
variance of the random sample z variable. If only a two element vector is
supplied, C1 is set to the sample variance. (C0 + C1) = the sill, which is the
variogram value for very large distances.

SPHERICAL

Set this keyword to a two- or three-element vector of model parameters [A,C0, C1] to
use a spherical semivariogram model. The model parameters are as follows:

• A — The range. At distances beyond A, the semivariogram or covariance
remains essentially constant.

• C0 — The nugget, which provides a discontinuity at the origin.
KRIG2D IDL Reference Guide

659
• C1 — If specified, C1 is the covariance value for a zero distance, and the
variance of the random sample z variable. If only a two element vector is
supplied, C1 is set to the sample variance. (C0 + C1) = the sill, which is the
variogram value for very large distances.

Input Grid Description:

REGULAR

If set, the Z parameter is a two dimensional array of dimensions (n,m), containing
measurements over a regular grid. If any of XGRID, YGRID, XVALUES, or
YVALUES are specified, REGULAR is implied. REGULAR is also implied if there
is only one parameter, Z. If REGULAR is set, and no grid specifications are present,
the grid is set to (0, 1, 2, ...).

XGRID

A two-element array, [xstart, xspacing], defining the input grid in the x direction. Do
not specify both XGRID and XVALUES.

XVALUES

An n-element array defining the x locations of Z[i,j]. Do not specify both XGRID and
XVALUES.

YGRID

A two-element array, [ystart, yspacing], defining the input grid in the y direction. Do
not specify both YGRID and YVALUES.

YVALUES

An n-element array defining the y locations of Z[i,j]. Do not specify both YGRID and
YVALUES.

Output Grid Description:

GS

The output grid spacing. If present, GS must be a two-element vector [xs, ys], where
xs is the horizontal spacing between grid points and ys is the vertical spacing. The
default is based on the extents of x and y. If the grid starts at x value xmin and ends at
xmax, then the default horizontal spacing is (xmax - xmin)/(NX-1). ys is computed in
the same way. The default grid size, if neither NX or NY are specified, is 26 by 26.
IDL Reference Guide KRIG2D

660
BOUNDS

If present, BOUNDS must be a four-element array containing the grid limits in x and
y of the output grid: [xmin, ymin, xmax, ymax]. If not specified, the grid limits are set
to the extent of x and y.

NX

The output grid size in the x direction. NX need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

NY

The output grid size in the y direction. NY need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

Examples

; Make a random set of points that lie on a Gaussian:
N = 15
X = RANDOMU(seed, N)
Y = RANDOMU(seed, N)

; The Gaussian:
Z = EXP(-2 * ((X-.5)^2 + (Y-.5)^2))

; Get a 26 by 26 grid over the rectangle bounding x and y:
; Range is 0.25 and nugget is 0. These numbers are dependent on
; your data model:
E = [0.25, 0.0]

; Get the surface:
R = KRIG2D(Z, X, Y, EXPON = E)

Alternatively, get a surface over the unit square, with spacing of 0.05:

R = KRIG2D(Z, X, Y, EXPON=E, GS=[0.05, 0.05], BOUNDS=[0,0,1,1])

See Also

BILINEAR, INTERPOLATE
KRIG2D IDL Reference Guide

661
KURTOSIS

The KURTOSIS function computes the statistical kurtosis of an n-element vector. If
the variance of the vector is zero, the kurtosis is not defined, and KURTOSIS returns
!VALUES.F_NAN as the result. KURTOSIS calls the IDL function MOMENT.

Syntax

Result = KURTOSIS(X [, /DOUBLE] [, /NAN])

Arguments

X

An n-element, floating-point or double-precision vector.

Keywords

DOUBLE

If this keyword is set, computations are performed in double precision arithmetic.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See “Special Floating-Point Values” in Chapter 17 of Building IDL
Applications for more information on IEEE floating-point values.)

Example

; Define the n-element vector of sample data:
x = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71, 66, 65, 70]
; Compute the kurtosis:
result = KURTOSIS(x)
; Print the result:
PRINT, result

IDL prints

-1.18258

See Also

MEAN, MEANABSDEV, MOMENT, STDDEV, SKEWNESS, VARIANCE
IDL Reference Guide KURTOSIS

662
KW_TEST

The KW_TEST function tests the hypothesis that three or more sample populations
have the same mean of distribution against the hypothesis that they differ. The
populations may be of equal or unequal lengths. The result is a two-element vector
containing the test statistic H and the one-tailed probability of obtaining a value of H
or greater from a Chi-square distribution.

This test is an extension of the Rank Sum Test implemented in the RS_TEST
function. When each sample population contains at least five observations, the H test
statistic is approximated very well by a Chi-square distribution with DF degrees of
freedom. The hypothesis that three of more sample populations have the same mean
of distribution is rejected if two or more populations differ with statistical
significance. This type of test is often referred to as the Kruskal-Wallis H-Test.

The test statistic H is defined as follows:

where Ni is the number of observations in the ith sample population, NT is the total
number of observations in all sample populations, and Ri is the overall rank sum of
the ith sample population.

This routine is written in the IDL language. Its source code can be found in the file
kw_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = KW_TEST(X [, DF=variable] [, MISSING=nonzero_value])

Arguments

X

An integer, single-, or double-precision floating-point array of m-columns (with m ≥
3) and n-rows. The columns of this two-dimensional array correspond to the sample
populations.

If the sample populations are of unequal length, any columns of X that are shorter
than the longest column must be “filled in” by appending a user-specified missing

H
12

NT NT 1+()

Ri
2

Ni

i 0=

M 1–

∑= 3 NT 1+()–
KW_TEST IDL Reference Guide

663
data value. This method requires the use of the MISSING keyword. See the Example
section below for an example of this case.

Keywords

DF

Use this keyword to specify a named variable that will contain the number of degrees
of freedom used to compute the probability of obtaining a value of H or greater from
the corresponding Chi-square distribution

MISSING

Set this keyword equal to a non-zero numeric value that has been appended to some
columns of X to make them all a common length of n.

Example

Test the hypothesis that three sample populations have the same mean of distribution
against the hypothesis that they differ at the 0.05 significance level. Assume we have
the following sample populations:

sp0 = [24.0, 16.7, 22.8, 19.8, 18.9]

sp1 = [23.2, 19.8, 18.1, 17.6, 20.2, 17.8]

sp2 = [18.2, 19.1, 17.3, 17.3, 19.7, 18.9, 18.8, 19.3]

Since the sample populations are of unequal lengths, a missing value must be
appended to sp0 and sp1. In this example the missing value is -1.0 and the 3-column,
8-row input array X is defined as:

X = [[24.0, 23.2, 18.2], $
[16.7, 19.8, 19.1], $
[22.8, 18.1, 17.3], $
[19.8, 17.6, 17.3], $
[18.9, 20.2, 19.7], $
[-1.0, 17.8, 18.9], $
[-1.0, -1.0, 18.8], $
[-1.0, -1.0, 19.3]]

PRINT, KW_TEST(X, MISSING = -1)

IDL prints:

[1.65862, 0.436351]
IDL Reference Guide KW_TEST

664
The computed probability (0.436351) is greater than the 0.05 significance level and
therefore we do not reject the hypothesis that the three sample populations sp0, sp1,
and sp2 have the same mean of distribution.

See Also

FV_TEST, RS_TEST, S_TEST, TM_TEST
KW_TEST IDL Reference Guide

665
L64INDGEN

The L64INDGEN function returns a 64-bit integer array with the specified
dimensions. Each element of the array is set to the value of its one-dimensional
subscript.

Syntax

Result = L64INDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. These parameters can be any scalar expression, and up
to eight dimensions can be specified. If the dimension arguments are not integer
values, IDL converts them to integer values before creating the new array.

Example

To create L, a 10-element by 10-element 64-bit array where each element is set to the
value of its one-dimensional subscript, enter:

L = L64INDGEN(10, 10)

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, INDGEN,
LINDGEN, SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide L64INDGEN

666
LABEL_DATE

The LABEL_DATE function can be used, in conjunction with the
[XYZ]TICKFORMAT keyword to IDL plotting routines, to easily label axes with
dates and times.

This routine is written in the IDL language. Its source code can be found in the file
label_date.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LABEL_DATE([DATE_FORMAT=string/string array]
[, AM_PM=2-element vector of strings]
[, DAYS_OF_WEEK=7-element vector of strings]
[, MONTHS=12-element vector of strings] [, OFFSET=value] [, /ROUND_UP])

and then,

PLOT, x, y, XTICKFORMAT = 'LABEL_DATE'

Arguments

If LABEL_DATE is being called to initialize string formats, it should be called with
no arguments and the DATE_FORMAT keyword should be set.

Keywords

Note
The settings for LABEL_DATE remain in effect for all subsequent calls to
LABEL_DATE. To restore any default settings, call LABEL_DATE again with the
appropriate keyword set to either a null string ('') or to 0, depending uopn the data
type of that keyword.

AM_PM

Set this keyword to a two-element string array that contains the names to be used
with '%A'. The default is ['am','pm'].

DATE_FORMAT

Set this keyword to a format string or array of format strings. Each string corresponds
to an axis level as provided by the [XYZ]TICKUNITS keyword to the plotting
LABEL_DATE IDL Reference Guide

667
routine. If there are fewer strings than axis levels, then the strings are cyclically
repeated. A string can contain any of the following codes:

Other items you can include can consist of:

• Any other text characters in the format string.

• Any vector font positioning and font change commands. For more
information, see “Embedded Formatting Commands” in Appendix H.

If DATE_FORMAT is not specified then the default is the standard 24-character
system format, '%W %M %D %H:%I:%S %Y'.

Code Description

%M Month name.

%N Month number (2 digits).

%D Day of month (2 digits).

%Y Year (4 digits, or 5 digits for negative years).

%Z Last 2 digits of the year.

%W Day of the week.

%A AM or PM (%H is then 12-hour instead of 24-hour).

%H Hours (2 digits).

%I Minutes (2 digits).

%S Seconds (2 digits), followed optionally by %n where
n is an integer 0-9 representing the number of digits
after the decimal point for seconds; the default is no
decimal places.

%% Represents the % character.

Table 10: DATE_FORMAT Codes
IDL Reference Guide LABEL_DATE

668
The following table contains some examples of DATE_FORMAT strings and the
resulting output:

DAYS_OF_WEEK

Set this keyword to a seven-element string array that contains the names to be used
with '%W'. The default is the three-letter English abbreviations, ['Sun, 'Mon', 'Tue',
'Wed', 'Thu', 'Fri', 'Sat'].

MONTHS

Set this keyword to a twelve-element string array that contains the names to be used
with '%M'. The default is the three-letter English abbreviations, ['Jan', 'Feb',…,
'Dec'].

OFFSET

Set this keyword to a value representing the offset to be added to each tick value
before conversion to a label. This keyword is usually used when your axis values are
measured relative to a certain starting time. In this case, OFFSET should be set to the
Julian date of the starting time.

ROUND_UP

Set this keyword to force times to be rounded up to the smallest time unit that is
present in the DATE_FORMAT string. The default is for times to be truncated to the
smallest time unit.

DATE_FORMAT String Example Result

'%D/%N/%Y' 11/12/1993

'%M!C%Y'

Note - !C is the code for a
newline character.

Dec

1993

'%H:%I:%S' 21:33:58

'%H:%I:%S%3' 21:33:58.125

'%W, %M %D, %H %A' Sat, Jan 01, 9 pm

'%S seconds' 60 seconds

Table 11: DATE_FORMAT Examples
LABEL_DATE IDL Reference Guide

669
Example

This example creates a sample plot that has a date axis from Jan 1 to June 30, 2000:

; Create format strings for a two-level axis:
dummy = LABEL_DATE(DATE_FORMAT=['%D-%M','%Y'])

;Generate the Date/Time data
time = TIMEGEN(START=JULDAY(1,1,2000), FINAL=JULDAY(6,30,2000))

;Generate the Y-axis data
data = RANDOMN(seed, N_ELEMENTS(time))

;Plot the data
PLOT, time, data, XTICKUNITS = ['Time', 'Time'], $
 XTICKFORMAT='LABEL_DATE', XSTYLE=1, XTICKS=6, YMARGIN=[6,2]

For more examples, see “[XYZ]TICKFORMAT” on page 2413.

See Also

“[XYZ]TICKFORMAT” on page 2413, CALDAT, JULDAY, SYSTIME,
TIMEGEN, “Format Codes” in Chapter 8 of Building IDL Applications
IDL Reference Guide LABEL_DATE

670
LABEL_REGION

The LABEL_REGION function consecutively labels all of the regions, or blobs, of a
bi-level image with a unique region index. This process is sometimes called “blob
coloring”. A region is a set of non-zero pixels within a neighborhood around the pixel
under examination.

The argument for LABEL_REGION is an n-dimensional bi-level integer type
array—only zero and non-zero values are considered. The result of the function is an
integer array of the same dimensions with each pixel containing its region index. A
region index of zero indicates that the original pixel was zero and belongs to no
region. Output values range from 0 to the number of regions.

Statistics on each of the regions may be easily calculated using the HISTOGRAM
function as shown in the examples below.

Syntax

Result = LABEL_REGION(Data [, /ALL_NEIGHBORS] [, /ULONG])

Arguments

Data

A n-dimensional image to be labeled. Data is converted to integer type if necessary.
Pixels at the edges of Data are considered to be zero.

Keywords

ALL_NEIGHBORS

Set this keyword to indicate that all adjacent neighbors to a given pixel should be
searched. (This is sometimes called 8-neighbor searching when the image is 2-
dimensional). The default is to search only the neighbors that are exactly one unit in
distance from the current pixel (sometimes called 4-neighbor searching when the
image is 2-dimensional).

EIGHT

This keyword is now obsolete. It has been replaced by the ALL_NEIGHBORS
keyword (because this routine now handles N-dimensional data).
LABEL_REGION IDL Reference Guide

671
ULONG

Set this keyword to specify that the output array should be an unsigned long integer.

Examples

Example 1

This example counts the number of distinct regions within an image, and their
population. Note that region 0 is the set of zero pixels that are not within a region:

image = DIST(40)

; Get blob indices:
b = LABEL_REGION(image)

; Get population of each blob:
h = HISTOGRAM(b)
FOR i=0, N_ELEMENTS(h)-1 DO PRINT, 'Region ',i, $

', Population = ', h(i)

Example 2

This example also prints the average value and standard deviation of each region:

image = DIST(40)

; Get blob indices:
b = LABEL_REGION(image)

; Get population and members of each blob:
h = HISTOGRAM(b, REVERSE_INDICES=r)

; Each region
FOR i=0, N_ELEMENTS(h)-1 DO BEGIN

;Find subscripts of members of region i.
p = r(r[i]:r[i+1]-1)

; Pixels of region i
q = image[p]
PRINT, 'Region ', i, $

', Population = ', h[i], $
', Standard Deviation = ', STDEV(q, mean), $
', Mean = ', mean

ENDFOR

See Also

ANNOTATE, DEFROI, HISTOGRAM, SEARCH2D
IDL Reference Guide LABEL_REGION

672
LADFIT

The LADFIT function fits the paired data {xi, yi} to the linear model, y = A + Bx,
using a “robust” least absolute deviation method. The result is a two-element vector
containing the model parameters, A and B.

The figure below displays a two-dimensional distribution that is fitted to the model
y = A + Bx, using a minimized Chi-square error criterion (left) and a “robust” least
absolute deviation technique (right). The use of the Chi-square error statistic can
result in a poor fit due to an undesired sensitivity to outlying data.

This routine is written in the IDL language. Its source code can be found in the file
ladfit.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LADFIT(X, Y [, ABSDEV=variable] [, /DOUBLE])
LADFIT IDL Reference Guide

673
Arguments

X

An n-element integer, single-, or double-precision floating-point vector. Note that the
X vector must be sorted into ascending order.

Y

An n-element integer, single-, or double-precision floating-point vector. Note that the
elements of the Y vector must be paired with the appropriate elements of X.

Keywords

ABSDEV

Set this keyword to a named variable that will contain the mean absolute deviation
for each data-point in the y-direction.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

; Define two n-element vectors of paired data:
X = [-3.20, 4.49, -1.66, 0.64, -2.43, -0.89, -0.12, 1.41, $

2.95, 2.18, 3.72, 5.26]
Y = [-7.14, -1.30, -4.26, -1.90, -6.19, -3.98, -2.87, -1.66, $

-0.78, -2.61, 0.31, 1.74]

; Sort the X values into ascending order, and sort the Y values to
; match the new order of the elements in X:
XX = X(SORT(X))
YY = Y(SORT(X))

; Compute the model parameters, A and B:
PRINT, LADFIT(XX, YY)

IDL prints:

-3.15301 0.930440

See Also

COMFIT, CURVEFIT, LINFIT, SORT
IDL Reference Guide LADFIT

674
LAGUERRE

The LAGUERRE function returns the value of the associated Laguerre polynomial
. The associated Laguerre polynomials are solutions to the differential

equation:

with orthogonality constraint:

Laguerre polynomials are used in quantum mechanics, for example, where the wave
function for the hydrogen atom is given by the Laguerre differential equation.

This routine is written in the IDL language. Its source code can be found in the file
laguerre.pro in the lib subdirectory of the IDL distribution.

This routine is written in the IDL language. Its source code can be found in the file
laguerre.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LAGUERRE(X, N [, K] [, COEFFICIENTS=variable] [, /DOUBLE])

Return Value

This function returns a scalar or array with the same dimensions as X. If X is double-
precision or if the DOUBLE keyword is set, the result is double-precision complex,
otherwise the result is single-precision complex.

Arguments

X

The value(s) at which is evaluated. X can be either a scalar or an array.

N

A scalar integer, N ≥ 0, specifying the order n of . If N is of type float, it will
be truncated.

Lk
n x()

xy″ k 1 x–+()y ′ ny+ + 0=

e x– xk 1+ L k
m x()Lk

n x() xd
0

∞
∫ n k+()!

n!
-------------------δmn=

Lk
n x()

Lk
n x()
LAGUERRE IDL Reference Guide

675
K

A scalar, K ≥ 0, specifying the order k of . If K is not specified, the default
K = 0 is used and the Laguerre polynomial, Ln(x), is returned.

Keywords

COEFFICIENTS

Set this keyword to a named variable that will contain the polynomial coefficients in
the expansion C[0] + C[1]x + C[2]x2 +

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

To compute the value of the Laguerre polynomial at the following X values:

;Define the parametric X values:
X = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]

;Compute the Laguerre polynomial of order N=2, K=1:
result = LAGUERRE(X, 2, 1)

;Print the result:
PRINT, result

IDL prints:

3.00000 2.42000 1.88000 1.38000 0.920000 0.500000

This is the exact solution vector to six-decimal accuracy.

See Also

LEGENDRE, SPHER_HARM

Lk
n x()
IDL Reference Guide LAGUERRE

676
LEEFILT

The LEEFILT function performs the Lee filter algorithm on an image array using a
box of size 2N+1. This function can also be used on vectors. The Lee technique
smooths additive image noise by generating statistics in a local neighborhood and
comparing them to the expected values.

This routine is written in the IDL language. It is based upon the algorithm published
by Lee (Optical Engineering 25(5), 636-646, May 1986). Its source code can be
found in the file leefilt.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LEEFILT(A [, N [, Sig]] [, /DOUBLE] [, /EXACT])

Return Value

This function returns an array with the same dimensions as A. If any of the inputs are
double-precision or if the DOUBLE keyword is set, the result is double-precision,
otherwise the result is single-precision.

Arguments

A

The input image array or one-dimensional vector.

N

The size of the filter box is 2N+1. The default value is 5.

Sig

Estimate of the standard deviation. The default is 5. If Sig is negative, IDL
interactively prompts for a value of sigma, and displays the resulting image using
TVSCL (for arrays) or PLOT (for vectors). To end this cycle, enter a value of 0 (zero)
for sigma.

Keywords

DOUBLE

Set this keyword to force the computations to be done in double-precision arithmetic.
LEEFILT IDL Reference Guide

677
EXACT

Set this keyword to apply a more accurate (but slower) implementation of the Lee
filter.

See Also

DIGITAL_FILTER, MEDIAN, SMOOTH, VOIGT
IDL Reference Guide LEEFILT

678
LEGENDRE

The LEGENDRE function returns the value of the associated Legendre polynomial
. The associated Legendre functions are solutions to the differential equation:

with orthogonality constraints:

The Legendre polynomials are the solutions to the Legendre equation with m = 0. For
positive m, the associated Legendre functions can be written in terms of the Legendre
polynomials as:

Associated polynomials for negative m are related to positive m by:

LEGENDRE is based on the routine plgndr described in section 6.8 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = LEGENDRE(X, L [, M] [, /DOUBLE])

Return Value

If all arguments are scalar, the function returns a scalar. If all arguments are arrays,
the function matches up the corresponding elements of X, L, and M, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other arguments are arrays, the function uses the scalar value with each element

P
m

l
x()

1 x
2

–()y″ 2xy ′– l l 1+() m
2

1 x
2

–()
-------------------– y 0=+

Pm

l
x()Pn

k
x() xd

1–

+1

∫ 2
2l 1+
-------------- l m+()!

l m–()!
-------------------δlkδmn=

Pm

l
x() 1–()m

1 x
2

–()
m 2⁄ d

m

dx
m

--------- Pl x()=

P m–

l
x() 1–()m l m–()!

l m+()!
-------------------Pm

l
x()=
LEGENDRE IDL Reference Guide

679
of the arrays, and returns an array with the same dimensions as the smallest input
array.

If any of the arguments are double-precision or if the DOUBLE keyword is set, the
result is double-precision, otherwise the result is single-precision.

Arguments

X

The expression for which is evaluated. Values for X must be in the range –
1 ≤ X ≤ 1.

L

An integer scalar or array, L ≥ 0, specifying the order l of . If L is of type float,
it will be truncated.

M

An integer scalar or array, –L ≤ M ≤ L, specifying the order m of . If M is not
specified, then the default M = 0 is used and the Legendre polynomial, Pl(x), is
returned. If M is of type float, it will be truncated.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

Example 1

Compute the value of the Legendre polynomial at the following X values:

; Define the parametric X values:
X = [-0.75, -0.5, -0.25, 0.25, 0.5, 0.75]

; Compute the Legendre polynomial of order L=2:
result = LEGENDRE(X, 2)

; Print the result:
PRINT, result

The result of this is:

 0.343750 -0.125000 -0.406250 -0.406250 -0.125000 0.343750

P
m
l x()

P
m
l x()

P
m
l x()
IDL Reference Guide LEGENDRE

680
Example 2

Compute the value of the associated Legendre polynomial at the same X values:

; Compute the associated Legendre polynomial of order L=2, M=1:
result = LEGENDRE(X, 2, 1)
; Print the result:
PRINT, result

IDL prints:

 1.48824 1.29904 0.726184 -0.726184 -1.29904 -1.48824

This is the exact solution vector to six-decimal accuracy.

See Also

SPHER_HARM, LAGUERRE
LEGENDRE IDL Reference Guide

681
LINBCG

The LINBCG function is used in conjunction with SPRSIN to solve a set of n sparse
linear equations with n unknowns using the iterative biconjugate gradient method.
The result is an n-element vector.

LINBCG is based on the routine linbcg described in section 2.7 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Note
Numerical Recipes recommends using double-precision arithmetic to perform this
computation.

Syntax

Result = LINBCG(A, B, X [, /DOUBLE] [, ITOL={4 | 5 | 6 | 7}] [, TOL=value]
[, ITER=variable] [, ITMAX=value])

Arguments

A

A row-indexed sparse array created by the SPRSIN function.

B

An n-element vector containing the right-hand side of the linear system Ax=b.

X

An n-element vector containing the initial solution of the linear system.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

ITOL

Use this keyword to specify which convergence test should be used. Set ITOL to one
of the following:
IDL Reference Guide LINBCG

682
1. Iteration stops when A ⋅ x - b / b is less than the value specified by TOL.

2. Iteration stops when Ã-1 ⋅ (A ⋅ x - b) / Ã-1 ⋅ b (where Ã is a
“preconditioning” matrix close to A) is less than the value specified by TOL.

3. The routine uses its own estimate of error in x. Iteration stops when the
magnitude of the error divided by the magnitude of x is less than the value
specified by TOL. This is the default setting.

4. The same as 3, except that the routine uses the largest (in absolute value)
component of the error and the largest component of x rather than the vector
magnitudes.

TOL

Use this keyword to specify the desired convergence tolerance. For single-precision
calculations, the default value is 1.0 × 10-7. For double-precision values, the default
is 1.0 × 10-14.

ITER

Use this keyword to specify an output variable that will be set to the number of
iterations performed.

ITMAX

The maximum allowed number of iterations. The default is n2.

Example

; Begin with an array A:
A = [[5.0, 0.0, 0.0, 1.0, -2.0], $

[3.0, -2.0, 0.0, 1.0, 0.0], $
[4.0, -1.0, 0.0, 2.0, 0.0], $
[0.0, 3.0, 3.0, 1.0, 0.0], $
[-2.0, 0.0, 0.0, -1.0, 2.0]]

; Define a right-hand side vector B:
B = [7.0, 1.0, 3.0, 3.0, -4.0]

; Start with an initial guess at the solution:
X = REPLICATE(1.0, N_ELEMENTS(B))

; Solve the linear system Ax=b:
result = LINBCG(SPRSIN(A), B, X)

; Print the result:
PRINT, result
LINBCG IDL Reference Guide

683
IDL prints:

1.00000 1.00000 8.94134e-008 -2.37107e-007 -1.00000

The exact solution is [1, 1, 0, 0, -1].

See Also

FULSTR, READ_SPR, SPRSAB, SPRSAX, SPRSIN, SPRSTP, WRITE_SPR
IDL Reference Guide LINBCG

684
LINDGEN

The LINDGEN function returns a longword integer array with the specified
dimensions. Each element of the array is set to the value of its one-dimensional
subscript.

Syntax

Result = LINDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Example

To create L, a 10-element by 10-element longword array where each element is set to
the value of its one-dimensional subscript, enter:

L = LINDGEN(10, 10)

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, L64INDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
LINDGEN IDL Reference Guide

685
LINFIT

The LINFIT function fits the paired data {xi, yi} to the linear model, y = A + Bx, by
minimizing the chi-square error statistic. The result is a two-element vector
containing the model parameters [A, B].

This routine is written in the IDL language. Its source code can be found in the file
linfit.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LINFIT(X, Y [, CHISQ=variable] [, COVAR=variable] [, /DOUBLE]
[, MEASURE_ERRORS=vector] [, PROB=variable] [, SIGMA=variable]
[, YFIT=variable])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An n-element integer, single-, or double-precision floating-point vector.

Keywords

CHISQ

Set this keyword to a named variable that will contain the value of the chi-square
goodness-of-fit.

COVAR

Set this keyword to a named variable that will contain the Covariance matrix of the
coefficients.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

MEASURE_ERRORS

Set this keyword to a vector containing standard measurement errors for each point
Y[i]. This vector must be the same length as X and Y.
IDL Reference Guide LINFIT

686
Note
For Gaussian errors (e.g., instrumental uncertainties), MEASURE_ERRORS
should be set to the standard deviations of each point in Y. For Poisson or statistical
weighting, MEASURE_ERRORS should be set to SQRT(ABS(Y)).

PROB

Set this keyword to a named variable that will contain the probability that the
computed fit would have a value of CHISQ or greater. If PROB is greater than 0.1,
the model parameters are “believable”. If PROB is less than 0.1, the accuracy of the
model parameters is questionable.

SDEV

The SDEV keyword is obsolete and has been replaced by the MEASURE_ERRORS
keyword. Code that uses the SDEV keyword will continue to work as before, but new
code should use the MEASURE_ERROS keyword. The definition of the
MEASURE_ERRORS keyword is identical to that of the SDEV keyword.

SIGMA

Set this keyword to a named variable that will contain the 1-sigma uncertainty
estimates for the returned parameters

Note
If MEASURE_ERRORS is omitted, then you are assuming that a straight line is the
correct model for your data, and therefore, no independent goodness-of-fit test is
possible. In this case, the values returned in SIGMA are multiplied by
SQRT(CHISQ/(N–M)), where N is the number of points in X, and M is the number
of coefficients. See section 15.2 of Numerical Recipes in C (Second Edition) for
details.

YFIT

Set this keyword equal to a named variable that will contain the vector of calculated Y
values.
LINFIT IDL Reference Guide

687
Example

; Define two n-element vectors of paired data:
X = [-3.20, 4.49, -1.66, 0.64, -2.43, -0.89, -0.12, 1.41, $
 2.95, 2.18, 3.72, 5.26]
Y = [-7.14, -1.30, -4.26, -1.90, -6.19, -3.98, -2.87, -1.66, $
 -0.78, -2.61, 0.31, 1.74]

; Define an n-element vector of Poisson measurement errors:
measure_errors = SQRT(ABS(Y))

; Compute the model parameters, A and B, and print the result:
result = LINFIT(X, Y, MEASURE_ERRORS=measure_errors)
PRINT, result

IDL prints:

-3.16574 0.829856

See Also

COMFIT, CURVEFIT, GAUSSFIT, LADFIT, LMFIT, POLY_FIT, REGRESS,
SFIT, SVDFIT
IDL Reference Guide LINFIT

688
LINKIMAGE

The LINKIMAGE procedure merges routines written in other languages with IDL at
run-time. Each call to LINKIMAGE defines a new system procedure or function by
specifying the routine’s name, the name of the file containing the code, and the entry
point name. The name of your routine is added to IDL’s internal system routine table,
making it available in the same manner as any other IDL built-in routine.
LINKIMAGE can also be used to add graphics device drivers.

Warning
Using LINKIMAGE requires intimate knowledge of the internals of IDL, and is not
for use by the novice user. We recommend use of CALL_EXTERNAL, which has a
simpler interface, instead of LINKIMAGE unless your application specifically
requires it. To use LINKIMAGE, you should be familiar with the material in the
IDL External Development Guide.

LINKIMAGE uses the dynamic linking interface supported by the operating system
to do its work. Programmers should be familiar with the services supported by their
system in order to better understand LINKIMAGE:

• Under VMS, the LIB$FIND_IMAGE_SYMBOL run-time library routine is
used to activate your sharable image and merge it into the IDL address space,
as described in VMS LINKIMAGE and LIB$FIND_IMAGE_SYMBOL,
below.

• Under UNIX, LINKIMAGE uses the dlopen() interface to the dynamic
linker in all cases except for HP-UX (which uses shl_load()) and AIX
(which uses load()).

• Under Windows, LINKIMAGE uses LoadLibrary() to load a 32-bit, Win32
DLL.

• On the PowerPC Macintosh, LINKIMAGE uses the Code Fragment Manager
routines GetDiskFragment() and FindSymbol() to load shared libraries.

Note
Modules must be merged via LINKIMAGE before other procedures and functions
that call them are compiled, or the compilation of those routines will fail. Note that
because routines merged via LINKIMAGE are considered built-in routines by IDL,
LINKIMAGE IDL Reference Guide

689
declaring the routine with the FORWARD_FUNCTION statement will not
eliminate this restriction.

Syntax

LINKIMAGE, Name, Image [, Type [, Entry]] [, /DEVICE] [, /FUNCT]
[, /KEYWORDS] [, MAX_ARGS=value] [, MIN_ARGS=value]

VMS Keywords: [, DEFAULT=string]

Arguments

Name

A string containing the IDL name of the function, procedure or device routine which
is to be merged. When loading a device driver, Name contains the name of the global
(also called “universal” under VMS) DEVICE_DEF structure in the driver. Upon
successful loading of the routine, a new procedure or function with the given name
will exist, or the new device driver will be loaded.

Image

A string that holds the name of the file containing the code to be dynamically linked.

Under VMS, the full interpretation of this argument is discussed in “VMS
LINKIMAGE and LIB$FIND_IMAGE_SYMBOL” on page 691. Under other
operating systems, this argument contains the full path specification of the
dynamically loaded object file. See your system documentation on sharable libraries
or DLLs for details.

Type

An optional scalar integer parameter that contains 0 (zero) for a procedure, 1 (one)
for a function, and 2 for a device driver. The keyword parameters DEVICE and
FUNCT can also be used to indicate the type of routine being merged. The default
value is 0, for procedure.

Entry

An optional string that contains the name of the symbol which is the entry point of
the procedure or function. With some compilers or operating systems, this name may
require the addition of leading or trailing characters. For example, some UNIX C
compilers add a leading underscore to the beginning of a function name, and some
UNIX FORTRAN compilers add a trailing underscore.
IDL Reference Guide LINKIMAGE

690
If Entry is not supplied, LINKIMAGE will provide a default name by converting the
value suppled for Name to lower case and adding any special characters (leading or
trailing underscores) typical of the system.

Warning
Under Microsoft Windows operating systems, only cdecl functions can by used
with LINKIMAGE. Attempting to use routines with other calling conventions will
yield undefined results, including memory corruption or even IDL crashing.

The Windows operating system has two distinct system defined standards that
govern how routines pass arguments: stdcall, which is used by much of the
operating system as well as languages such as Visual Basic, and cdecl, which is
used widely for programming in the C language. These standards differ in how and
when arguments are pushed onto the system stack. The standard used by a given
function is determined when the function is compiled, and can be controlled by the
programmer. LINKIMAGE can only be used with cdecl functions. Unfortunately,
there is no way for IDL to know which convention a given function uses, meaning
that LINKIMAGE will quietly accept an entry point of the wrong type. The
LINKIMAGE user is responsible for ensuring that Entry is a cdecl function.

Keywords

DEFAULT

This keyword is ignored on non-VMS platforms. Under VMS, it is a string
containing the default device, directory, file name, and file type information for the
file that contains the sharable image. See “VMS LINKIMAGE and
LIB$FIND_IMAGE_SYMBOL” on page 691 for additional information.

DEVICE

Set this keyword to indicate that the module being loaded contains a device driver.

FUNCT

Set this keyword to indicate that the module being loaded contains a function.

KEYWORDS

Set this keyword to indicate that the procedure or function being loaded accepts
keyword parameters.
LINKIMAGE IDL Reference Guide

691
MAX_ARGS

Set this keyword equal to the maximum number of non-keyword arguments the
procedure or function accepts. If this keyword is not present, the maximum number
of parameters is not checked when the routine is called.

Note
It is a very good idea to specify a value for MAX_ARGS. Passing the wrong
number of arguments to an external routine may cause unexpected results,
including causing IDL to crash. By forcing IDL to check the number of arguments
before passing them to the linked routine, you will avoid parameter mismatch
problems.

MIN_ARGS

Set this keyword equal to the minimum number of non-keyword arguments accepted
by the procedure or function.

VMS LINKIMAGE and LIB$FIND_IMAGE_SYMBOL

Specifying The Library Name

The VMS implementation of LINKIMAGE uses the system runtime library function
LIB$FIND_IMAGE_SYMBOL to perform the dynamic linking. This function has a
complicated interface in which the name of the library to be linked is given in two
separate arguments. We encourage VMS users wishing to use LINKIMAGE to read
and fully understand the documentation for LIB$FIND_IMAGE_SYMBOL in order
to understand how it is used by IDL. The following discussion assumes that you have
a copy of the LIB$FIND_IMAGE_SYMBOL documentation available to consult as
you read.

LIB$FIND_IMAGE_SYMBOL uses an argument called filename to specify the
name of the sharable library or executable to be loaded. Only the actual file name
itself is allowed, meaning that none of the file specification punctuation characters (:,
[, <, ;, .) are allowed. Filename can also be a logical name, in which case its
translated value is the name of the file to be loaded. The translation of such a logical
name is allowed to contain additional file specification information. VMS uses this
information to find the file to load, using SYS$SHARE as the default location if a
location is not specified via a logical name. Alternatively, the user can also supply the
optional image-name argument, which is used as a “default filespec” to fill in the
parts of the file specification not contained in filename. IDL uses the following rules,
in the order listed, to determine how to call LIB$FIND_IMAGE_SYMBOL:
IDL Reference Guide LINKIMAGE

692
1. If LINKIMAGE is called with both the Image argument and DEFAULT
keyword, Image is passed to LIB$FIND_IMAGE_SYMBOL as filename, and
DEFAULT is passed as image-name. Both are passed directly to the function
without any interpretation.

2. If DEFAULT is not present and Image does not contain a file specification
character (:, [, <, ;, .) then it is passed to LIB$CALL_IMAGE_SYMBOL as
it’s filename argument without any further interpretation.

3. If DEFAULT is not present and Image contains a file specification character,
then IDL examines it and locates the filename part. The filename part is passed
to LIB$FIND_IMAGE_SYMBOL as filename and the entire string from
Image is passed as image-name.

This means that although LIB$CALL_IMAGE_SYMBOL has a complicated
interface, the LINKIMAGE user can supply a simple file specification for Image and
it will be properly loaded by IDL. Full control of LIB$CALL_IMAGE_SYMBOL is
still available for those who require it.

Linking To The IDL Executable

LINKIMAGE routines invariably need to call functions supplied by the IDL
program. In order to do this, you must link your sharable library with IDL. This
requires you to supply the linker with the path (file specification) of the IDL program.
The VMS linker in turn includes the path you specify in the resulting library. This can
be inconvenient because a library linked this way can only run with the exact IDL
executable that it was linked with. This means that you cannot move your IDL
installation or keep multiple installations for use with your library. The standard
VMS solution to this problem is to use a logical name instead of an actual path. For
example, IDL users frequently use the logical name IDL_EXE to point at their IDL
executable. To make this process easier and less trouble prone, IDL defines this
logical name in the users process logical table when it starts running. Therefore, you
can always link with the IDL_EXE logical and know that it will refer to the IDL
executable you are actually running when the LINKIMAGE call is made.

Example

To add a procedure called MY_PROC, whose entry symbol is also named
MY_PROC, and whose file is pointed to by the logical name MY_PROC_EXE:

LINKIMAGE, 'MY_PROC', 'MY_PROC_EXE'

Under VMS, to add a device driver contained in the file
DRA0:[SMITH]XXDRIV.EXE:
LINKIMAGE IDL Reference Guide

693
LINKIMAGE, 'XX_DEV', 'XXDRIV', $

/DEVICE, DEFAULT='DRA0:[SMITH].EXE'

The global symbol XX_DEV, which contains the device definition structure, must be
defined as universal within the sharable image.

See Also

CALL_EXTERNAL, SPAWN, and the IDL External Development Guide.
IDL Reference Guide LINKIMAGE

694

LIVE
LIVE_Tools

The LIVE tools allow you to create, modify, and export visualizations directly from
the IDL command line. In many cases, you can modify your visualizations using the
LIVE tools’ graphical user interface directly without ever needing to return the IDL
command line. In some cases, however, you may wish to alter your visualizations
programmatically rather than using the graphical user interface. Several LIVE
routines allow you to do this easily.

The process of using the LIVE tools begins with the creation of a LIVE window via
one of the four main LIVE routines: LIVE_CONTOUR, LIVE_IMAGE,
LIVE_PLOT, and LIVE_SURFACE. When you use one of these four routines at the
IDL command line, you specify some data to be visualized and a LIVE window
appears. You can modify many of the properties of the items in your visualization by
double-clicking on the item to call up a Properties dialog.

If you find that the graphical user interface does not allow you to perform the
operation you wish to perform — saving your visualization as an image file, say —
you can use the auxiliary LIVE routines. These routines can be divided into two
groups:

• Overplotting and Annotation Routines that allow you to add annotations to an
existing LIVE window. These routines include LIVE_LINE, LIVE_OPLOT,
LIVE_RECT, and LIVE_TEXT. (Lines, rectangles, and text can also be added
to LIVE windows using the graphical user interface.)

• Information and Control Routines that allow you to get information about an
existing LIVE window, alter its properties, or export visualizations. These
routines include LIVE_CONTROL, LIVE_DESTROY, LIVE_EXPORT,
LIVE_INFO, LIVE_PRINT, and LIVE_STYLE.

To use the auxiliary routines, you will need to know the Name of the LIVE window
or item you wish to alter. To create an IDL variable containing the names of the
elements of a LIVE window, set the REFERENCE_OUT keyword equal to a named
variable when you first create your LIVE window. The returned variable will be a
structure that contains the names of all of the elements in the visualization you have
created. Use the contents of this structure to determine the value of the Name
argument for the auxiliary LIVE tools, or to determine the name of the LIVE window
you wish to alter.

Note
The LIVE tools do not utilize the !X, !Y, and !Z conventions. Setting these system
variables will have no effect on LIVE tool display.
_Tools IDL Reference Guide

695
LIVE_CONTOUR

The LIVE_CONTOUR procedure displays contour visualizations in an interactive
environment. Because the interactive environment requires extra system resources,
this routine is most suitable for relatively small data sets. If you find that performance
does not meet your expectations, consider using the Direct Graphics CONTOUR
routine or the Object Graphics IDLgrContour class directly.

After LIVE_CONTOUR has been executed, you can double-click on a contour line
to display a properties dialog. A set of buttons in the upper left corner of the window
allows you to print, undo the last operation, redo the last “undone” operation, copy,
draw a line, draw a rectangle, or add text.

You can control your LIVE window after it is created using any of several auxiliary
routines. See “LIVE_Tools” on page 694 for an explanation.

Syntax

LIVE_CONTOUR [, Z1,..., Z25] [, /BUFFER] [, DIMENSIONS=[width,
height]{normal units}] [, /DOUBLE] [, DRAW_DIMENSIONS=[width,
height]{devive units}] [, ERROR=variable] [, /INDEXED_COLOR]
[, INSTANCING={-1 | 0 | 1}] [, LOCATION=[x, y]{normal units}]
[, /MANAGE_STYLE] [, NAME=structure] [, /NO_DRAW] [, /NO_SELECTION]
[, /NO_STATUS] [, /NO_TOOLBAR] [, PARENT_BASE=widget_id | ,
TLB_LOCATION=[Xoffset, Yoffset]{device units}]
[, PREFERENCE_FILE=filename{full path}] [, REFERENCE_OUT=variable]
[, RENDERER={0 | 1}] [, REPLACE={structure | {0 | 1 | 2 | 3 | 4}}]
[, STYLE=name_or_reference] [, TEMPLATE_FILE=filename] [, TITLE=string]
[, WINDOW_IN=string] [, {X | Y}INDEPENDENT=value] [, {/X | /Y}LOG] [, {X |
Y}RANGE=[min, max]{data units}] [, {X | Y}_TICKNAME=array]

Figure 12: LIVE_CONTOUR Properties Dialog

Print Undo Redo Copy Line Rectangle Text
IDL Reference Guide LIVE_CONTOUR

696
Arguments

Zn

A vector of data. Up to 25 of these arguments may be specified. If any of the data is
stored in IDL variables of type DOUBLE, LIVE_CONTOUR uses double-precision
to store the data and to draw the result.

Keywords

BUFFER

Set this keyword to bypass the creation of a LIVE window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DOUBLE

Set this keyword to force LIVE_CONTOUR to use double-precision to draw the
result. This has the same effect as specifying data in the Zn argument using IDL
variables of type DOUBLE.

DIMENSIONS

Set this keyword to a two-element, floating-point vector of the form [width, height]
specifying the dimensions of the visualization in normalized coordinates. The default
is [1.0, 1.0].

DRAW_DIMENSIONS

Set this keyword equal to a vector of the form [width, height] representing the desired
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.
LIVE_CONTOUR IDL Reference Guide

697
INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor.

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) is to
use instancing if and only if the “software renderer” is being used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword has no effect if the STYLE keyword is not set to
a style item.

NAME

Set this keyword to a structure containing suggested names for the data items to be
created for this visualization. See the REPLACE keyword for details on how they
will be used. The fields of the structure are as follows. (Any or all tags may be set.)

The default for a field is to use the given variable name. If the variable does not have
a name (i.e., is an expression), a default name is automatically generated. The
dependent data names will be used in a round-robin fashion if more data than names
are input.

Tag Description

DATA Dependent Data Name(s)

IX Independent X Data Name

IY Independent Y Data Name

Table 24: Fields of the NAME keyword
IDL Reference Guide LIVE_CONTOUR

698
NO_DRAW

Set this keyword to inhibit the visualization window from drawing results of
LIVE_CONTOUR. This is useful if multiple visualizations and/or annotations are
being created via calls to other LIVE_Tools in order to reduce unwanted draws and
help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.

NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.

PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
a LIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishes to insert a tool into their own widget application will determine the setting
from the parent base sent to the tool.

Note
LIVE_DESTROY on a window is recommended when using PARENT_BASE so
that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in a non-
blocking mode. Putting a LIVE tool into a realized base already controlled by
XMANAGER will override the XMANAGER mode to /NO_BLOCK even if
blocking had been in effect.
LIVE_CONTOUR IDL Reference Guide

699
REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table.

Note
You can also determine the name of an item by opening its properties dialog and
checking the “Name” field (or for Windows, by clicking the title bar).

RENDERER

Set this keyword to 1 to use the “software renderer”, or 0 to use the “hardware
renderer”. The default (-1) is to use the setting in the IDE (IDL Development
Environment) preferences; if the IDE is not running, however, the default is hardware
rendering. For more information, see “Hardware vs. Software Rendering” in the
Objects and Object Graphics manual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of
the tags may be set.) The replacement settings are used to determine what action to
take when an item (such as data) being input would have the same name as one
already existing in the given window or buffer (WINDOW_IN).

Tag Description

WIN Window Name

VIS Visualization Name

XAXIS X-Axis Name

YAXIS Y-Axis Name

GRAPHIC Graphic Name(s)

LEGEND Legend Name

DATA Dependent Data Name(s)

IX Independent X Data Name

IY Independent Y Data Name

Table 25: Fields of the LIVE_CONTOUR Reference Structure
IDL Reference Guide LIVE_CONTOUR

700
Alternatively, this keyword may be set to a single scalar value, which is equivalent to
setting each tag of the structure to that choice.

STYLE

Set this keyword to either a string specifying a style name created using
LIVE_STYLE.

TITLE

Set this keyword to a string specifying the title to give the main window. It must not
already be in use. A default will be chosen if no title is specified.

TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. This
keyword has no effect if the PARENT_BASE keyword is set. The default is [0, 0].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the
REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

Setting Action Taken

0 New items will be given unique names.

1 Existing items will be replaced by new items (i.e., the old items will
be deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. This will cause dynamic
updating to occur for any current uses, e.g., a visualization would
redraw to show the new value.

4 Default. Option 0 will be used for items that do not have names (e.g.,
data input as an expression rather than a named variable, with no
name provided via the NAME keyword). Option 3 will be used for all
named items.

Table 26: REPLACE keyword Settings and Action Taken
LIVE_CONTOUR IDL Reference Guide

701
XINDEPENDENT

Set this keyword to a vector specifying the X values for LIVE_CONTOUR. The
default is the data’s index values.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

YINDEPENDENT

Set this keyword to a vector specifying the Y values for LIVE_CONTOUR. The
default is the data’s index values.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

XLOG

Set this keyword to make the X axis a log axis. The default is 0 (linear axis).

YLOG

Set this keyword to make the Y axis a log axis. The default is 0 (linear axis).

XRANGE

Set this keyword equal to a two-element array that defines the minimum and
maximum values of the X axis range. The default equals the values computed from
the data range.

YRANGE

Set this keyword equal to a two-element array that defines the minimum and
maximum values of the Y axis range. The default equals the values computed from
the data range.

X_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
X axis. The default equals the values computed from the data range.
IDL Reference Guide LIVE_CONTOUR

702

LIVE
Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equals the values computed from the data range.

Example

; Create a dataset to display:
Z=DIST(10)

; Display the contour. To manipulate contour lines, click on the
; plot to access a graphical user interface.
LIVE_CONTOUR, Z

Note
This is a “Live” situation. When data of the same name is used multiple times
within the same window, it always represents the same internal data item. For
example, if one does the following:

Y=indgen(10)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc1
Y=indgen(20)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc2

The first plot will update to use the Y of the second plot when the second plot is
drawn. If the user wants to display 2 “tweaks” of the same data, a different variable
name must be used each time, or at least one should be an expression (thus not a
named variable). For example:

LIVE_PLOT, Y1,...
LIVE_PLOT, Y2,...

or;

LIVE_PLOT, Y,...
LIVE_PLOT, myFunc(Y),...

In last example, the data of the second visualization will be given a default unique
name since an expression rather than a named variable is input.

Note
The above shows the default behavior for naming and replacing data, which can be
overridden using the NAME and REPLACE keywords.

See Also

CONTOUR
_CONTOUR IDL Reference Guide

703
LIVE_CONTROL

The LIVE_CONTROL procedure allows you to set the properties of (or elements
within) a visualization in a LIVE tool from the IDL command line. See
“LIVE_Tools” on page 694 for additional discussion of the routines that control the
LIVE_ tools.

Note
The LIVE tools do not utilize the !X, !Y, and !Z conventions. Setting these system
variables will have no effect on LIVE tool display.

Syntax

LIVE_CONTROL, [Name] [, /DIALOG] [, ERROR=variable] [, /NO_DRAW]
[, PROPERTIES=structure] [, /SELECT] [, /UPDATE_DATA]
[, WINDOW_IN=string]

Arguments

Name

If keywords DIALOG and/or PROPERTIES are used, Name is a string (case-
insensitive) containing the name of a window visualization or graphic to operate on.
WINDOW_IN will default to the window or buffer, if only one is present in the IDL
session.

If keyword UPDATE_DATA is used, Name must be an IDL variable with the same
name as one already used in the given window or buffer (WINDOW_IN). In this case
there is no default. If UPDATE_DATA is not set, the parameter must be a name of a
window, visualization or visualization element.

Keywords

DIALOG

Set this keyword to have the editable properties dialog of the visualization or graphic
appear.
IDL Reference Guide LIVE_CONTROL

704
ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

PROPERTIES

Set this keyword to a properties structure with which to modify the given
visualization or graphic. The structure should contain one or more tags as returned
from a LIVE_INFO call on the same type of item.

UPDATE_DATA

Set this keyword to force the window to update all of its visualizations that contain
the given data passed in the parameter to LIVE_CONTROL.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Example

; Create a dataset to display:
X=indgen(10)

; Plot the dataset:
LIVE_PLOT, X

; Modify the dataset:
X=X+2
LIVE_CONTROL IDL Reference Guide

705
; Replace old values of X:
LIVE_CONTROL, X, /UPDATE_DATA

See Also

LIVE_INFO, LIVE_STYLE
IDL Reference Guide LIVE_CONTROL

706
LIVE_DESTROY

The LIVE_DESTROY procedure allows you to destroy a window visualization or an
element in a visualization.

Syntax

LIVE_DESTROY, [Name1,..., Name25] [, /ENVIRONMENT] [, ERROR=variable]
[, /NO_DRAW] [, /PURGE] [, WINDOW_IN=string]

Arguments

Name

A string containing the name of a valid LIVE visualization or element. If a
visualization is supplied, all components in the visualization will be destroyed. Up to
25 components may be specified in a single call. If not specified, the entire window
or buffer (WINDOW_IN) and its contents will be destroyed.

Warning
Using WIDGET_CONTROL to destroy the parent base of a LIVE tool before using
LIVE_DESTROY to clean up will leave hanging object references.

Keywords

ENVIRONMENT

Destroys the LIVE_ Tools environment (background processes).

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.
LIVE_DESTROY IDL Reference Guide

707
NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

PURGE

Destroys LIVE_ Tools (use this keyword for cleaning up the system after fatal errors
in LIVE_ Tools). This keyword may cause the loss of data if not used correctly.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Example

LIVE_DESTROY, 'Line Plot Visualization'

; Destroy window (if only one window present):
LIVE_DESTROY
IDL Reference Guide LIVE_DESTROY

708
LIVE_EXPORT

The LIVE_EXPORT procedure allows the user to export a given visualization or
window to an image file.

Syntax

LIVE_EXPORT [, /APPEND] [, COMPRESSION={0 | 1 | 2}{TIFF only}]
[, /DIALOG] [, DIMENSIONS=[width, height]] [, ERROR=variable]
[, FILENAME=string] [, ORDER={0 | 1}{JPEG or TIFF}]
[, /PROGRESSIVE{JPEG only}] [, QUALITY={0 | 1 | 2}{for VRML} | {0 to
100}{for JPEG}] [, RESOLUTION=value] [, TYPE={'BMP' | 'JPG' | 'PIC' | 'SRF' |
'TIF' | 'XWD' | 'VRML'}] [, UNITS={0 | 1 | 2}] [, VISUALIZATION_IN=string]
[, WINDOW_IN=string]

Arguments

None

Keywords

APPEND

Specifies that the image should be added to the existing file, creating a multi-image
TIFF file.

COMPRESSION (TIFF)

Set this keyword to select the type of compression to be used:

• 0 = none (default)

• 2 = PackBits.

DIALOG

Set this keyword to have a dialog appear allowing the user to choose the image type
and specifications.

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the image in units specified by the UNITS keyword. The default is
[640, 480] pixels.
LIVE_EXPORT IDL Reference Guide

709
ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

FILENAME

Set this keyword equal to a string specifying the desired name of the image file. The
default is live_export.extension, where extension is one of the following:

bmp, jpg, jpeg, pic, pict, srf, tif, tiff, xwd, vrml

ORDER (JPEG, TIFF)

Set this keyword to have the image written from top to bottom. Default is bottom to
top.

PROGRESSIVE (JPEG)

Set this keyword to write the image as a series of scans of increasing quality. When
used with a slow communications link, a decoder can generate a low-quality image
very quickly, and then improve its quality as more scans are received.

QUALITY (JPEG, VRML)

This keyword specifies the quality index of VRML images and JPEG images. For
VRML, the values are 0=Low, 1=Medium, 2=High. For JPEG the range is 0
("terrible") to 100 ("excellent"). This keyword has no effect on non-JPEG or non-
VRML images.

RESOLUTION

Set this keyword to a floating-point value specifying the device resolution in
centimeters per pixel. The default is 72 DPI=2.54 (cm/in)/ 0.0352778 (cm/pixel).

Note
It is important to match the eventual output device’s resolution so that text is scaled
properly.
IDL Reference Guide LIVE_EXPORT

710
TYPE

Set this keyword equal to a string specifying the image type to write. Valid strings
are: ‘BMP’, ‘JPG’, ‘JPEG’ (default), ‘PIC’, ‘PICT’, ‘SRF’, ‘TIF’, ‘TIFF’, ‘XWD’,
and ‘VRML’.

UNITS

Set this keyword to indicate the units of measure for the DIMENSIONS keyword.
Valid values are 0=Device (default), 1=Inches, 2=Centimeters.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LIVE tool
visualization to export. The VIS field from the REFERENCE_OUT keyword from
the creation of the LIVE tool will provide the visualization name. If
VISUALIZATION_IN is not specified, the whole window or buffer (WINDOW_IN)
will be exported.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer, to export. The WIN tag of the REFERENCE_OUT structure from
the creation of the LIVE tool will provide the window or buffer name. Window
names are also visible in visualization window titlebars. If only one LIVE tool
window (or buffer) is present in the IDL session, this keyword will default to it.

Example

LIVE_EXPORT, WINDOW_IN='Live Plot 2'
LIVE_EXPORT IDL Reference Guide

711
LIVE_IMAGE

The LIVE_IMAGE procedure displays visualizations in an interactive environment.
Double-click on the image to display a properties dialog. A set of buttons in the upper
left corner of the image window allows you to print, undo the last operation, redo the
last “undone” operation, copy, draw a line, draw a rectangle, or add text.

You can control your LIVE window after it is created using any of several auxiliary
routines. See “LIVE_Tools” on page 694 for an explanation.

Syntax

LIVE_IMAGE, Image [, RED=byte_vector] [, GREEN=byte_vector]
[, BLUE=byte_vector] [, /BUFFER] [, DIMENSIONS=[width, height]{normal
units}] [, DRAW_DIMENSIONS=[width, height]{devive units}]
[, ERROR=variable] [, /INDEXED_COLOR] [, INSTANCING={-1 | 0 | 1}]
[, LOCATION=[x, y]{normal units}] [, /MANAGE_STYLE] [, NAME=structure]
[, /NO_DRAW] [, /NO_SELECTION] [, /NO_STATUS] [, /NO_TOOLBAR]
[, PARENT_BASE=widget_id | , TLB_LOCATION=[Xoffset, Yoffset]{device
units}] [, PREFERENCE_FILE=filename{full path}]
[, REFERENCE_OUT=variable] [, RENDERER={0 | 1}] [, REPLACE={structure |
{0 | 1 | 2 | 3 | 4}}] [, STYLE=name_or_reference] [, TEMPLATE_FILE=filename]
[, TITLE=string] [, WINDOW_IN=string]

Arguments

Image

A two- or three-dimensional array of image data. The three-dimensional array must
be for the form [3,X,Y] or [X,3,Y] or [X,Y,3].

Figure 13: LIVE_IMAGE Properties Dialog

Print Undo Redo Copy Line Rectangle Text
IDL Reference Guide LIVE_IMAGE

712
Keywords

BLUE

Set this keyword equal to a byte vector of blue values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They are
used to form the color table. The 2D array is a set of values that are just indexes into
this table.

BUFFER

Set this keyword to bypass the creation of a LIVE window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the image in units specified by the UNITS keyword. The default is
[1.0, 1.0].

DRAW_DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.
LIVE_IMAGE IDL Reference Guide

713
GREEN

Set this keyword equal to a byte vector of green values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They are
used to form the color table. The 2D array is a set of values that are just indexes into
this table.

INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor. (See Using IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) is to
use instancing if and only if the “software renderer” is being used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword will have no effect if the STYLE keyword is not
set to a style item.
IDL Reference Guide LIVE_IMAGE

714
NAME

Set this keyword to a structure containing suggested names for the items to be created
for this visualization. See the REPLACE keyword for details on how they will be
used. The fields of the structure are as follows. (Any or all of the tags may be set.)

The default for a field is to use the given variable name. If the variable does not have
a name (i.e., is an expression), a default name is automatically generated.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing results of
LIVE_CONTOUR. This is useful if multiple visualizations and/or annotations are
being created via calls to other LIVE_Tools in order to reduce unwanted draws and
help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.

NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.

PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
a LIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishes to insert a tool into their own widget application will determine the setting
from the parent base sent to the tool.

Tag Description

DATA Dependent Data Name(s)

CT Color Table Name

Table 27: Fields of the NAME keyword
LIVE_IMAGE IDL Reference Guide

715
Note
LIVE_DESTROY on a window is recommended when using PARENT_BASE so
that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in a non-
blocking mode. Putting a LIVE tool into a realized base already controlled by
XMANAGER will override the XMANAGER mode to /NO_BLOCK even if
blocking had been in effect.

RED

Set this keyword equal to a byte vector of red values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They are
used to form the color table. The 2D array is a set of values that are just indexes into
this table.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table. Note that the
COLORBAR* field does not show up with TrueColor images:

Tag Description

WIN Window Name

VIS Visualization Name

GRAPHIC Graphic Name

CT Color Table Name

COLORBAR* Colorbar Name

DATA Data Name

Table 28: Fields of the LIVE_IMAGE Reference Structure
IDL Reference Guide LIVE_IMAGE

716
RENDERER

Set this keyword to 1 to use the “software renderer”, or 0 to use the “hardware
renderer”. The default (-1) is to use the setting in the IDE (IDL Development
Environment) preferences; if the IDE is not running, however, the default is hardware
rendering. For more information, see “Hardware vs. Software Rendering” in the
Objects and Object Graphics manual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of
the tags may be set.) The replacement settings are used to determine what action to
take when an item (such as data) being input would have the same name as one
already existing in the given window or buffer (WINDOW_IN).

STYLE

Set this keyword to either a string specifying a style name created using
LIVE_STYLE.

TITLE

Set this keyword to a string specifying the title to give the main window. It must not
already be in use. A default will be chosen if no title is specified.

Setting Action Taken

0 New items will be given unique names.

1 Existing items will be replaced by new items (i.e., the old items will
be deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. This will cause
dynamic updating to occur for any current uses, e.g., a visualization
would redraw to show the new value.

4 Default. Option 0 will be used for items that do not have names
(e.g., data input as an expression rather than a named variable, with
no name provided via the NAME keyword). Option 3 will be used
for all named items.

Table 29: REPLACE keyword Settings and Action Taken
LIVE_IMAGE IDL Reference Guide

717
TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. This
keyword has no effect if the PARENT_BASE keyword is set. The default is [0, 0].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window, or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the
REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

Example

LIVE_IMAGE, myImage

See Also

TV, TVSCL
IDL Reference Guide LIVE_IMAGE

718
LIVE_INFO

The LIVE_INFO procedure allows the user to get the properties of a LIVE tool.

Syntax

LIVE_INFO, [Name] [, ERROR=variable] [, PROPERTIES=variable]
[, WINDOW_IN=string]

Arguments

Name

A string containing the name of a visualization or element (case-insensitive). The
default is to use the window or buffer (WINDOW_IN).

Keywords

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

PROPERTIES

Set this keyword to a named variable to contain the returned properties structure. For
a description of the structures, see Properties Structures below.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.
LIVE_INFO IDL Reference Guide

719
Structure Tables for LIVE_INFO and LIVE CONTROL

The following tables describe the properties structures used by LIVE_INFO and
LIVE_CONTROL (via the PROPERTIES keyword) for:

• Color Names

• Line Annotations

• Rectangle Annotations

• Text Annotations

• Axes

• Colorbars

• Images

• Legends

• Surfaces

• Entire Visualizations

• Windows

Color Names

The following color names are the possible values for color properties:

Line Annotations

The fields in the properties structure of Line Annotations are as follows:

• Black • Red • Green • Yellow

• Blue • Magenta • Cyan • Dark Gray

• Light Gray • Brown • Light Red • Light Green

• Light Blue • Light Cyan • Light Magenta • White

Tag Description

thick 1 to 10 pixels

Table 30: Line Annotation Properties Structure
IDL Reference Guide LIVE_INFO

720
Rectangle Annotations

The fields in the properties structure of Rectangle Annotations are as follows:

arrow_start 1 = arrow head at line start, 0 = no arrowhead

arrow_end 1 = arrow head at line start, 0 = no arrowhead

arrow_size 0.0 to 0.3 normalized units

arrow_angle 1.0 to 179.0 degrees

linestyle 0=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot, 5=long
dash

hide 1 = hidden, 0 = visible

name scalar string (unique within all graphics)

color see “Color Names” on page 719

location [x, y] normalized units

dimensions [width, height] normalized units

uvalue any value of any type (only returned in structure if defined)

Tag Description

thick 1 to 10 pixels

linestyle 0=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot, 5=long
dash

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

color see “Color Names” on page 719

location [x, y] normalized units

dimensions [width, height] normalized units

Tag Description

Table 30: Line Annotation Properties Structure
LIVE_INFO IDL Reference Guide

721
Text Annotations

The fields in the properties structure of Text Annotations are as follows:

Note
Each vector element of the annotation formula (see “value” tag above) is parsed
once, left to right, for vertical bars (|).

• Two vertical bars surrounding a data item name will be replaced by the
corresponding data value(s), possibly requiring multiple lines.

• Two adjacent bars will be replaced by a single bar.

• Two bars surrounding text that is not a data item name will be left as is.

uvalue any value of any type (only returned in structure if defined)

Tag Description

fontsize 9 to 72 points

fontname Helvetica, Courier, Times, Symbol, and Other (where Other
is a valid name of a font on the local system)

textangle 0.0 to 360.0 degrees

alignment 0.0 to 1.0 where 0.0 = right justified and 1.0 = left justified

location [x, y] normalized units

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

value string (scalar or vector) annotation formula (see note below)

enable_formatting set to allow “!” chars for font commands

color see “Color Names” on page 719

uvalue any value of any type (only returned in structure if defined)

Table 32: Text Annotation Properties Structure

Tag Description

Table 31: Rectangle Annotation Properties Structure
IDL Reference Guide LIVE_INFO

722
Axes

The fields in the properties structure of Axes are as follows:

Tag Description

title_FontSize 9 to 72 points

title_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other is
a valid name of a font on the local system)

title_Color see “Color Names” on page 719

tick_FontSize 9 to 72 points

tick_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other is
a valid name of a font on the local system)

tick_FontColor see “Color Names” on page 719

gridStyle see linestyle

color see “Color Names” on page 719

thick 1 to 10 pixels

location [x, y] data units

minor number of minor ticks (minimum 0)

major number of major ticks (minimum 0)

default_minor set to compute default number of minor ticks

default_major set to compute default number of major ticks

tickLen normalized units * 100 = percent of visualization dimensions

subticklen normalized units * 100 = percent of ticklen

tickDir 0 = up (or right), 1 = down (or left)

textPos 0 = below (or left), 1 = above (or right)

tickFormat standard IDL FORMAT string (See STRING function)
excluding parentheses

exact set to use exact range specified

log set to display axis as log

Table 33: Axis Properties Structure
LIVE_INFO IDL Reference Guide

723
Colorbars

The fields in the properties structure of Colorbars are as follows:

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

compute_range set to compute axis range from data min/max

tickName if defined, vector of strings to use at major tick marks

uvalue any value of any type (only returned in structure if defined)

Tag Description

title_Fontsize 9 to 72 points

title_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other is a
valid name of a font on the local system)

title_Color see “Color Names” on page 719

tick_FontSize see fontsize

tick_Fontname see fontname

tick_FontColor see “Color Names” on page 719

color see “Color Names” on page 719

thick 1 to 10 pixels

location [x, y]; where [0, 0] = lower left and [1, 1] = position where the

entire colorbar fits into the upper right of the visualization

minor number of minor ticks (minimum 0)

major number of major ticks (minimum 0)

default_minor set to compute default number of minor ticks

default_major set to compute default number of major ticks

Table 34: Colorbar Properties Structure

Tag Description

Table 33: Axis Properties Structure
IDL Reference Guide LIVE_INFO

724
Contours

The fields in the properties structure of Contours are as follows:

tickLen normalized units * 100 = percent of visualization dimensions

subticklen normalized units * 100 = percent of ticklen

tickFormat standard IDL FORMAT string (See STRING function)
excluding parentheses

show_axis set to display the colorbar axis

show_outline set to display the colorbar outline

axis_thick see thick

dimensions [width, height] normalized units

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)

Tag Description

min_value minimum contour value to display

max_value maximum contour value to display

downhill set to display downhill tick marks

fill set to display contour levels as filled

c_thick vector of thickness values (see thick)

c_linestyle vector of linestyle values (see linestyle)

c_color vector of color names (see “Color Names” on page 719)

default_n_levels set to default the number of levels

n_levels* specify a positive number for a specific number of levels

Table 35: Contour Properties Structure

Tag Description

Table 34: Colorbar Properties Structure
LIVE_INFO IDL Reference Guide

725
Images

The fields in the properties structure of Images are as follows:

Legends

The fields in the properties structure of Legends are as follows:

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)
*The MIN and MAX value of the data are returned as contour levels when N_LEVELS is set.
Because of this, when setting N_LEVELS, contour plots appear to have N-2 contour levels because
the first (MIN) and last (MAX) level is not shown. With LIVE_CONTOUR, this results in a legend
that contains unnecessary items in the legend (the MIN and the MAX contour level).

Tag Description

order set to draw from top to bottom

sizing_constraint [0|1|2] 0=Natural, 1=Aspect, 2=Unrestricted

dont_byte_scale set to inhibit byte scaling the image

palette name of managed colortable

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in LIVE_INFO structure
if defined)

Table 36: Image Properties Structure

Tag Description

title_FontSize 9 to 72 points

Table 37: Legend Properties Structure

Tag Description

Table 35: Contour Properties Structure
IDL Reference Guide LIVE_INFO

726
title_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other is
a valid name of a font on the local system)

title_Color see “Color Names” on page 719

item_fontSize see fontsize

item_fontName Helvetica, Courier, Times, Symbol, and Other (where Other is
a valid name of a font on the local system)

text_color color of item text (see “Color Names” on page 719)

border_gap normalized units * 100 = percent of item text height

columns number of columns to display the items in (minimum 0)

gap normalized units * 100 = percent of item text height

glyph_Width normalized units * 100 = percent of item text height

fill_color see “Color Names” on page 719

outline_color see “Color Names” on page 719

outline_thick see thick

location [x, y]; where [0, 0] = lower left and [1, 1] = position where the

entire legend fits into the upper right of the visualization

show_fill set to display the fill color

show_outline set to display the legend outline

title_text String to display in the legend title

item_format standard IDL FORMAT string (See STRING function)
excluding parentheses (contour legends only)

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)

Tag Description

Table 37: Legend Properties Structure
LIVE_INFO IDL Reference Guide

727
Surfaces

The fields in the properties structure of Surfaces are as follows:

Entire Visualizations

The fields in the properties structure of Entire Visualizations are as follows:

Tag Description

min_value minimum plot line value to display

max_value maximum plot line value to display

lineStyle 0=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot,
5=long dash

color see “Color Names” on page 719

thick 1 to 10 pixels

bottom see “Color Names” on page 719

style 0=point, 1=wire, 2=solid, 3=ruledXZ, 4=ruledYZ, 5=lego
(wire), 6=lego (solid)

shading 0=flat, 1=Gouraud

hidden_lines set to not display hidden lines or points

show_skirt set to display the surface skirt

skirt z value at which skirt is drawn (data units)

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)

Table 38: Surface Properties Structure

Tag Description

location [x, y] normalized units

dimensions [width, height] normalized units

Table 39: Visualization Properties Structure
IDL Reference Guide LIVE_INFO

728
Windows

The fields in the properties structure of Windows are as follows:

Example

LIVE_INFO, 'x axis', PROPERTIES=myProps

See Also

LIVE_CONTROL, LIVE_STYLE

transparent set to avoid erasing to the background color

color background color (see “Color Names” on page 719)

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)

Tag Description

dimensions 2-element integer vector (pixels)

hide boolean (0=show, 1=hide)

location 2-element integer vector (pixels) from upper
left corner of screen

title string

Table 40: Windows Properties Structure

Tag Description

Table 39: Visualization Properties Structure
LIVE_INFO IDL Reference Guide

729
LIVE_LINE

The LIVE_LINE procedure is an interface for line annotation.

Syntax

LIVE_LINE [, ARROW_ANGLE=value{1.0 to 179.0}] [, /ARROW_END]
[, ARROW_SIZE=value{0.0 to 0.3}] [, /ARROW_START] [, COLOR='color name'
] [, /DIALOG] [, DIMENSIONS=[width, height]] [, ERROR=variable] [, /HIDE]
[, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, LOCATION=[x, y]] [, NAME=string]
[, /NO_DRAW] [, /NO_SELECTION] [, REFERENCE_OUT=variable]
[, THICK=pixels{1 to 10}] [, VISUALIZATION_IN=string]
[, WINDOW_IN=string]

Arguments

None

Keywords

ARROW_ANGLE

Set this keyword to a floating-point number between 1.0 and 179.0 degrees to
indicate the angle of the arrowheads. The default is 30.0.

ARROW_END

Set this keyword to indicate an arrowhead should be drawn at the end of the line. It is
not drawn by default.

ARROW_SIZE

Set this keyword to a floating-point number between 0.0 and 0.3 (normalized
coordinates) to indicate the size of the arrowheads. The default is 0.02.

ARROW_START

Set this keyword to indicate an arrowhead should be drawn at the start of the line. It is
not drawn by default.
IDL Reference Guide LIVE_LINE

730
COLOR

Set this keyword to a string (case-sensitive) of the color to be used for the line. The
default is ‘Black’. The following colors are available:

DIALOG

Set this keyword to display the line properties dialog appear. The dialog will have all
known properties supplied by keywords filled in.

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the X
and Y components of the line in normalized coordinates. The default is [0.2, 0.2].

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

HIDE

Set this keyword to a boolean value indicating whether this item should be hidden.

• 0 = Visible (default)

• 1 = Hidden

LINESTYLE

Set this keyword to a pre-defined line style integer:

• 0 = solid line (default)

• Black • Red • Green • Yellow

• Blue • Magenta • Cyan • Dark Gray

• Light Gray • Brown • Light Red • Light Green

• Light Blue • Light Cyan • Light Magenta • White
LIVE_LINE IDL Reference Guide

731
• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot

• 5 = long dash

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.5, 0.5].

Note
LOCATION may be adjusted to take into account window decorations.

NAME

Set this keyword equal to a string containing the name to be associated with this item.
The name must be unique within the given window or buffer (WINDOW_IN). If not
specified, a unique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining names of the modified
visualization’s properties. The fields of the structure are shown in the following table.

Tag Description

WIN Window Name

VIS Visualization Name

GRAPHIC Graphic Name the line created

Table 41: Fields of the LIVE_LINE Reference Structure
IDL Reference Guide LIVE_LINE

732
THICK

Set this keyword to an integer value between 1 and 10, specifying the line thickness
to be used to draw the line, in pixels. The default is one pixel.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LIVE tool
visualization. The VIS field from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Example

LIVE_LINE, WINDOW_IN='Live Plot 2', $
VISUALIZATION_IN='line plot visualization'

; Units are in the visualization units (based on axis ranges).

See Also

LIVE_RECT, LIVE_TEXT
LIVE_LINE IDL Reference Guide

733
LIVE_LOAD

The LIVE_LOAD procedure loads into memory the complete set of routines
necessary to run all LIVE tools. By default, portions of the set are loaded when first
needed during the IDL session. If you expect to frequently use the tools, you may
wish to call LIVE_LOAD from your IDL “startup file”.

Syntax

 LIVE_LOAD

Arguments

None

Keywords

None
IDL Reference Guide LIVE_LOAD

734
LIVE_OPLOT

The LIVE_OPLOT procedure allows the insertion of data into pre-existing plots.

Syntax

LIVE_OPLOT, Yvector1 [,... , Yvector25] [, ERROR=variable]
[, INDEPENDENT=vector] [, NAME=structure] [, /NEW_AXES] [, /NO_DRAW]
[, /NO_SELECTION] [, REFERENCE_OUT=variable] [, REPLACE={structure |
{0 | 1 | 2 | 3 | 4}}] [, SUBTYPE={‘LinePlot’ | ‘ScatterPlot’ | ‘Histogram’ |
‘PolarPlot’}] [, VISUALIZATION_IN=string] [, WINDOW_IN=string] [, {X |
Y}_TICKNAME=array] [, {X | Y}AXIS_IN=string]

Arguments

YVector

A vector argument of data. Up to 25 of these arguments may be specified.

Keywords

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

INDEPENDENT

Set this keyword to an independent vector specifying the X-Values for
LIVE_OPLOT.

NAME

Set this keyword to a structure containing suggested names for the data items to be
created for this visualization. See the REPLACE keyword for details on how they
LIVE_OPLOT IDL Reference Guide

735
will be used. The fields of the structure are as follows. (Any or all of the tags may be
set.)

The default for a field is to use the given variable name. If the variable does not have
a name (i.e., is an expression), a default name is automatically generated. The
dependent data names will be used in a round-robin fashion if more data than names
are input.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

NEW_AXES

Set this keyword to generate a new set of axes for this plot line. If this keyword is
specified, the [XY]AXIS_IN keywords will not be used.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the modified
items. The fields of the structure are shown in the following table.

Tag Description

DATA Dependent Data Name(s)

I Independent Data Name

Table 42: Fields of the NAME keyword

Tag Description

WIN Window Name

VIS Visualization Name

Table 43: Fields of the LIVE_OPLOT Reference Structure
IDL Reference Guide LIVE_OPLOT

736
REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of
the tags may be set.) The replacement settings are used to determine what action to
take when an item (such as data) being input would have the same name as one
already existing in the given window or buffer (WINDOW_IN).

XAXIS X-Axis Name

YAXIS Y-Axis Name

GRAPHIC Graphic Name(s)

LEGEND Legend Name

DATA Dependent Data Name(s)

I Independent Data Name

Setting Action Taken

0 New items will be given unique names.

1 Existing items will be replaced by new items (i.e., the old items will
be deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. This will cause dynamic
updating to occur for any current uses, e.g., a visualization would
redraw to show the new value.

4 Default. Option 0 will be used for items that do not have names (e.g.,
data input as an expression rather than a named variable, with no
name provided via the NAME keyword). Option 3 will be used for all
named items.

Table 44: REPLACE keyword Settings and Action Taken

Tag Description

Table 43: Fields of the LIVE_OPLOT Reference Structure
LIVE_OPLOT IDL Reference Guide

737
SUBTYPE

Set this keyword to a string (case-insensitive) containing the desired type of plot.
SUBTYPE defaults to whatever is being inserted into, if the [XY]AXIS_IN keyword
is set. If the keywords are not set, then the default is line plot. Valid strings are:

• ‘LinePlot’ (default)

• ‘ScatterPlot’

• ‘Histogram’

• ‘PolarPlot’

Note
If inserting into a group (defined by the set of axes) that is polar, SUBTYPE cannot
be defined as line, scatter, or histogram. The opposite is also true: if inserting into a
line, scatter, or histogram group, then SUBTYPE cannot be defined as polar.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LIVE tool
visualization. The VIS field from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

X_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
X axis. The default equals the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equals the values computed from the data range.
IDL Reference Guide LIVE_OPLOT

738
XAXIS_IN

Set this keyword equal to the string name of an existing axis. The name can be
obtained from the REFERENCE_OUT keyword, or visually from the GUI. The
default is to use the first set of axes in the plot.

Note
If this keyword is set, you must also set the YAXIS_IN keyword, and both
keywords must be set to a “pair” of axes. The X and Y axes given must be
associated with the same plot line.

YAXIS_IN

Set this keyword equal to the string name of an existing axis. The name can be
obtained from the REFERENCE_OUT keyword, or visually from the GUI. The
default is to use the first set of axes in the plot.

Note
If this keyword is set, you must also set the XAXIS_IN keyword, and both
keywords must be set to a “pair” of axes. The X and Y axes given must be
associated with the same plot line.

Example

LIVE_OPLOT, tempData, pressureData

See Also

LIVE_PLOT, PLOT, OPLOT
LIVE_OPLOT IDL Reference Guide

739
LIVE_PLOT

The LIVE_PLOT procedure creates an interactive plotting environment.

Click on a section of the plot to display a properties dialog. A set of buttons in the
upper left corner of the image window allows you to print, undo the last operation,
redo the last “undone” operation, copy, draw a line, draw a rectangle, or add text.

You can control your LIVE window after it is created using any of several auxiliary
routines. See “LIVE_Tools” on page 694 for an explanation.

Syntax

LIVE_PLOT, Yvector1 [, Yvector2,..., Yvector25] [, /BUFFER]
[, DIMENSIONS=[width, height]{normal units}] [, /DOUBLE]
[, DRAW_DIMENSIONS=[width, height]{devive units}] [, ERROR=variable]
[, /HISTOGRAM | , /LINE | , /POLAR | , /SCATTER] [, /INDEXED_COLOR]
[, INSTANCING={-1 | 0 | 1}] [, LOCATION=[x, y]{normal units}]
[, INDEPENDENT=vector] [, /MANAGE_STYLE] [, NAME=structure]
[, /NO_DRAW] [, /NO_SELECTION] [, /NO_STATUS] [, /NO_TOOLBAR]
[, PARENT_BASE=widget_id | , TLB_LOCATION=[Xoffset, Yoffset]{device
units}] [, PREFERENCE_FILE=filename{full path}]
[, REFERENCE_OUT=variable] [, RENDERER={0 | 1}] [, REPLACE={structure |
{0 | 1 | 2 | 3 | 4}}] [, STYLE=name_or_reference] [, TEMPLATE_FILE=filename]
[, TITLE=string] [, WINDOW_IN=string] [, {/X | /Y}LOG] [, {X |
Y}RANGE=[min, max]{data units}] [, {X | Y}_TICKNAME=array]

Figure 14: LIVE_PLOT Properties Dialog

Print Undo Redo Copy Line Rectangle Text
IDL Reference Guide LIVE_PLOT

740
Arguments

YVector

A vector of data. Up to 25 of these arguments may be specified. If any of the data is
stored in IDL variables of type DOUBLE, LIVE_PLOT uses double precision to
store the data and to draw the result.

Keywords

BUFFER

Set this keyword to bypass the creation of a LIVE window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to a two-element, floating-point vector specifying the dimensions of
the visualization in normalized coordinates. The default is [1.0, 1.0].

DOUBLE

Set this keyword to force LIVE_PLOT to use double-precision to draw the result.
This has the same effect as specifying data in the YVector argument using IDL
variables of type DOUBLE.

DRAW_DIMENSIONS

Set this keyword equal to a vector of the form [width, height] representing the desired
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.
LIVE_PLOT IDL Reference Guide

741
HISTOGRAM

Set this keyword to represent plot values as a histogram.

INDEPENDENT

Set this keyword to an independent vector specifying X-values for LIVE_PLOT.

INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor. (See Using IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) is to
use instancing if and only if the “software renderer” is being used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LINE

Set this keyword to represent plot values as a line plot. This is the default. Alternate
choices are provided by keywords HISTOGRAM, POLAR, and SCATTER.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword will have no effect if the STYLE keyword is not
set to a style item.

NAME

Set this keyword to a structure containing suggested names for the data items to be
created for this visualization. See the REPLACE keyword for details on how they
IDL Reference Guide LIVE_PLOT

742
will be used. The fields of the structure are as follows. (Any or all of the tags may be
set.)

The default for a field is to use the given variable name. If the variable does not have
a name (i.e., is an expression), a default name is automatically generated. The
dependent data names will be used in a round-robin fashion if more data than names
are input.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.

NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.

PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
a LIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. To insert a tool into your widget
application, you must determine the setting from the parent base sent to the tool.
LIVE_DESTROY on a window is recommended when using PARENT_BASE so
that proper memory cleanup is done. Destroying the parent base is not sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in a non-
blocking mode. Putting a LIVE tool into a realized base already controlled by

Tag Description

DATA Dependent Data Name(s)

I Independent Data Name

Table 45: Fields of the NAME keyword
LIVE_PLOT IDL Reference Guide

743
XMANAGER will override the XMANAGER mode to /NO_BLOCK even if
blocking had been in effect.

POLAR

Set this keyword to represent plot values as a polar plot. In this case, the arguments to
LIVE_PLOT represent values of r (radius), while the INDEPENDENT keyword
represents the values of T (angle theta). If POLAR is set, you must specify
INDEPENDENT.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the modified
items. The fields of the structure are shown in the following table.

RENDERER

Set this keyword to 1 to use the “software renderer”, or 0 to use the “hardware
renderer”. The default (-1) is to use the setting in the IDE (IDL Development
Environment) preferences; if the IDE is not running, however, the default is hardware
rendering. For more information, see “Hardware vs. Software Rendering” in the
Objects and Object Graphics manual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of

Tag Description

WIN Window Name

VIS Visualization Name

XAXIS X-Axis Name

YAXIS Y-Axis Name

GRAPHIC Graphic Name(s)

LEGEND Legend Name

DATA Dependent Data Name(s)

I Independent Data Name

Table 46: Fields of the LIVE_PLOT Reference Structure
IDL Reference Guide LIVE_PLOT

744
the tags may be set.) The replacement settings are used to determine what action to
take when an item (such as data) being input would have the same name as one
already existing in the given window or buffer (WINDOW_IN).

SCATTER

Set this keyword to represent plot values as a scatter plot.

STYLE

Set this keyword to either a string specifying a style name created with
LIVE_STYLE.

Note
If STYLE is not set, the default plot style will be used.

TITLE

Set this keyword to a string specifying the title to give the main window. It must not
already be in use. A default will be chosen if no title is specified.

Setting Action Taken

0 New items will be given unique names.

1 Existing items will be replaced by new items (i.e., the old items
will be deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. This will cause
dynamic updating to occur for any current uses, e.g., a
visualization would redraw to show the new value.

4 Default. Option 0 will be used for items that do not have names
(e.g., data input as an expression rather than a named variable,
with no name provided via the NAME keyword). Option 3 will be
used for all named items.

Table 47: REPLACE keyword Settings and Action Taken
LIVE_PLOT IDL Reference Guide

745
TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. This
keyword has no effect if the PARENT_BASE keyword is set. The default is [0, 0].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the
REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

XLOG

Set this keyword to make the X axis a log axis. The default is 0 (linear axis).

YLOG

Set this keyword to make the Y axis a log axis. The default is 0 (linear axis).

XRANGE

Set this keyword equal to a two-element array that defines the minimum and
maximum values of the X axis range. The default equals the values computed from
the data range.

YRANGE

Set this keyword equal to a two-element array that defines the minimum and
maximum values of the Y axis range. The default equals the values computed from
the data range.

X_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
X axis. The default equals the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equals the values computed from the data range.

Example

; Plot two data sets simultaneously:
LIVE_PLOT, tempdata, pressureData
IDL Reference Guide LIVE_PLOT

746
Note
This is a “Live” situation. When data of the same name is used multiple times
within the same window, it always represents the same internal data item. For
example, if one does the following:

Y= indgen(10)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc1
Y = indgen(20)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc2

The first plot will update to use the Y of the second plot when the second plot is
drawn. If the user wants to display 2 “tweaks” of the same data, a different variable
name must be used each time, or at least one should be an expression (thus not a
named variable). For example:

LIVE_PLOT, Y1,...
LIVE_PLOT, Y2,...

or

LIVE_PLOT, Y,...
LIVE_PLOT, myFunc(Y),...

In last example, the data of the second visualization will be given a default unique
name since an expression rather than a named variable is input.

Note
The above shows the default behavior for naming and replacing data, which can be
overridden using the NAME and REPLACE keywords.

See Also

LIVE_OPLOT, PLOT, OPLOT
LIVE_PLOT IDL Reference Guide

747
LIVE_PRINT

The LIVE_PRINT procedure allows the user to print a given window to the printer.

Syntax

LIVE_PRINT [, /DIALOG] [, ERROR=variable] [, WINDOW_IN=string]

Macintosh Keywords: [, /SETUP]

Arguments

None

Keywords

DIALOG

Set this keyword to have a print dialog appear.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

SETUP

(Macintosh users only) Set this keyword to have a printer setup dialog appear. This
keyword allows the user to setup the page for printing.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.
IDL Reference Guide LIVE_PRINT

748
Example

LIVE_PRINT, WINDOW_IN='Live Plot 2'

See Also

DIALOG_PRINTJOB, DIALOG_PRINTERSETUP
LIVE_PRINT IDL Reference Guide

749
LIVE_RECT

The LIVE_RECT procedure is an interface for insertion of rectangles.

Syntax

LIVE_RECT [, COLOR='color name'] [, /DIALOG] [, DIMENSIONS=[width,
height]] [, ERROR=variable] [, /HIDE] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}]
[, LOCATION=[x, y]] [, NAME=string] [, /NO_DRAW] [, /NO_SELECTION]
[, REFERENCE_OUT=variable] [, THICK=pixels{1 to 10}]
[, VISUALIZATION_IN=string] [, WINDOW_IN=string]

Arguments

None

Keywords

COLOR

Set this keyword to a string (case-sensitive) of the color to be used for the rectangle.
The default is ‘Black’. The following colors are available:

DIALOG

Set this keyword to have the rectangle dialog appear. This dialog will fill in known
attributes from set keywords.

DIMENSIONS

Set this keyword to a two-element, floating-point vector of the form [width, height]
to specify the dimensions of the rectangle in normalized coordinates. The default is
[0.2, 0.2].

• Black • Red • Green • Yellow

• Blue • Magenta • Cyan • Dark Gray

• Light Gray • Brown • Light Red • Light Green

• Light Blue • Light Cyan • Light Magenta • White
IDL Reference Guide LIVE_RECT

750
ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

HIDE

Set this keyword to a boolean value indicating whether this item should be hidden.

• 0 = Visible (default)

• 1 = Hidden

LINESTYLE

Set this keyword to a pre-defined line style integer:

• 0 = Solid line (default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot

• 5 = long dash

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.5, 0.5].

Note
LOCATION may be adjusted to take into account window decorations.
LIVE_RECT IDL Reference Guide

751
NAME

Set this keyword equal to a string containing the name to be associated with this item.
The name must be unique within the given window or buffer (WINDOW_IN). If not
specified, a unique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the modified
items. The fields of the structure are shown in the following table.

THICK

Set this keyword to an integer value between 1 and 10, specifying the line thickness
to be used to draw the line, in pixels. The default is one pixel.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LIVE tool
visualization. The VIS field from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Tag Description

WIN Window Name

VIS Visualization Name

GRAPHIC Graphic Name the rectangle created

Table 48: Fields of the LIVE_RECT Reference Structure
IDL Reference Guide LIVE_RECT

752
Example

LIVE_RECT, LOCATION=[0.1,0.1],DIMENSIONS=[0.2,0.2],$
WINDOW_IN='Live Plot 2',VISUALIZATION_IN='line plot'

See Also

LIVE_LINE, LIVE_TEXT
LIVE_RECT IDL Reference Guide

753
LIVE_STYLE

The LIVE_STYLE function allows the user to create a style.

Syntax

Style = LIVE_STYLE ({ 'contour' | 'image' | 'plot' | 'surface'}
[, BASE_STYLE=style_name] [, COLORBAR_PROPERTIES=structure]
[, ERROR=variable] [, GRAPHIC_PROPERTIES=structure] [, GROUP=widget_id]
[, LEGEND_PROPERTIES=structure] [, NAME=string] [, /SAVE]
[, TEMPLATE_FILE=filename] [, VISUALIZATION_PROPERTIES=structure]
[, {X | Y | Z}AXIS_PROPERTIES=structure])

Arguments

Type

A string (case-insensitive) specifying the visualization style type. Available types
include: plot, contour, image, and surface.

Keywords

BASE_STYLE

Set this keyword equal to a string (case-insensitive) containing the name of a
previously saved style. It will be used for defaulting unspecified properties. If not
specified, only those properties you provide will be put into the style. The basic styles
that will always exist include:

Visualization Type Style Name

plot ‘Basic Plot’

contour ‘Basic Contour’

image ‘Basic Image’

surface ‘Basic Surface’

Table 49: Base Style Strings
IDL Reference Guide LIVE_STYLE

754
COLORBAR_PROPERTIES

The table below lists the structure of the COLORBAR_PROPERTIES keyword.

Tag Description

title_FontSize 9 to 72 points

title_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other is
a valid name of a font on the local system)

title_Color see color table

tick_FontSize see fontsize

tick_Fontname see fontname

tick_FontColor see color table

color see color table

thick 1 to 10 pixels

location [x, y] normalized units

minor number of minor ticks (minimum 0)

major number of major ticks (minimum 0)

default_minor set to compute default number of minor ticks

default_major set to compute default number of major ticks

tickLen normalized units * 100 = percent of visualization dimensions

subticklen normalized units * 100 = percent of ticklen

tickFormat see format

show_axis set to display the colorbar axis

show_outline set to display the colorbar outline

axis_thick see thick

dimensions [width, height] normalized units

hide 1=hidden, 0=visible

Table 50: Colorbar Properties Structure
LIVE_STYLE IDL Reference Guide

755
GRAPHIC_PROPERTIES

Set this keyword equal to a scalar or vector of structures defining the graphic
properties to use in creating the style. (Use a vector if you want successive graphics
to have different properties, e.g., different colored lines in a line plot. The structures
are used in a round-robin fashion.) Not all properties need be specified (see
BASE_STYLE). The complete structure definitions are listed in the following tables.

Plots

Images

Tag Data Type/Description

color string (see color table)

hide boolean (1=hidden, 0=visible)

linestyle integer (0=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot
dot, 5=long dash)

nSum integer (1 to number of elements to average over)

symbol_size [x,y] normalized units relative to the visualization

symbol_type integer (1-7)

thick integer (1 to 10 pixels)

Table 51: Plot Graphic Properties Structure

Tag Data Type/Description

hide boolean (1=hidden, 0=visible)

order boolean (set to draw from top to bottom)

sizing_constraint integer (0=natural, 1=aspect, 2=unrestricted)

Table 52: Image Graphic Properties Structure
IDL Reference Guide LIVE_STYLE

756
Contours

Surfaces

Tag Data Type/Description

downhill boolean (set to display downhill tick marks)

fill boolean (set to display contour levels as filled)

hide boolean (1=hidden, 0=visible)

n_levels integer (number of levels)

c_thick vector of thickness values

c_linestyle vector of linestyle values

c_color vector of color names

default_n_levels integer (set to default number of levels)

Table 53: Contour Graphic Properties Structure

Tag Data Type/Description

bottom string (see color table)

color string (see color table)

hidden_lines boolean (1=don’t show, 0=show)

hide boolean (1=hidden, 0=visible)

lineStyle integer (0=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash
dot dot, 5=long dash)

shading boolean (0=flat, 1=Gouraud)

show_skirt boolean (1=show, 0=don’t show)

skirt float (z value at which skirt is drawn [data units])

style integer (0=point, 1=wire, 2=solid, 3=ruledXZ, 4=ruledYZ,
5=lego (wire), 6=lego (solid))

thick integer (1 to 10 pixels)

Table 54: Surface Graphic Properties Structure
LIVE_STYLE IDL Reference Guide

757
GROUP

Set this keyword to the widget ID of the group leader for error message display. This
keyword is used only when the ERROR keyword is not set. If only one LIVE tool
window is present in the IDL session, it will default to that.

LEGEND_PROPERTIES

Set this keyword equal to a structure defining the legend properties to use in creating
the style. Not all properties need be specified (see BASE_STYLE). The complete
structure definitions for different types of styles are listed in the following tables.

Tag Description

title_FontSize 9 to 72 points

title_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other
is a valid name of a font on the local system)

title_Color see color table

item_fontSize see fontsize

item_fontName see fontname

text_color see color

border_gap normalized units * 100 = percent of item text height

columns number of columns to display the items in (minimum 0)

gap normalized units * 100 = percent of item text height

glyph_Width normalized units * 100 = percent of item text height

fill_color see color table

outline_color see color table

outline_thick see thick

location [x, y] normalized units

show_fill set to display the fill color

show_outline set to display the legend outline

hide 1=hidden, 0=visible

Table 55: Legend Properties Structure
IDL Reference Guide LIVE_STYLE

758
NAME

Set this keyword to a string containing a name for the returned style. If the SAVE
keyword is set, the name must be unique template file. If not specified, a name will be
automatically generated.

SAVE

Set this keyword to save the style in the template file. The supplied Name must not
already exist in the template file or an error will be returned.

VISUALIZATION_PROPERTIES

Set this keyword equal to a structure defining the visualization properties to use in
creating the style. Not all properties need be specified (see BASE_STYLE). The
complete structure definition is in the following table.

XAXIS_PROPERTIES, YAXIS_PROPERTIES, ZAXIS_PROPERTIES

Set these keywords equal to a scalar or vector of structures defining the axis
properties to use in creating the style. (Use a vector to specify property structures for
successive axes of the same direction have different properties. The structures are
used in a round-robin fashion.) Not all properties need be specified (see
BASE_STYLE). The user need only define the fields of the structure they wish to be
different from the BASE style. The complete structure definition is shown in the
following table.

Tag Data Type

color string (see color table) for background

hide boolean

transparent boolean

Table 56: Visualization Properties Structure

Tag Data Type

color string (see color table)

default_major integer

default_minor integer

Table 57: Axis Properties Structure
LIVE_STYLE IDL Reference Guide

759
Example

Style=LIVE_STYLE('plot',BASE_STYLE='basic plot', $
GRAPHIC_PROPERTIES={color:'red'})

See Also

LIVE_INFO, LIVE_CONTROL

exact boolean

gridstyle integer (0-5) (linestyle)

hide boolean

location 3-element floating vector (normalized units)

major integer (default=-1, computed by IDL)

minor integer (default=-1, computed by IDL)

thick integer (1-10)

tickDir integer

tickLen float (normalized units)

tick_fontname string

tick_fontsize integer

Tag Data Type

Table 57: Axis Properties Structure
IDL Reference Guide LIVE_STYLE

760
LIVE_SURFACE

The LIVE_SURFACE procedure creates an interactive plotting environment for
multiple surfaces. Because the interactive environment requires extra system
resources, this routine is most suitable for relatively small data sets. If you find that
performance does not meet your expectations, consider using the Direct Graphics
SURFACE routine or the Object Graphics IDLgrSurface class directly.

After LIVE_SURFACE has been executed, you can double-click on a section of the
surface to display a properties dialog. A set of buttons in the upper left corner of the
image window allows you to print, undo the last operation, redo the last “undone”
operation, copy, draw a line, draw a rectangle, or add text.

You can control your LIVE window after it is created using any of several auxiliary
routines. See “LIVE_Tools” on page 694 for an explanation.

Syntax

LIVE_SURFACE, Data, Data2,... [, /BUFFER] [, DIMENSIONS=[width,
height]{normal units}] [, /DOUBLE] [, DRAW_DIMENSIONS=[width,
height]{devive units}] [, ERROR=variable] [, /INDEXED_COLOR]
[, INSTANCING={-1 | 0 | 1}] [, LOCATION=[x, y]{normal units}]
[, /MANAGE_STYLE] [, NAME=structure] [, /NO_DRAW] [, /NO_SELECTION]
[, /NO_STATUS] [, /NO_TOOLBAR] [, PARENT_BASE=widget_id | ,
TLB_LOCATION=[Xoffset, Yoffset]{device units}]
[, PREFERENCE_FILE=filename{full path}] [, REFERENCE_OUT=variable]
[, RENDERER={0 | 1}] [, REPLACE={structure | {0 | 1 | 2 | 3 | 4}}]
[, STYLE=name_or_reference] [, TEMPLATE_FILE=filename] [, TITLE=string]
[, WINDOW_IN=string] [, {X | Y}INDEPENDENT=vector] [, {/X | /Y}LOG] [, {X
| Y}RANGE=[min, max]{data units}] [, {X | Y}_TICKNAME=array]

Figure 15: LIVE_SURFACE Properties Dialog

Print Undo Redo Copy Line Rectangle Text
LIVE_SURFACE IDL Reference Guide

761
Arguments

Data

A vector of data. Up to 25 of these arguments may be specified. If any of the data is
stored in IDL variables of type DOUBLE, LIVE_SURFACE uses double-precision
to store the data and to draw the result.

Keywords

BUFFER

Set this keyword to bypass the creation of a LIVE window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to a two-element, floating-point vector of the form [width, height]
specifying the dimensions of the visualization in normalized coordinates. The default
is [1.0, 1.0].

DOUBLE

Set this keyword to force LIVE_SURFACE to use double-precision to draw the
result. This has the same effect as specifying data in the Data argument using IDL
variables of type DOUBLE.

DRAW_DIMENSIONS

Set this keyword equal to a vector of the form [width, height] representing the desired
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.
IDL Reference Guide LIVE_SURFACE

762
Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor. (See Using IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) is to
use instancing if and only if the “software renderer” is being used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword will have no effect if the STYLE keyword is not
set to a style item.

NAME

Set this keyword to a structure containing suggested names for the data items to be
created for this visualization. See the REPLACE keyword for details on how they
will be used. The fields of the structure are as follows. (Any or all of the tags may be
set.)

Tag Description

DATA Dependent Data Name(s)

Table 58: Fields of the NAME keyword
LIVE_SURFACE IDL Reference Guide

763
The default for a field is to use the given variable name. If the variable does not have
a name (i.e., is an expression), a default name is automatically generated. The
dependent data names will be used in a round-robin fashion if more data than names
are input.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display

NO_STATUS

Set this keyword to prevent the creation of the status bar.

NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.

PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
a LIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishes to insert a tool into their own widget application will determine the setting
from the parent base sent to the tool.

Note
LIVE_DESTROY on a window is recommended when using PARENT_BASE so
that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

IX Independent X Data Name

IY Independent Y Data Name

Tag Description

Table 58: Fields of the NAME keyword
IDL Reference Guide LIVE_SURFACE

764
Note
When specifying a PARENT_BASE, that parent base must be running in a non-
blocking mode. Putting a LIVE tool into a realized base already controlled by
XMANAGER will override the XMANAGER mode to /NO_BLOCK even if
blocking had been in effect.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table.

RENDERER

Set this keyword to 1 to use the “software renderer”, or 0 to use the “hardware
renderer”. The default (-1) is to use the setting in the IDE (IDL Development
Environment) preferences; if the IDE is not running, however, the default is hardware
rendering. For more information, see “Hardware vs. Software Rendering” in the
Objects and Object Graphics manual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of

Tag Description

WIN Window Name

VIS Visualization Name

GRAPHIC Graphic Name(s)

XAXIS X-Axis Name

YAXIS Y-Axis Name

ZAXIS Z-Axis Name

LEGEND Legend Name

DATA Dependent Data Name(s)

IX Independent X Data Name

IY Independent Y Data Name

Table 59: Fields of the LIVE_SURFACE Reference Structure
LIVE_SURFACE IDL Reference Guide

765
the tags may be set.) The replacement settings are used to determine what action to
take when an item (such as data) being input would have the same name as one
already existing in the given window or buffer (WINDOW_IN).

STYLE

Set this keyword to either a string specifying a style name created with
LIVE_STYLE.

TITLE

Set this keyword to a string specifying the title to give the main window. It must not
already be in use. A default will be chosen if no title is specified.

TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. This
keyword has no effect if the PARENT_BASE keyword is set. The default is [0, 0].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the
REFERENCE_OUT structure from the creation of the LIVE tool will provide the

Setting Action Taken

0 New items will be given unique names.

1 Existing items will be replaced by new items (i.e., the old items will be
deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. This will cause dynamic
updating to occur for any current uses, e.g., a visualization would
redraw to show the new value.

4 Default. Option 0 will be used for items that do not have names (e.g.,
data input as an expression rather than a named variable, with no name
provided via the NAME keyword). Option 3 will be used for all named
items.

Table 60: REPLACE keyword Settings and Action Taken
IDL Reference Guide LIVE_SURFACE

766
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

XINDEPENDENT

Set this keyword to a vector specifying X values for LIVE_SURFACE. The default is
the data’s index values.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

YINDEPENDENT

Set this keyword to a vector specifying Y values for LIVE_SURFACE. The default is
the data’s index values.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

XLOG

Set this keyword to make the X axis a log axis. The default is 0 (linear axis).

YLOG

Set this keyword to make the Y axis a log axis. The default is 0 (linear axis).

XRANGE

Set this keyword equal to a two-element array that defines the minimum and
maximum values of the X axis range. The default equals the values computed from
the data range.

YRANGE

Set this keyword equal to a two-element array that defines the minimum and
maximum values of the Y axis range. The default equals the values computed from
the data range.

X_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
X axis. The default equals the values computed from the data range.
LIVE_SURFACE IDL Reference Guide

767
Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equals the values computed from the data range.

Example

This example visualizes two surface representations. To manipulate any part of the
surface, double click on surface to access a graphical user interface:

LIVE_SURFACE, tempData, pressureData

Note
This is a “Live” situation. When data of the same name is used multiple times
within the same window, it always represents the same internal data item. For
example, if one does the following:

Y = indgen(10)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc1
Y = indgen(20)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc2

The first plot will update to use the Y of the second plot when the second plot is
drawn. If the user wants to display 2 “tweaks” of the same data, a different variable
name must be used each time, or at least one should be an expression (thus not a
named variable). For example:

LIVE_PLOT, Y1,...
LIVE_PLOT, Y2,...

or;

LIVE_PLOT, Y,...
LIVE_PLOT, myFunc(Y),...

In last example, the data of the second visualization will be given a default unique
name since an expression rather than a named variable is input.

Note
The above shows the default behavior for naming and replacing data, which can be
overridden using the NAME and REPLACE keywords.

See Also

SURFACE, SHADE_SURF
IDL Reference Guide LIVE_SURFACE

768

LIVE
LIVE_TEXT

The LIVE_TEXT procedure is an interface for text annotation. You can control your
LIVE window after it is created using any of several auxiliary routines. See
“LIVE_Tools” on page 694 for an explanation.

Syntax

LIVE_TEXT[, Text] [, ALIGNMENT=value{0.0 to 1.0}] [, COLOR='color name']
[, /DIALOG] [, /ENABLE_FORMATTING] [, ERROR=variable]
[, FONTNAME=string] [, FONTSIZE=points{9 to 72}] [, /HIDE]
[, LOCATION=[x, y]] [, NAME=string] [, /NO_DRAW] [, /NO_SELECTION]
[, REFERENCE_OUT=variable] [, TEXTANGLE=value{0.0 to 360.0}]
[, VERTICAL_ALIGNMENT=value{0.0 to 1.0}] [, VISUALIZATION_IN=string]
[, WINDOW_IN=string]

Arguments

Text

The string to be used for the text annotation. The default is “Text”. If Text is an array
of strings, each element of the string array will appear on a separate line.

Keywords

ALIGNMENT

Set this keyword to a floating-point value between 0.0 and 1.0 to indicate the
horizontal alignment of the text. The alignment scheme is as follows:

1.0---- -----0.5----- ---0.0

Left Middle Right

COLOR

Set this keyword to a string (case-sensitive) of the foreground color to be used for the
text. The default is ‘Black’. The following colors are available:

• Black • Red • Green • Yellow

• Blue • Magenta • Cyan • Dark Gray

• Light Gray • Brown • Light Red • Light Green

• Light Blue • Light Cyan • Light Magenta • White
_TEXT IDL Reference Guide

769
DIALOG

Set this keyword to have the text annotation dialog appear. This dialog will fill in
known attributes from set keywords.

ENABLE_FORMATTING

Set this keyword to have LIVE_TEXT interpret “!” (exclamation mark) as font and
positioning commands.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

FONTNAME

Set this keyword to a string containing the name of the desired font. The default is
Helvetica.

FONTSIZE

Set this keyword to an integer scalar specifying the font point size to be used. The
default is 12. Available point sizes are 9 through 72.

HIDE

Set this keyword to a boolean value indicating whether this item should be drawn:

• 0 = Draw (default)

• 1 = Do not draw

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.5, 0.5].

Note
LOCATION may be adjusted to take into account window decorations.
IDL Reference Guide LIVE_TEXT

770
NAME

Set this keyword equal to a string containing the name to be associated with this item.
The name must be unique within the given window or buffer (WINDOW_IN). If not
specified, a unique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table

TEXTANGLE

Set this keyword to a floating-point value defining the angle of rotation of the text.
The valid range is from 0.0 to 360.0. The default is 0.0.

VERTICAL_ALIGNMENT

Set this keyword to a floating-point value between 0.0 and 1.0 to indicate the vertical
alignment of the text baseline. The alignment scheme is as follows:

0.0 Top
...

0.5 Middle
...

1.0 Bottom

Tag Description

WIN Window Name

VIS Visualization Name

GRAPHIC Graphic Name the text created

Table 61: Fields of the LIVE_TEXT Reference Structure
LIVE_TEXT IDL Reference Guide

771
VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LIVE tool
visualization. The VIS field from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Example

LIVE_TEXT, 'My Annotation', WINDOW_IN='Live Plot 2', $
VISUALIZATION_IN='line plot visualization'

See Also

LIVE_LINE, LIVE_RECT
IDL Reference Guide LIVE_TEXT

772
LJLCT

The LJLCT procedure loads standard color tables for LJ-250/252 printer. The color
tables are modified only if the device is currently set to “LJ”.

The default color maps used are for the 90 dpi color palette. There are only 8 colors
available at 180 dpi.

If the current device is ‘LJ’, the !D.N_COLORS system variable is used to determine
how many bit planes are in use (1 to 4). The standard color map for that number of
planes is loaded. These maps are described in Chapter 7 of the LJ250/LJ252
Companion Color Printer Programmer Reference Manual, Table 7-5. That manual
gives the values scaled from 1 to 100, LJLCT scales them from 0 to 255.

This routine is written in the IDL language. Its source code can be found in the file
ljlct.pro in the lib subdirectory of the IDL distribution.

Syntax

LJLCT

Example

; Set plotting to the LJ device:
SET_PLOT, 'LJ'

; Load the LJ color tables:
LJLCT

See Also

SET_PLOT
LJLCT IDL Reference Guide

773
LL_ARC_DISTANCE

The LL_ARC_DISTANCE function returns a two-element vector containing the
longitude and latitude [lon, lat] of a point given arc distance (-π ≤Arc_Dist ≤ π), and
azimuth (Az), from a specified location Lon_lat0. Values are in radians unless the
keyword DEGREES is set.

This routine is written in the IDL language. Its source code can be found in the file
ll_arc_distance.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LL_ARC_DISTANCE(Lon_lat0, Arc_Dist, Az [, /DEGREES])

Arguments

Lon_lat0

A 2-element vector containing the longitude and latitude of the starting point. Values
are assumed to be in radians unless the keyword DEGREES is set.

Arc_Dist

The arc distance from Lon_lat0. The value must be between -π and +π. To express
distances in arc units, divide by the radius of the globe expressed in the original units.
For example, if the radius of the earth is 6371 km, divide the distance in km by 6371
to obtain the arc distance.

Az

The azimuth from Lon_lat0. The value is assumed to be in radians unless the
keyword DEGREES is set.

Keywords

DEGREES

Set this keyword to express all measurements and results in degrees.

Example

; Initial point specified in radians:
Lon_lat0 = [1.0, 2.0]

; Arc distance in radians:
IDL Reference Guide LL_ARC_DISTANCE

774
Arc_Dist = 2.0

; Azimuth in radians:
Az = 1.0

Result = LL_ARC_DISTANCE(Lon_lat0, Arc_Dist, Az)
PRINT, Result

IDL prints:

2.91415 -0.622234

See Also

MAP_SET
LL_ARC_DISTANCE IDL Reference Guide

775
LMFIT

The LMFIT function does a non-linear least squares fit to a function with an arbitrary
number of parameters. LMFIT uses the Levenberg-Marquardt algorithm, which
combines the steepest descent and inverse-Hessian function fitting methods. The
function may be any non-linear function.

Iterations are performed until three consecutive iterations fail to change the chi
square value by more than the specified tolerance amount, or until a maximum
number of iterations have been performed. The LMFIT function returns a vector of
values for the dependent variables, as fitted by the function fit.

The initial guess of the parameter values should be as close to the actual values as
possible or the solution may not converge. Test the value of the variable specified by
the CONVERGENCE keyword to determine whether the algorithm converged, failed
to converge, or encountered a singular matrix.

This routine is written in the IDL language. Its source code can be found in the file
lmfit.pro in the lib subdirectory of the IDL distribution. LMFIT is based on the
routine mrqmin described in section 15.5 of Numerical Recipes in C: The Art of
Scientific Computing (Second Edition), published by Cambridge University Press,
and is used by permission.

Syntax

Result = LMFIT(X, Y, A [, ALPHA=variable] [, CHISQ=variable]
[, CONVERGENCE=variable] [, COVAR=variable] [, /DOUBLE] [, FITA=vector]
[, FUNCTION_NAME=string] [, ITER=variable] [, ITMAX=value]
[, ITMIN=value] [, MEASURE_ERRORS=vector] [, SIGMA=variable]
[, TOL=value])

Arguments

X

A row vector of independent variables. LMFIT does not manipulate or use values in
X, it simply passes X to the user-written function.

Y

A row vector containing the dependent variables.
IDL Reference Guide LMFIT

776
A

A vector that contains the initial estimate for each coefficient. Upon return, A will
contain the final estimates for the coefficients.

Keywords

ALPHA

Set this keyword equal to a named variable that will contain the value of the
curvature matrix.

CHISQ

Set this keyword equal to a named variable that will contain the final value of the
chi-square goodness-of-fit.

CONVERGENCE

Set this keyword equal to a named variable that will indicate whether the LMFIT
algorithm converged. The possible returned values are:

• 1 = the algorithm converged.

• 0 = the algorithm did not converge.

• -1 = the algorithm encountered a singular matrix and did not converge.

Tip
If LMFIT fails to converge, try setting the DOUBLE keyword.

COVAR

Set this keyword equal to a named variable that will contain the value of the
covariance matrix.

DOUBLE

Set this keyword to force the computations to be performed in double precision.

FITA

Set this keyword equal to a vector, with as many elements as A, which contains a zero
for each fixed parameter, and a non-zero value for elements of A to fit. If FITA is not
specified, all parameters are taken to be non-fixed.
LMFIT IDL Reference Guide

777
FUNCTION_NAME

Use this keyword to specify the name of the function to fit. If this keyword is omitted,
LMFIT assumes that the IDL procedure LMFUNCT is to be used. If LMFUNCT is
not already compiled, IDL compiles the function from the file lmfunct.pro,
located in the lib subdirectory of the IDL distribution. LMFUNCT is designed to fit
a quadratic equation.

The function to be fit must be written as an IDL procedure and compiled prior to
calling LMFIT. The function must accept a vector X (the independent variables) and
a vector A containing the fitted function’s parameter values. It must return an A+1-
element vector in which the first (zeroth) element is the evaluated function value and
the remaining elements are the partial derivatives with respect to each parameter in A.

Note
The returned value must be of the same data type as the input X value.

ITER

Set this keyword equal to a named variable that will contain the actual number of
iterations which were performed

ITMAX

Set this keyword equal to the maximum number of iterations. The default is 50.

ITMIN

Set this keyword equal to the minimum number of iterations. The default is 5.

MEASURE_ERRORS

Set this keyword to a vector containing standard measurement errors for each point
Y[i]. This vector must be the same length as X and Y.

Note
For Gaussian errors (e.g., instrumental uncertainties), MEASURE_ERRORS
should be set to the standard deviations of each point in Y. For Poisson or statistical
weighting, MEASURE_ERRORS should be set to SQRT(ABS(Y)).

SIGMA

Set this keyword to a named variable that will contain the 1-sigma uncertainty
estimates for the returned parameters
IDL Reference Guide LMFIT

778
Note
If MEASURE_ERRORS is omitted, then you are assuming that your user-supplied
model (or the default quadratic) is the correct model for your data, and therefore, no
independent goodness-of-fit test is possible. In this case, the values returned in
SIGMA are multiplied by SQRT(CHISQ/(N–M)), where N is the number of points
in X, and M is the number of coefficients. See section 15.2 of Numerical Recipes in
C (Second Edition) for details.

TOL

Set this keyword to the convergence tolerance. The routine returns when the relative
decrease in chi-squared is less than TOL in an iteration. The default is 1.0 x10-6 for
single-precision, and 1.0 x10-12 for double-precision.

WEIGHTS

The WEIGHTS keyword is obsolete and has been replaced by the
MEASURE_ERRORS keyword. Code that uses the WEIGHTS keyword will continue
to work as before, but new code should use the MEASURE_ERRORS keyword. Note
that the definition of the MEASURE_ERRORS keyword is not the same as the
WEIGHTS keyword. Using the WEIGHTS keyword, SQRT(1/WEIGHTS[i])
represents the measurement error for each point Y[i]. Using the
MEASURE_ERRORS keyword, the measurement error for each point is represented
as simply MEASURE_ERRORS[i].

Example

In this example, we fit a function of the form:

f(x)=a[0] * exp(a[1]*x) + a[2] + a[3] * sin(x)

; First, define a return function for LMFIT:
FUNCTION myfunct, X, A
 bx = A[0]*EXP(A[1]*X)
 RETURN,[[bx+A[2]+A[3]*SIN(X)], [EXP(A[1]*X)], [bx*X], $
 [1.0] ,[SIN(X)]]
END

PRO lmfit_example

; Compute the fit to the function we have just defined. First,
; define the independent and dependent variables:
X = FINDGEN(40)/20.0
Y = 8.8 * EXP(-9.9 * X) + 11.11 + 4.9 * SIN(X)
measure_errors = 0.05 * Y
LMFIT IDL Reference Guide

779
; Provide an initial guess for the function’s parameters:
A = [10.0, -0.1, 2.0, 4.0]
fita = [1,1,1,1]

; Plot the initial data, with error bars:
PLOTERR, X, Y, measure_errors
coefs = LMFIT(X, Y, A, MEASURE_ERRORS=measure_errors, /DOUBLE, $
 FITA = fita, FUNCTION_NAME = 'myfunct')

; Overplot the fitted data:
OPLOT, X, coefs

END

See Also

CURVEFIT, GAUSSFIT, LINFIT, POLY_FIT, REGRESS, SFIT, SVDFIT
IDL Reference Guide LMFIT

780
LMGR

The LMGR function tests whether a particular licensing mode is in effect. The
function returns True (1) if the mode specified is in effect, or False (0) otherwise.
Different licensing modes are specified by keyword; see the “Keywords” section
below for a description of each licensing mode.

The LMGR function can also force IDL into time demo mode or report the LMHostid
number for the machine in use.

For more information on IDL’s licensing methods, consult the IDL License
Management Guide, which is included in Adobe Acrobat Portable Document Format
on your IDL CD-ROM.

Syntax

Result = LMGR([, /CLIENTSERVER | , /DEMO | , /EMBEDDED | , /RUNTIME | ,
/STUDENT | , /TRIAL] [, EXPIRE_DATE=variable] [, /FORCE_DEMO]
[, INSTALL_NUM=variable] [, LMHOSTID=variable]
[, SITE_NOTICE=variable])

Arguments

None

Keywords

CLIENTSERVER

Set this keyword to test whether the current IDL session is using Client/Server
licensing (as opposed to Desktop licensing).

DEMO

Set this keyword to test whether the current IDL session is running in timed demo
mode. Unlicensed copies of IDL and copies running directly from a CD-ROM run in
timed demo mode.

EMBEDDED

Set this keyword to test whether the current IDL session is running in embedded
mode. Embedded-mode applications contain a built-in version of the IDL license.
Examples of applications running in embedded mode are the IDL demo and the IDL
registration program.
LMGR IDL Reference Guide

781
EXPIRE_DATE

Set this keyword to a named variable that will receive a string containing the
expiration date of the current IDL session if the session is a trial session. This named
variable will be undefined if the IDL session has a permanent license.

FORCE_DEMO

Set this keyword to force the current session into timed demo mode. Forcing an IDL
session into demo mode can be useful if you are testing an application that will be run
with an unlicensed copy of IDL. Note that you must exit IDL and restart to return to
normal licensed mode after forcing IDL into demo mode.

INSTALL_NUM

Set this keyword to a named variable that will receive a string containing the
installation number of the current IDL session. This named variable will be undefined
if the IDL session is unlicensed.

LMHOSTID

Set this keyword equal to a named variable that will contain a string value
representing the LMHostid for the machine in use. The LMHostid is used when
creating client/server IDL licenses. This keyword returns the string “0” on machines
which do not have a unique LMHostid (Macintoshes and some Windows machines
that use Desktop licensing.)

RUNTIME

Set this keyword to test whether the current IDL session is running in runtime mode.
Runtime-mode applications do not provide access to the IDL command line. See
Building IDL Applications for additional details on runtime applications.

SITE_NOTICE

Set this keyword to a named variable that will receive a string containing the site
notice of the current IDL session. This named variable will be undefined if the IDL
session is unlicensed.

STUDENT

Set this keyword to test whether the current IDL session is running in student mode.
The IDL Student version, which provides a subset of IDL’s full functionality, is
currently the only product that runs in student mode.
IDL Reference Guide LMGR

782
TRIAL

Set this keyword to test whether the current IDL session is running in trial mode.
Trial mode licenses allow IDL to operate for a limited time period (generally 30
days) but do not otherwise restrict functionality.

Example

Use the following commands to test whether the current IDL session is running in
timed demo mode:

Result = LMGR(/DEMO)

IF (Result GT 0) THEN PRINT, "IDL is in Demo Mode"

Use the following commands to generate the LMHostid number for the machine in
use:

Result = LMGR(LMHOSTID = myId)
PRINT, "LMHostid for this machine is: ", myId
LMGR IDL Reference Guide

783
LNGAMMA

The LNGAMMA function returns the logarithm of the gamma function of X. This
function is undefined for negative integers. If the argument is double-precision, the
result is double-precision. Otherwise, this function yields floating-point results.

Syntax

Result = LNGAMMA(X)

Arguments

X

The expression for which the logarithm of the gamma function will be evaluated.

Example

To find the logarithm of the gamma function of 0.5 and store the result in variable A,
enter:

A = LNGAMMA(0.5)

See Also

BETA, GAMMA, IBETA, IGAMMA
IDL Reference Guide LNGAMMA

784
LNP_TEST

The LNP_TEST function computes the Lomb Normalized Periodogram of two
sample populations X and Y and tests the hypothesis that the populations represent a
significant periodic signal against the hypothesis that they represent random noise.
The result is a two-element vector containing the maximum peak in the Lomb
Normalized Periodogram and its significance. The significance is a value in the
interval [0.0, 1.0]; a small value indicates that a significant periodic signal is present.

LNP_TEST is based on the routine fasper described in section 13.8 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = LNP_TEST(X, Y [, /DOUBLE] [, HIFAC=scale_factor]
[, JMAX=variable] [, OFAC=value] [, WK1=variable] [, WK2=variable])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector containing
equally or unequally spaced time samples.

Y

An n-element integer, single-, or double-precision floating-point vector containing
amplitudes corresponding to Xi.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

HIFAC

Use this keyword to specify the scale factor of the average Nyquist frequency. The
default value is 1.

JMAX

Use this keyword to specify a named variable that will contain the index of the
maximum peak in the Lomb Normalized Periodogram.
LNP_TEST IDL Reference Guide

785
OFAC

Use this keyword to specify the oversampling factor. The default value is 4.

WK1

Use this keyword to specify a named variable that will contain a vector of increasing
linear frequencies.

WK2

Use this keyword to specify a named variable that will contain a vector of values
from the Lomb Normalized Periodogram corresponding to the frequencies in WK1.

Example

This example tests the hypothesis that two sample, n-element populations X and Y
represent a significant periodic signal against the hypothesis that they represent
random noise:

; Define two n-element sample populations:
X = [1.0, 2.0, 5.0, 7.0, 8.0, 9.0, $

10.0, 11.0, 12.0, 13.0, 14.0, 15.0, $
16.0, 17.0, 18.0, 19.0, 20.0, 22.0, $
23.0, 24.0, 25.0, 26.0, 27.0, 28.0]

Y = [0.69502, -0.70425, 0.20632, 0.77206, -2.08339, 0.97806, $
1.77324, 2.34086, 0.91354, 2.04189, 0.53560, -2.05348, $
-0.76308, -0.84501, -0.06507, -0.12260, 1.83075, 1.41403, $
-0.26438, -0.48142, -0.50929, 0.01942, -1.29268, 0.29697]

; Test the hypothesis that X and Y represent a significant periodic
; signal against the hypothesis that they represent random noise:
result = LNP_TEST(X, Y, WK1 = wk1, WK2 = wk2, JMAX = jmax)
PRINT, result

IDL prints:

4.69296 0.198157

The small value of the significance represents the possibility of a significant periodic
signal. A larger number of samples for X and Y would produce a more conclusive
result. WK1 and WK2 are both 48-element vectors containing linear frequencies and
corresponding Lomb values, respectively. JMAX is the indexed location of the
maximum Lomb value in WK2.
IDL Reference Guide LNP_TEST

786
See Also

CTI_TEST, FV_TEST, KW_TEST, MD_TEST, R_TEST, RS_TEST, S_TEST,
TM_TEST, XSQ_TEST
LNP_TEST IDL Reference Guide

787
LOADCT

The LOADCT procedure loads one of 41 predefined IDL color tables. These color
tables are defined in the file colors1.tbl, located in the \resource\colors
subdirectory of the main IDL directory, unless the FILE keyword is specified. The
selected colortable is loaded into the COLORS common block as both the “current”
and “original” colortable. If the current device has fewer than 256 colors, the color
table data is interpolated to cover the number of colors in the device.

This routine is written in the IDL language. Its source code can be found in the file
loadct.pro in the lib subdirectory of the IDL distribution.

Syntax

LOADCT [, Table] [, BOTTOM=value] [, FILE=string] [, GET_NAMES=variable]
[, NCOLORS=value] [, /SILENT]

Arguments

Table

The number of the pre-defined color table to load, from 0 to 40. If this value is
omitted, a menu of the available tables is printed and the user is prompted to enter a
table number.

Keywords

BOTTOM

The first color index to use. LOADCT will use color indices from BOTTOM to
BOTTOM+NCOLORS-1. The default is BOTTOM=0.

FILE

Set this keyword to the name of a colortable file to be used instead of the file
colors1.tbl. See MODIFYCT to create and modify colortable files.

GET_NAMES

Set this keyword to a named variable in which the names of the color tables are
returned as a string array. No changes are made to the color table.
IDL Reference Guide LOADCT

788
NCOLORS

The number of colors to use. The default is all available colors (this number is stored
in the system variable !D.TABLE_SIZE).

SILENT

If this keyword is set, the Color Table message is suppressed.

See Also

MODIFYCT, XLOADCT, TVLCT
LOADCT IDL Reference Guide

789
LOCALE_GET

The LOCALE_GET function returns the current locale (string) of the operating
platform.

Syntax

Result = LOCALE_GET()

Arguments

None

Keywords

None
IDL Reference Guide LOCALE_GET

790
LON64ARR

The LON64ARR function returns a 64-bit integer vector or array.

Syntax

Result = LON64ARR(D1, ..., D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, LON64ARR sets every element of the result to zero. If NOZERO is set,
this zeroing is not performed and LON64ARR executes faster.

Example

To create L, a 100-element, 64-bit vector with each element set to 0, enter:

L = LON64ARR(100)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LONARR, MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
LON64ARR IDL Reference Guide

791
LONARR

The LONARR function returns a longword integer vector or array.

Syntax

Result = LONARR(D1, ..., D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, LONARR sets every element of the result to zero. If NOZERO is set, this
zeroing is not performed and LONARR executes faster.

Example

To create L, a 100-element, longword vector with each element set to 0, enter:

L = LONARR(100)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
IDL Reference Guide LONARR

792
LONG

The LONG function returns a result equal to Expression converted to longword
integer type.

Syntax

Result = LONG(Expression[, Offset [, Dim1, ..., Dim8]])

Arguments

Expression

The expression to be converted to longword integer.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as longword integer data.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
The dimension parameters can be any scalar expression. Up to eight dimensions can
be specified. If no dimension arguments are given, the result is taken to be scalar.

When converting from a string argument, it is possible that the string does not contain
a valid longword integer and no conversion is possible. The default action in such
cases is to print a warning message and return 0. The ON_IOERROR procedure can
be used to establish a statement to be jumped to in case of such errors.

Example

If A contains the floating-point value 32000.0, it can converted to a longword integer
and stored in the variable B by entering:

B = LONG(A)

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, STRING, UINT,
ULONG, ULONG64
LONG IDL Reference Guide

793
LONG64

The LONG64 function returns a result equal to Expression converted to 64-bit
integer type.

Syntax

Result = LONG64(Expression[, Offset [, D1, ..., D8]])

Arguments

Expression

The expression to be converted to 64-bit integer.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as 64-bit integer data.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
The dimension parameters can be any scalar expression. Up to eight dimensions can
be specified. If no dimension arguments are given, the result is taken to be scalar.

When converting from a string argument, it is possible that the string does not contain
a valid integer and no conversion is possible. The default action in such cases is to
print a warning message and return 0. The ON_IOERROR procedure can be used to
establish a statement to be executed in case of such errors.

Example

If A contains the floating-point value 32000.0, it can converted to a 64-bit integer and
stored in the variable B by entering:

B = LONG64(A)

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, STRING,
UINT, ULONG, ULONG64
IDL Reference Guide LONG64

794
LSODE

The LSODE function uses adaptive numerical methods to advance a solution to a
system of ordinary differential equations one time-step H, given values for the
variables Y and X.

Syntax

Result = LSODE(Y, X, H, Derivs[, Status] [, ATOL=value] [, RTOL=value])

Arguments

Y

A vector of values for Y at X

X

A scalar value for the initial condition.

H

A scalar value giving interval length or step size.

Derivs

A scalar string specifying the name of a user-supplied IDL function that calculates
the values of the derivatives Dydx at X. This function must accept two arguments: A
scalar floating value X, and one n-element vector Y. It must return an n-element
vector result.

For example, suppose the values of the derivatives are defined by the following
relations:

dy0 / dx = –0.5y0, dy1 / dx = 4.0 – 0.3y1 – 0.1y0

We can write a function called differential to express these relationships in the
IDL language:

FUNCTION differential, X, Y
RETURN, [-0.5 * Y[0], 4.0 - 0.3 * Y[1] - 0.1 * Y[0]]

END
LSODE IDL Reference Guide

795
Status

An index used for input and output to specify the state of the calculation. This
argument contains a positive value if the function was successfully completed.
Negative values indicate different errors.

Note
A preliminary call with tout = t is not counted as a first call here, as no
initialization or checking of input is done. (Such a call is sometimes useful for the
purpose of outputting the initial condition s.) Thus, the first call for which tout ≠ t
requires STATUS = 1 on input.

Input Value Description

1 This is the first call for the problem; initializations will occur.
This is the default value.

2 This is not the first call. The calculation is to continue normally.

3 This is not the first call. The calculation is to continue normally,
but with a change in input parameters.

Table 62: Input Values for Status

Output
Value Description

1 Nothing occurred. (However, an internal counter was set to detect
and prevent repeated calls of this type.)

2 The integration was performed successfully, and no roots were
found.

3 The integration was successful, and one or more roots were found.

-1 An excessive amount of work was done on this call, but the
integration was otherwise successful. To continue, reset STATUS
to a value greater than1 and begin again (the excess work step
counter will be reset to 0).

Table 63: Output Values for Status
IDL Reference Guide LSODE

796
Note
Since the normal output value of STATUS is 2, it does not need to be reset for
normal continuation. Also, since a negative input value of STATUS will be
regarded as illegal, a negative output value requires the user to change it, and
possibly other inputs, before calling the solver again.

Keywords

ATOL

A scalar or array value that specifies the absolute tolerance. The default value is 1.0e-
7. Use ATOL = 0.0 (or ATOL[i] = 0.0) for pure relative error control, and use

-2 The precision of the machine being used is insufficient for the
requested amount of accuracy. Integration was successful. To
continue, the tolerance parameters must be reset, and STATUS
must be set to 3. (If this condition is detected before taking any
steps, then an illegal input return (STATUS = -3) occurs instead.)

-3 Illegal input was detected, before processing any integration steps.
If the solver detects an infinite loop of calls to the solver with
illegal input, it will cause the run to stop.

-4 There were repeated error test failures on one attempted step,
before completing the requested task, but the integration was
successful. The problem may have a singularity, or the input may
be inappropriate.

-5 There were repeated convergence test failures on one attempted
step, before completing the requested task, but the integration was
successful. This may be caused by an inaccurate jacobian matrix, if
one is being used.

-6 ewt(i) became zero for some i during the integration. Pure relative
error control was requested on a variable which has now vanished.
Integration was successful.

Output
Value Description

Table 63: Output Values for Status
LSODE IDL Reference Guide

797
RTOL = 0.0 for pure absolute error control. For an explanation of how to use ATOL
and RTOL together, see RTOL below.

RTOL

A scalar value that specified the relative tolerance. The default value is 1.0e-7. Use
RTOL = 0.0 for pure absolute error control, and use ATOL = 0.0 (or ATOL[i] = 0.0)
for pure relative error control.

The estimated local error in the Y[i] argument will be controlled to be less than

ewt[i] = RTOL*abs(Y[i]) + ATOL ; If ATOL is a scalar.
ewt[i] = RTOL*abs(Y[i]) + ATOL[i] ; If ATOL is an array.

Thus, the local error test passes if, in each component, either the absolute error is less
than ATOL (or ATOL[i]), or if the relative error is less than RTOL.

Warning
Actual, or global, errors might exceed these local tolerances, so choose values for
ATOL and RTOL conservatively.

Example

To integrate the example system of differential equations for one time step, H:

PRO LSODETEST

; Define the step size:
H = 0.5

; Define an initial X value:
X = 0.0

; Define initial Y values:
Y = [4.0, 6.0]

; Integrate over the interval (0, 0.5):
result = LSODE(Y, X, H, 'differential')

; Print the result:
PRINT, result

END

FUNCTION differential, X, Y
RETURN, [-0.5 * Y[0], 4.0 - 0.3 * Y[1] - 0.1 * Y[0]]

END
IDL Reference Guide LSODE

798
IDL prints:

3.11523 6.85767

This is the exact solution vector to 5-decimal precision.

See Also

DERIV, DERIVSIG, RK4

References

1. Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE Solvers,
in Scientific Computing, R. S. Stepleman et al. (eds.), North-Holland,
Amsterdam, 1983, pp. 55-64.

2. Linda R. Petzold, Automatic Selection of Methods for Solving Stiff and
Nonstiff Systems of Ordinary Differential Equations, SIAM J. SCI. STAT.
COMPUT. 4 (1983), pp. 136-148.

3. Kathie L. Hiebert and Lawrence F. Shampine, Implicitly Defined Output
Points for Solutions of ODE’s, Sandia Report SAND80-0180, February, 1980.
LSODE IDL Reference Guide

799
LU_COMPLEX

The LU_COMPLEX function solves an n by n complex linear system Az = b using
LU decomposition. The result is an n-element complex vector z. Alternatively,
LU_COMPLEX computes the generalized inverse of an n by n complex array. The
result is an n by n complex array.

This routine is written in the IDL language. Its source code can be found in the file
lu_complex.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LU_COMPLEX(A, B [, /DOUBLE] [, /INVERSE] [, /SPARSE])

Arguments

A

An n by n complex array.

B

An n-element right-hand side vector (real or complex).

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

INVERSE

Set this keyword to compute the generalized inverse of A. If INVERSE is specified,
the input argument B is ignored.

SPARSE

Set this keyword to convert the input array to row-indexed sparse storage format.
Computations are done using the iterative biconjugate gradient method. This
keyword is effective only when solving complex linear systems. This keyword has no
effect when calculating the generalized inverse.

Example

; Define a complex array A and right-side vector B:
IDL Reference Guide LU_COMPLEX

800
A = [[COMPLEX(1, 0), COMPLEX(2,-2), COMPLEX(-3,1)], $
[COMPLEX(1,-2), COMPLEX(2, 2), COMPLEX(1, 0)], $
[COMPLEX(1, 1), COMPLEX(0, 1), COMPLEX(1, 5)]]

B = [COMPLEX(1, 1), COMPLEX(3,-2), COMPLEX(1,-2)]

; Solve the complex linear system Az = b:
Z = LU_COMPLEX(A, B)
PRINT, 'Z:'
PRINT, Z

; Compute the inverse of the complex array A by supplying a scalar
; for B (in this example -1):
inv = LU_COMPLEX(A, B, /INVERSE)
PRINT, 'Inverse:'
PRINT, inv

IDL prints:

Z:
(0.552267, 1.22818)(-0.290371, -0.600974)
(-0.629824, -0.340952)

Inverse:
(0.261521, -0.0303485)(0.0138629, 0.329337)
(-0.102660, -0.168602)
(0.102660, 0.168602)(0.0340952, -0.162982)
(0.125890, -0.0633196)
(-0.0689397, 0.0108655)(-0.0666916, -0.0438366)
(0.0614462, -0.161858)

See Also

CRAMER, CHOLSOL, GS_ITER, LUSOL, SVSOL, TRISOL, and “Sparse Arrays”
in Chapter 16 of Using IDL.
LU_COMPLEX IDL Reference Guide

801
LUDC

The LUDC procedure replaces an n by n array, A, with the LU decomposition of a
row-wise permutation of itself.

LUDC is based on the routine ludcmp described in section 2.3 of Numerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

LUDC, A, Index [, /COLUMN] [, /DOUBLE] [, INTERCHANGES=variable]

Arguments

A

An n by n array of any type except string. Upon output, A is replaced with its LU
decomposition.

Index

An output vector that records the row permutations which occurred as a result of
partial pivoting.

Keywords

COLUMN

Set this keyword if the input array A is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

INTERCHANGES

An output variable that is set to positive 1 if the number of row interchanges was
even, or to negative 1 if the number of interchanges was odd.

Example

See the description of LUSOL for an example using this procedure.
IDL Reference Guide LUDC

802
See Also

LUSOL
LUDC IDL Reference Guide

803
LUMPROVE

The LUMPROVE function uses LU decomposition to iteratively improve an
approximate solution X of a set of n linear equations in n unknowns Ax = b. The
result is a vector, whose type and length are identical to X, containing the improved
solution.

LUMPROVE is based on the routine mprove described in section 2.5 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = LUMPROVE(A, Alud, Index, B, X [, /COLUMN] [, /DOUBLE])

Arguments

A

The n by n coefficient array of the linear system Ax = b.

Alud

The n by n LU decomposition of A created by the LUDC procedure.

Index

An input vector, created by the LUDC procedure, containing a record of the row
permutations which occurred as a result of partial pivoting.

B

An n-element vector containing the right-hand side of the linear system
Ax = b.

X

An n-element vector containing the approximate solution of the linear system
Ax = b.

Keywords

COLUMN

Set this keyword if the input array A is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).
IDL Reference Guide LUMPROVE

804
DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

This example uses LUMPROVE to improve an approximate solution X to the linear
system Ax = B:

; Create coefficient array A:
A = [[2.0, 1.0, 1.0], $

[4.0, -6.0, 0.0], $
[-2.0, 7.0, 2.0]]

; Create a duplicate of A:
alud = A
; Define the right-hand side vector B:
B = [3.0, -8.0, 10.0]

; Begin with an estimated solution X:
X = [.89, 1.78, -0.88]

; Decompose the duplicate of A:
LUDC, alud, INDEX

; Compute an improved solution:
result = LUMPROVE(A, alud, INDEX, B, X)

; Print the result:
PRINT, result

IDL prints:

 1.00000 2.00000 -1.00000

This is the exact solution vector.

See Also

GS_ITER, LUDC
LUMPROVE IDL Reference Guide

805
LUSOL

The LUSOL function is used in conjunction with the LUDC procedure to solve a set
of n linear equations in n unknowns Ax = b. The parameter A is input not as the
original array, but as its LU decomposition, created by the routine LUDC. The result
is an n-element vector whose type is identical to A.

LUSOL is based on the routine lubksb described in section 2.3 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = LUSOL(A, Index, B [, /COLUMN] [, /DOUBLE])

Arguments

A

The n by n LU decomposition of an array created by the LUDC procedure.

Index

An input vector, created by the LUDC procedure, containing a record of the row
permutations which occurred as a result of partial pivoting.

B

An n-element vector containing the right-hand side of the linear system
Ax = b.

Keywords

COLUMN

Set this keyword if the input array A is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
IDL Reference Guide LUSOL

806
Example

This example solves the linear system Ax = b using LU decomposition and back
substitution:

; Define array A:
A = [[2.0, 1.0, 1.0], $

[4.0, -6.0, 0.0], $
[-2.0, 7.0, 2.0]]

; Define right-hand side vector B:
B = [3.0, -8.0, 10.0]

; Decompose A:
LUDC, A, INDEX

; Compute the solution using back substitution:
result = LUSOL(A, INDEX, B)

; Print the result:
PRINT, result

IDL prints:

1.00000 2.00000 -1.00000

This is the exact solution vector.

See Also

CHOLSOL, CRAMER, GS_ITER, LU_COMPLEX, LUDC, SVSOL, TRISOL
LUSOL IDL Reference Guide

807
M_CORRELATE

The M_CORRELATE function computes the multiple correlation coefficient of a
dependent variable and two or more independent variables.

This routine is written in the IDL language. Its source code can be found in the file
m_correlate.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = M_CORRELATE(X, Y [, /DOUBLE])

Arguments

X

An integer, single-, or double-precision floating-point array of m-columns and n-rows
that specifies the independent variable data. The columns of this two dimensional
array correspond to the n-element vectors of independent variable data.

Y

An n-element integer, single-, or double-precision floating-point vector that specifies
the dependent variable data.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

PRO MCORRELATE_TEST

; Define the independent (X) and dependent (Y) data:
X = [[0.477121, 2.0, 13.0], $

[0.477121, 5.0, 6.0], $
[0.301030, 5.0, 9.0], $
[0.000000, 7.0, 5.5], $
[0.602060, 3.0, 7.0], $
[0.698970, 2.0, 9.5], $
[0.301030, 2.0, 17.0], $
[0.477121, 5.0, 12.5], $
[0.698970, 2.0, 13.5], $
IDL Reference Guide M_CORRELATE

808
[0.000000, 3.0, 12.5], $
[0.602060, 4.0, 13.0], $
[0.301030, 6.0, 7.5], $
[0.301030, 2.0, 7.5], $
[0.698970, 3.0, 12.0], $
[0.000000, 4.0, 14.0], $
[0.698970, 6.0, 11.5], $
[0.301030, 2.0, 15.0], $
[0.602060, 6.0, 8.5], $
[0.477121, 7.0, 14.5], $
[0.000000, 5.0, 9.5]]

Y = [97.682, 98.424, 101.435, 102.266, 97.067, 97.397, $
99.481, 99.613, 96.901, 100.152, 98.797, 100.796, $
98.750, 97.991, 100.007, 98.615, 100.225, 98.388, $
98.937, 100.617]

; Compute the multiple correlation of Y on the first column of
; X. The result should be 0.798816.
PRINT, 'Multiple correlation of Y on 1st column of X:'
PRINT, M_CORRELATE(X[0,*], Y)

; Compute the multiple correlation of Y on the first two columns
; of X. The result should be 0.875872.
PRINT, 'Multiple correlation of Y on 1st two columns of X:'
PRINT, M_CORRELATE(X[0:1,*], Y)

; Compute the multiple correlation of Y on all columns of X. The
; result should be 0.877197.
PRINT, 'Multiple correlation of Y on all columns of X:'
PRINT, M_CORRELATE(X, Y)

END

IDL prints:

Multiple correlation of Y on 1st column of X:
 0.798816
Multiple correlation of Y on 1st two columns of X:
 0.875872
Multiple correlation of Y on all columns of X:
 0.877196

See Also

A_CORRELATE, CORRELATE, C_CORRELATE, P_CORRELATE,
R_CORRELATE
M_CORRELATE IDL Reference Guide

809
MACHAR

The MACHAR function determines and returns machine-specific parameters
affecting floating-point arithmetic. Information is returned in the form of a structure
with the fields listed below under “MACHAR Fields”.

MACHAR is based on the routine machar described in section 20.1 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission. See that section for more
details on and sample values of the various parameters returned.

Syntax

Result = MACHAR([, /DOUBLE])

Arguments

None

Keywords

DOUBLE

The information returned is normally for single-precision floating-point arithmetic.
Specify DOUBLE to see double-precision information.

MACHAR Fields

The following table lists the fields in the structure returned from the MACHAR
function:

Field Name Description

IBETA The radix in which numbers are represented. A longword
integer.

IT The number of base-IBETA digits in the floating-point mantissa
M. A longword integer.

Table 64: MACHAR Fields
IDL Reference Guide MACHAR

810
See Also

CHECK_MATH, “!VALUES” on page 2423, and “Special Floating-Point Values” in
Chapter 17 of Building IDL Applications.

IRND A code in the range 0 – 5 giving information on what type of
rounding is done and how underflow is handled. A longword
integer.

NGRD The number of “guard digits” used when truncating the product
of two mantissas. A longword integer.

MACHEP The exponent of the smallest power of IBETA that, added to
1.0, gives something different from 1.0. A longword integer.

NEGEP The exponent of the smallest power of IBETA that, subtracted
from 1.0, gives something different from 1.0. A longword
integer.

IEXP The number of bits in the exponent. A longword integer.

MINEXP The smallest value of IBETA consistent with there being no
leading zeros in the mantissa. A longword integer.

MAXEXP The smallest positive value of IBETA that causes overflow. A
longword integer.

EPS The floating-point number IBETAMACHEP, loosely referred to
as the “floating-point precision.”

EPSNEG The floating-point number IBETANEGEP, which is another way
of determining floating-point precision.

XMIN The floating-point number IBETAMINEXP, generally the
magnitude of the smallest usable floating-point value.

XMAX The largest usable floating-point value, defined as the number
(1-EPSNEG)xIBETAMAXEXP

Field Name Description

Table 64: MACHAR Fields
MACHAR IDL Reference Guide

811
MAKE_ARRAY

The MAKE_ARRAY function returns an array of the specified type, dimensions, and
initialization. This function enables you to dynamically create an array whose
characteristics are not known until run time.

Syntax

Result = MAKE_ARRAY ([D1, ..., D8] [, /BYTE | , /COMPLEX | , /DCOMPLEX | ,
/DOUBLE | , /FLOAT | , /INT | , /L64 | , /LONG | , /OBJ, | , /PTR | , /STRING | ,
/UINT | , /UL64 | , /ULONG] [, DIMENSION=vector] [, /INDEX] [, /NOZERO]
[, SIZE=vector] [, TYPE=type_code] [, VALUE=value])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

BYTE

Set this keyword to create a byte array.

COMPLEX

Set this keyword to create a complex, single-precision, floating-point array.

DCOMPLEX

Set this keyword to create a complex, double-precision, floating-point array.

DIMENSION

A vector of 1 to 8 elements specifying the dimensions of the result.

DOUBLE

Set this keyword to create a double-precision, floating-point array.

FLOAT

Set this keyword to create a single-precision, floating-point array.
IDL Reference Guide MAKE_ARRAY

812
L64

Set this keyword to create a 64-bit integer array.

INDEX

Set this keyword to initialize the array with each element set to the value of its one-
dimensional subscript.

INT

Set this keyword to create an integer array.

LONG

Set this keyword to create a longword integer array.

NOZERO

Set this keyword to prevent the initialization of the array. Normally, each element of
the resulting array is set to zero.

OBJ

Set this keyword to create an object reference array.

PTR

Set this keyword to create a pointer array.

SIZE

A size vector specifying the type and dimensions of the result. The format of a size
vector is given in the description of the SIZE function.

STRING

Set this keyword to create a string array.

TYPE

The type code to set the type of the result. See the description of the SIZE function
for a list of IDL type codes.

UINT

Set this keyword to create an unsigned integer array.

UL64

Set this keyword to create an unsigned 64-bit integer array.
MAKE_ARRAY IDL Reference Guide

813
ULONG

Set this keyword to create an unsigned longword integer array.

VALUE

The value to initialize each element of the resulting array. VALUE can be a scalar of
any type including structure types. The result type is taken from VALUE unless one
of the other keywords that specify a type is also set. In that case, VALUE is
converted to the type specified by the other keyword prior to initializing the resulting
array.

Example

To create a 3-element by 4-element integer array with each element set to the value 5,
enter:

M = MAKE_ARRAY(3, 4, /INTEGER, VALUE = 5)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, LONARR, STRARR, UINTARR, ULON64ARR, ULONARR
IDL Reference Guide MAKE_ARRAY

814
MAKE_DLL

The MAKE_DLL procedure builds a sharable library from C language code which is
suitable for use by IDL’s dynamic linking features such as CALL_EXTERNAL,
LINKIMAGE, and dynamically loadable modules (DLMs). MAKE_DLL reduces the
complexity of building sharable libraries by providing a stable cross-platform method
for the user to describe the desired library, and issuing the necessary operating system
commands to build the library.

Note
MAKE_DLL is supported under UNIX, VMS, and Microsoft Windows, but is not
available for the Macintosh.

Although MAKE_DLL is very convenient, it is not intended for use as a general
purpose compiler. Instead, MAKE_DLL is specifically targeted to solving the most
common IDL dynamic linking problem: building a sharable library from C language
source files that are usable by IDL. Because of this, the following requirements
apply:

• You must have a C compiler installed on your system. It is easiest to use the
compiler used to build IDL, because MAKE_DLL already knows how to use
that compiler without any additional configuring. To determine which
compiler was used, query the !MAKE_DLL system variable with a print
statement such as the following:

PRINT, !MAKE_DLL.COMPILER_NAME

• MAKE_DLL only compiles programs written in the C language; it does not
understand Fortran, C++, or any other languages.

• MAKE_DLL provides only the functionality necessary to build C code
intended to be linked with IDL. Not every possible option supported by the C
compiler or system linker is addressed, only those commonly needed by IDL-
related C code.

MAKE_DLL solves the most common IDL-centric problem of linking C code with
IDL. To do more than this or to use a different language requires a system-specific
building process (e.g. make files, projects, etc...).
MAKE_DLL IDL Reference Guide

815
Syntax

MAKE_DLL, InputFiles [, OutputFile], ExportedRoutineNames [, CC=string]
[, COMPILE_DIRECTORY=path] [, DLL_PATH=variable]
[, EXPORTED_DATA=string] [, EXTRA_CFLAGS=string]
[, EXTRA_LFLAGS=string] [, INPUT_DIRECTORY=path] [, LD=string]
[, /NOCLEANUP] [, OUTPUT_DIRECTORY=path] [, /SHOW_ALL_OUTPUT]
[, /VERBOSE]

VMS-Only Keywords: [/VAX_FLOAT]

Arguments

InputFiles

A string (scalar or array) giving the names of the input C program files to be
compiled by MAKE_DLL. These names should not include any directory path
information or the .c suffix, they are simply the base file names.

The input directory is specified using the INPUT_DIRECTORY keyword, and the .c
file suffix is assumed.

OutputFile

The base name of the resulting sharable library. This name should not include any
directory path information or the sharable library suffix, which differs between
platforms (for example: .so, .a, .sl, .exe, .dll).

The output directory can be specified using the OUTPUT_DIRECTORY keyword.

If the OutputFile argument is omitted, the first name given by InputFile is used as the
base name of output file.

ExportedRoutineNames

A string (scalar or array) specifying the names of the routines to be exported (i.e., are
visible for linking) from the resulting sharable library.

Keywords

CC

If present, a template string to use in generating the C compiler commands to compile
InputFiles. If CC is not specified, the value given by the !MAKE_DLL.CC system
variable is used by default. See the discussion of !MAKE_DLL for a description of
how to write the format string for CC.
IDL Reference Guide MAKE_DLL

816
COMPILE_DIRECTORY

To build a sharable library, MAKE_DLL requires a place to create the necessary
intermediate files and possibly the final library itself. If COMPILE_DIRECTORY is
specified, the directory specified is used. If COMPILE_DIRECTORY is not
specified, the directory given by the !MAKE_DLL.COMPILE_DIRECTORY system
variable is used.

DLL_PATH

If present, the name of a variable to receive the complete file path for the newly
created sharable library. The location of the resulting sharable library depends on the
setting of the OUTPUT_DIRECTORY or COMPILE_DIRECTORY keywords as
well as the !MAKE_DLL.COMPILE_DIRECTORY system variable, and different
platforms use different file suffixes to indicate sharable libraries. Use of the
DLL_PATH keyword makes it possible to determine the resulting file path in a
simple and portable manner.

EXPORTED_DATA

A string (scalar or array) containing the names of variables to be exported (i.e., are
visible for linking) from the resulting sharable library.

EXTRA_CFLAGS

If present, a string supplying extra options for the command used to execute the C
compiler to compile the files given by InputFiles. This keyword is frequently used to
specify header file include directories. This text is inserted in place of the %X format
code in the compile string. See the discussion of the CC keyword and
!MAKE_DLL.CC system variable for more information.

EXTRA_LFLAGS

If present, a string supplying extra options for the command used to execute the
linker when combining the object files to produce the sharable library. This keyword
is frequently used to specify libraries to be included in the link, and is inserted in
place of the %X format code in the linker string. See the discussion of the LD
keyword and !MAKE_DLL.LD system variable for more information.

INPUT_DIRECTORY

If present, the path to the directory containing the source C files listed in InputFiles.
If INPUT_DIRECTORY is not specified, the directory given by
COMPILE_DIRECTORY is assumed to contain the files.
MAKE_DLL IDL Reference Guide

817
LD

If present, a template string to use when generating the linker command to generate
the resulting sharable library. If LD is not specified, the value given by the
!MAKE_DLL.LD system variable is used by default. See the discussion of
!MAKE_DLL for a description of how to write the format string for LD.

NOCLEANUP

To produce a sharable library, MAKE_DLL produces several intermediate files:

1. A shell script (UNIX), command file (VMS), or batch file (Windows) that is
then executed via SPAWN to build the library.

2. A linker options file. This file is used to control the linker. MAKE_DLL uses it
to cause the routines given by the ExportedRoutineNames argument (and
EXPORTED_DATA keyword) to be exported from the resulting sharable
library. The general platform terminology is shown below.

3. Object files, resulting from compiling the source C files given by the
InputFiles argument.

4. A log file that captures the output from executing the script, and which can be
used for debugging in case of error.

By default, MAKE_DLL deletes all of these intermediate files once the sharable
library has been successfully built. Setting the NOCLEANUP keyword prevents
MAKE_DLL from removing them.

Note
Set the NOCLEANUP keyword (possibly in conjunction with VERBOSE) for
trouble shooting, or to read the files for additional information on how
MAKE_DLL works.

Platform Linker Options File Terminology

UNIX export file, or linker map file

VMS linker options file (.OPT)

Windows a .DEF file

Table 65: Platform Terminology for Linker Options File
IDL Reference Guide MAKE_DLL

818
OUTPUT_DIRECTORY

By default, MAKE_DLL creates the resulting sharable library in the compile
directory specified by the COMPILE_DIRECTORY keyword or the
!MAKE_DLL.COMPILE_DIRECTORY system variable. The
OUTPUT_DIRECTORY keyword can be used to override this and explicitly specify
where the library file should go.

SHOW_ALL_OUTPUT

MAKE_DLL normally produces no output unless an error prevents successful
building of the sharable library. Set SHOW_ALL_OUTPUT to see all output
produced by the spawned process building the library.

VERBOSE

If set, VERBOSE causes MAKE_DLL to issue informational messages as it carries
out the task of building the sharable library. These messages include information on
the intermediate files created to build the library and how they are used.

VMS-Only Keywords

This keyword is for VMS platforms only, and is ignored on all other platforms.

VAX_FLOAT

If set, specifies the sharable library to be compiled for VAX F (single) or D (double)
floating point formats. The default is to use the IEEE format used by IDL.

Example 1

Testmodule DLM

The IDL distribution contains an example of a simple DLM (dynamically loadable
module) in the external/dlm subdirectory. This example consists of a single C
source file, and the desired sharable library exports a single function called
IDL_Load. The following MAKE_DLL statement builds this sharable library,
leaving the resulting file in the directory given by
!MAKE_DLL.COMPILE_DIRECTORY:

; Locate the source file:
INDIR = FILEPATH(’’, SUBDIRECTORY=[’external’, ’dlm’])
; Build the sharable library:
MAKE_DLL, ’testmodule’, ’IDL_Load’, INPUT_DIRECTORY=INDIR
MAKE_DLL IDL Reference Guide

819
Example 2

Using GCC

IDL is built with the standard vendor-supported C compiler in order to get maximum
integration with the target system. MAKE_DLL assumes that you have the same
compiler installed on your system and its defaults are targeted to use it. To use other
compilers, you tell MAKE_DLL how to use them.

For example, many IDL users have the gcc compiler installed on their systems. This
example (tested under 32-bit Solaris 7 using gcc 2.95.2) shows how to use gcc to
build the testmodule sharable library from the previous example:

; We need the include directory for the IDL export.h header
; file. One way to get this is to extract it from the
; !MAKE_DLL system variable using the STREGEX function
INCLUDE=STREGEX(!MAKE_DLL.CC, '-I[^]+', /EXTRACT)
; Locate the source file
INDIR = FILEPATH('', SUBDIRECTORY=['external', 'dlm'])
; Build the sharable library, using the CC keyword to specify gcc:
MAKE_DLL, 'testmodule', 'IDL_Load', INPUT_DIRECTORY=INDIR, $

CC='gcc -c -fPIC '+ INCLUDE + '%C -o %O'

See Also

!MAKE_DLL
IDL Reference Guide MAKE_DLL

820
MAP_2POINTS

The MAP_2POINTS function returns parameters such as distance, azimuth, and path
relating to the great circle or rhumb line connecting two points on a sphere.

This routine is written in the IDL language. Its source code can be found in the file
map_2points.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = MAP_2POINTS(lon0, lat0, lon1, lat1 [, DPATH=value | , /METERS |
, /MILES | , NPATH=integer{2 or greater} | , /PARAMETERS | , RADIUS=value]
[, /RADIANS] [, /RHUMB])

Return Value

This function returns a two-element vector containing the distance and azimuth of the
great circle or rhumb line connecting the two points, P0 to P1, in the specified
angular units, unless one or more of the keywords NPATH, DPATH, METERS,
MILES, PARAMETERS, or RADIUS is specified. See the keyword descriptions for
the return value associated with each of these keywords.

If MILES, METERS, or RADIUS is not set, distances are angular distance, from 0 to
180 degrees (or 0 to !DPI if the RADIANS keyword is set). Azimuth is measured in
degrees or radians, east of north.

Arguments

Lon0, Lat0

Longitude and latitude of the first point, P0.

Lon1, Lat1

Longitude and latitude of the second point, P1.

Keywords

DPATH

Set this keyword to a value specifying the maximum angular distance between the
points on the path in the prevalent units, degrees or radians.
MAP_2POINTS IDL Reference Guide

821
METERS

Set this keyword to return the distance between the two points in meters, calculated
using the Clarke 1866 equatorial radius of the earth.

MILES

Set this keyword to return the distance between the two points in miles, calculated
using the Clarke 1866 equatorial radius of the earth.

NPATH

Set this keyword to a value specifying the number of points to return. If this keyword
is set, the function returns a (2, NPATH) array containing the longitude/latitude of
the points on the great circle or rhumb line connecting P0 and P1. For a great circle,
the points will be evenly spaced in distance, while for a rhumb line, the points will be
evenly spaced in longitude.

Note
This keyword must be set to an integer of 2 or greater.

PARAMETERS

Set this keyword to return the parameters determining the great circle connecting the
two points, [sin(c), cos(c), sin(az), cos(az)], where c is the great circle angular
distance, and az is the azimuth of the great circle at P0, in degrees east of north.

RADIANS

Set this keyword if inputs and angular outputs are to be specified in radians. The
default is degrees.

RADIUS

Set this keyword to a value specifying the radius of the sphere to be used to calculate
the distance between the two points. If this keyword is specified, the function returns
the distance between the two points calculated using the given radius.

RHUMB

Set this keyword to return the distance and azimuth of the rhumb line connecting the
two points, P0 to P1. The default is to return the distance and azimuth of the great
circle connecting the two points. A rhumb line is the line of constant direction
connecting two points.
IDL Reference Guide MAP_2POINTS

822
Examples

The following examples use the geocoordinates of two points, Boulder and London:

B = [-105.19, 40.02] ;Longitude, latitude in degrees.
L = [-0.07, 51.30]

Example 1

Print the angular distance and azimuth, from B, of the great circle connecting the two
points:

PRINT, MAP_2POINTS(B[0], B[1], L[0], L[1])

IDL prints 67.854333 40.667833

Example 2

Print the angular distance and course (azimuth), connecting the two points:

PRINT, MAP_2POINTS(B[0], B[1], L[0], L[1],/RHUMB)

IDL prints 73.966283 81.228057

Example 3

Print the distance in miles between the two points:

PRINT, MAP_2POINTS(B[0], B[1], L[0], L[1],/MILES)

IDL prints 4693.5845

Example 4

Print the distance in miles along the rhumb line connecting the two points:

PRINT, MAP_2POINTS(B[0], B[1], L[0], L[1], /MILES, /RHUMB)

IDL prints 5116.3571

Example 5

Display a map containing the two points, and annotate the map with both the great
circle and the rhumb line path between the points, drawn at one degree increments:

MAP_SET, /MOLLWEIDE, 40,-50, /GRID, SCALE=75e6,/CONTINENTS
PLOTS, MAP_2POINTS(B[0], B[1], L[0], L[1],/RHUMB, DPATH=1)
PLOTS, MAP_2POINTS(B[0], B[1], L[0], L[1],DPATH=1)
MAP_2POINTS IDL Reference Guide

823
This displays the following map:

See Also

MAP_SET

Figure 16: Map annotated with great circle and rhumb line path between Boulder
and London, drawn at one degree increments.
IDL Reference Guide MAP_2POINTS

824
MAP_CONTINENTS

The MAP_CONTINENTS procedure draws continental boundaries, filled continents,
political boundaries, coastlines, and/or rivers, over an existing map projection
established by MAP_SET. Outlines can be drawn in low or high-resolution (if the
optional high-resolution CIA World Map database is installed). If
MAP_CONTINENTS is called without any keywords, it draws low-resolution,
unfilled continent outlines.

MAP_SET must be called before MAP_CONTINENTS to establish the projection
type, the center of the projection, polar rotation and geographic limits.

Syntax

MAP_CONTINENTS [, /COASTS] [, COLOR=index] [, /CONTINENTS]
[, /COUNTRIES] [,FILL_CONTINENTS={1 | 2}[, ORIENTATION=value]]
[, /HIRES] [, LIMIT=vector] [, MLINESTYLE={0 | 1 | 2 | 3 | 4 | 5}]
[, MLINETHICK=value] [, /RIVERS] [, SPACING=centimeters] [, /USA]

Graphics Keywords: [, /T3D] [, ZVALUE=value{0 to 1}]

Keywords

COASTS

Set this keyword to draw coastlines, islands, and lakes instead of the default continent
outlines. Note that if you are using the low-resolution map database (if the HIRES
keyword is not set), many islands are drawn even when COASTS is not set. If you are
using the high-resolution map database (if the HIRES keyword is set), no islands are
drawn unless COASTS is set.

COLOR

Set this keyword to the color index of the lines being drawn.

CONTINENTS

Set this keyword to plot the continental boundaries. This is the default, unless
COASTS, COUNTRIES, RIVERS and/or USA is set.

Note that if you are using the low-resolution map database (if the HIRES keyword is
not set), outlines for continents, islands, and lakes are drawn when the
CONTINENTS keyword is set. If you are using the high-resolution map database (if
the HIRES keyword is set), only continental outlines are drawn when the
MAP_CONTINENTS IDL Reference Guide

825
CONTINENTS keyword is set. To draw islands and lakes when using the high-
resolution map database, use the COASTS keyword.

COUNTRIES

Set this keyword to draw political boundaries as of 1993.

FILL_CONTINENTS

Set this keyword to 1 to fill continent boundaries with a solid color. The color is set
by the COLOR keyword. Set this keyword to 2 to fill continent boundaries with a line
fill. For line filling, the COLOR, MLINESTYLE, MLINETHICK, ORIENTATION,
and SPACING keywords can be used to control the type of line fill.

Note
When using this keyword in conjunction with the HIRES keyword, lakes on
continents will be filled and islands will not be filled.

HIRES

Set this keyword to use high-resolution map data instead of the default low-resolution
data. This option is only available if you have installed the optional high-resolution
map datasets. If the high-resolution data is not available, a warning is printed and the
low-resolution data is used instead.

This keyword can be used in conjunction with the COASTS, COUNTRIES,
FILL_CONTINENTS, and RIVERS keywords.

LIMIT

Set this keyword to a four-element vector [Latmin, Lonmin, Latmax, Lonmax] to only
plot continents that pass through the LIMIT rectangle. The points (Latmin, Lonmin)
and (Latmax, Lonmax) are the latitudes and longitudes of two points diagonal from
each other on the regionüs boundary. The default is to use the limits from the current
map projection.

Note
Line segments for continents which extend outside of the LIMIT rectangle will still
be plotted.
IDL Reference Guide MAP_CONTINENTS

826
MLINESTYLE

The line style of the boundaries being drawn. The default is solid lines. Valid
linestyles are shown in the table below:

MLINETHICK

The thickness of the boundary or fill lines. The default thickness is 1.

ORIENTATION

Set this keyword to the counterclockwise angle in degrees from horizontal that the
line fill should be drawn. The default is 0. This keyword only has effect if the
FILL_CONTINENTS keyword is set to 2.

RIVERS

Set this keyword to draw rivers.

SPACING

Set this keyword to the spacing, in centimeters, for a line fill. This keyword only has
effect if the FILL_CONTINENTS keyword is set to 2. The default is 0.5 centimeters.

USA

Set this keyword to draw borders for each state in the United States in addition to
continental boundaries.

Index Linestyle

0 Solid

1 Dotted

2 Dashed

3 Dash Dot

4 Dash Dot Dot

5 Long Dashes

Table 66: IDL Linestyles
MAP_CONTINENTS IDL Reference Guide

827
Graphics Keywords Accepted

See Appendix C, “Graphics Keywords”, for descriptions of graphics and plotting
keywords not listed above. T3D, ZVALUE.

Example

The following example demonstrates the use of map outlines to embellish a map
projection:

; Handle TrueColor displays:
DEVICE, DECOMPOSED=0

; Load discrete color table:
tek_color

; Match color indices to colors we want to use:
black=0 & white=1 & red=2
green=3 & dk_blue=4 & lt_blue=5

; Set up an orthographic projection centered over the north
; Atlantic.Fill the hemisphere with dark blue. Specify black
; gridlines:
MAP_SET, /ORTHO, 40, -30, 23, /ISOTROPIC, $

/HORIZON, E_HORIZON={FILL:1, COLOR:dk_blue}, $
/GRID, COLOR=black

; Fill the continent boundaries with solid white:
MAP_CONTINENTS, /FILL_CONTINENTS, COLOR=white

; Overplot coastline data:
MAP_CONTINENTS, /COASTS, COLOR=black

; Add rivers, in light blue:
MAP_CONTINENTS, /RIVERS, COLOR=lt_blue

; Show national borders:
MAP_CONTINENTS, /COUNTRIES, COLOR=red, MLINETHICK=2

See Also

MAP_GRID, MAP_IMAGE, MAP_PATCH, MAP_SET
IDL Reference Guide MAP_CONTINENTS

828
MAP_GRID

The MAP_GRID procedure draws the graticule of parallels and meridians, according
to the specifications established by MAP_SET. MAP_SET must be called before
MAP_GRID to establish the projection type, the center of the projection, polar
rotation and geographical limits.

Syntax

MAP_GRID [, /BOX_AXES | [, CLIP_TEXT=0] [, LATALIGN=value{0.0 to 1.0}]
[, LONALIGN=value{0.0 to 1.0}] [, LATLAB=longitude] [, LONLAB=latitude]
[, ORIENTATION=clockwise_degrees_from_horiz]] [, CHARSIZE=value]
[, COLOR=index] [, /FILL_HORIZON] [, GLINESTYLE={0 | 1 | 2 | 3 | 4 | 5}]
[, GLINETHICK=value] [, /HORIZON] [, INCREMENT=value]
[, LABEL=n{label_every_nth_gridline}] [, LATDEL=degrees]
[, LATNAMES=array, LATS=vector] [, LONDEL=degrees]
[, LONNAMES=array, LONS=vector] [, /NO_GRID]

Graphics Keywords: [, /T3D] [, ZVALUE=value{0 to 1}]

Keywords

BOX_AXES

Set this keyword to create box-style axes for map plots where the parallels intersect
the sides, and the meridians intersect the bottom and top edges of the box.

CHARSIZE

Set this keyword to the size of the characters used for the labels. The default is 1.

CLIP_TEXT

Set this keyword to a zero value to turn off clipping of text labels. By default, text
labels are clipped. This keyword is ignored if the BOX_AXES keyword is set.

COLOR

Set this keyword to the color index for the grid lines.

FILL_HORIZON

Set this keyword to fill the current map_horizon.
MAP_GRID IDL Reference Guide

829
GLINESTYLE

If set, the line style used to draw the grid of parallels and meridians. See
“LINESTYLE” on page 2405 for a list of available linestyles. The default index is 1,
drawing a dotted line.

GLINETHICK

Set this keyword to the thickness of the grid lines. Default is 1.

HORIZON

Set this keyword to draw the current map horizon.

INCREMENT

Set this keyword to the spacing between graticle points.

LABEL

Set this keyword to label the parallels and meridians with their corresponding
latitudes and longitudes. Setting this keyword to an integer will cause every LABEL
gridline to be labeled (that is, if LABEL=3 then every third gridline will be labeled).
The starting point for determining which gridlines are labeled is the minimum
latitude or longitude (-180 to 180), unless the LATS or LONS keyword is set to a
single value. In this case, the starting point is the value of LATS or LONS.

LATALIGN

This keyword controls the alignment of the text baseline for latitude labels. A value
of 0.0 left justifies the label, 1.0 right justifies it, and 0.5 centers it. This keyword is
ignored if the BOX_AXES keyword is set.

LATDEL

Set this keyword equal to the spacing (in degrees) between parallels of latitude in the
grid. If this keyword is not set, a suitable value is determined from the current map
projection.

LATLAB

The longitude at which to place latitude labels. The default is the center longitude on
the map. This keyword is ignored if the BOX_AXES keyword is set.

LATNAMES

Set this keyword equal to an array specifying the names to be used for the latitude
labels. By default, this array is automatically generated in units of degrees. The
IDL Reference Guide MAP_GRID

830
LATNAMES array can be either type string or any single numeric type, but should
not be of mixed type.

When LATNAMES is specified, the LATS keyword must also be specified. The
number of elements in the two arrays need not be equal. If there are more elements in
the LATNAMES array than in the LATS array, the extra LATNAMES are ignored. If
there are more elements in the LATS array than in the LATNAMES array, labels in
degrees will be automatically provided for the missing latitude labels.

The LATNAMES keyword can be also used when the LATS keyword is set to a
single value. It this case, the first label supplied will be used at the specified latitude;
subsequent names will be placed at the next latitude line to the north, wrapping
around the globe if appropriate. Caution should be used when using LATNAMES in
conjunction with a single LATS value, since the number of visible latitude gridlines
is dependent on many factors.

LATS

Set this keyword equal to a one or more element vector of latitudes for which lines
will be drawn (and optionally labeled). If LATS is omitted, appropriate latitudes will
be generated based on the value of the (optional) LATDEL keyword. If LATS is set
to a single value, that latitude and a series of automatically generated latitudes will be
drawn (and optionally labeled). Automatically generated latitudes have the values:

[...,LATS-LATDEL,LATS,LATS+LATDEL,...]

over the extent of the map. If LATS is a single value, that value is taken to be the
starting point for labelling (See the LABEL keyword).

LONALIGN

This keyword controls the alignment of the text baseline for longitude labels. A value
of 0.0 left justifies the label, 1.0 right justifies it, and 0.5 centers it. This keyword is
ignored if the BOX_AXES keyword is set.

LONDEL

Set this keyword equal to the spacing (in degrees) between meridians of longitude in
the grid. If this keyword is not set, a suitable value is determined from the current
map projection.

LONLAB

The latitude at which to place longitude labels. The default is the center latitude on
the map. This keyword is ignored if the BOX_AXES keyword is set.
MAP_GRID IDL Reference Guide

831
LONNAMES

Set this keyword equal to an array specifying the names to be used for the longitude
labels. By default, this array is automatically generated in units of degrees. The
LONNAMES array can be either type string or any single numeric type, but should
not be of mixed type.

When LONNAMES is specified, the LONS keyword must also be specified. The
number of elements in the two arrays need not be equal. If there are more elements in
the LONNAMES array than in the LONS array, the extra LONNAMES are ignored.
If there are more elements in the LONS array than in the LONNAMES array, labels
in degrees will be automatically provided for the missing longitude labels.

The LONNAMES keyword can be also used when the LONS keyword is set to a
single value. It this case, the first label supplied will be used at the specified
longitude; subsequent names will be placed at the next longitude line to the east,
wrapping around the globe if appropriate. Caution should be used when using
LONNAMES in conjunction with a single LONS value, since the number of visible
longitude gridlines is dependent on many factors.

LONS

Set this keyword equal to a one or more element vector of longitudes for which lines
will be drawn (and optionally labeled). If LONS is omitted, appropriate longitudes
will be generated based on the value of the (optional) LONDEL keyword. If LONS is
set to a single value, that longitudes and a series of automatically generated
longitudes will be drawn (and optionally labeled). Automatically generated
longitudes have the values:

[...,LONS-LONDEL,LONS,LONS+LONDEL,...]

over the extent of the map. If LONS is a single value, that value is taken to be the
starting point for labelling (See the LABEL keyword).

NO_GRID

Set this keyword if you only want labels but not gridlines.

ORIENTATION

Set this keyword equal to an angle in degrees from horizontal (in the clockwise
direction) to rotate the labels. This keyword is ignored if the BOX_AXES keyword is
set.
IDL Reference Guide MAP_GRID

832
Graphics Keywords Accepted

See Appendix C, “Graphics Keywords”, for descriptions of graphics and plotting
keywords not listed above. T3D, ZVALUE.

Example

The following example creates an orthographic projection, defines which latitudes to
label, and provides text labels. Note that the text labels are rotated to match the
orientation of the map projection.

; Set up an orthographic projection:
MAP_SET, /ORTHO, 10, 20, 30, /ISOTROPIC, /CONTINENTS, /HORIZON
; Define latitudes of interest:
lats = [-80, -45, -30, -20, 0, 15, 27, 35, 45, 55, 75]
; Create string equivalents of latitudes:
latnames = strtrim(lats, 2)
; Label the equator:
latnames(where(lats eq 0)) = 'Equator'
; Draw the grid:
MAP_GRID, LABEL=2, LATS=lats, LATNAMES=latnames, LATLAB=7, $

LONLAB=-2.5, LONDEL=20, LONS=-15, ORIENTATION=-30

See Also

MAP_CONTINENTS, MAP_IMAGE, MAP_PATCH, MAP_SET
MAP_GRID IDL Reference Guide

833
MAP_IMAGE

The MAP_IMAGE function returns an image (or other dataset) warped to fit the
current map projection. This function provides an easy method for displaying
geographical data as an image on a map. The MAP_SET procedure should be called
prior to calling MAP_IMAGE.

MAP_IMAGE works in image (graphic) space. For each destination pixel (when
COMPRESS is set to one) MAP_IMAGE calculates the latitude and longitude by
applying the inverse map projection. This latitude and longitude are then used to
index and interpolate the Image argument, obtaining an interpolated value for the
destination pixel. The time required by MAP_IMAGE depends mainly on the number
of pixels in the destination and the setting of the COMPRESS parameter.

MAP_IMAGE is more efficient than MAP_PATCH when the input data set is large
compared to the destination area. If the converse is true, MAP_PATCH is more
efficient.

For more information, see “Image Display” in Chapter 14 of Using IDL.

Syntax

Result = MAP_IMAGE(Image [, Startx, Starty [, Xsize, Ysize]]
[, LATMIN=degrees{-90 to 90}] [, LATMAX=degrees{-90 to 90}]
[, LONMIN=degrees{-180 to 180}] [, LONMAX=degrees{-180 to 180}]
[, /BILINEAR] [, COMPRESS=value] [, SCALE=value] [, MAX_VALUE=value]
[, MIN_VALUE=value] [, MISSING=value])

Arguments

Image

A two-dimensional array containing the image to be overlaid on the map.

Startx

A named variable that, upon return, contains the X coordinate position where the left
edge of the image should be placed on the screen.

Starty

A named variable that, upon return, contains the Y coordinate position where the left
edge of the image should be placed on the screen.
IDL Reference Guide MAP_IMAGE

834
Xsize

A named variable that, upon return, contains the width of the image expressed in
graphic coordinate units. If the current graphics device uses scalable pixels, the
values of Xsize and Ysize should be passed to the TV procedure.

Ysize

A named variable that, upon return, contains the height of the image expressed in
graphic coordinate units. If the current graphics device uses scalable pixels, the
values of Xsize and Ysize should be passed to the TV procedure.

Keywords

LATMIN

The latitude corresponding to the first row of Image. The default is -90 degrees. Note
also that -90° ≤ LATMIN < LATMAX ≤ 90°.

LATMAX

The latitude corresponding to the last row of Image. The default value is 90 degrees.
Note also that -90° ≤ LATMIN < LATMAX ≤ 90°.

LONMIN

The longitude corresponding to the first (leftmost) column of the Image argument.
Select LONMIN so that -180° ≤ LONMIN ≤ 180°. The default value is -180.

LONMAX

The longitude corresponding to the last (rightmost) column of the Image argument.
Select LONMAX so that it is larger than LONMIN. If the longitude of the last
column is equal to (LONMIN - (360. /Nx)) MODULO 360, it is assumed that the
image covers all longitudes (Nx being the total number of columns in the Image
argument).

BILINEAR

Set this flag to use bilinear interpolation to soften edges in the returned image,
otherwise, nearest neighbor sampling is used.

COMPRESS

This keyword, the interpolation compression flag, controls the accuracy of the results
from MAP_IMAGE. The default is 4 for output devices with fixed pixel sizes. The
inverse projection transformation is applied to each ith row and column. Setting this
MAP_IMAGE IDL Reference Guide

835
keyword to a higher number saves time while lower numbers produce more accurate
results. Setting this keyword to 1 solves the inverse map transformation for every
pixel of the output image.

SCALE

Set this keyword to the pixel/graphics scale factor for devices with scalable pixels
(e.g., PostScript). The default is 0.02 pixels/graphic coordinate. This setting yields an
approximate output image size of 350 x 250. Make this number larger for more
resolution (and larger PostScript files and images), or smaller for faster, smaller, and
less accurate images.

MAX_VALUE

Data points with values equal to or greater than this value will be treated as missing
data, and will be set to the value specified by the MISSING keyword.

MIN_VALUE

Data points with values equal to or less than this value will be treated as missing data,
and will be set to the value specified by the MISSING keyword.

MISSING

The pixel value to set areas outside the valid map coordinates. If this keyword is
omitted, areas outside the map are set to 255 (white) if the current graphics device is
PostScript, otherwise they are set to 0.

Example

The following lines of code set up an orthographic map projection and warp a simple
image to it.

; Create a simple image to be warped:
image = BYTSCL(SIN(DIST(400)/10))

; Display the image so we can see what it looks like before
; warping:
TV, image
latmin = -65
latmax = 65

; Left edge is 160 East:
lonmin = 160

; Right edge is 70 West = +360:
lonmax = -70 + 360
MAP_SET, 0, -140, /ORTHOGRAPHIC, /ISOTROPIC, $
IDL Reference Guide MAP_IMAGE

836
LIMIT=[latmin, lonmin, latmax, lonmax]
result = MAP_IMAGE(image,Startx,Starty, COMPRESS=1, $

LATMIN=latmin, LONMIN=lonmin, $
LATMAX=latmax, LONMAX=lonmax)

; Display the warped image on the map at the proper position:
TV, result, Startx, Starty

; Draw continent outlines:
MAP_GRID, latdel=10, londel=10, /LABEL, /HORIZON

; Draw gridlines over the map and image:
MAP_CONTINENTS, /coasts

See Also

MAP_CONTINENTS, MAP_GRID, MAP_PATCH, MAP_SET
MAP_IMAGE IDL Reference Guide

837
MAP_PATCH

The MAP_PATCH function returns an image (or other dataset) warped to fit the
current map projection. Mapping coordinates should be setup via a call to MAP_SET
before using MAP_PATCH.

MAP_PATCH works in object (data) space. It divides the input data set, Image_Orig,
into triangular patches, either directly from the implicit rectangular grid, or by
triangulating the data points on the surface of the sphere using the TRIANGULATE
procedure. These triangular patches are then projected to the map plane in the image
space of the destination array and then interpolated. The time required by
MAP_PATCH depends mainly on the number of elements in the input array.

MAP_PATCH is more efficient than MAP_IMAGE when the destination area is
large compared to the input data set. If the converse is true, MAP_IMAGE is more
efficient.

This routine is written in the IDL language. Its source code can be found in the file
map_patch.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = MAP_PATCH(Image_Orig [, Lons, Lats] [, LAT0=value] [, LAT1=value]
[, LON0=value] [, LON1=value] [, MAX_VALUE=value] [, MISSING=value]
[, /TRIANGULATE] [, XSIZE=variable] [, XSTART=variable] [, YSIZE=variable]
[, YSTART=variable])

Arguments

Image_Orig

A one- or two-dimensional array that contains the data to be overlaid on the map. If
the TRIANGULATE keyword is not set, Image_Orig must be a two-dimensional
array. Rows and columns must be arranged in increasing longitude and latitude order.
Also, the corner points of each cell must be contiguous. This means that the seam of a
map must lie on a cell boundary, not in its interior, splitting the cell.

Lons

An optional vector that contains the longitude value for each column in Image_Orig.
If Lons is a one-dimensional vector, longitude (Image_Orig[i,j]) = Lons[i]; if Lons is
a two-dimensional vector, longitude (Image_Orig[i,j]) = Lons[i,j].
IDL Reference Guide MAP_PATCH

838
This argument can be omitted if the longitudes are equally-spaced and the beginning
and ending longitudes are specified with the LON0 and LON1 keywords.

Lats

An optional vector that contains the latitude value for each row in Image_Orig. If
Lats is a one-dimensional vector, latitude (Image_Orig[i,j]) = Lats[i]; if Lats is a two-
dimensional vector, latitude (Image_Orig[i,j]) = Lats[i,j].

This argument can be omitted if the latitudes are equally-spaced and the beginning
and ending latitudes are specified with the LAT0 and LAT1 keywords.

Keywords

LAT0

The latitude of the first row of data. The default is -90.

LAT1

The latitude of the last row of data. The default is +90.

LON0

The longitude of the first column of data. The default is -180.

LON1

The longitude of the last column of data. The default is 180 - (360/Number-of-Rows)

MAX_VALUE

The largest data value to be warped. Values in Image_Orig greater than this value are
considered missing. Pixels in the output image that correspond to these missing
values are set to the value specified by the MISSING keyword.

MISSING

Set this keyword to a value to be used for areas outside the valid map coordinates
(i.e., the “background color”). If the current plotting device is PostScript, the default
is 255 (white). Otherwise, the default is 0 (usually black).

TRIANGULATE

Set this keyword to convert the input data to device space and triangulate them. This
keyword must be specified if the connectivity of the data points is not rectangular and
monotonic in device space.
MAP_PATCH IDL Reference Guide

839
XSIZE

Set this keyword to a named variable in which the width of the output image is
returned, in graphic coordinate units. If the current graphics device has scalable
pixels (e.g., PostScript), the values returned by XSIZE and YSIZE should be passed
to the TV procedure.

XSTART

Set this keyword to a named variable in which the X coordinate where the left edge of
the image should be placed on the screen is returned.

YSIZE

Set this keyword to a named variable in which the height of the output image is
returned, in graphic coordinate units. If the current graphics device has scalable
pixels (e.g., PostScript), the values returned by XSIZE and YSIZE should be passed
to the TV procedure.

YSTART

Set this keyword to a named variable in which the Y coordinate where the bottom
edge of the image should be placed on the screen is returned.

Example

; Form a 24 x 24 dataset on a sphere:
n = 24

; Specify equally gridded latitudes:
lat = replicate(180./(n-1),n) # findgen(n) - 90

; Specify equally gridded longitudes:
lon = findgen(n) # replicate(360./(n-1), n)

; Convert to Cartesian coordinates:
x = cos(lon * !dtor) * cos(lat * !dtor)
y = sin(lon * !dtor) * cos(lat * !dtor)
z = sin(lat * !dtor)

; Set interpolation function to scaled distance squared
; from (1,1,0):
f = BYTSCL((x-1)^2 + (y-1)^2 + z^2)

; Set up projection:
MAP_SET, 90, 0, /STEREO, /ISOTROPIC, /HORIZ

; Grid and display the data:
IDL Reference Guide MAP_PATCH

840
TV, MAP_PATCH(f, XSTART=x0, YSTART=y0), x0, y0

; Draw gridlines over the map and image:
MAP_GRID

; Draw continent outlines:
MAP_CONTINENTS

; Draw a horizon line:
MAP_HORIZON

See Also

MAP_CONTINENTS, MAP_GRID, MAP_IMAGE, MAP_SET
MAP_PATCH IDL Reference Guide

841
MAP_PROJ_INFO

The MAP_PROJ_INFO procedure returns information about the current map and/or
the available projections. To establish a current projection, mapping parameters
should be setup via a call to MAP_SET.

Syntax

MAP_PROJ_INFO [, iproj] [, AZIMUTHAL=variable] [, CIRCLE=variable]
[, CYLINDRICAL=variable] [, /CURRENT] [, LL_LIMITS=variable]
[, NAME=variable] [, PROJ_NAMES=variable] [, UV_LIMITS=variable]
[, UV_RANGE=variable]

Arguments

Iproj

The projection index. If the CURRENT keyword is set, then the index of the current
map projection is returned in Iproj.

Keywords

AZIMUTHAL

Set this keyword to a named variable that, upon return, will be set to 1 if the
projection is azimuthal and 0 otherwise.

CIRCLE

Set this keyword to a named variable that, upon return, will be set to 1 if the
projection is circular or elliptical and 0 otherwise.

CURRENT

Set this keyword to use the current projection index and return that index in Iproj.

CYLINDRICAL

Set this keyword to a named variable that, upon return, will be set to 1 if the
projection is cylindrical and 0 otherwise.

LL_LIMITS

Set this keyword to a named variable that will contain the geocoordinate rectangle of
the current map in degrees, [Latmin, Lonmin, Latmax, Lonmax]. This range may not
IDL Reference Guide MAP_PROJ_INFO

842
always be available, especially if the LIMIT keyword was not specified in the call to
MAP_SET. If either or both the longitude and latitude range are not available, the
minimum and maximum values will be set to zero.

NAME

Set this keyword to a named variable that will contain the name of the projection.

PROJ_NAMES

Set this keyword to a named variable that will contain a string array containing the
names of the available projections, ordered by their indices. The first projection name
is stored in element one.

UV_LIMITS

Set this keyword to a named variable that will contain the UV bounding box of the
current map, [Umin, Vmin, Umax, Vmax].

UV_RANGE

Set this keyword to a named variable that will contain the UV coordinate limits of the
selected map projection, [Umin, Vmin, Umax, Vmax]. UV coordinates are mapped to
normalized coordinates using the system variables !X.S and !Y.S. These limits are
dependent upon the selected projection, but independent of the current map.

Example

; Establish a projection
MAP_SET, /MERCATOR

;Obtain projection characteristics
MAP_PROJ_INFO, /CURRENT, NAME=name, AZIMUTHAL=az, $
CYLINDRICAL=cyl, CIRCLE=cir

On return, the variables will be set as follows:

AZIM INT = 0
CIRC INT = 0
CYL INT = 1
NAME STRING 'Mercator'

See Also

MAP_SET
MAP_PROJ_INFO IDL Reference Guide

843
MAP_SET

The MAP_SET procedure establishes the axis type and coordinate conversion
mechanism for mapping points on the earth’s surface, expressed in latitude and
longitude, to points on a plane, according to one of several possible map projections.

The type of map projection, the map center, polar rotation and geographical limits
can all be customized. The system variable !MAP retains the information needed to
effect coordinate conversions to the plane and, inversely, from the projection plane to
points on the earth in latitude and longitude. Users should not change the values of
the fields in !MAP directly.

MAP_SET can also be made to plot the grid of latitude and longitude lines and
continental boundaries by setting the keywords GRID and CONTINENTS. Many
other types of boundaries can be overplotted on maps using the
MAP_CONTINENTS procedure.

Note
If the graphics device is changed, MAP_SET (and all other mapping calls) must be
re-called for the projection to be set up properly for the new device.

Syntax

MAP_SET [, P0lat, P0lon, Rot]

Keywords—Projection Types: [[, /AITOFF | , /ALBERS | , /AZIMUTHAL | ,
/CONIC | , /CYLINDRICAL | , /GNOMIC | , /GOODESHOMOLOSINE | ,
/HAMMER | , /LAMBERT | , /MERCATOR | , /MILLER_CYLINDRICAL | ,
/MOLLEWIDE | , /ORTHOGRAPHIC | , /ROBINSON | , /SATELLITE | ,
/SINUSOIDAL | , /STEREOGRAPHIC | , /TRANSVERSE_MERCATOR] |
NAME=string]]

Keywords—Map Characteristics: [, /ADVANCE] [, CHARSIZE=value] [, /CLIP]
[, COLOR=index] [, /CONTINENTS [, CON_COLOR=index] [, /HIRES]]
[, E_CONTINENTS=structure] [, E_GRID=structure] [, E_HORIZON=structure]
[, GLINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, GLINETHICK=value] [, /GRID]
[, /HORIZON] [, LABEL=n{label every nth gridline}] [, LATALIGN=value{0.0 to
1.0}] [, LATDEL=degrees] [, LATLAB=longitude] [, LONDEL=degrees]
[, LONLAB=latitude] [, MLINESTYLE={0 | 1 | 2 | 3 | 4 | 5}]
[, MLINETHICK=value] [, /NOBORDER] [, /NOERASE]
IDL Reference Guide MAP_SET

844
[, REVERSE={0 | 1 | 2 | 3}] [, TITLE=string] [, /USA] [, XMARGIN=value]
[, YMARGIN=value]

Keywords—Projection Parameters:
[, CENTRAL_AZIMUTH=degrees_east_of_north] [, ELLIPSOID=array]
[, /ISOTROPIC] [, LIMIT=vector] [, SAT_P=vector] [, SCALE=value]
[, STANDARD_PARALLELS=array]

Graphics Keywords: [, POSITION=[X0, Y0, X1, Y1]] [, /T3D] [, ZVALUE=value{0
to 1}]

Arguments

P0lat

The latitude of the point on the earth’s surface to be mapped to the center of the
projection plane. Latitude is measured in degrees North of the equator and P0lat must
be in the range: -90° ≤ P0lat ≤ 90°.

If P0lat is not set, the default value is 0.

P0lon

The longitude of the point on the earth’s surface to be mapped to the center of the
map projection. Longitude is measured in degrees east of the Greenwich meridian
and P0lon must be in the range: -180° ≤ P0lon ≤ 180°.

If P0lon is not set, the default value is zero.

Rot

Rot is the angle through which the North direction should be rotated around the line L
between the earth’s center and the point (P0lat, P0lon). Rot is measured in degrees
with the positive direction being clockwise rotation around line L. Rot can have
values from -180° to 180°.

If the center of the map is at the North pole, North is in the direction P0lon + 180°. If
the origin is at the South pole, North is in the direction P0lon.

The default value of Rot is 0 degrees.

Keywords: Projection Types

AITOFF

Set this keyword to select the Aitoff projection.
MAP_SET IDL Reference Guide

845
ALBERS

Set this keyword to select the Albers equal-area conic projection. To specify the
latitude of the standard parallels, see “STANDARD_PARALLELS” on page 852.

AZIMUTHAL

Set this keyword to select the azimuthal equidistant projection.

CONIC

Set this keyword to select Lambert’s conformal conic projection with one or two
standard parallels. To specify the latitude of the standard parallels, see
“STANDARD_PARALLELS” on page 852. This keyword can be used with the
ELLIPSOID keyword.

CYLINDRICAL

Set this keyword to select the cylindrical equidistant projection. Cylindrical is the
default map projection.

GOODESHOMOLOSINE

Set this keyword to select the Goode’s Homolosine Projection. The central latitude
for this projection is fixed on the equator, 0 degrees latitude. This projection is
interrupted, as the inventor originally intended, and is best viewed with the central
longitude set to 0.

GNOMIC

Set this keyword to select the gnomonic projection. If default clipping is enabled, this
projection will display a maximum of ± 60° from the center of the projection area
when the center is at either the equator or one of the poles.

HAMMER

Set this keyword to select the Hammer-Aitoff equal area projection.

LAMBERT

Set this keyword to select Lambert’s azimuthal equal area projection.

MERCATOR

Set this keyword to select the Mercator projection. Note that this projection will not
display regions within ± 10° of the poles of projection.
IDL Reference Guide MAP_SET

846
MILLER_CYLINDRICAL

Set this keyword to select the Miller Cylindrical projection.

MOLLWEIDE

Set this keyword to select the Mollweide projection.

NAME

Set this keyword to a string indicating the projection that you wish to use. A list of
available projections can be found using MAP_PROJ_INFO, PROJ_NAMES=names.
This keyword will override any of the individual projection keywords.

ORTHOGRAPHIC

Set this keyword to select the orthographic projection. Note that this projection will
display a maximum of ± 90° from the center of the projection area.

ROBINSON

Set this keyword to select the Robinson pseudo-cylindrical projection.

SATELLITE

Set this keyword to select the satellite projection.

For the satellite projection, P0LAT and P0LON represent the latitude and longitude
of the sub-satellite point. Three additional parameters, P, Omega, and Gamma
(supplied as a three-element vector argument to the SAT_P keyword), are also
required.

Note
Since all meridians and parallels are oblique lines or arcs, the LIMIT keyword must
be supplied as an eight-element vector representing four points that delineate the
limits of the map. The extent of the map limits, when expressed in
latitude/longitude is a complicated polygon, rather than a simple quadrilateral.

SINUSOIDAL

Set this keyword to select the sinusoidal projection.

STEREOGRAPHIC

Set this keyword to select the stereographic projection. Note that if default clipping is
enabled, this projection will display a maximum of ± 90° from the center of the
projection area.
MAP_SET IDL Reference Guide

847
TRANSVERSE_MERCATOR

Set this keyword to select the Transverse Mercator projection, also called the UTM or
Gauss-Krueger projection. This projection works well with the ellipsoid form. The
default ellipsoid is the Clarke 1866 ellipsoid. To change the default ellipsoid
characteristics, see “ELLIPSOID” on page 851.

Keywords: Map Characteristics

ADVANCE

Set this keyword to advance to the next frame when the screen is set to display
multiple plots. Otherwise the entire screen is erased.

CHARSIZE

The size of the characters used for the labels. The default is 1.

CLIP

Set this keyword to clip the map using the map-specific graphics technique. The
default is to perform map-specific clipping. Set CLIP=0 to disable clipping.

Note
Clipping controlled by the CLIP keyword to MAP_SET applies only to the map
itself. In order to disable general clipping within the plot window, you must set the
system variable !P.NOCLIP=1. For more information, see “NOCLIP” on
page 2406.

COLOR

The color index of the map border in the plotting window.

CONTINENTS

Set this keyword to plot the continental boundaries. Note that if you are using the
low-resolution map database (if the HIRES keyword is not set), outlines for
continents, islands, and lakes are drawn when the CONTINENTS keyword is set. If
you are using the high-resolution map database (if the HIRES keyword is set), only
continental outlines are drawn when the CONTINENTS keyword is set. To draw
islands and lakes when using the high-resolution map database, use the COASTS
keyword to the MAP_CONTINENTS procedure.
IDL Reference Guide MAP_SET

848
CON_COLOR

The color index for continent outlines if CONTINENTS is set.

E_CONTINENTS

Set this keyword to a structure containing extra keywords to be passed to
MAP_CONTINENTS. For example, to fill continents, the FILL keyword of
MAP_CONTINENTS is set to 1. To fill the continents with MAP_SET, specify
E_CONTINENTS={FILL:1}.

E_GRID

Set this keyword to a structure containing extra keywords to be passed to
MAP_GRID. For example, to label every other gridline on a grid of parallels and
meridians, the LABEL keyword of MAP_GRID is set to 2. To do the same with
MAP_SET, specify E_GRID={LABEL:2}.

E_HORIZON

Set this keyword to a structure containing extra keywords to be set as modifiers to the
HORIZON keyword.

Example

To draw a Stereographic map, with the sphere filled in color index 3, enter:

MAP_SET, 0, 0, /STEREO, /HORIZON, /ISOTROPIC, $
E_HORIZON={FILL:1, COLOR:3}

GLINESTYLE

Set this keyword to a line style index used to draw the grid of parallels and meridians.
See MLINESTYLE for a list of available linestyles. The default is 1, drawing a grid
of dotted lines.

GLINETHICK

Set this keyword to the thickness of the gridlines drawn if the GRID keyword is set.
The default is 1.

GRID

Set this keyword to draw the grid of parallels and meridians.

HIRES

Set this keyword to use the high-resolution continent outlines when drawing
continents. This keyword only has effect if the CONTINENTS keyword is also set.
MAP_SET IDL Reference Guide

849
HORIZON

Set this keyword to draw a horizon line, when the projection in use permits. The
horizon delineates the boundary of the sphere. See E_HORIZON for more options.

LABEL

Set this keyword to label the parallels and meridians with their corresponding
latitudes and longitudes. Setting this keyword to an integer will cause every LABEL
gridline to be labeled (that is, if LABEL=3 then every third gridline will be labeled).
The starting point for determining which gridlines are labeled is the minimum
latitude or longitude (-180 to 180).

LATALIGN

The alignment of the text baseline for latitude labels. A value of 0.0 left justifies the
label, 1.0 right justifies it, and 0.5 centers it.

LATLAB

The longitude at which to place latitude labels. The default is the center longitude of
the map.

LATDEL

Set this keyword equal to the spacing (in degrees) between parallels of latitude drawn
by the MAP_GRID procedure. If this keyword is not set, a suitable value is
determined from the current map projection.

LONALIGN

The alignment of the text baseline for longitude labels. A value of 0.0 left justifies the
label, 1.0 right justifies it, and 0.5 centers it.

LONDEL

Set this keyword equal to the spacing (in degrees) between meridians of longitude
drawn by the MAP_GRID procedure. If this keyword is not set, a suitable value is
determined from the current map projection.

LONLAB

The latitude at which to place longitude labels. The default is the center latitude of the
map.
IDL Reference Guide MAP_SET

850
MLINESTYLE

The line style index used for continental boundaries. Linestyles are described in the
table below. The default is 0 for solid.

MLINETHICK

The line thickness used for continental boundaries. The default is 2.

NOBORDER

Set this keyword to not draw a border around the map. The map will fill the extent of
the plotting region. If NOBORDER is not specified, a margin equalling 1% of the
plotting region will be placed between the map and the border.

NOERASE

Set this keyword to have MAP_SET not erase the current plot window. The default is
to erase before drawing the map.

REVERSE

Set this keyword to one of the following values to reverse the X and/or Y axes:

• 0 = no reversal (the default)

• 1 = reverse X

• 2 = reverse Y

• 3 = reverse both.

Index Linestyle

0 Solid

1 Dotted

2 Dashed

3 Dash Dot

4 Dash Dot Dot

5 Long Dashes

Table 67: IDL Linestyles
MAP_SET IDL Reference Guide

851
TITLE

A string containing the main title for the map. The title appears centered above the
map window.

USA

Set this keyword to draw borders for each state in the United States.

XMARGIN

A scalar or two-element vector that specifies the vertical margin between the map
and screen border in character units. If a scalar is specified, the same margin will be
used on both sides of the map.

YMARGIN

A scalar or two-element vector that specifies in the horizontal margin between the
map and screen border in character units. If a scalar is specified, the same margin will
be used on the top and bottom of the map.

Keywords: Projection Parameters

CENTRAL_AZIMUTH

Set this keyword to the angle of the central azimuth, in degrees east of North. This
keyword can be used with the following projections: Cylindrical, Mercator, Miller,
Mollweide, and Sinusoidal. The default is 0 degrees. The pole is placed at an azimuth
of CENTRAL_AZIMUTH degrees CCW of North, as specified by the Rot argument.

ELLIPSOID

Set this keyword to a 3-element array, [a, e2, k0], defining the ellipsoid for the
Transverse Mercator or Lambert Conic projections.

• a: equatorial radius, in meters.

• e2: eccentricity squared. e2 = 2 * f - f2, where f = 1 - b/a (a: equatorial radius, b:
polar radius; in meters).

• k0: scale on the central meridian.

The default is the Clarke 1866 ellipsoid, [6378206.4, 0.00676866, 0.9996].

This keyword can be used with the CONIC keyword.

ISOTROPIC

Set this keyword to produce a map that has the same scale in the X and Y directions.
IDL Reference Guide MAP_SET

852
Note
The X and Y axes will be scaled isotropically and then fit within the rectangle
defined by the POSITION keyword; one of the axes may be shortened. See
“POSITION” on page 2407 for more information.

LIMIT

A four- or eight-element vector that specifies the limits of the map.

As a four-element vector, LIMIT has the form [Latmin, Lonmin, Latmax, Lonmax] that
specifies the boundaries of the region to be mapped. (Latmin, Lonmin) and (Latmax,
Lonmax) are the latitudes and longitudes of two points diagonal from each other on
the region’s boundary.

As an eight-element vector, LIMIT has the form: [Lat0, Lon0, Lat1, Lon1, Lat2, Lon2,
Lat3, Lon3]. These four latitude/longitude pairs describe, respectively, four points on
the left, top, right, and bottom edges of the map extent.

SAT_P

A three-element vector containing three parameters, P, Omega, and Gamma, that
must be supplied when using the SATELLITE projection where:

• P is the distance of the point of perspective (camera) from the center of the
globe, expressed in units of the radius of the globe.

• Omega is the downward tilt of the camera, in degrees from the new horizontal.
If both Gamma and Omega are 0, a Vertical Perspective projection results.

• Gamma is the angle, expressed in degrees clockwise from north, of the rotation
of the projection plane.

SCALE

Set this keyword to construct an isotropic map with the given scale, set to the ratio of
1:scale. If SCALE is not specified, the map is fit to the window. The typical scale for
global maps is in the ratio of between 1:100 million and 1:200 million. For
continents, the typical scale is in the ratio of approximately 1:50 million. For
example, SCALE=100E6 sets the scale at the center of the map to 1:100 million,
which is in the same ratio as 1 inch to 1578 miles (1 cm to 1000 km).

STANDARD_PARALLELS

Set this keyword to a one- or two-element array defining, respectively, one or two
standard parallels for conic projections.
MAP_SET IDL Reference Guide

853
Graphics Keywords Accepted

See Appendix C, “Graphics Keywords”, for descriptions of graphics and plotting
keywords not listed above. POSITION, T3D, ZVALUE.

Examples

To draw a Stereographic map, with the sphere filled in color index 3:

MAP_SET, 0, 0, /STEREO, /HORIZON, /ISOTROPIC, E_HORIZON={FILL:1,
COLOR:3}

See Also

MAP_CONTINENTS, MAP_GRID, MAP_IMAGE
IDL Reference Guide MAP_SET

854
MATRIX_MULTIPLY

The MATRIX_MULTIPLY function calculates the IDL # operator of two (possibly
transposed) arrays. The transpose operation (if desired) is done simultaneously with
the multiplication, thus conserving memory and increasing the speed of the
operation. If the arrays are not transposed, then MATRIX_MULTIPLY is equivalent
to using the # operator.

Syntax

Result = MATRIX_MULTIPLY(A, B [, /ATRANSPOSE] [, /BTRANSPOSE])

Return Value

The type for the result depends upon the input type. For byte or integer arrays, the
result has the type of the next-larger integer type that could contain the result (for
example, byte, integer, or long input returns type long integer). For floating-point, the
result has the same type as the input.

For the case of no transpose, the resulting array has the same number of columns as
the first array and the same number of rows as the second array. The second array
must have the same number of columns as the first array has rows.

Note
If A and B arguments are vectors, then C = MATRIX_MULTIPLY(A, B) is a
matrix with Cij = AiBj. Mathematically, this is equivalent to the outer product,
usually denoted by A⊗Β.

Arguments

A

The left operand for the matrix multiplication. Dimensions higher than two are
ignored.

B

The right operand for the matrix multiplication. Dimensions higher than two are
ignored.
MATRIX_MULTIPLY IDL Reference Guide

855
Keywords

ATRANSPOSE

Set this keyword to multiply using the transpose of A.

BTRANSPOSE

Set this keyword to multiply using the transpose of B.

The # Operator vs. MATRIX_MULTIPLY

The following table illustrates how various operations are performed using the #
operator versus the MATRIX_MULTIPLY function:

Note
MATRIX_MULTIPLY can also be used in place of the ## operator. For example,
A ## B is equivalent to MATRIX_MULTIPLY(B, A), and A ## TRANSPOSE(B)
is equivalent to MATRIX_MULTIPLY(B, A, /ATRANSPOSE).

See Also

“Multiplying Arrays” in Chapter 16 of Using IDL

Operator Function

A # B MATRIX_MULTIPLY(A, B)

transpose(A) # B MATRIX_MULTIPLY(A, B, /ATRANSPOSE)

A # transpose(B) MATRIX_MULTIPLY(A, B, /BTRANSPOSE)

transpose(A) # transpose(B) MATRIX_MULTIPLY(A, B, /ATRANSPOSE,
/BTRANSPOSE)

Table 68: The # Operator vs. MATRIX_MULTIPLY
IDL Reference Guide MATRIX_MULTIPLY

856
MAX

The MAX function returns the value of the largest element of Array. The type of the
result is the same as the type of Array.

Syntax

Result = MAX(Array [, Max_Subscript] [, MIN=variable] [, /NAN])

Arguments

Array

The array to be searched.

Max_Subscript

A named variable that, if supplied, is converted to a long integer containing the one-
dimensional subscript of the maximum element. Otherwise, the system variable !C is
set to the one-dimensional subscript of the maximum element.

Keywords

MIN

A named variable to receive the value of the minimum array element. If you need to
find both the minimum and maximum array values, use this keyword to avoid
scanning the array twice with separate calls to MAX and MIN.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See “Special Floating-Point Values” in Chapter 17 of Building IDL
Applications for more information on IEEE floating-point values.)

Note
If the MAX function is run on an array containing NaN values and the NAN
keyword is not set, an invalid result will occur.
MAX IDL Reference Guide

857
Example

Example 1

This example prints the maximum value in an array, and the subscript of that value:

; Create a simple two-dimensional array:
D = DIST(100)

; Print the maximum value in array D and its linear subscript:
PRINT, 'Maximum value in array D is:', MAX(D, I)
PRINT, 'The subscript of the maximum value is', I

IDL Output

Maximum value in array D is: 70.7107
The subscript of the maximum value is 5050

Example 2

To convert I to a two-dimensional subscript, use the commands:

IX = I MOD 100
IY = I/100
PRINT, 'The maximum value of D is at location ('+ STRTRIM(IX, 1) $

+ ', ' + STRTRIM(IY, 1) + ')'

IDL Output

The maximum value of D is at location (50, 50)

See Also

MIN
IDL Reference Guide MAX

858
MD_TEST

The MD_TEST function tests the hypothesis that a sample population is random
against the hypothesis that it is not random. The result is a two-element vector
containing the nearly-normal test statistic Z and its associated probability. This two-
tailed function is an extension of the “Runs Test for Randomness” and is often
referred to as the Median Delta Test.

This routine is written in the IDL language. Its source code can be found in the file
md_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = MD_TEST(X [, ABOVE=variable] [, BELOW=variable]
[, MDC=variable])

Arguments

X

An n-element integer, single- or double-precision floating-point vector.

Keywords

ABOVE

Use this keyword to specify a named variable that will contain the number of sample
population values greater than the median of X.

BELOW

Use this keyword to specify a named variable that will contain the number of sample
population values less than the median of X.

MDC

Use this keyword to specify a named variable that will contain the number of Median
Delta Clusters (sequential values of X above and below the median).

Example

This example tests the hypothesis that X represents a random population against the
hypothesis that it does not represent a random population at the 0.05 significance
level:
MD_TEST IDL Reference Guide

859
; Define a sample population:
X = [2.00, 0.90, -1.44, -0.88, -0.24, 0.83, -0.84, -0.74, $

0.99, -0.82, -0.59, -1.88, -1.96, 0.77, -1.89, -0.56, $
-0.62, -0.36, -1.01, -1.36]

; Test the hypothesis that X represents a random population against
; the hypothesis that it does not represent a random population at
; the 0.05 significance level:
result = MD_TEST(X, MDC = mdc)
PRINT, result

IDL prints:

0.459468 0.322949

The computed probability (0.322949) is greater than the 0.05 significance level and
therefore we do not reject the hypothesis that X represents a random population.

See Also

CTI_TEST, FV_TEST, KW_TEST, R_TEST, RS_TEST, S_TEST, TM_TEST,
XSQ_TEST
IDL Reference Guide MD_TEST

860
MEAN

The MEAN function computes the mean of a numeric vector. MEAN calls the IDL
function MOMENT.

Syntax

Result = MEAN(X [, /DOUBLE] [, /NAN])

Arguments

X

An n-element, integer, double-precision or floating-point vector.

Keywords

DOUBLE

If this keyword is set, computations are done in double precision arithmetic.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See “Special Floating-Point Values” in Chapter 17 of Building IDL
Applications for more information on IEEE floating-point values.)

Example

; Define the n-element vector of sample data:
x = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71, 66, 65, 70]

; Compute the standard deviation:
result = MEAN(x)

; Print the result:
PRINT, result

IDL prints:

66.7333

See Also

KURTOSIS, MEANABSDEV, MOMENT, STDDEV, SKEWNESS, VARIANCE
MEAN IDL Reference Guide

861
MEANABSDEV

The MEANABSDEV function computes the mean absolute deviation (average
deviation) of an n-element vector.

Syntax

Result = MEANABSDEV(X [, /DOUBLE] [, /MEDIAN] [, /NAN])

Arguments

X

An n-element, floating-point or double-precision vector.

Keywords

DOUBLE

Set this keyword to force computations to be done in double precision arithmetic and
to return a double precision result. If this keyword is not set, the computations and
result depend upon the type of the input data (integer and float data return float
results, while double data returns double results). This has no effect if the MEDIAN
keyword is set.

MEDIAN

Set this keyword to return the average deviation from the median. By default, if
MEDIAN is not set, MEANABSDEV will return the average deviation from the
mean.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See “Special Floating-Point Values” in Chapter 17 of Building IDL
Applications for more information on IEEE floating-point values.)

Example

; Define an n-element vector:
x = [1, 1, 1, 2, 5]

; Compute average deviation from the mean:
result = MEANABSDEV(x)
IDL Reference Guide MEANABSDEV

862
; Print the result:
PRINT, result

IDL prints:

1.20000

See Also

KURTOSIS, MEAN, MOMENT, STDDEV, SKEWNESS, VARIANCE
MEANABSDEV IDL Reference Guide

863
MEDIAN

The MEDIAN function returns the median value (element n/2) of Array if one
parameter is present, or applies a one- or two-dimensional median filter of the
specified width to Array and returns the result. In an ordered set of values, the median
is a value with an equal number of values above and below it. Median smoothing
replaces each point with the median of the one- or two-dimensional neighborhood of
a given width. It is similar to smoothing with a boxcar or average filter but does not
blur edges larger than the neighborhood.

In addition, median filtering is effective in removing salt and pepper noise, (isolated
high or low values). The scalar median is simply the middle value, which should not
be confused with the average value (e.g., the median of the array [1,10,4] is 4, while
the average is 5.)

Note
The MEDIAN function treats NaN values as missing data.

Syntax

Result = MEDIAN(Array [, Width] [, /EVEN])

Arguments

Array

The array to be processed. If Width is also supplied, and Array is of byte type, the
result is of byte type. All other types are converted to single-precision floating-point,
and the result is floating-point. Array can have only one or two dimensions.

If Width is not given, Array can have any valid number of dimensions. The array is
converted to single-precision floating-point, and the median value is returned as a
floating-point value.

Width

The size of the one or two-dimensional neighborhood to be used for the median filter.
The neighborhood has the same number of dimensions as Array.
IDL Reference Guide MEDIAN

864
Keywords

EVEN

If the EVEN keyword is set when Array contains an even number of points (i.e. there
is no middle number), MEDIAN returns the average of the two middle numbers. The
returned value may not be an element of Array. If Array contains an odd number of
points, MEDIAN returns the median value. The returned value will always be an
element of Array—even if the EVEN keyword is set—since an odd number of points
will always have a single middle value.

Example

; Create a simple image and display it:
D = SIN(DIST(200)^0.8) & TVSCL, D

; Display D median-filtered with a width of 9:
TVSCL, MEDIAN(D, 9)

; Print the median of a four-element array, with and without
; the EVEN keyword:
PRINT, MEDIAN([1, 2, 3, 4], /EVEN)
PRINT, MEDIAN([1, 2, 3, 4])

IDL prints:

2.50000
3.00000

See Also

DIGITAL_FILTER, LEEFILT, MOMENT, SMOOTH
MEDIAN IDL Reference Guide

865
MEMORY

The MEMORY function returns information on the amount of dynamic memory
currently in use by the IDL session if no keywords are set. If a keyword is set,
MEMORY returns the specified quantity.

Syntax

Result = MEMORY([, /CURRENT | , /HIGHWATER | , /NUM_ALLOC |
, /NUM_FREE | , /STRUCTURE] [, /L64])

Return Value

The return value is a vector that is always of integer type. The following table
describes the information returned if no keywords are set:

Arguments

None.

Keywords

The following keywords determine the return value of the MEMORY function.
Except for L64, all of the keywords are mutually exclusive — specify at most one of
the following.

Element Contents

Result[0] Amount of dynamic memory (in bytes) currently in use by the
IDL session.

Result[1] The number of times IDL has made a memory allocation request
from the underlying system.

Result[2] The number of times IDL has made a request to free memory
from the underlying system.

Result[3] High water mark: The maximum amount of dynamic memory
used since the last time the MEMORY function or
HELP, /MEMORY procedure was called.

Table 69: MEMORY Function Return Values
IDL Reference Guide MEMORY

866
CURRENT

Set this keyword to return the amount of dynamic memory (in bytes) currently in use
by the IDL session.

HIGHWATER

Set this keyword to return the maximum amount of dynamic memory used since the
last time the MEMORY function or HELP,/MEMORY procedure was called. This
can be used to determine maximum memory use of a code sequence as shown in the
example below.

L64

By default, the result of MEMORY is 32-bit integer when possible, and 64-bit integer
if the size of the returned values requires it. Set L64 to force 64-bit integers to be
returned in all cases.

Note
Only 64-bit versions of IDL are capable of using enough memory to require 64-bit
MEMORY output. Check the value of !VERSION.MEMORY_BITS to see if your
IDL is 64-bit or not.

NUM_ALLOC

Returns the number of times IDL has requested dynamic memory from the
underlying system.

NUM_FREE

Returns the number of times IDL has returned dynamic memory to the underlying
system.

STRUCTURE

Set this keyword to return all available information about Expression in a structure.
The result will be an IDL_MEMORY (32-bit) structure when possible, and an
IDL_MEMORY64 structure otherwise. Set L64 to force an IDL_MEMORY64
structure to be returned in all cases.
MEMORY IDL Reference Guide

867
The following are descriptions of the fields in the returned structure:

Example

To determine how much dynamic memory is required to execute a sequence of IDL
code:

; Get current allocation and reset the high water mark:
start_mem = MEMORY(/CURRENT)

; Arbitrary code goes here.

PRINT, 'Memory required: ', MEMORY(/HIGHWATER) - start_mem

The MEMORY function can also be used in conjunction with DIALOG_MESSAGE
as follows:

; Get current dymanic memory in use:
mem = MEMORY(/CURRENT)
; Prepare dialog message:
message = 'Current amount of dynamic memory used is '
sentence = message + STRTRIM(mem,2)+' bytes.'
; Display the dialog message containing memory usage statement:
status = DIALOG_MESSAGE (sentence, /INFORMATION)

See Also

HELP

Field Description

CURRENT Current dynamic memory in use.

NUM_ALLOC Number of calls to allocate memory.

NUM_FREE Number of calls to free memory.

HIGHWATER Maximum dynamic memory used since last call for this
information.

Table 70: STRUCTURE Field Descriptions
IDL Reference Guide MEMORY

868
MESH_CLIP

The MESH_CLIP function clips a polygonal mesh to an arbitrary plane in space and
returns a polygonal mesh of the remaining portion. An auxiliary array of data may
also be passed and clipped. This array can have multiple values for each vertex.

Syntax

Result = MESH_CLIP (Plane, Vertsin, Connin, Vertsout, Connout
[, AUXDATA_IN=array, AUXDATA_OUT=variable] [, CUT_VERTS=variable])

Return Value

The return value is the number of triangles in the returned mesh.

Arguments

Plane

Input four element array describing the equation of the plane to be clipped to. The
elements are the coefficients (a,b,c,d) of the equation ax+by+cz+d=0.

Vertsin

Input array of polygonal vertices [3, n].

Connin

Input polygonal mesh connectivity array.

Vertsout

Output array of polygonal vertices.

Connout

Output polygonal mesh connectivity array.

Keywords

AUXDATA_IN

Input array of auxiliary data. If present, these values are interpolated and returned
through AUXDATA_OUT. The trailing array dimension must match the number of
vertices in the Vertsin array.
MESH_CLIP IDL Reference Guide

869
AUXDATA_OUT

Set this keyword to a named variable that will contain an output array of interpolated
auxiliary data.

CUT_VERTS

Set this keyword to a named variable that will contain an output array of vertex
indices (into Vertsout) of the vertices which are considered to be “on” the clipped
surface.

See Also

MESH_DECIMATE, MESH_ISSOLID, MESH_MERGE,
MESH_NUMTRIANGLES, MESH_OBJ, MESH_SMOOTH,
MESH_SURFACEAREA, MESH_VALIDATE, MESH_VOLUME
IDL Reference Guide MESH_CLIP

870
MESH_DECIMATE

The MESH_DECIMATE function reduces the density of geometry while preserving
as much of the original data as possible. The classic case is to thin out a polygonal
mesh to use fewer polygons while preserving the mesh form. The decimation
algorithm removes triangles from the mesh. This is done in such a way as to preserve
the mesh edges and to remove roughly planar polygons.

Decimation is a memory and CPU intensive process. Expect the decimation of large
models to require large amounts of memory and dozens of seconds to complete. As a
reference, a model with approximately 36,000 vertices and 70,000 faces requires 20-
30 seconds to decimate to 10% of its original size on a typical NT PC with 64Mb
RAM and 333MHz Pentium processor.

If the input polygons are not all triangles, IDL converts the polygons to triangles
before decimating. For best results, the polygons should all be convex. Note that if
the input polygons are not all triangles, then IDL may return more polygons (as
triangles) than were submitted as input, even after decimating a percentage of the
polygons. IDL applies the PERCENT_POLYGONS keyword value to the polygon
list after converting the list to triangles to approximate the same visual effect of
decimating the requested percentage of polygons.

IDL takes steps to deal with input data with a wide variation in magnitude. For
example, a troublesome input polygon list may have X and Y values in the 10^1 to
10^2 range, while the Z values may have magnitudes of about 10^20. If the results of
the decimation are unacceptable, consider scaling the input data so that the
magnitudes of the data are closer together.

Syntax

Result = MESH_DECIMATE (Verts, Conn, Connout [, VERTICES=variable]
[, PERCENT_VERTICES=percent | , PERCENT_POLYGONS=percent])

Return Value

The return value is the number of triangles in the output connectivity array.

Arguments

Verts

Input array of polygonal vertices [3, n].
MESH_DECIMATE IDL Reference Guide

871
Conn

Input polygonal mesh connectivity array.

Connout

Output polygonal mesh connectivity array.

Note
Some of the vertices in the Verts array may not be referenced by the Connout array.

Keywords

PERCENT_VERTICES

Set this keyword to the percent of the original vertices to be returned in the Connout
array. It specifies the amount of decimation to perform.

PERCENT_POLYGONS

Set this keyword to the percent of the original polygons to be returned in the Connout
array. It specifies the amount of decimation to perform.

Note
PERCENT_VERTICES and PERCENT_POLYGONS are mutually exclusive
keywords.

VERTICES

Set this keyword to a named variable that will contain an output array of the vertices
generated by the MESH_DECIMATE function. If this keyword is specified, the
function is not restricted to using the original set of vertices specified in the Verts
parameter when generating the decimated mesh, allowing it to generate a more
optimal mesh by determining its own placement of vertices. If this keyword is
specified, the Connout argument will consist of a polygon connectivity list whose
indices refer to the vertex list stored in the named variable specified with this
keyword. Otherwise, the Connout argument will consist of a polygon connectivity
list that refers to the original vertex list Verts.

See Also

MESH_CLIP, MESH_ISSOLID, MESH_MERGE, MESH_NUMTRIANGLES,
MESH_OBJ, MESH_SMOOTH, MESH_SURFACEAREA, MESH_VALIDATE,
MESH_VOLUME
IDL Reference Guide MESH_DECIMATE

872
MESH_ISSOLID

The MESH_ISSOLID function computes various mesh properties and enables IDL to
determine if a mesh encloses space (is a solid). If the mesh can be considered a solid,
routines can compute the volume of the mesh.

Syntax

Result = MESH_ISSOLID (Conn)

Return Value

Returns 1 if the input mesh fully encloses space (assuming no polygonal
interpenetration) or 0 otherwise. A mesh is defined to fully enclose space if each edge
in the input mesh appears an even number of times in the mesh.

Note
The input polygonal mesh is assumed to contain only planar, convex polygons.

Arguments

Conn

This is an integer or longword array that represents a series of polygon descriptions.
Each polygon description takes the form [n, i0, i1, ..., in-1], where n is the number of
vertices that define the polygon, and i0...in-1 are indices into the vertex array.

Keywords

None.

See Also

MESH_CLIP, MESH_DECIMATE, MESH_MERGE, MESH_NUMTRIANGLES,
MESH_OBJ, MESH_SMOOTH, MESH_SURFACEAREA, MESH_VALIDATE,
MESH_VOLUME
MESH_ISSOLID IDL Reference Guide

873
MESH_MERGE

The MESH_MERGE function merges two polygonal meshes.

Syntax

Result = MESH_MERGE (Verts, Conn, Verts1, Conn1 [, /COMBINE_VERTICES]
[, TOLERANCE=value])

Return Value

The function return value is the number of triangles in the modified polygonal mesh
connectivity array.

Arguments

Verts

Input/Output array of polygonal vertices [3, n]. These are potentially modified and
returned to the user.

Conn

Input/Output polygonal mesh connectivity array. This array is modified and returned
to the user.

Verts1

Additional input polygonal vertex array [3, n].

Conn1

Additional input polygonal mesh connectivity array.

Keywords

COMBINE_VERTICES

If this keyword is set, the routine will attempt to collapse vertices which are at the
same location in space into single vertices. If the expression

max xi xi 1+– yi yi 1+– zi zi 1+–,,() tolerance<
IDL Reference Guide MESH_MERGE

874

MES
H_MERGE IDL Reference Guide

is true, the points (i) and (i+1) can be collapsed into a single vertex. The result is
returned as a modification of the Verts argument.

TOLERANCE

This keyword is used to specify the tolerance value used with the
COMBINE_VERTICES keyword. The default value is 0.0.

See Also

MESH_CLIP, MESH_DECIMATE, MESH_ISSOLID, MESH_NUMTRIANGLES,
MESH_OBJ, MESH_SMOOTH, MESH_SURFACEAREA, MESH_VALIDATE,
MESH_VOLUME

875
MESH_NUMTRIANGLES

The MESH_NUMTRIANGLES function computes the number of triangles in a
polygonal mesh.

Syntax

Result = MESH_NUMTRIANGLES (Conn)

Return Value

Returns the number of triangles in the mesh (a quad is considered two triangles).

Arguments

Conn

Polygonal mesh connectivity array.

Keywords

None.

See Also

MESH_CLIP, MESH_DECIMATE, MESH_ISSOLID, MESH_MERGE,
MESH_OBJ, MESH_SMOOTH, MESH_SURFACEAREA, MESH_VALIDATE,
MESH_VOLUME
IDL Reference Guide MESH_NUMTRIANGLES

876
MESH_OBJ

The MESH_OBJ procedure generates a polygon mesh (vertex list and polygon list)
that represent the desired primitive object. The available primitive objects are:
triangulated surface, rectangular surface, polar surface, cylindrical surface, spherical
surface, surface of extrusion, surface of revolution, and ruled surface.

This routine is written in the IDL language. Its source code can be found in the file
mesh_obj.pro in the lib subdirectory of the IDL distribution.

Syntax

MESH_OBJ, Type, Vertex_List, Polygon_List, Array1 [, Array2] [, /DEGREES]
[, P1=value] [, P2=value] [, P3=value] [, P4=value] [, P5=value]

Arguments

Type

An integer that specifies what type of object to create. The various surface types are
described in the table below.

Type Surface Type

0 Triangulated

1 Rectangular

2 Polar

3 Cylindrical

4 Spherical

5 Extrusion

6 Revolution

7 Ruled

Other values None

Table 71: Surface Types
MESH_OBJ IDL Reference Guide

877
Vertex_List

A named variable that will contain the mesh vertices. Vertex_List has the same
format as the lists returned by the SHADE_VOLUME procedure.

Polygon_List

A named variable that will contain the mesh indexes. Polygon_List has the same
format as the lists returned by the SHADE_VOLUME procedure.

Array1

An array whose use depends on the type of object being created. The following table
describes the differences.

Surface
Type Array1 Type

Triangulated A (3, n) array containing random [x, y, z] points to build a
triangulated surface from. The resulting polygon mesh will have n
vertices. When shading a triangulated mesh, the shading array
should have (n) elements.

Rectangular A two dimensional (n, m) array containing z values. The resulting
polygon mesh will have n x m vertices. When shading a
rectangular mesh, the shading array should have (n, m) elements.

Polar A two dimensional (n, m) array containing z values. The resulting
polygon mesh will have n x m vertices. The n dimension of the
array is mapped to the polar angle, and the m dimension is mapped
to the polar radius. When shading a polar mesh, the shading array
should have (n, m) elements.

Cylindrical A two dimensional (n, m) array containing radius values. The
resulting polygon mesh will have n x m vertices. The n dimension
of the array is mapped to the polar angle, and the m dimension is
mapped to the Z axis. When shading a cylindrical mesh, the
shading array should have (n, m) elements.

Table 72: Array 1 Type
IDL Reference Guide MESH_OBJ

878
Array2

If the object type is 7 (Ruled Surface) then Array2 is a (3, m) array containing the 3D
points which define the second ruled vector. If Array2 has fewer elements than
Array1 then Array2 is processed with CONGRID to give it the same number of
elements as Array1. If Array1 has fewer elements than Array2 then Array1 is
processed with CONGRID to give it the same number of elements as Array2. Array2
must be supplied if the object type is 7. Otherwise, Array2 is ignored.

Spherical A two dimensional (n, m) array containing radius values. The
resulting polygon mesh will have n x m vertices. The n dimension
of the array is mapped to the longitude (0.0 to 360.0 degrees), and
the m dimension is mapped to the latitude (-90.0 to +90.0 degrees).
When shading a spherical mesh, the shading array should have (n,
m) elements.

Extrusion A (3, n) array of connected 3D points which define the shape to
extrude. The resulting polygon mesh will have n x (steps+1)
vertices (where steps is the number of “segments” in the
extrusion). (See the P1 keyword). If the order of the elements in
Array1 is reversed, then the polygon facing is reversed. When
shading an extrusion mesh, the shading array should have (n,
steps+1) elements.

Revolution A (3, n) array of connected 3D points which define the shape to
revolve. The resulting polygon mesh will have n x ((steps>3)+1)
vertices (where steps is the number of “steps” in the revolution).
(See the P1 keyword). If the order of the elements in Array1 is
reversed, then the polygon facing is reversed. When shading a
revolution mesh, the shading array should have (n, (steps>3)+1)
elements.

Ruled A (3, n) array of connected 3D points which define the shape of the
first ruled vector. The optional (3, m) Array2 parameter defines the
shape of the second ruled vector. The resulting polygon mesh will
have (n > m)*(steps+1) vertices (where steps is the number of
intermediate “steps”). (See the P1 keyword). When shading a ruled
mesh, the shading array should have (n > m, steps+1) elements.

Surface
Type Array1 Type

Table 72: Array 1 Type
MESH_OBJ IDL Reference Guide

879
Keywords

DEGREES

If set, then the input parameters are in degrees (where applicable). Otherwise, the
angles are in radians.

P1 - P5

The meaning of the keywords P1 through P5 vary depending upon the object type.
The table below describes the differences.

Surface
Type Keywords

Triangulated P1 through P5 are ignored.

Rectangular If Array1 is an (n, m) array, and if P1 has n elements, then the
values contained in P1 are the X coordinates for each column of
vertices. Otherwise, FINDGEN(n) is used for the X coordinates. If
P2 has m elements, then the values contained in P2 are the Y
coordinates for each row of vertices. Otherwise, FINDGEN(m) is
used for the Y coordinates. The polygon facing is reversed if the
order of either P1 or P2 (but not both) is reversed. P3, P4, and P5
are ignored.

Polar P1 specifies the polar angle of the first column of Array1 (the
default is 0). P2 specifies the polar angle of the last column of
Array1 (the default is 2*PI). If P2 is less than P1 then the polygon
facing is reversed. P3 specifies the radius of the first row of Array1
(the default is 0). P4 specifies the radius of the last row of Array1
(the default is m-1). If P4 is less than P3 then the polygon facing is
reversed. P5 is ignored.

Cylindrical P1 specifies the polar angle of the first column of Array1 (the
default is 0). P2 specifies the polar angle of the last column of
Array1 (the default is 2*PI). If P2 is less than P1 then the polygon
facing is reversed. P3 specifies the Z coordinate of the first row of
Array1 (the default is 0). P4 specifies the Z coordinate of the last
row of Array1 (the default is m-1). If P4 is less than P3 then the
polygon facing is reversed. P5 is ignored.

Table 73: P1-P5 Keywords
IDL Reference Guide MESH_OBJ

880
Examples

; Create a 48x64 cylinder with a constant radius of 0.25:
MESH_OBJ, 3, Vertex_List, Polygon_List, $

Replicate(0.25, 48, 64), P4=0.5

; Transform the vertices:
T3D, /RESET
T3D, ROTATE=[0.0, 30.0, 0.0]
T3D, ROTATE=[0.0, 0.0, 40.0]
T3D, TRANSLATE=[0.25, 0.25, 0.25]
VERTEX_LIST = VERT_T3D(Vertex_List)

; Create the window and view:
WINDOW, 0, XSIZE=512, YSIZE=512

Spherical P1 specifies the longitude of the first column of Array1 (the
default is 0). P2 specifies the longitude of the last column of
Array1 (the default is 2*PI). IF P2 is less than P1 then the polygon
facing is reversed. P3 specifies the latitude of the first row of
Array1 (the default is -PI/2). P4 specifies the latitude of the last
row of Array1 (the default is +PI/2). If P4 is less than P3 then the
polygon facing is reversed. P5 is ignored.

Extrusion P1 specifies the number of steps in the extrusion (the default is 1).
P2 is a three element vector specifying the direction (and length)
of the extrusion (the default is [0, 0, 1]). P3, P4, and P5 are
ignored.

Revolution P1 specifies the number of “facets” in the revolution (the default is
3). If P1 is less than 3 then 3 is used. P2 is a three element vector
specifying a point that the rotation vector passes through (the
default is [0, 0, 0]). P3 is a three element vector specifying the
direction of the rotation vector (the default is [0, 0, 1]). P4
specifies the starting angle for the revolution (the default is 0). P5
specifies the ending angle for the revolution (the default is 2*PI).
If P5 is less than P4 then the polygon facing is reversed.

Ruled P1 specifies the number of “steps” in the ruling (the default is 1).
P2, P3, P4, and P5 are ignored.

Surface
Type Keywords

Table 73: P1-P5 Keywords
MESH_OBJ IDL Reference Guide

881
CREATE_VIEW, WINX=512, WINY=512

; Render the mesh:
SET_SHADING, LIGHT=[-0.5, 0.5, 2.0], REJECT=0
TVSCL, POLYSHADE(Vertex_List, Polygon_List, /NORMAL)

; Create a cone (surface of revolution):
MESH_OBJ, 6, Vertex_List, Polygon_List, $

[[0.75, 0.0, 0.25], [0.5, 0.0, 0.75]], $
P1=16, P2=[0.5, 0.0, 0.0]

; Create the window and view:
WINDOW, 0, XSIZE=512, YSIZE=512
CREATE_VIEW, WINX=512, WINY=512, AX=30.0, AY=(140.0), ZOOM=0.5

; Render the mesh:
SET_SHADING, LIGHT=[-0.5, 0.5, 2.0], REJECT=0
TVSCL, POLYSHADE(Vertex_List, Polygon_List, /DATA, /T3D)

See Also

CREATE_VIEW, MESH_CLIP, MESH_DECIMATE, MESH_ISSOLID,
MESH_MERGE, MESH_NUMTRIANGLES, MESH_SMOOTH,
MESH_SURFACEAREA, MESH_VALIDATE, MESH_VOLUME,
SET_SHADING, VERT_T3D
IDL Reference Guide MESH_OBJ

882
MESH_SMOOTH

The MESH_SMOOTH function performs spatial smoothing on a polygon mesh. This
function smoothes a mesh by applying Laplacian smoothing to each vertex, as
described by the following formula:

where:

Syntax

Result = MESH_SMOOTH (Verts, Conn [, ITERATIONS=value]
[, FIXED_VERTICES=array] [, /FIXED_EDGE_VERTICES] [, LAMBDA=value])

Return Value

The output of this function is resulting [3, n] array of modified vertices.

Arguments

Verts

Input array of polygonal vertices [3, n].

Conn

Input polygonal mesh connectivity array.

Keywords

ITERATIONS

Number of iterations to smooth. The default value is 50.

is vertex i for iteration n

λ is the smoothing factor

M is the number of vertices that share a common edge with xin.

xi n 1+()
xin

λ
M
----- x jn

xin
–()

j 0=

M

∑+=

xin
MESH_SMOOTH IDL Reference Guide

883
FIXED_VERTICES

Set this keyword to an array of vertex indices which are not to be modified by the
smoothing.

FIXED_EDGE_VERTICES

Set this keyword to specify that mesh outer edge vertices are not to be modified by
the smoothing.

LAMBDA

Smoothing factor. The default value is 0.05.

See Also

MESH_CLIP, MESH_DECIMATE, MESH_ISSOLID, MESH_MERGE,
MESH_NUMTRIANGLES, MESH_OBJ, MESH_SURFACEAREA,
MESH_VALIDATE, MESH_VOLUME
IDL Reference Guide MESH_SMOOTH

884
MESH_SURFACEAREA

The MESH_SURFACEAREA function computes various mesh properties to
determine the mesh surface area, including integration of other properties
interpolated on the surface of the mesh.

Syntax

Result = MESH_SURFACEAREA (Verts, Conn [, AUXDATA=array]
[, MOMENT=variable])

Return Value

Returns the cumulative (weighted) surface area of the polygons in the mesh.

Note
The input polygonal mesh is assumed to contain only planar, convex polygons.

Arguments

Verts

Array of polygonal vertices [3, n].

Conn

Polygonal mesh connectivity array.

Keywords

AUXDATA

Array of input auxiliary data (one value per vertex). If present, these values are used
to weight a vertex for the purpose of the area computation. The surface area integral
will linearly interpolate these values over the surface of each triangle. The default
weight is 1.0 which results in the basic polygon area.
MESH_SURFACEAREA IDL Reference Guide

885
MOMENT

If this keyword is present, it will return a three element float vector which
corresponds to the first order moments computed with respect to the X, Y and Z axis.
The computation is:

where a is the (weighted) area of the triangle and c is the centroid of the triangle, thus

yields the (weighted) centroid of the polygon mesh.

See Also

MESH_CLIP, MESH_DECIMATE, MESH_ISSOLID, MESH_MERGE,
MESH_NUMTRIANGLES, MESH_OBJ, MESH_SMOOTH, MESH_VALIDATE,
MESH_VOLUME

m aici
ntris
∑=

m sarea⁄
IDL Reference Guide MESH_SURFACEAREA

886
MESH_VALIDATE

The MESH_VALIDATE function checks for NaN values in vertices, removes
unused vertices, and combines close vertices.

Syntax

Result = MESH_VALIDATE (Verts, Conn [, /REMOVE_NAN]
[, /PACK_VERTICES] [, /COMBINE_VERTICES] [, TOLERANCE=value])

Return Value

The function return value is the number of triangles in the modified polygonal mesh
connectivity array.

Arguments

Verts

Input/Output array of polygonal vertices [3, n]. These are potentially modified and
returned to the user.

Conn

Input/Output polygonal mesh connectivity array. This array is modified and returned
to the user.

Keywords

COMBINE_VERTICES

If this keyword is set, the routine will attempt to collapse vertices which are at the
same location in space into single vertices. If the expression

is true, the points (i) and (i+1) can be collapsed into a single vertex. The result is
returned as a modification of the Verts argument.

max xi xi 1+– yi yi 1+– zi zi 1+–,,() tolerance<
MESH_VALIDATE IDL Reference Guide

887
PACK_VERTICES

If this keyword is set, the Verts input array will be packed to exclude any non-
referenced vertices. The result is returned in the Verts argument.

REMOVE_NAN

If this keyword is set, the function will remove any polygons from CONN which
reference vertices containing NaN values.

TOLERANCE

This keyword is used to specify the tolerance value used with the
COMBINE_VERTS keyword. The default value is 0.0.

See Also

MESH_CLIP, MESH_DECIMATE, MESH_ISSOLID, MESH_MERGE,
MESH_NUMTRIANGLES, MESH_OBJ, MESH_SMOOTH,
MESH_SURFACEAREA, MESH_VOLUME
IDL Reference Guide MESH_VALIDATE

888
MESH_VOLUME

The MESH_VOLUME function computes the volume that the mesh encloses.

Syntax

Result = MESH_VOLUME (Verts, Conn [, /SIGNED])

Return Value

Returns the volume that the mesh encloses. If the mesh does not enclose space (i.e.
MESH_ISSOLID() would return 0), this function returns 0.0.

Note
The input polygonal mesh is assumed to contain only planar, convex polygons.

Arguments

Verts

Array of polygonal vertices [3, n].

Conn

Polygonal mesh connectivity array.

Keywords

SIGNED

Set this keyword to compute the signed volume. The sign will be negative for a mesh
consisting of inward facing polygons.

See Also

MESH_CLIP, MESH_DECIMATE, MESH_ISSOLID, MESH_MERGE,
MESH_NUMTRIANGLES, MESH_OBJ, MESH_SMOOTH,
MESH_SURFACEAREA, MESH_VALIDATE
MESH_VOLUME IDL Reference Guide

889
MESSAGE

The MESSAGE procedure issues error and informational messages using the same
mechanism employed by built-in IDL routines. By default, the message is issued as
an error, the message is output, and IDL takes the action specified by the
ON_ERROR procedure. As a side-effect of issuing the error, the system variable
!ERROR_STATE is set and the text of the error message is placed in
!ERROR_STATE.MSG or in !ERROR_STATE.SYS_MSG for the operating
system’s component of the error message.

If the call to the MESSAGE procedure causes execution to halt, traceback
information is displayed automatically.

Syntax

MESSAGE, [Text] [, /CONTINUE] [, /INFORMATIONAL] [, /IOERROR]
[, /NONAME] [, /NOPREFIX] [, /NOPRINT] [, /RESET]

Arguments

Text

The text of the message to be issued. If Text is not supplied, MESSAGE returns
quietly.

Keywords

CONTINUE

Set this keyword to return after issuing the error instead of taking the action specified
by ON_ERROR. Use this option when it is desirable to report an error and then
continue processing.

INFORMATIONAL

Set this keyword to issue informational text instead of an error. In this case,
!ERROR_STATE is not set. The !QUIET system variable controls the printing of
informational messages.

IOERROR

Set this keyword to indicate that the error occurred while performing I/O. The action
specified by the ON_IOERROR procedure is executed instead of ON_ERROR.
IDL Reference Guide MESSAGE

890
NONAME

Set this keyword to suppress printing of the issuing routine’s name at the beginning
of the error message.

NOPREFIX

Usually, the message includes the message prefix string (as specified by the
MSG_PREFIX field of the !ERROR_STATE system variable) at the beginning. Set
this keyword to omit the prefix.

NOPRINT

Set this keyword to prevent the message from printing to the screen and cause the
other actions to proceed quietly. The error system variables are updated as usual.

RESET

Set this keyword to set the “!ERROR_STATE” on page 2425 system variable back to
the “success” state and clear any internal traceback information being saved for use
by the LAST_ERROR keyword to the HELP procedure.

TRACEBACK

This keyword is obsolete and is included for compatibility with existing code only.
Traceback information is provided by default.

Example

As an example, assume the statement:

message, 'Unexpected value encountered.'

is executed in a procedure named CALC. If an error occurs, the following message
would be printed:

% CALC: Unexpected value encountered.

and execution would halt.

See Also

CATCH, ON_ERROR, ON_IOERROR, STRMESSAGE
MESSAGE IDL Reference Guide

891
MIN

The MIN function returns the value of the smallest element of Array. The type of the
result is the same as that of Array.

Syntax

Result = MIN(Array [, Min_Subscript] [, MAX=variable] [, /NAN])

Arguments

Array

The array to be searched.

Min_Subscript

A named variable that, if supplied, is converted to a long integer containing the one-
dimensional subscript of the minimum element. Otherwise, the system variable !C is
set to the one-dimensional subscript of the minimum element.

Keywords

MAX

The name of a variable to receive the value of the maximum array element. If you
need to find both the minimum and maximum array values, use this keyword to avoid
scanning the array twice with separate calls to MAX and MIN.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See “Special Floating-Point Values” in Chapter 17 of Building IDL
Applications for more information on IEEE floating-point values.)

Note
If the MIN function is run on an array containing NaN values and the NAN
keyword is not set, an invalid result will occur.

Example

; Create a simple two-dimensional array:
IDL Reference Guide MIN

892
D = DIST(100)
; Find the minimum value in array D and print the result:
PRINT, MIN(D)

See Also

MAX
MIN IDL Reference Guide

893
MIN_CURVE_SURF

The MIN_CURVE_SURF function interpolates a regularly- or irregularly-gridded
set of points, over either a plane or a sphere, with either a minimum curvature surface
or a thin-plate-spline surface.

Note
The accuracy of this function is limited by the single-precision floating-point
accuracy of the machine.

This routine is written in the IDL language. Its source code can be found in the file
min_curve_surf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = MIN_CURVE_SURF(Z [, X, Y] [, /DOUBLE] [, /TPS] [, /REGULAR]
[, /SPHERE [, /CONST]] [, XGRID=[xstart, xspacing] | , XVALUES=array]
[, YGRID=[ystart, yspacing] | , YVALUES=array] [, GS=[xspace,yspace]]
[, BOUNDS=[xmin, ymin, xmax, ymax]] [, NX=value] [, NY=value]
[, XOUT=vector] [, YOUT=vector] [, XPOUT=array, YPOUT=array])

Return Value

This function returns a two-dimensional floating-point array containing the
interpolated surface, sampled at the grid points.

Theory

A minimum curvature spline surface is fitted to the data points described by x, y, and
z. The basis function is:

C (x0, x1, y0, y1) = d2 log(dk)

where d is the distance between (x0, y0), (x1, y1) and k = 1 for minimum curvature
surface or k = 2 for Thin Plate Splines. For n data points, a system of n+3
simultaneous equations are solved for the coefficients of the surface. For any
interpolation point, the interpolated value is:

For a sphere the value is:

f x y,() b0 b1 x b2 y ai C xi x yi y, , ,()⋅∑+⋅+⋅+=
IDL Reference Guide MIN_CURVE_SURF

894
On the sphere, l and t are longitude and latitude. C(Li,l, Ti,t) is the basis function
above, with distance between the two points, (Li,Ti), and (l , t), measured in radians
of arc length. x, y, and z are the 3D cartesian coordinates of the point (l,t) on the unit
sphere.

For a sphere with the CONST keyword set, the value is:

The results obtained with the thin plate spline (TPS) and the minimum curvature
surface (MCS) methods are very similar. The only difference is in the basis functions:
TPS uses d2*alog(d2), and MCS uses d2*alog(d), where d is the distance from point
(xi,yi).

Arguments

Z, X, Y

Arrays containing the Z, X, and Y coordinates of the data points on the surface. Points
need not be regularly gridded. For regularly gridded input data, X and Y are not used:
the grid spacing is specified via the XGRID and YGRID (or XVALUES and
YVALUES) keywords, and Z must be a two-dimensional array. For irregular grids,
all three parameters must be present and have the same number of elements. If Z is
specified as a double-precision value, the computation will be performed in double-
precision arithmetic. If the SPHERE keyword is set, X and Y are given in degrees of
longitude and latitude, respectively.

Keywords

CONST

Set this keyword to fit data on the sphere with a constant baseline, otherwise, data on
the sphere is fit with a basline that contains a constant term plus linear X, Y, and Z
terms. This keyword has an effect only if SPHERE is set. See Theory above for the
formulae.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
If Z is double precision, the computations will also be done in double precision.

f l t,() b0 b1 x b2 y b3 z⋅ ai C Li l Ti t, , ,()⋅∑+ +⋅+⋅+=

f l t,() b0 ai CLi l Ti t, , ,⋅∑+=
MIN_CURVE_SURF IDL Reference Guide

895
SPHERE

Set this keyword to perform interpolation on the surface of a sphere. The inputs X
and Y should be given in degrees of longitude and latitude, respectively.

TPS

Set this keyword to use the thin-plate-spline method. The default is to use the
minimum curvature surface method.

Input Grid Description:

REGULAR

If set, the Z parameter is a two-dimensional array of dimensions (n,m), containing
measurements over a regular grid. If any of XGRID, YGRID, XVALUES, or
YVALUES are specified, REGULAR is implied. REGULAR is also implied if there
is only one parameter, Z. If REGULAR is set, and no grid specifications are present,
the grid is set to (0, 1, 2, ...).

XGRID

A two-element array, [xstart, xspacing], defining the input grid in the x direction. Do
not specify both XGRID and XVALUES.

XVALUES

An n-element array defining the x locations of Z[i,j]. Do not specify both XGRID and
XVALUES.

YGRID

A two-element array, [ystart, yspacing], defining the input grid in the y direction. Do
not specify both YGRID and YVALUES.

YVALUES

An n-element array defining the y locations of Z[i,j]. Do not specify both YGRID and
YVALUES.
IDL Reference Guide MIN_CURVE_SURF

896
Output Grid Description:

GS

The output grid spacing. If present, GS must be a two-element vector [xs, ys], where
xs is the horizontal spacing between grid points and ys is the vertical spacing. The
default is based on the extents of x and y. If the grid starts at x value xmin and ends at
xmax, then the default horizontal spacing is (xmax - xmin)/(NX-1). ys is computed in
the same way. The default grid size, if neither NX or NY are specified, is 26 by 26.

BOUNDS

If present, BOUNDS must be a four-element array containing the grid limits in x and
y of the output grid: [xmin, ymin, xmax, ymax]. If not specified, the grid limits are set
to the extent of x and y.

NX

The output grid size in the x direction. NX need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

NY

The output grid size in the y direction. NY need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

XOUT

Use the XOUT keyword to specify a vector containing the output grid x values. If this
parameter is supplied, GS, BOUNDS, and NX are ignored for the x output grid.
XOUT allows you to specify irregularly-spaced output grids.

YOUT

Use the YOUT keyword to specify a vector containing the output grid y values. If this
parameter is supplied, GS, BOUNDS, and NY are ignored for the y output grid.
YOUT allows you to specify irregularly-spaced output grids.

XPOUT, YPOUT

Use the XPOUT and YPOUT keywords to specify arrays that contain the x and y
values for the output points. If these keywords are used, the output grid need not be
regular, and all other output grid parameters are ignored. XPOUT and YPOUT must
have the same number of points, which is also the number of points returned in the
result.
MIN_CURVE_SURF IDL Reference Guide

897
Examples

Example 1: Irregularly gridded cases

; Make a random set of points that lie on a Gaussian:
N = 15
X = RANDOMU(seed, N)
Y = RANDOMU(seed, N)

; The Gaussian:
Z = EXP(-2 * ((X-.5)^2 + (Y-.5)^2))

Use a 26 by 26 grid over the rectangle bounding x and y:

;Get the surface.
R = MIN_CURVE_SURF(Z, X, Y)

Alternatively, get a surface over the unit square, with spacing of 0.05:

R = MIN_CURVE_SURF(Z, X, Y, GS=[0.05, 0.05], BOUNDS=[0,0,1,1])

Alternatively, get a 10 by 10 surface over the rectangle bounding x and y:

R = MIN_CURVE_SURF(Z, X, Y, NX=10, NY=10)

Example 2: Regularly gridded cases

; Make some random data:
z = RANDOMU(seed, 5, 6)

; Interpolate to a 26 x 26 grid:
CONTOUR, MIN_CURVE_SURF(z, /REGULAR)

See Also

CONTOUR, GRID_TPS, TRI_SURF
IDL Reference Guide MIN_CURVE_SURF

898
MK_HTML_HELP

The MK_HTML_HELP procedure, given a list of IDL procedure filenames (.pro
files), VMS text library filenames (.TLB files), or the names of directories containing
such files, generates a file in HTML (HyperText Markup Language) format that
contains documentation for those routines that contain standard IDL documentation
headers. The resulting file can then be viewed with a “World Wide Web” browser
such as Mosaic or Netscape.

MK_HTML_HELP procedure makes single HTML file that starts with a list of the
routines documented in the file. The names of routines in that list are hypertext links
to the documentation for those routines. The documentation for each routine is
simply the text of the documentation header copied from the corresponding .pro
file—no reformatting is performed.

The documentation headers of the .pro files in question must have the following
format:

• The first line of the documentation block contains only the characters ;+,
starting in column 1.

• The last line of the documentation block contains only the characters ;-,
starting in column 1.

• All other lines in the documentation block contain a ; in column 1.

• If a line containing the string “NAME:” exists in the documentation block, the
contents of the following line are used as the name of the routine being
described. If the NAME: field is not present, the name of the source file is used
as the routine name.

The file template.pro in the examples subdirectory of the IDL distribution
contains a template for creating your own documentation headers.

This routine is supplied for users to make online documentation from their own IDL
programs. Although it could be used to create an HTML documentation file from the
lib subdirectory of the IDL distribution, we do not recommend doing so. The
documentation headers on the files in the lib directory are used for historical
purposes—most do not contain the most current or accurate documentation for those
routines. The most current documentation for IDL’s built-in and library routines is
found in IDL’s online help system (enter ? at the IDL prompt).

This routine is written in the IDL language. Its source code can be found in the file
mk_html_help.pro in the lib subdirectory of the IDL distribution.
MK_HTML_HELP IDL Reference Guide

899
Syntax

MK_HTML_HELP, Sources, Filename [, /STRICT] [, TITLE=string]
[, /VERBOSE]

Arguments

Sources

A string array containing the names of IDL procedure files (.pro files), VMS text
libraries (.TLB files), or directories containing such files. The Sources array may
contain both individual file and directory names. Each IDL procedure file must have
the file extension .pro, and each VMS text library must include the file extension
.TLB. Elements of the Sources array that do not have either of these extensions are
assumed to be directories.

All .pro files found in Sources are searched for documentation headers. The
documentation headers are extracted and saved in HTML format in the file specified
by Filename.

Note
More than one documentation block may exist in a single input file.

Filename

A string containing the name of the output file to be generated. HTML files are
usually saved in files named with a .html or .htm extension.

Keywords

STRICT

Set this keyword to force MK_HTML_HELP to adhere strictly to the HTML format
by scanning the documentation blocks for HTML reserved characters and replacing
them in the output file with the appropriate HTML syntax. HTML reserved
characters include < , > , & , and ". By default, this keyword is set to zero to allow for
faster processing of the input files.

TITLE

A string that supples the name to be used as the title of the HTML document. The
default is “Extended IDL Help”.
IDL Reference Guide MK_HTML_HELP

900
VERBOSE

Set this keyword to display informational messages as MK_HTML_HELP generates
the HTML file. Normally, MK_HTML_HELP works silently.

Example

To generate an HTML help file named myhelp.html from the .pro files in the
directory /usr/home/dave/myroutines, use the command:

MK_HTML_HELP, '/usr/home/dave/myroutines', 'myhelp.html'

To generate an HTML help file for all routines in a given directory whose file names
contain the word “plot”, use the following commands:

plotfiles=FINDFILE('/usr/home/dave/myroutines/*plot*.pro')
MK_HTML_HELP, plotfiles, 'myplot.html'

See Also

DOC_LIBRARY
MK_HTML_HELP IDL Reference Guide

901
MODIFYCT

The MODIFYCT procedure updates the distribution color table file colors1.tbl,
located in the \resource\colors subdirectory of the main IDL directory, or a
user-designated file with a new, or modified, colortable.

This routine is written in the IDL language. Its source code can be found in the file
modifyct.pro in the lib subdirectory of the IDL distribution.

Syntax

MODIFYCT, Itab, Name, R, G, B [, FILE=filename]

Arguments

Itab

The index of the table to be updated, numbered from 0 to 255. If the specified entry is
greater than the next available location in the table, the entry will be added to the
table in the available location rather than the index specified by Itab. On return, Itab
contains the index for the location that was modified or extended. The modified table
can be then be loaded with the IDL command: LOADCT, Itab.

Name

A string, up to 32 characters long, that contains the name for the new color table.

R

A 256-element vector that contains the values for the red colortable.

G

A 256-element vector that contains the values for the green colortable.

B

A 256-element vector that contains the values for the blue colortable.

Keywords

FILE

Set this keyword to the name of a colortable file to be modified instead of the file
colors1.tbl.
IDL Reference Guide MODIFYCT

902
See Also

LOADCT, XLOADCT
MODIFYCT IDL Reference Guide

903
MOMENT

The MOMENT function computes the mean, variance, skewness, and kurtosis of a
sample population contained in an n-element vector X. If the vector contains n
identical elements, MOMENT computes the mean and variance, and returns the
IEEE value NaN for the skewness and kurtosis, which are not defined. (See “Special
Floating-Point Values” in Chapter 17 of Building IDL Applications.)

When x = (x0, x1, x2, ..., xn-1), the various moments are defined as follows:

This routine is written in the IDL language. Its source code can be found in the file
moment.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = MOMENT(X [, /DOUBLE] [, MDEV=variable] [, /NAN]
[, SDEV=variable])

Mean x
1
N
---- xj

j 0=

N 1–

∑= =

Variance
1

N 1–
------------- xj x–()

2

j 0=

N 1–

∑=

Skewness
1
N

xj x–

Variance

3

j 0=

N 1–

∑=

Kurtosis
1
N

xj x–

Variance

4

3–
j 0=

N 1–

∑=

Mean Absolute Deviation
1
N
---- xj x–

j 0=

N 1–

∑=

Standard Deviation Variance=
IDL Reference Guide MOMENT

904
Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

MDEV

Set this keyword to a named variable that will contain the mean absolute deviation of
X.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See “Special Floating-Point Values” in Chapter 17 of Building IDL
Applications for more information on IEEE floating-point values.)

SDEV

Set this keyword to a named variable that will contain the standard deviation of X.

Example

; Define an n-element sample population:
X = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71, 66, 65, 70]
; Compute the mean, variance, skewness and kurtosis:
result = MOMENT(X)
PRINT, 'Mean: ', result[0] & PRINT, 'Variance: ', result[1] & $

PRINT, 'Skewness: ', result[2] & PRINT, 'Kurtosis: ', result[3]

IDL prints:

Mean: 66.7333
Variance: 7.06667
Skewness: -0.0942851
Kurtosis: -1.18258

See Also

KURTOSIS, HISTOGRAM, MAX, MEAN, MEANABSDEV, MEDIAN, MIN,
MOMENT, STDDEV, SKEWNESS, VARIANCE
MOMENT IDL Reference Guide

905
MORPH_CLOSE

The MORPH_CLOSE function applies the closing operator to a binary or grayscale
image. MORPH_CLOSE is simply a dilation operation followed by an erosion
operation. The result of a closing operation is that small holes and gaps within the
image are filled, yet the original sizes of the primary foreground features are
maintained. The closing operation is an idempotent operator—applying it more than
once produces no further effect.

Both the opening and the closing operators have the effect of smoothing the image,
with the opening operation removing pixels, and the closing operation adding pixels.

Syntax

Result = MORPH_CLOSE (Image, Structure [, /GRAY]
[, PRESERVE_TYPE=bytearray | /UINT | /ULONG] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the closing operation is to be
performed. If neither of the keywords GRAY or VALUES is present, the image is
treated as a binary image with all nonzero pixels considered as 1.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element. The
elements are interpreted as binary values - either zero or nonzero. The structuring
element must have the same number of dimensions as the Image argument.

Keywords

GRAY

Set this keyword to perform a grayscale, rather than binary, operation. Nonzero
elements of the Structure parameter determine the shape of the structuring element. If
the VALUES keyword is not present, all elements of the structuring element are 0.

PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must be of
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of UINT and ULONG.
IDL Reference Guide MORPH_CLOSE

906
UINT

Set this keyword to return an unsigned integer array. This keyword only applies for
grayscale operations, and is mutually exclusive of the ULONG and
PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword only
applies for grayscale operations, and is mutually exclusive of the UINT and
PRESERVE_TYPE keywords.

VALUES

An array of the same dimensions as Structure providing the values of the structuring
element. The presence of this keyword implies a grayscale operation.

Example

The following code reads a data file in the IDL Demo data directory containing a
magnified image of grains of pollen. It then applies a threshold and a morphological
closing operator with a 3 by 3 square kernel to the original image. Notice that most of
the holes in the pollen grains have been filled by the closing operator.

;Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Read the image
path=FILEPATH('pollens.jpg',SUBDIR=['examples','demo','demodata'])
READ_JPEG, path, img

;Create window:
WINDOW, 0, XSIZE=700, YSIZE=540

;Show original image
XYOUTS, 180, 525, 'Original Image', ALIGNMENT=.5, /DEVICE
TVSCL, img, 20, 280

;Apply the threshold creating a binary image
thresh = img GE 140B

;Load a simple color table
TEK_COLOR

;Display Edges
XYOUTS, 520, 525, 'Edges', ALIGNMENT=.5, /DEVICE
TV, thresh, 360, 280
MORPH_CLOSE IDL Reference Guide

907
;Apply closing operator
closing = MORPH_CLOSE(thresh, REPLICATE(1,3,3))

;Show the result
XYOUTS, 180, 265, 'Closing Operator', ALIGNMENT=.5, /DEVICE
TV, closing, 20, 20

;Show added pixels in white
XYOUTS, 520, 265, 'Added Pixels in White', ALIGNMENT=.5, /DEVICE
TV, closing + thresh, 360, 20

See Also

DILATE, ERODE, MORPH_DISTANCE, MORPH_GRADIENT,
MORPH_HITORMISS, MORPH_OPEN, MORPH_THIN, MORPH_TOPHAT
IDL Reference Guide MORPH_CLOSE

908
MORPH_DISTANCE

The MORPH_DISTANCE function estimates N-dimensional distance maps, which
contain for each foreground pixel the distance to the nearest background pixel, using
a given norm. Available norms include: Euclidean, which is exact and is also known
as the Euclidean Distance Map (EDM), and two more efficient approximations,
chessboard and city block.

The distance map is useful for a variety of morphological operations: thinning,
erosion and dilation by discs of radius “r”, and granulometry.

Syntax

Result = MORPH_DISTANCE (Data [, /BACKGROUND]
[, NEIGHBOR_SAMPLING={1 | 2 | 3 }] [, /NO_COPY])

Return Value

The returned variable is an array of the same dimension as the input array.

Arguments

Data

An input binary array. Zero-valued pixels are considered to be part of the
background.

Keywords

BACKGROUND

By default, the EDM is computed for the foreground (non-zero) features in the Data
argument. Set this keyword to compute the EDM of the background features instead
of the foreground features. If the keyword is set, elements of Result that are on an
edge are set to 0.

NEIGHBOR_SAMPLING

Set this keyword to indicate how the distance of each neighbor from a given pixel is
determined. Valid values include:

• 0 = default. No diagonal neighbors. Each neighbor is assigned a distance of 1.

• 1 = chessboard. Each neighbor is assigned a distance of 1.
MORPH_DISTANCE IDL Reference Guide

909
• 2 = city block. Each neighbor is assigned a distance corresponding to the
number of pixels to be visited when travelling from the current pixel to the
neighbor. (The path can only take 90 degree turns; no diagonal paths are
allowed.)

• 3 = actual distance. Each neighbor is assigned its actual distance from the
current pixel (within the limitations of floating point representations).

Default Two Dimensional Example

1
1 X 1

1

Chessboard Two-Dimensional Example

1 1 1
1 X 1
1 1 1

City Block Two-Dimensional Example:

2 1 2
1 X 1
2 1 2

Actual Distance Two-Dimensional Example

sqrt(2) 1 sqrt(2)
1 X 1

sqrt(2) 1 sqrt(2)

NO_COPY

Set this keyword to request that the input array be reused, if possible. If this keyword
is set, the input argument is undefined upon return.

Example

The following code reads a data file in the IDL Demo data directory containing a
magnified image of grains of pollen. It then applies a threshold and the
morphological distance operator. Thresholding the result distance operator with a
value of “n” produces the equivalent of eroding the thresholded image with a disc of
radius “n”.

;Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Read the image
IDL Reference Guide MORPH_DISTANCE

910
path=FILEPATH('pollens.jpg',SUBDIR=['examples','demo','demodata'])
READ_JPEG, path, img

; Create window:
WINDOW, 0, XSIZE=700, YSIZE=540

; Display the original image
XYOUTS, 180, 525, 'Original Image', ALIGNMENT=.5, /DEVICE
TV, img, 20, 280

; Apply the threshold:
thresh = img GE 140B

; Display the thresholded image
XYOUTS, 520, 525, 'Thresholded Image', ALIGNMENT=.5, /DEVICE
TVSCL, thresh, 360, 280

;Create Euclidean distance function
edist = MORPH_DISTANCE(thresh, NEIGHBOR_SAMPLING = 3)

; Display the distance function
XYOUTS, 180, 265, 'Distance Function', ALIGNMENT=.5, /DEVICE
TVSCL, edist, 20, 20

; Display image after erosion with a disc of radius 5:
XYOUTS, 520, 265, 'After erosion with disc of radius 5',
ALIGNMENT=.5, /DEVICE
TVSCL, edist GT 5, 360, 20

See Also

DILATE, ERODE, MORPH_CLOSE, MORPH_GRADIENT,
MORPH_HITORMISS, MORPH_OPEN, MORPH_THIN, MORPH_TOPHAT
MORPH_DISTANCE IDL Reference Guide

911
MORPH_GRADIENT

The MORPH_GRADIENT function applies the morphological gradient operator to a
grayscale image. MORPH_GRADIENT is the subtraction of an eroded version of the
original image from a dilated version of the original image. The practical result of a
morphological gradient operation is that the boundaries of features are highlighted.

Syntax

Result = MORPH_GRADIENT (Image, Structure [, PRESERVE_TYPE=bytearray |
/UINT | /ULONG] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the morphological gradient
operation is to be performed.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element. The
elements are interpreted as binary values - either zero or nonzero. The structuring
element must have the same number of dimensions as the Image argument.

Keywords

PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must be of
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of the UINT and ULONG keywords.

UINT

Set this keyword to return an unsigned integer array. This keyword is mutually
exclusive of the ULONG and PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword is
mutually exclusive of the UINT and PRESERVE_TYPE keywords.
IDL Reference Guide MORPH_GRADIENT

912
VALUES

An array of the same dimensions as the Structure argument providing the values of
the structuring element. If the VALUES keyword is not present, all elements of the
structuring element are 0.

Example

The following code reads a data file in the IDL Demo data directory containing a
magnified image of grains of pollen. It then creates disc of radius 2, in a 5 by 5 array,
with all elements within a radius of 2 from the center set to 1. This disc is used as the
structuring element for the morphological gradient which is then displayed as both a
gray scale image, and as a thresholded image.

;Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Read the image
path=FILEPATH('pollens.jpg',SUBDIR=['examples','demo','demodata'])
READ_JPEG, path, img

; Create window:
WINDOW, 0, XSIZE=700, YSIZE=540

;Show original image
XYOUTS, 180, 525, 'Original Image', ALIGNMENT=.5, /DEVICE
TVSCL, img, 20, 280

;Define disc radius
r = 2

;Create a binary disc of given radius.
disc = SHIFT(DIST(2*r+1), r, r) LE r

bdisc = MORPH_GRADIENT(img, disc)

;Show edges
XYOUTS, 520, 525, 'Edges', ALIGNMENT=.5, /DEVICE
TVSCL, bdisc, 360, 280

;Show thresholded edges
XYOUTS, 180, 265, 'Threshold Edges', ALIGNMENT=.5, /DEVICE
TVSCL, bdisc ge 100, 20, 20

See Also

DILATE, ERODE, MORPH_CLOSE, MORPH_DISTANCE,
MORPH_HITORMISS, MORPH_OPEN, MORPH_THIN, MORPH_TOPHAT
MORPH_GRADIENT IDL Reference Guide

913
MORPH_HITORMISS

The MORPH_HITORMISS function applies the hit-or-miss operator to a binary
image. The hit-or-miss operator is implemented by first applying an erosion operator
with a hit structuring element to the original image. Then an erosion operator is
applied to the complement of the original image with a secondary miss structuring
element. The result is the intersection of the two results.

The resulting image corresponds to the positions where the hit structuring element
lies within the image, and the miss structure lies completely outside the image. The
two structures must not overlap.

Syntax

Result = MORPH_HITORMISS (Image, HitStructure, MissStructure)

Arguments

Image

A one-, two-, or three-dimensional array upon which the morphological operation is
to be performed. The image is treated as a binary image with all nonzero pixels
considered as 1.

HitStructure

A one-, two-, or three-dimensional array to be used as the hit structuring element. The
elements are interpreted as binary values — either zero or nonzero. This structuring
element must have the same number of dimensions as the Image argument.

MissStructure

A one-, two-, or three-dimensional array to be used as the miss structuring element.
The elements are interpreted as binary values — either zero or nonzero. This
structuring element must have the same number of dimensions as the Image
argument.

Note
It is assumed that the HitStructure and the MissStructure arguments are disjoint.

Keywords

None.
IDL Reference Guide MORPH_HITORMISS

914
Example

The following code snippet identifies blobs with a radius of at least 2, but less than 4
in the pollen image. These regions totally enclose a disc of radius 2, contained in the
5 x 5 kernel named “hit”, and in turn, fit within a hole of radius 4, contained in the 9
x 9 array named “miss”. Executing this specific example identifies four blobs in the
image with these attributes.

;Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Read the image
path=FILEPATH('pollens.jpg',SUBDIR=['examples','demo','demodata'])
READ_JPEG, path, img

WINDOW, 0, XSIZE=700, YSIZE=540

; Display the original image
XYOUTS, 180, 525, 'Original Image', ALIGNMENT=.5, /DEVICE
TV, img, 20, 280

rh = 2 ;Radius of hit disc
rm = 4 ;Radius of miss disc

;Create a binary disc of given radius.
hit = SHIFT(DIST(2*rh+1), rh, rh) LE rh

;Complement of disc for miss
miss = SHIFT(DIST(2*rm+1), rm, rm) GT rm

;Load discrete color table
TEK_COLOR

;Apply the threshold
thresh = img GE 140B

; Display the thresholded image
XYOUTS, 520, 525, 'Thresholded Image', ALIGNMENT=.5, /DEVICE
TV, thresh, 360, 280

;Compute matches
matches = MORPH_HITORMISS(thresh, hit, miss)

;Expand matches to size of hit disc
matches = DILATE(matches, hit)

;Show matches.
XYOUTS, 180, 265, 'Matches', ALIGNMENT=.5, /DEVICE
MORPH_HITORMISS IDL Reference Guide

915
TV, matches, 20, 20

;Superimpose, showing hit regions in blue.
;(Blue = color index 4 for tek_color.)
XYOUTS, 520, 265, 'Superimposed, hit regions in blue',$

ALIGNMENT=.5, /DEVICE
TV, thresh + 3*matches, 360, 20

See Also

DILATE, ERODE, MORPH_CLOSE, MORPH_DISTANCE,
MORPH_GRADIENT, MORPH_OPEN, MORPH_THIN, MORPH_TOPHAT
IDL Reference Guide MORPH_HITORMISS

916
MORPH_OPEN

The MORPH_OPEN function applies the opening operator to a binary or grayscale
image. MORPH_OPEN is simply an erosion operation followed by a dilation
operation. The result of an opening operation is that small features (e.g., noise) within
the image are removed, yet the original sizes of the primary foreground features are
maintained. The opening operation is an idempotent operator, applying it more than
once produces no further effect.

An alternative definition of the opening, is that it is the union of all sets containing
the structuring element in the original image. Both the opening and the closing
operators have the effect of smoothing the image, with the opening operation
removing pixels, and the closing operation adding pixels.

Syntax

Result = MORPH_OPEN (Image, Structure [, /GRAY]
[, PRESERVE_TYPE=bytearray | /UINT | /ULONG] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the opening operation is to be
performed. If neither of the keywords GRAY or VALUES is present, the image is
treated as a binary image with all nonzero pixels considered as 1.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element. The
elements are interpreted as binary values — either zero or nonzero. The structuring
element must have the same number of dimensions as the Image argument.

Keywords

GRAY

Set this keyword to perform a grayscale, rather than binary, operation. Nonzero
elements of the Structure parameter determine the shape of the structuring element. If
the VALUES keyword is not present, all elements of the structuring element are 0.
MORPH_OPEN IDL Reference Guide

917
PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must be of
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of the UINT and ULONG keywords.

UINT

Set this keyword to return an unsigned integer array. This keyword only applies for
grayscale operations, and is mutually exclusive of the ULONG and
PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword only
applies for grayscale operations and is mutually exclusive of the UINT and
PRESERVE_TYPE keywords.

VALUES

An array of the same dimensions as Structure providing the values of the structuring
element. The presence of this keyword implies a grayscale operation.

Example

The following code reads a data file in the IDL Demo data directory containing an
magnified image of grains of pollen. It then applies a threshold and a morphological
opening operator with a 3 by 3 square kernel to the original image. Notice that much
of the irregular borders of the grains have been smoothed by the opening operator.

; Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Read the image
path=FILEPATH('pollens.jpg',SUBDIR=['examples','demo','demodata'])
READ_JPEG, path, img

; Create window:
WINDOW, 0, XSIZE=700, YSIZE=540

;Show original image
XYOUTS, 180, 525, 'Original Image', ALIGNMENT=.5, /DEVICE
TV, img, 20, 280

;Apply the threshold
thresh = img GE 140B

;Load a simple color table
IDL Reference Guide MORPH_OPEN

918
TEK_COLOR

;Display edges
XYOUTS, 520, 525, 'Edges', ALIGNMENT=.5, /DEVICE
TV, thresh, 360, 280

;Apply opening operator
open = MORPH_OPEN(thresh, REPLICATE(1,3,3))

;Show the result
XYOUTS, 180, 265, 'Opening Operator', ALIGNMENT=.5, /DEVICE
TV, open, 20, 20

;Show pixels that have been removed in white
XYOUTS, 520, 265, 'Removed Pixels in White', ALIGNMENT=.5, /DEVICE
TV, open + thresh, 360, 20

See Also

DILATE, ERODE, MORPH_CLOSE, MORPH_DISTANCE,
MORPH_GRADIENT, MORPH_HITORMISS, MORPH_THIN,
MORPH_TOPHAT
MORPH_OPEN IDL Reference Guide

919
MORPH_THIN

The MORPH_THIN function performs a thinning operation on binary images. The
thinning operator is implemented by first applying a hit or miss operator to the
original image with a pair of structuring elements, and then subtracting the result
from the original image.

In typical applications, this operator is repeatedly applied with the two structuring
elements, while rotating them after each application, until the result remains
unchanged.

Syntax

Result = MORPH_THIN (Image, HitStructure, MissStructure)

Arguments

Image

A one-, two-, or three-dimensional array upon which the thinning operation is to be
performed. The image is treated as a binary image with all nonzero pixels considered
as 1.

HitStructure

A one-, two-, or three-dimensional array to be used as the hit structuring element. The
elements are interpreted as binary values — either zero or nonzero. This structuring
element must have the same number of dimensions as the Image argument.

MissStructure

A one-, two-, or three-dimensional array to be used as the miss structuring element.
The elements are interpreted as binary values — either zero or nonzero. This
structuring element must have the same number of dimensions as the Image
argument.

Note
It is assumed that the HitStructure and the MissStructure arguments are disjoint.

Keywords

None.
IDL Reference Guide MORPH_THIN

920
See Also

DILATE, ERODE, MORPH_CLOSE, MORPH_DISTANCE,
MORPH_GRADIENT, MORPH_HITORMISS, MORPH_OPEN,
MORPH_TOPHAT
MORPH_THIN IDL Reference Guide

921
MORPH_TOPHAT

The MORPH_TOPHAT function applies the top-hat operator to a grayscale image.
The top-hat operator is implemented by first applying the opening operator to the
original image, then subtracting the result from the original image. Applying the top-
hat operator provides a result that shows the bright peaks within the image.

Syntax

Result = MORPH_TOPHAT (Image, Structure [, PRESERVE_TYPE=bytearray |
/UINT | /ULONG] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the top-hat operation is to be
performed.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element. The
elements are interpreted as binary values — either zero or nonzero. The structuring
element must have the same number of dimensions as the Image argument.

Keywords

PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must be of
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of the UINT and ULONG keywords.

UINT

Set this keyword to return an unsigned integer array. This keyword is mutually
exclusive of the ULONG and PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword is
mutually exclusive of the UINT and PRESERVE_TYPE keywords.
IDL Reference Guide MORPH_TOPHAT

922
VALUES

An array of the same dimensions as the Structure argument providing the values of
the structuring element. If the VALUES keyword is not present, all elements of the
structuring element are 0.

Example

The following example illustrates an application of the top-hat operator to an image
in the examples/demo/demodata directory:

; Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Read the image
path=FILEPATH('pollens.jpg',SUBDIR=['examples','demo','demodata'])
READ_JPEG, path, img

; Create window:
WINDOW, 0, XSIZE=700, YSIZE=280

;Show original
XYOUTS, 180, 265, 'Original Image', ALIGNMENT=.5, /DEVICE
TVSCL, img, 20, 20

;Radius of disc
r = 2

;Create a binary disc of given radius.
disc = SHIFT(DIST(2*r+1), r, r) LE r

;Apply top-hat operator
tophat = MORPH_TOPHAT(img, disc)

;Display stretched result.
XYOUTS, 520, 265, 'Stretched Result', ALIGNMENT=.5, /DEVICE
TVSCL, tophat < 50, 360, 20

See Also

DILATE, ERODE, MORPH_CLOSE, MORPH_DISTANCE,
MORPH_GRADIENT, MORPH_HITORMISS, MORPH_OPEN, MORPH_THIN
MORPH_TOPHAT IDL Reference Guide

923
MPEG_CLOSE

The MPEG_CLOSE procedure closes an MPEG sequence opened with the
MPEG_OPEN routine. Note that MPEG_CLOSE does not save the MPEG file
associated with the MPEG sequence; use MPEG_SAVE to save the file. The
specified MPEG sequence identifier will no longer be valid after calling
MPEG_CLOSE.

This routine is written in the IDL language. Its source code can be found in the file
mpeg_close.pro in the lib subdirectory of the IDL distribution.

Syntax

MPEG_CLOSE, mpegID

Arguments

mpegID

The unique identifier of the MPEG sequence to be freed. (MPEG sequence identifiers
are returned by the MPEG_OPEN routine.)

Example

See MPEG_OPEN for an example using this routine.

See Also

MPEG_OPEN, MPEG_PUT, MPEG_SAVE, XINTERANIMATE
IDL Reference Guide MPEG_CLOSE

924
MPEG_OPEN

The MPEG_OPEN function initializes an IDLgrMPEG object for MPEG encoding
and returns the object reference. The MPEG routines provide a wrapper around the
IDL Object Graphics IDLgrMPEG object, eliminating the need to use the Object
Graphics interface to create MPEG files.

Note
The MPEG standard does not allow movies with odd numbers of pixels to be
created.

This routine is written in the IDL language. Its source code can be found in the file
mpeg_open.pro in the lib subdirectory of the IDL distribution.

Note
MPEG support in IDL requires a special license. For more information, contact
your Research Systems sales representative or technical support.

Syntax

mpegID = MPEG_OPEN(Dimensions [, BITRATE=value] [, FILENAME=string]
[, IFRAME_GAP=integer value] [, MOTION_VEC_LENGTH={1 | 2 | 3}]
[QUALITY=value{0 to 100}])

Arguments

Dimensions

A two-element vector of the form [xsize, ysize] indicating the dimensions of the
images to be used as frames in the MPEG movie file. All images in the MPEG file
must have the same dimensions.

Note
When creating MPEG files, you must be aware of the capabilities of the MPEG
decoder you will be using to view it. Some decoders only support a limited set of
sampling and bitrate parameters to normalize computational complexity, buffer
size, and memory bandwidth. For example, the Windows Media Player supports a
limited set of sampling and bitrate parameters. In this case, it is best to use 352 x
240 x 30 fps or 352 x 288 x 25 fps when determining the dimensions and frame rate
MPEG_OPEN IDL Reference Guide

925
for your MPEG file. When opening a file in Windows Media Player that does not
use these dimensions, you will receive a “Bad Movie File” error message. The file
is not “bad”, this decoder just doesn’t support the dimensions of the MPEG.

Keywords

BITRATE

Set this keyword to a double-precision value to specify the MPEG movie bit rate.
Higher bit rates will create higher quality MPEGs but will increase file size. The
following table describes the valid values:

If you do not set this keyword, IDL computes the BITRATE value based upon the
value you have specified for the QUALITY keyword.

Note
Only use the BITRATE keyword if changing the QUALITY keyword value does
not produce the desired results. It is highly recommended to set the BITRATE to at
least several times the frame rate to avoid unusable MPEG files or file generation
errors.

FILENAME

Set this keyword equal to a string representing the name of the file in which the
encoded MPEG sequence is to be saved. The default file name is idl.mpg.

IFRAME_GAP

Set this keyword to a positive integer value that specifies the number of frames
between I frames to be created in the MPEG file. I frames are full-quality image
frames that may have a number of predicted or interpolated frames between them.

If you do not specify this keyword, IDL computes the IFRAME_GAP value based
upon the value you have specified for the QUALITY keyword.

MPEG Version Range

MPEG 1 0.1 to 104857200.0

MPEG 2 0.1 to 429496729200.0

Table 74: BITRATE Value Range
IDL Reference Guide MPEG_OPEN

926
Note
Only use the IFRAME_GAP keyword if changing the QUALITY keyword value
does not produce the desired results.

MOTION_VEC_LENGTH

Set this keyword to an integer value specifying the length of the motion vectors to be
used to generate predictive frames. Valid values include:

• 1 = Small motion vectors.

• 2 = Medium motion vectors.

• 3 = Large motion vectors.

If you do not set this keyword, IDL computes the MOTION_VEC_LENGTH value
based upon the value you have specified for the QUALITY keyword.

Note
Only use the MOTION_VEC_LENGTH keyword if changing the QUALITY value
does not produce the desired results.

QUALITY

Set this keyword to an integer value between 0 (low quality) and 100 (high quality)
inclusive to specify the quality at which the MPEG stream is to be stored. Higher
quality values result in lower rates of time compression and less motion prediction
which provide higher quality MPEGs but with substantially larger file size. Lower
quality factors may result in longer MPEG generation times. The default is 50.

Note
Since MPEG uses JPEG (lossy) compression, the original picture quality can’t be
reproduced even when setting QUALITY to its highest setting.

Example

The following sequence of IDL commands illustrates the steps needed to create an
MPEG movie file from a series of image arrays named image0, image1, .., imagen,
where n is the zero-based index of the last image in the movie:

; Open an MPEG sequence:
mpegID = MPEG_OPEN()
MPEG_OPEN IDL Reference Guide

927
; Add the first frame:
MPEG_PUT, mpegID, IMAGE=image0, FRAME=0
MPEG_PUT, mpegID, IMAGE=image1, FRAME=1

; Subsequent frames:
...

; Last frame:
MPEG_PUT, mpegID, IMAGE=imagen, FRAME=n

; Save the MPEG sequence in the file myMovie.mpg:
MPEG_SAVE, mpegID, FILENAME='myMovie.mpg'

; Close the MPEG sequence:
MPEG_CLOSE, mpegID

See Also

MPEG_CLOSE, MPEG_PUT, MPEG_SAVE, XINTERANIMATE
IDL Reference Guide MPEG_OPEN

928
MPEG_PUT

The MPEG_PUT procedure stores the specified image array at the specified frame
index in an MPEG sequence.

This routine is written in the IDL language. Its source code can be found in the file
mpeg_put.pro in the lib subdirectory of the IDL distribution.

Syntax

MPEG_PUT, mpegID [, /COLOR] [, FRAME=frame_number] [, IMAGE=array | ,
WINDOW=index] [, /ORDER]

Arguments

mpegID

The unique identifier of the MPEG sequence into which the image will be inserted.
(MPEG sequence identifiers are returned by the MPEG_OPEN routine.)

Keywords

COLOR

Set this keyword to read off an 8-bit display and pass the information through the
current color table to create a 24-bit image.

FRAME

Set this keyword equal to an integer specifying the frame at which the image is to be
loaded. If the frame number matches a previously loaded frame, the previous frame is
overwritten. The default is 0.

IMAGE

Set this keyword equal to an m x n image array or a 3 x m x n True Color image array
representing the image to be loaded at the specified frame. This keyword is ignored if
the WINDOW keyword is specified.

ORDER

Set this keyword to indicate that the rows of the image should be drawn from top to
bottom. By default, the rows are drawn from bottom to top.
MPEG_PUT IDL Reference Guide

929
WINDOW

Set this keyword to the index of a Direct Graphics Window (or to an object reference
to an IDLgrWindow or IDLgrBuffer object) to indicate that the image to be loaded is
to be read from the given window or buffer. If this keyword is specified, it overrides
the value of the IMAGE keyword.

Example

See MPEG_OPEN for an example using this routine.

See Also

MPEG_CLOSE, MPEG_OPEN, MPEG_SAVE, XINTERANIMATE
IDL Reference Guide MPEG_PUT

930
MPEG_SAVE

The MPEG_SAVE procedure encodes and saves an open MPEG sequence.

This routine is written in the IDL language. Its source code can be found in the file
mpeg_save.pro in the lib subdirectory of the IDL distribution.

Note
MPEG support in IDL requires a special license. For more information, contact
your Research Systems sales representative or technical support.

Syntax

MPEG_SAVE, mpegID [, FILENAME=string]

Arguments

mpegID

The unique identifier of the MPEG sequence to be saved to a file. (MPEG sequence
identifiers are returned by the MPEG_OPEN routine.)

Keywords

FILENAME

Set this keyword to a string representing the name of the file to which the encoded
MPEG sequence is to be saved. The default is idl.mpg.

Note
On VMS, if you do not include a file extension when specifying FILENAME, a
period will be added to the filename. For example, if you set the FILENAME
keyword to “myfile”, the file will be saved as “myfile.”.

Example

See MPEG_OPEN for an example using this routine.

See Also

MPEG_CLOSE, MPEG_OPEN, MPEG_PUT, XINTERANIMATE
MPEG_SAVE IDL Reference Guide

931
MSG_CAT_CLOSE

The MSG_CAT_CLOSE procedure closes a catalog file from the stored cache.

Syntax

MSG_CAT_CLOSE, object

Arguments

object

The object reference returned from MSG_CAT_OPEN.

Keywords

None

See Also

MSG_CAT_COMPILE, MSG_CAT_OPEN, IDLffLanguageCat
IDL Reference Guide MSG_CAT_CLOSE

932
MSG_CAT_COMPILE

The MSG_CAT_COMPILE procedure creates an IDL language catalog file.

Note
The locale is determined from the system locale in effect when compilation takes
place.

Syntax

MSG_CAT_COMPILE, input[, output] [, LOCALE_ALIAS=string] [, /MBCS]

Arguments

input

The input file with which to create the catalog. The file is a text representation of the
key/MBCS association. Each line in the file must have a key. The language string
must then be surrounded by double quotes, then an optional comment.

For example:

VERSION "Version 1.0" My revision number of the file

There are 2 special tags, one of which must be included when creating the file.

APPLICATION (required)

SUB_QUERY (optional)

output

The optional output file name (including path if necessary) of the IDL language
catalog file.

The naming convention for IDL language catalog files is as follows:

idl_ + "Application name" + _ + "Locale" + .cat

For example:

idl_envi_usa_eng.cat

If not set, a default filename is used based on the locale:

idl_[locale].cat
MSG_CAT_COMPILE IDL Reference Guide

933
Keywords

LOCALE_ALIAS

Set this keyword to a scalar string containing any locale aliases for the locale on
which the catalog is being compiled. A semi-colon is used to separate locales.

For example:

MSG_CAT_COMPILE,'input.txt', 'idl_envi_usa_eng.cat',$
LOCALE_ALIAS='C'

MBCS

If set, this procedure assumes language strings to be in MBCS format. The default is
8-bit ASCII.

See Also

MSG_CAT_CLOSE, MSG_CAT_OPEN, IDLffLanguageCat
IDL Reference Guide MSG_CAT_COMPILE

934
MSG_CAT_OPEN

The MSG_CAT_OPEN function returns a catalog object for the given parameters if
found. If a match is not found, an unset catalog object is returned. If unset, the
IDLffLanguageCat::Query method will always return the empty string unless a
default catalog is provided.

Syntax

Result = MSG_CAT_OPEN(application [, DEFAULT_FILENAME=filename]
[, FILENAME=string] [, FOUND=variable] [, LOCALE=string] [, PATH=string]
[, SUB_QUERY=value])

Arguments

application

A scalar string representing the name of the desired application's catalog file.

Keywords

DEFAULT_FILENAME

Set this keyword to a scalar string containing the full path and filename of the catalog
file to open if the initial request was not found.

FILENAME

Set this keyword to a scalar string containing the full path and filename of the catalog
file to open. If this keyword is set, application, PATH and LOCALE are ignored.

FOUND

Set this keyword to a named variable that will contain 1 if a catalog file was found, 0
otherwise.

LOCALE

Set this keyword to the desired locale for the catalog file. If not set, the current locale
is used.

PATH

Set this keyword to a scalar string containing the path to search for language catalog
files. The default is the current directory.
MSG_CAT_OPEN IDL Reference Guide

935
SUB_QUERY

Set this keyword equal to the value of the SUB_QUERY key to search against. If a
match is found, it is used to further sub-set the possible return catalog choices.

See Also

MSG_CAT_CLOSE, MSG_CAT_COMPILE, IDLffLanguageCat
IDL Reference Guide MSG_CAT_OPEN

936
MULTI

The MULTI procedure expands the current color table to “wrap around” some
number of times.

This routine is written in the IDL language. Its source code can be found in the file
multi.pro in the lib subdirectory of the IDL distribution.

Syntax

MULTI, N

Arguments

N

The number of times the color table will wrap. This parameter does not have to be an
integer.

Example

Display an image, load color table 1, and make that color table “wrap around” 3
times. Enter:

;Display a simple image.
TVSCL, DIST(256)

;Load color table 1.
LOADCT, 1

;See how the new color table affects the image.
MULTI, 3

See Also

STRETCH, XLOADCT
MULTI IDL Reference Guide

937
IDL Reference Guide N_ELEMENTS

N_ELEMENTS

The N_ELEMENTS function returns the number of elements contained in an
expression or variable.

Syntax

Result = N_ELEMENTS(Expression)

Arguments

Expression

The expression for which the number of elements is to be returned. Scalar
expressions always have one element. The number of elements in an array is equal to
the product of its dimensions. If Expression is an undefined variable, N_ELEMENTS
returns zero.

Examples

Example 1

This example finds the number of elements in an array:

; Create an integer array:
I = INTARR(4, 5, 3, 6)
; Find the number of elements in I and print the result:
PRINT, N_ELEMENTS(I)

Example 2

A typical use of N_ELEMENTS is to check if an optional input is defined, and if not,
set it to a default value:

IF (N_ELEMENTS(roo) EQ 0) THEN roo=rooDefault

The original value of roo may be altered by a called routine, passing a different value
back to the caller. Unless you intend for the routine to behave in this manner, you
should prevent it by differentiating N_ELEMENTS’ parameter from your routine’s
variable:

IF (N_ELEMENTS(roo) EQ 0) THEN rooUse=rooDefault $
ELSE rooUse=roo

See Also

N_TAGS

938
N_PARAMS

The N_PARAMS function returns the number of non-keyword parameters used in
calling an IDL procedure or function. This function is only useful within IDL
procedures or functions. User-written procedures and functions can use N_PARAMS
to determine if they were called with optional parameters.

Note
In the case of object method procedures and functions, the SELF argument is not
counted by N_PARAMS.

Syntax

Result = N_PARAMS()

Arguments

None. This function always returns the number of parameters that were used in
calling the procedure or function from which N_PARAMS is called.

See Also

KEYWORD_SET
N_PARAMS IDL Reference Guide

939
N_TAGS

The N_TAGS function returns the number of structure tags contained in a structure
expression. It optionally returns the size, in bytes, of the structure.

Syntax

Result = N_TAGS(Expression [, /LENGTH])

Arguments

Expression

The expression for which the number of structure tags is to be returned. Expressions
that are not of structure type are considered to have no tags. N_TAGS does not search
for tags recursively, so if Expression is a structure containing nested structures, only
the number of tags in the outermost structure are counted.

Keywords

LENGTH

Set this keyword to return the length of the structure, in bytes.

Note
The length of a structure is machine dependent. The length of a given structure will
vary depending upon the host machine. IDL pads and aligns structures in a manner
consistent with the host machine’s C compiler.

Example

Find the number of tags in the system variable !P and print the result by entering:

PRINT, N_TAGS(!P)

Find the length of !P, in bytes:

PRINT, N_TAGS(!P, /LENGTH)

See Also

CREATE_STRUCT, N_ELEMENTS, TAG_NAMES, Building IDL Applications
Chapter 6, “Structures”
IDL Reference Guide N_TAGS

940
NCDF_* Routines

See Alphabetical Listing of NCDF Routines in the Scientific Data Formats manual.
NCDF_* Routines IDL Reference Guide

941
NEWTON

The NEWTON function solves a system of n non-linear equations in n dimensions
using a globally-convergent Newton’s method. The result is an n-element vector
containing the solution.

NEWTON is based on the routine newt described in section 9.7 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = NEWTON(X, Vecfunc [, CHECK=variable] [, /DOUBLE]
[, ITMAX=value] [, STEPMAX=value] [, TOLF=value] [, TOLMIN=value]
[, TOLX=value])

Arguments

X

An n-element vector containing an initial guess at the solution of the system.

Vecfunc

A scalar string specifying the name of a user-supplied IDL function that defines the
system of non-linear equations. This function must accept an n-element vector
argument X and return an n-element vector result.

For example, suppose the non-linear system is defined by the following equations:

y0 = x0 + x1 - 3, y1 = x0
2 + x1

2 - 9

We write a function NEWTFUNC to express these relationships in the IDL language:

FUNCTION newtfunc, X
RETURN, [X[0] + X[1] -3.0, X[0]^2 + X[1]^2 - 9.0]

END

Keywords

CHECK

NEWTON calls an internal function named fmin() to determine whether the routine
has converged to a local minimum rather than to a global minimum (see Numerical
Recipes, section 9.7). Use the CHECK keyword to specify a named variable which
IDL Reference Guide NEWTON

942
will be set to 1 if the routine has converged to a local minimum or to 0 if it has not. If
the routine does converge to a local minimum, try restarting from a different initial
guess to obtain the global minimum.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

ITMAX

The maximum allowed number of iterations. The default value is 200.

STEPMAX

The scaled maximum step length allowed in line search. The default value is 100.0.

TOLF

Set the convergence criterion on the function values. The default value is 1.0 × 10-4.

TOLMIN

Set the criterion for deciding whether spurious convergence to a minimum of the
function fmin() has occurred. The default value is 1.0 × 10-6.

TOLX

Set the convergence criterion on X. The default value is 1.0 × 10-7.

Example

Use NEWTON to solve an n-dimensional system of n non-linear equations. Systems
of non-linear equations may have multiple solutions; starting the algorithms with
different initial guesses enables detection of different solutions.

PRO TEST_NEWTON

; Provide an initial guess as the algorithm’s starting point:
X = [1.0, 5.0]

; Compute the solution:
result = NEWTON(X, 'newtfunc')

; Print the result:
PRINT, 'For X=[1.0, 5.0], result = ', result

;Try a different starting point.
X = [1.0, -1.0]
NEWTON IDL Reference Guide

943
; Compute the solution:
result = NEWTON(X,'newtfunc')

;Print the result.
PRINT, 'For X=[1.0, -1.0], result = ', result

END

FUNCTION newtfunc, X
RETURN, [X[0] + X[1] -3.0, X[0]^2 + X[1]^2 - 9.0]

END

IDL prints:

For X=[1.0, 5.0], result = 0.000398281 3.00000
For X=[1.0, -1.0], result = 3.00000 -6.45883e-005

See Also

BROYDEN, FX_ROOT, FZ_ROOTS
IDL Reference Guide NEWTON

944
NORM

The NORM function computes the Euclidean norm of a vector. Alternatively,
NORM computes the Infinity norm of an array.

This routine is written in the IDL language. Its source code can be found in the file
norm.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = NORM(A [, /DOUBLE])

Arguments

A

A can be either of the following:

• An n-element real or complex vector, if NORM is being used to compute the
Euclidean norm of a vector.

• An m by n real or complex array, if NORM is being used to compute the
Infinity norm of an array.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

; Define an n-element complex vector A:
A = [COMPLEX(1, 0), COMPLEX(2,-2), COMPLEX(-3,1)]

; Compute the Euclidean norm of A and print:
PRINT, 'Euclidian Norm of A =', NORM(A)

; Define an m by n complex array B:
B = [[COMPLEX(1, 0), COMPLEX(2,-2), COMPLEX(-3,1)], $

[COMPLEX(1,-2), COMPLEX(2, 2), COMPLEX(1, 0)]]

;Compute the Infinity norm of B and print.
PRINT, 'Infinity Norm of B =', NORM(B, /DOUBLE)
NORM IDL Reference Guide

945
IDL prints:

Euclidian Norm of A = 4.35890
Infinity Norm of B = 6.9907048

See Also

COND
IDL Reference Guide NORM

946
OBJ_CLASS

The OBJ_CLASS function returns the name of the class or superclass of its
argument, as a string. If the supplied argument is not an object, a null string is
returned. If no argument is supplied, OBJ_CLASS returns an array containing the
names of all known object classes in the current IDL session.

Syntax

Result = OBJ_CLASS([Arg] [, COUNT=variable] [, /SUPERCLASS{must specify
Arg}])

Arguments

Arg

A scalar object reference or string variable for which the object class name is desired.
If Arg is an object reference, it’s object class definition is used. If Arg is a string, it is
taken to be the name of the class for which information is desired. Passing a string
argument is primarily useful in conjunction with the SUPERCLASS keyword.

Keywords

COUNT

Set this keyword equal to a named variable that will contain the number of names
returned by OBJ_CLASS. It can be used to determine how many superclasses a class
has when the SUPERCLASS keyword is specified.

SUPERCLASS

Set this keyword to cause OBJ_CLASS to return the names of the object’s direct
superclasses as a string array, one element per superclass. The superclasses are
ordered in the order they appear in the class structure declaration. In the case where
the class has no superclasses, a scalar null string is returned, and the COUNT
keyword (if specified) returns the value 0. If SUPERCLASS is specified, the Arg
argument must also be supplied.
OBJ_CLASS IDL Reference Guide

947
OBJ_DESTROY

The OBJ_DESTROY procedure is used to destroy an object. If the class (or one of its
superclasses) supplies a procedure method named CLEANUP, the method is called
and all arguments and keywords passed by the user are passed to it. This method
should perform any required cleanup on the object and return. Whether a CLEANUP
method actually exists or not, IDL will destroy the heap variable representing the
object and return.

Note that OBJ_DESTROY does not recurse. That is, if object1 contains a reference
to object2, destroying object1 will not destroy object2. Take care not to lose
the only reference to an object by destroying an object that contains that reference.
Recursive cleanup of object hierarchies is a good job for a CLEANUP method.

Syntax

OBJ_DESTROY, ObjRef [, Arg1, …, Argn]

Arguments

ObjRef

The object reference for the object to be destroyed. ObjRef can be an array, in which
case all of the specified objects are destroyed in turn. If the NULL object reference is
passed, OBJ_DESTROY ignores it quietly.

Arg1…Argn

Any arguments accepted by the CLEANUP method for the object being destroyed
can be specified as additional arguments to OBJ_DESTROY.

Keywords

Any keywords accepted by the CLEANUP method for the object being destroyed can
be specified as keywords to OBJ_DESTROY.
IDL Reference Guide OBJ_DESTROY

948
OBJ_ISA

When one object class is subclassed (inherits) from another class, there is an “Is A”
relationship between them. The OBJ_ISA function is used to determine if an object
instance is subclassed from the specified class. OBJ_ISA returns True (1) if the
specified variable is an object and has the specified class in its inheritance graph, or
False (0) otherwise.

Syntax

Result = OBJ_ISA(ObjectInstance, ClassName)

Arguments

ObjectInstance

A scalar or array variable for which the OBJ_ISA test should be performed. The
result is of type byte, and has the same size and organization as ObjectInstance.

ClassName

A string giving the name of the class for which ObjectInstance is being tested.
OBJ_ISA IDL Reference Guide

949
OBJ_NEW

Given the name of a structure that defines an object class, the OBJ_NEW function
returns an object reference to a new instance of the specified object type by carrying
out the following operations in order:

1. If the class structure has not been defined, IDL will attempt to find and call a
procedure to define it automatically. (See Chapter 20, “Object Basics” in
Building IDL Applications for details.) If the structure is still not defined,
OBJ_NEW fails and issues an error.

2. If the class structure has been defined, OBJ_NEW creates an object heap
variable containing a zeroed instance of the class structure.

3. Once the new object heap variable has been created, OBJ_NEW looks for a
method function named Class::INIT (where Class is the actual name of the
class). If an INIT method exists, it is called with the new object as its implicit
SELF argument, as well as any arguments and keywords specified in the call to
OBJ_NEW. If the class has no INIT method, the usual method-searching rules
are applied to find one from a superclass. For more information on methods
and method-searching rules, see “Method Routines” in Chapter 20 of Building
IDL Applications.

The INIT method is expected to initialize the object instance data as necessary
to meet the needs of the class implementation. INIT should return a scalar
TRUE value (such as 1) if the initialization is successful, and FALSE (such as
0) if the initialization fails.

Note
OBJ_NEW does not call all the INIT methods in an object’s class hierarchy.
Instead, it simply calls the first one it finds. Therefore, the INIT method for a class
should call the INIT methods of its direct superclasses as necessary.

4. If the INIT method returns true, or if no INIT method exists, OBJ_NEW
returns an object reference to the heap variable. If INIT returns false,
OBJ_NEW destroys the new object and returns the NULL object reference,
indicating that the operation failed. Note that in this case the CLEANUP
method is not called. See “Destruction” in Chapter 20 of Building IDL
Applications for more on CLEANUP methods.

If called without arguments, OBJ_NEW returns a NULL object reference. The NULL
object reference is a special value that never refers to a value object. It is primarily
IDL Reference Guide OBJ_NEW

950
used as a placeholder in structure definitions, and as the initial value for elements of
object arrays created via OBJARR. The null object reference is useful as an indicator
that an object reference is currently not usable.

Syntax

Result = OBJ_NEW([ObjectClassName [, Arg1…...Argn]])

Arguments

ObjectClassName

String giving the name of the structure type that defines the object class for which a
new object should be created.

If ObjectClassName is not provided, OBJ_NEW does not create a new heap variable,
and returns the Null Object, which is a special object reference that is guaranteed to
never point at a valid object heap variable. The null object is a convenient value to
use when defining structure definitions for fields that are object references, since it
avoids the need to have a pre-existing valid object reference.

Arg1…Argn

Any arguments accepted by the INIT method for the class of object being created can
be specified when the object is created.

Keywords

Any keywords accepted by the INIT method for the class of object being created can
be specified when the object is created.
OBJ_NEW IDL Reference Guide

951
OBJ_VALID

The OBJ_VALID function verifies the validity of its argument object references, or
alternatively returns a vector of references to all the existing valid objects.

If called with an argument, OBJ_VALID returns a byte array of the same size as the
argument. Each element of the result is set to True (1) if the corresponding object
reference in the argument refers to an existing object, and False (0) otherwise.

If called with an integer or array of integers as its argument and the CAST keyword is
set, OBJ_VALID returns an array of object references. Each element of the result is a
reference to the heap variable indexed by the integer value. Integers used to index
heap variables are shown in the output of the HELP and PRINT commands. This is
useful primarily in programming/debugging when the you have lost a reference but
see it with HELP and need to get a reference to it interactively in order to determine
what it is and take steps to fix the code. See the “Examples” section below for an
example.

If no argument is specified, OBJ_VALID returns a vector of references to all existing
valid objects. If no valid objects exist, a scalar null object reference is returned.

Syntax

Result = OBJ_VALID([Arg] [, CAST=integer] [, COUNT=variable])

Arguments

Arg

Scalar or array argument of object reference type.

Keywords

CAST

Set this keyword equal to an integer that indexes a heap variable to create a new
pointer to that heap variable. Integers used to index heap variables are shown in the
output of the HELP and PRINT commands. This is useful primarily in
programming/debugging when the you have lost a reference but see it with HELP
and need to get a reference to it interactively in order to determine what it is and take
steps to fix the code. See the “Examples” section below for an example.
IDL Reference Guide OBJ_VALID

952
COUNT

Set this keyword equal to a named variable that will contain the number of currently
valid objects. This value is returned as a longword integer.

Examples

To determine if a given object reference refers to a valid heap variable, use:

IF (OBJ_VALID(obj)) THEN …

To destroy all existing pointer heap variables:

OBJ_DESTROY, OBJ_VALID()

You can use the CAST keyword to “reclaim” lost object references. For example:

; Create a class structure:
junk = {junk, data1:0, data2:0.0}

; Create an object:
A = OBJ_NEW('junk')

; Find the integer index:
PRINT, A

; In this case, the integer index to the heap variable is 3. If we
; reassign the variable A, we will "lose" the object reference, but
; the heap variable will still exist.
; Lose the object reference:
A = 0
PRINT, A, OBJ_VALID()

; We can reclaim the lost heap variable using the CAST keyword:
A = OBJ_VALID(3, /CAST)
PRINT, A

IDL prints:

<ObjHeapVar3(JUNK)>
0 <ObjHeapVar3(JUNK)>
<ObjHeapVar3(JUNK)>
OBJ_VALID IDL Reference Guide

953
OBJARR

The OBJARR function returns an object reference vector or array. The individual
elements of the array are set to the NULL object reference.

Syntax

Result = OBJARR(D1, …, D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

OBJARR sets every element of the result to the null object reference. If NOZERO is
nonzero, this initialization is not performed and OBJARR executes faster.

Warning
If you specify NOZERO, the resulting array will have whatever value happens to
exist at the system memory location that the array is allocated from. You should be
careful to initialize such an array to valid object reference values.

Example

Create a 3 element by 3 element object reference array with each element containing
the null object reference:

A = OBJARR(3, 3)
IDL Reference Guide OBJARR

954
ON_ERROR

The ON_ERROR procedure determines the action taken when an error is detected
inside an IDL user procedure or function by setting state information applying to the
current routine and all nested routines. If an override exists within the nested routine,
it takes precedence over the ON_ERROR call.

Syntax

ON_ERROR, N

Arguments

N

An integer that specifies the action to take. Valid values for N are:

• 0: Stop at the statement in the procedure that caused the error, the default
action.

• 1: Return all the way back to the main program level.

• 2: Return to the caller of the program unit that established the ON_ERROR
condition.

• 3: Return to the program unit that established the ON_ERROR condition.

See Also

CATCH, MESSAGE, ON_IOERROR, and Building IDL Applications Chapter 17,
“Controlling Errors”.
ON_ERROR IDL Reference Guide

955
ON_IOERROR

The ON_IOERROR procedure specifies a statement to be jumped to if an I/O error
occurs in the current procedure. Normally, when an I/O error occurs, an error
message is printed and program execution is stopped. If ON_IOERROR is called and
an I/O related error later occurs in the same procedure activation, control is
transferred to the designated statement with the error code stored in the system
variable !ERROR_STATE. The text of the error message is contained in
!ERROR_STATE.MSG.

The effect of ON_IOERROR can be canceled by using the label “NULL” in the call.

Syntax

ON_IOERROR, Label
⋅ ⋅ ⋅
Label: Statement to perform upon I/O error

Example

The following code segment reads an integer from the keyboard. If an invalid number
is entered, the program re-prompts.

i = 0 ; Number to read:

valid = 0 ; Valid flag

WHILE valid EQ 0 DO BEGIN
ON_IOERROR, bad_num
READ, 'Enter Number: ', i
;If we get here, i is good.
VALID = 1

bad_num: IF NOT valid THEN $
PRINT, 'You entered an invalid number.'

ENDWHILE
END

See Also

CATCH, MESSAGE, ON_ERROR, and Building IDL Applications Chapter 17,
“Controlling Errors”.
IDL Reference Guide ON_IOERROR

956
ONLINE_HELP

The ONLINE_HELP procedure invokes the hypertext help viewer. If called with no
arguments, it simply starts the help viewer with the default IDL help file displayed.
Optionally, a different book, a keyword search string, or a context number can be
specified. Note that this procedure is intended for use in user-written routines. To
invoke IDL’s online help from the command line, it is much simpler to use the ?
command.

Syntax

ONLINE_HELP [, Value] [, BOOK=‘filename’] [, /CONTEXT] [, /FULL_PATH]
[, /HTML_HELP] [, /QUIT] [, /TOPICS]

Arguments

Value

An optional string that contains text to be searched for using the viewer’s Index
dialog. If this argument is omitted, the specified or default file is displayed at its
beginning.

If the CONTEXT keyword is set, this argument should be an integer value (not a
string) that represents the context number of the help topic to be displayed.

Keywords

BOOK

Set this keyword to a string containing the name of the Help file to be displayed. If
this keyword is omitted, the default IDL help file is displayed. Any file specified by
this keyword must be in the appropriate format for the viewer being invoked:

• On Windows, the file must be a Windows WinHelp (.hlp) or HTML Help
(.chm) file.

• On UNIX and VMS, the file must be a Bristol HyperHelp .hlp file.

• On Macintosh, the file must be an Altura QuickHelp file.

By default, this string should be the name of a file found in the default location for
IDL’s Help files (i.e., wherever the file idl.hlp is installed), without a path or file
extension.
ONLINE_HELP IDL Reference Guide

957
You can set the !HELP_PATH system variable or the IDL_HELP_PATH
environment variable to the directory where your Help file exists.

However, if the FULL_PATH keyword is set, this string should be a complete path
and filename to the online help file you wish to display.

CONTEXT

Set this keyword to indicate that the Value argument is an integer value that
represents the context number of the help topic to be displayed. This keyword is
intended for use with user-compiled help files that contain topics that have been
mapped to specific context numbers when they were compiled using the [MAP]
section of the help project file. Specifying a non-existent context number causes the
first topic of the requested help file to be displayed. For more information on how to
create Help files with context numbers, see the documentation for the Help system
compiler that you are using.

FULL_PATH

Set this keyword to indicate that the string specified by the BOOK keyword is the full
path to the file, rather than the default file path specification, as described above.

HTML_HELP

If set, the Windows HTML Help system is used. All other keywords to
ONLINE_HELP behave as specified, but the HTML help system is utilized. Note
that a default file extension of .chm is used, not .hlp.

QUIT

Set this keyword to close the Help viewer.

TOPICS

If set, the Topics dialog of the Help system will be shown for the specified help file.

Examples

In the following example, the ONLINE_HELP routine launches the Help viewer and
displays the Index dialog at the entry for “handle” if it exists:

ONLINE_HELP, 'handle'

In the next example, the Help file named adg.hlp, located in the default directory, is
displayed:

ONLINE_HELP, BOOK='adg'
IDL Reference Guide ONLINE_HELP

958
In the next example, the Help file named myhelp.hlp, located in a directory named
/usr/home/keith, is displayed:

ONLINE_HELP, BOOK='/usr/home/keith/myfile.hlp', /FULL_PATH

In the next example, the topic corresponding to context number 100 is displayed:

ONLINE_HELP, 100, /CONTEXT, $
BOOK='/usr/home/keith/myfile.hlp', /FULL_PATH

See Also

MK_HTML_HELP, Building IDL Applications Chapter 19, “Extending the IDL
Online Help System”
ONLINE_HELP IDL Reference Guide

959
OPEN

The three OPEN procedures open a specified file for input and/or output.

• OPENR (OPEN Read) opens an existing file for input only.

• OPENW (OPEN Write) opens a new file for input and output. When creating a
new file under VMS, a new file with the same name and a higher version
number is created. Under other operating systems, if the file exists, it is
truncated and its old contents are destroyed.

• OPENU (OPEN Update) opens an existing file for input and output.

Syntax

There are three forms of the OPEN procedure:

OPENR, Unit, File [, Record_Length]
OPENW, Unit, File [, Record_Length]
OPENU, Unit, File [, Record_Length]

Keywords (all platforms): [, /APPEND | , /COMPRESS] [, BUFSIZE={0 | 1 |
value>512}] [, /DELETE] [, ERROR=variable] [, /F77_UNFORMATTED]
[, /GET_LUN] [, /MORE] [, /STDIO] [, /SWAP_ENDIAN]
[, SWAP_IF_BIG_ENDIAN] [, /SWAP_IF_LITTLE_ENDIAN] [, /VAX_FLOAT]
[, WIDTH=value] [, /XDR]

Macintosh-Only Keywords: [, MACCREATOR=string] [, MACTYPE= string]

UNIX-Only Keywords: [, /RAWIO]

VMS-Only Keywords: [, /BLOCK | , /SHARED | , /UDF_BLOCK]
[, DEFAULT=‘.extension’] [, /EXTENDSIZE] [, /FIXED] [, /FORTRAN]
[, INITIALSIZE=blocks] [, /KEYED] [, /LIST] [, /NONE] [, /PRINT]
[, /SEGMENTED] [, /STREAM] [, /SUBMIT] [, /SUPERSEDE]
[, /TRUNCATE_ON_CLOSE] [, /VARIABLE]

Arguments

Unit

The unit number to be associated with the opened file.
IDL Reference Guide OPEN

960
File

A string containing the name of the file to be opened. Note the following platform-
specific behaviors:

• Under UNIX, the filename can contain any wildcard characters recognized by
the shell specified by the SHELL environment variable. However, it is faster
not to use wildcards because IDL doesn’t use the shell to expand file names
unless it has to. No wildcard characters are allowed under VMS.

• Under VMS, filenames that do not have a file extension are assumed to have
the .DAT extension. No such processing of file names occurs under UNIX.

Record_Length

The Record_Length argument has meaning only under VMS. It specifies the file
record size in bytes. This argument is required when creating new, fixed-length files,
and is optional when opening existing files. If this argument is present when creating
variable-length record files, it specifies the maximum allowed record size. If this
argument is present and no file organization keyword is specified, fixed-length
records are implied.

Due to limitations in RMS (the VMS Record Management System), the length of
records must always be an even number of bytes. Odd record lengths are therefore
automatically rounded up to the nearest even boundary.

Keywords

Note
Platform-specific keywords are listed at the end of this section.

APPEND

Set this keyword to open the file with the file pointer at the end of the file, ready for
data to be appended. Normally, the file is opened with the file pointer at the
beginning of the file. Under UNIX, use of APPEND prevents OPENW from
truncating existing file contents. The APPEND and COMPRESS keywords are
mutually exclusive and cannot be specified together.

BUFSIZE

Set this keyword to a value greater than 512 to specify the size of the I/O buffer (in
bytes) used when reading and writing files. Setting BUFSIZE=1 (or any other value
OPEN IDL Reference Guide

961
less than 512) sets the buffer to the default size, which is platform-specific. Set
BUFSIZE=0 to disable I/O buffering.

Note that the buffer size is only changeable when reading and writing stream files.
Under UNIX, the RAWIO keyword must not be set. Also not that the system stdio
may choose to ignore the buffer size setting.

COMPRESS

If COMPRESS is set, IDL reads and writes all data to the file in the standard GZIP
format. IDL's GZIP support is based on the freely available ZLIB library version
1.1.3 by Mark Adler and Jean-loup Gailly. This means that IDL's compressed files
are 100% compatible with the widely available gzip and gunzip programs.
COMPRESS cannot be used with the APPEND keyword.

Note
Under VMS, the COMPRESS keyword can only be used with stream files.

DELETE

Set this keyword to delete the file when it is closed.

Warning
Setting the DELETE keyword causes the file to be deleted even if it was opened for
read-only access. In addition, once a file is opened with this keyword, there is no
way to cancel its operation.

ERROR

A named variable to place the error status in. If an error occurs in the attempt to open
File, IDL normally takes the error handling action defined by the ON_ERROR and/or
ON_IOERROR procedures. OPEN always returns to the caller without generating an
error message when ERROR is present. A nonzero error status indicates that an error
occurred. The error message can then be found in !ERROR_STATE.MSG.

For example, statements similar to the following can be used to detect errors:

; Try to open the file demo.dat:
OPENR, 1, 'demo.dat', ERROR = err

; If err is nonzero, something happened. Print the error message to
; the standard error file (logical unit -2):
IF (err NE 0) then PRINTF, -2, !ERROR_STATE.MSG
IDL Reference Guide OPEN

962
F77_UNFORMATTED

Unformatted variable-length record files produced by UNIX FORTRAN programs
contain extra information along with the data in order to allow the data to be properly
recovered. This method is necessary because FORTRAN input/output is based on
record-oriented files, while UNIX files are simple byte streams that do not impose
any record structure. Set the F77_UNFORMATTED keyword to read and write this
extra information in the same manner as f77(1), so that data to be processed by both
IDL and FORTRAN. See “UNIX-Specific Information” in Chapter 8 of Building IDL
Applications for further details.

Warning
Do not confused this keyword with the VMS-only keyword FORTRAN.

GET_LUN

Set this keyword to use the GET_LUN procedure to set the value of Unit before the
file is opened. Instead of using the two statements:

GET_LUN, Unit
OPENR, Unit, 'data.dat'

you can use the single statement:

OPENR, Unit, 'data.dat', /GET_LUN

MORE

If MORE is set, and the specified File is a terminal, then all output to this unit is
formatted in a manner similar to the UNIX more(1) command and sent to the
standard output stream. Output pauses at the bottom of each screen, at which point
the user can press one of the following keys:

• Space: Display the next page of text.

• Return: Display the next line of text.

• ‘q’ or ‘Q’: Suppress all remaining output.

• ‘h’ or ‘H’: Display this list of options.

For example, the following statements show how to output a file named text.dat to
the terminal:

; Open the text file:
OPENR, inunit, 'text.dat', /GET_LUN
OPEN IDL Reference Guide

963
; Open the terminal as a file:
OPENW, outunit, '/dev/tty', /GET_LUN, /MORE

; Read the first line:
line = '' & READF, inunit, line

; While there is text left, output it:
WHILE NOT EOF(inunit) DO BEGIN

PRINTF, outunit, line
READF, inunit, line

ENDWHILE

; Close the files and deallocate the units:
FREE_LUN, inunit & FREE_LUN, outunit

Under VMS, the MORE keyword is only allowed for stream mode files.

STDIO

Forces the file to be opened via the standard C I/O library (stdio) rather than any
other more native OS API that might usually be used. This is primarily of interest to
those who intend to access the file from external code, and is not necessary for most
files.

Note
If you intend to use the opened file with the READ_JPEG or WRITE_JPEG
procedures using their UNIT keyword, you must specify the STDIO keyword to
OPEN to ensure that the file is compatible.

The only exception to this rule is if the filename ends in .jpg or .jpeg and the
STDIO keyword is not present in the call to OPEN. In this case OPEN, by default
uses stdio which covers most uses of jpeg files without requiring the user to take
special steps.

SWAP_ENDIAN

Set this keyword to swap byte ordering for multi-byte data when performing binary
I/O on the specified file. This is useful when accessing files also used by another
system with byte ordering different than that of the current host.

SWAP_IF_BIG_ENDIAN

Setting this keyword is equivalent to setting SWAP_ENDIAN; it only takes effect if
the current system has big endian byte ordering. This keyword does not refer to the
byte ordering of the input data, but to the computer hardware.
IDL Reference Guide OPEN

964
SWAP_IF_LITTLE_ENDIAN

Setting this keyword is equivalent to setting SWAP_ENDIAN; it only takes effect if
the current system has little endian byte ordering. This keyword does not refer to the
byte ordering of the input data, but to the computer hardware.

VAX_FLOAT

The opened file contains VAX format floating point values. This keyword implies
little endian byte ordering for all data contained in the file, and supersedes any setting
of the SWAP_ENDIAN, SWAP_IF_BIG_ENDIAN, or
SWAP_IF_LITTLE_ENDIAN keywords.

The default setting for this keyword is FALSE. Under VMS, starting the
VAX_FLOAT option to the IDL command at startup has the effect of changing this
default and making it TRUE. See “Command Line Options” in Chapter 4 of Using
IDL for details on this qualifier. You can change this setting at runtime using the
VAX_FLOAT function.

Warning
Please read “Note On IEEE to VAX Format Conversion” on page 969 before using
this feature.

WIDTH

The desired output width. When using the defaults for formatted output, IDL uses the
following rules to determine where to break lines:

• If the output file is a terminal, the terminal width is used. Under VMS, if the
file has fixed-length records or a maximum record length, the record length is
used.

• Otherwise, a default of 80 columns is used.

The WIDTH keyword allows the user to override this default.

XDR

Set this keyword to open the file for unformatted XDR (eXternal Data
Representation) I/O via the READU and WRITEU procedures. Use XDR to make
binary data portable between different machine architectures by reading and writing
all data in a standard format. When a file is open for XDR access, the only I/O data
transfer procedures that can be used with it are READU and WRITEU. XDR is
described in “Portable Unformatted Input/Output” in Chapter 8 of Building IDL
Applications.
OPEN IDL Reference Guide

965
Under VMS, the XDR keyword can only be used with stream files.

Macintosh-Only Keywords

MACCREATOR

Use this keyword to specify a four-character scalar string identifying the Macintosh
file creator code of the file being created. For example, set

MACCREATOR = 'MSWD'

to create a file with the creator code MSWD. The default creator code is MIDL.

MACTYPE

Use this keyword to specify a four-character scalar string identifying the Macintosh
file type of the file being created. For example, set

MACTYPE = 'PICT'

to create a file of type PICT. The default file type is TEXT.

Windows-Only Keywords

The Windows-Only keywords BINARY and NOAUTOMODE are now obsolete.
Input/Output on Windows is now handled indentically to Unix, and does not require
you to be concerned about the difference between “text” and “binary” modes. These
keywords are still accepted for backwards compatibility, but are ignored.

UNIX-Only Keywords

The previous keyword NOSTDIO is now obsolete. It has been renamed RAWIO to
reflect the fact that stdio may or may not actually be used. All references to
NOSTDIO should be changed to be RAWIO, but NOSTDIO will still be accepted as a
synonym for RAWIO.

RAWIO

Set this keyword to disable all use of the standard UNIX I/O for the file, in favor of
direct calls to the operating system. This allows direct access to devices, such as tape
drives, that are difficult or impossible to use effectively through the standard I/O.
Using this keyword has the following implications:

• No formatted or associated (ASSOC) I/O is allowed on the file. Only READU
and WRITEU are allowed.
IDL Reference Guide OPEN

966
• Normally, attempting to read more data than is available from a file causes the
unfilled space to be set to zero and an error to be issued. This does not happen
with files opened with RAWIO. When using RAWIO, the programmer must
check the transfer count, either via the TRANSFER_COUNT keywords to
READU and WRITEU, or the FSTAT function.

• The EOF and POINT_LUN functions cannot be used with a file opened with
RAWIO.

• Each call to READU or WRITEU maps directly to UNIX read(2) and write(2)
system calls. The programmer must read the UNIX system documentation for
these calls and documentation on the target device to determine if there are any
special rules for I/O to that device. For example, the size of data that can be
transferred to many cartridge tape drives is often forced to be a multiple of 512
bytes.

VMS-Only Keywords

BLOCK

Set this keyword to process the file using RMS block mode. In this mode, most RMS
processing is bypassed and IDL reads and writes to the file in disk block units. Such
files can only be accessed via unformatted I/O commands. Block mode files are
treated as an uninterpreted stream of bytes in a manner similar to UNIX stream files.

For best performance, by default IDL uses RMS block mode for fixed length record
files. However, when the SHARED keyword is present, IDL uses standard RMS
mode. Do not specify both BLOCK and SHARED.

This keyword is ignored when used with stream files.

Note
With some controller/disk combinations, RMS does not allow transfer of an odd
number of bytes.

DEFAULT

A scalar string that provides a default file specification from which missing parts of
the File argument are taken. For example, to make .LOG be the default file extension
when opening a new file, use the command:

OPENW, 'DATA', DEFAULT='.LOG'

This statement will open the file DATA.LOG.
OPEN IDL Reference Guide

967
EXTENDSIZE

File extension is a relatively slow operation, and it is desirable to minimize the
number of times it is done. In order to avoid the unacceptable performance that would
result from extending a file a single block at a time, VMS extends its size by a default
number of blocks in an attempt to trade a small amount of wasted disk space for
better performance. The EXTENDSIZE keyword overrides the default, and specifies
the number of disk blocks by which the file should be extended. This keyword is
often used in conjunction with the INITIALSIZE and TRUNCATE_ON_CLOSE
keywords.

FIXED

Set this keyword to indicate that the file has fixed-length records. The Record_Length
argument is required when opening new, fixed-length files.

FORTRAN

Set this keyword to use FORTRAN-style carriage control when creating a new file.
The first byte of each record controls the formatting.

INITIALSIZE

The initial size of the file allocation in blocks. This keyword is often used in
conjunction with the EXTENDSIZE and TRUNCATE_ON_CLOSE keywords.

KEYED

Set this keyword to indicate that the file has indexed organization. Indexed files are
discussed in “VMS-Specific Information” in Chapter 8 of Building IDL Applications.

LIST

Set this keyword to specify carriage-return carriage control when creating a new file.
If no carriage-control keyword is specified, LIST is the default.

NONE

Set this keyword to specify explicit carriage control when creating a new file. When
using explicit carriage control, VMS does not add any carriage control information to
the file, and the user must explicitly add any desired carriage control to the data being
written to the file.

PRINT

Set this keyword to send the file to SYS$PRINT, the default system printer, when it
is closed.
IDL Reference Guide OPEN

968
SEGMENTED

Set this keyword to indicate that the file has VMS FORTRAN-style segmented
records. Segmented records are a method by which FORTRAN allows logical
records to exist with record sizes that exceed the maximum possible physical record
sizes supported by VMS. Segmented record files are useful primarily for passing data
between FORTRAN and IDL programs.

SHARED

Set this keyword to allow other processes read and write access to the file in parallel
with IDL. If SHARED is not set, read-only files are opened for read sharing and
read/write files are not shared. The SHARED keyword cannot be used with
STREAM files.

Warning
It is not a good idea to allow shared write access to files open in RMS block mode.
In block mode, VMS cannot perform the usual record locking that prevents file
corruption. It is therefore possible for multiple writers to corrupt a block mode file.
This warning also applies to fixed-length record disk files, which are also processed
in block mode. When using SHARED, do not specify either BLOCK or
UDF_BLOCK.

STREAM

Set this keyword to open the file in stream mode using the Standard C Library (stdio).

SUBMIT

Set this keyword to submit the file to SYS$BATCH, the default system batch queue,
when it is closed.

SUPERSEDE

Set this keyword to allow an existing file to be superseded by a new file of the same
name, type, and version.

TRUNCATE_ON_CLOSE

Set this keyword to free any unused disk space allocated to the file when the file is
closed. This keyword can be used to get rid of excess allocations caused by the
EXTENDSIZE and INITIALSIZE keywords. If the SHARED keyword is set, or the
file is open for read-only access, TRUNCATE_ON_CLOSE has no effect.
OPEN IDL Reference Guide

969
UDF_BLOCK

Set this keyword to create a file similar to those created with the BLOCK keyword
except that new files are created with the RMS undefined record type. Files created in
this way can only be accessed by IDL in block mode, and cannot be processed by
many VMS utilities. Do not specify both UDF_BLOCK and SHARED.

VARIABLE

Set this keyword to indicate that the file has variable-length records. If the
Record_Length argument is present, it specifies the maximum record size. Otherwise,
the only limit is that imposed by RMS (32767 bytes). If no file organization is
specified, variable-length records are the default.

Warning
VMS variable length records have a 2-byte record-length descriptor at the
beginning of each record. Because the FSTAT function returns the length of the
data file including the record descriptors, reading a file with VMS variable length
records into a byte array of the size returned by FSTAT will result in an RMS EOF
error.

Note On IEEE to VAX Format Conversion

Translation of floating-point values from the IDL’s native (IEEE) format to the VAX
format and back (IEEE to VAX to IEEE) is not a completely reversible operation,
and should be avoided when possible. There are many cases where the recovered
values will differ from the original, including:

• The VAX floating point format lacks support for the IEEE special values
(NaN, Infinity). Hence, their special meaning is lost when they are converted
to VAX format and cannot be recovered.

• Differences in precision and range can also cause information to be lost in both
directions.

Research Systems recommends using IEEE/VAX conversions only to read existing
VAX format data, and strongly recommends that all new files be created using the
IEEE format.

For more information, see Building IDL Applications Appendix A, “VMS Floating-
Point Arithmetic in IDL”.
IDL Reference Guide OPEN

970
Example

The following example opens the IDL distribution file people.dat and reads an
image from that file:

; Open 'people.dat' on file unit number 1. The FILEPATH
; function is used to return the full path name to this
; distribution file.
OPENR, 1, FILEPATH('people.dat', SUBDIR = ['examples','data'])

; Define a variable into which the image will be read:
image=BYTARR(192, 192, /NOZERO)

; Read the data:
READU, 1, image

; Display the image:
TV, image

See Also

CLOSE, GET_LUN, POINT_LUN, PRINT/PRINTF, READ/READF, READU,
VAX_FLOAT, WRITEU
OPEN IDL Reference Guide

971
OPLOT

The OPLOT procedure plots vector data over a previously-drawn plot. It differs from
PLOT only in that it does not generate a new axis. Instead, it uses the scaling
established by the most recent call to PLOT and simply overlays a plot of the data on
the existing axis.

Syntax

OPLOT, [X,] Y [, MAX_VALUE=value] [, MIN_VALUE=value] [, NSUM=value]
[, /POLAR] [, THICK=value]

Graphics Keywords: [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value]
[, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, /NOCLIP] [, PSYM=integer{0 to 10}]
[, SYMSIZE=value] [, /T3D] [, ZVALUE=value{0 to 1}]

Arguments

X

A vector argument. If X is not specified, Y is plotted as a function of point number
(starting at zero). If both arguments are provided, Y is plotted as a function of X.

This argument is converted to double-precision floating-point before plotting. Plots
created with OPLOT are limited to the range and precision of double precision
floating-point values.

Y

The ordinate data to be plotted. This argument is converted to double-precision
floating-point before plotting.

Keywords

MAX_VALUE

The maximum value to be plotted. If this keyword is present, data values greater than
the value of MAX_VALUE are treated as missing and are not plotted. Note that the
IEEE floating-point value NaN is also treated as missing data. (See “Special
Floating-Point Values” in Chapter 17 of Building IDL Applications for more
information on IEEE floating-point values.)
IDL Reference Guide OPLOT

972
MIN_VALUE

The minimum value to be plotted. If this keyword is present, data values less than the
value of MIN_VALUE are treated as missing and are not plotted. Note that the IEEE
floating-point value NaN is also treated as missing data. (See “Special Floating-Point
Values” in Chapter 17 of Building IDL Applications for more information on IEEE
floating-point values.)

NSUM

The presence of this keyword indicates the number of data points to average when
plotting. If NSUM is larger than 1, every group of NSUM points is averaged to
produce one plotted point. If there are m data points, then m/NSUM points are
displayed. On logarithmic axes a geometric average is performed.

It is convenient to use NSUM when there is an extremely large number of data points
to plot because it plots fewer points, the graph is less cluttered, and it is quicker.

POLAR

Set this keyword to produce polar plots. The X and Y vector parameters, both of
which must be present, are first converted from polar to Cartesian coordinates. The
first parameter is the radius, and the second is expressed in radians.

For example, to make a polar plot, use the command:

OPLOT, /POLAR, R, THETA

THICK

Controls the thickness of the lines connecting the points. A thickness of 1.0 is normal,
2.0 is double wide, etc.

Graphics Keywords Accepted

See Appendix C, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above. CLIP, COLOR, LINESTYLE, NOCLIP, PSYM,
SYMSIZE, T3D, ZVALUE.

Example

; Create a simple dataset:
D = SIN(FINDGEN(100)/EXP(FINDGEN(100)/50))

; Create an X-Y plot of vector D:
PLOT, D
OPLOT IDL Reference Guide

973
; Overplot the sine of D as a thick, dashed line:
OPLOT, SIN(D), LINESTYLE = 5, THICK = 2

See Also

OPLOTERR, PLOT
IDL Reference Guide OPLOT

974
OPLOTERR

The OPLOTERR procedure plots error bars over a previously drawn plot. A plot of X
versus Y with error bars drawn from Y - Err to Y + Err is written to the output device
over any plot already there.

This routine is written in the IDL language. Its source code can be found in the file
oploterr.pro in the lib subdirectory of the IDL distribution.

Syntax

OPLOTERR, [X ,] Y , Err [, Psym]

Arguments

X

An optional array of X values. The procedure checks whether or not the third
parameter passed is a vector to decide if X was passed. If X is not passed, then
INDGEN(Y) is assumed for the X values.

Y

The array of Y values. Y cannot be of type string.

Err

The array of error bar values.

Psym

The plotting symbol to use (default = +7).

Keywords

None

See Also

ERRPLOT, OPLOT, PLOTERR
OPLOTERR IDL Reference Guide

975
P_CORRELATE

The P_CORRELATE function computes the partial correlation coefficient of a
dependent variable and one particular independent variable when the effects of all
other variables involved are removed.

This routine is written in the IDL language. Its source code can be found in the file
p_correlate.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = P_CORRELATE(X, Y, C [, /DOUBLE])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector that specifies
the independent variable data.

Y

An n-element integer, single-, or double-precision floating-point vector that specifies
the dependent variable data.

C

An integer, single-, or double-precision floating-point array that specifies the
independent variable data whose effects are to be removed. The columns of this two-
dimensional array correspond to the n-element vectors of independent variable data.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

; Define three sample populations:
X0 = [64, 71, 53, 67, 55, 58, 77, 57, 56, 51, 76, 68]
X1 = [57, 59, 49, 62, 51, 50, 55, 48, 52, 42, 61, 57]
X2 = [8, 10, 6, 11, 8, 7, 10, 9, 10, 6, 12, 9]

; Compute the partial correlation of X0 and X1 with the effects
IDL Reference Guide P_CORRELATE

976
; of X2 removed.
result = P_CORRELATE(X0, X1, REFORM(X2, 1, N_ELEMENTS(X2)))
PRINT, result

IDL prints:

0.533469

See Also

A_CORRELATE, C_CORRELATE, CORRELATE, M_CORRELATE,
R_CORRELATE
P_CORRELATE IDL Reference Guide

977
PARTICLE_TRACE

The PARTICLE_TRACE procedure traces the path of a massless particle through a
vector field. The function allows the user to specify a set of starting points and a
vector field. The input seed points can come from any vertex-producing process. The
points are tracked by treating the vector field as a velocity field and integrating. Each
path is tracked until the path leaves the input volume or a maximum number of steps
is reached. The vertices generated along the paths are returned packed into a single
array along with a polyline connectivity array. The polyline connectivity array
organizes the vertices into separate paths (one per seed). Each path has an orientation.
The initial orientation may be set using the SEED_NORMAL keyword. As a path is
tracked, the change in the normal is also computed and may be returned to the user as
an optional argument. Path output can be passed directly to an IDLgrPolyline object
or passed to the STREAMLINE procedure for generation of orientated ribbons.
Control over aspects of the integration (e.g. method or stepsize) is also provided.

Syntax

PARTICLE_TRACE, Data, Seeds, Verts, Conn [, Normals]
[, MAX_ITERATIONS=value] [, ANISOTROPY=array]
[, INTEGRATION={0 | 1}] [, SEED_NORMAL=vector] [, TOLERANCE=value]
[, MAX_STEPSIZE=value] [, /UNIFORM]

Arguments

Data

Input data array. This array can be of dimensions [2, dx, dy] for two-dimensional
vector fields or [3, dx, dy, dz] for three-dimensional vector fields.

Seeds

Input array of seed points ([3, n] or [2, n]).

Verts

Array of output path vertices ([3, n] or [2, n] array of floats).

Conn

Output path connectivity array in IDLgrPolyline POLYLINES keyword format.
There is one set of line segments in this array for each input seed point.
IDL Reference Guide PARTICLE_TRACE

978

PAR
TICLE_TRACE IDL Reference Guide

Normals

Output normal estimate at each output vertex ([3, n] array of floats).

Keywords

ANISOTROPY

Set this input keyword to a two- or three- element array describing the distance
between grid points in each dimension. The default value is [1.0, 1.0, 1.0] for three-
dimensional data and [1.0, 1.0] for two-dimensional data.

INTEGRATION

Set this keyword to one of the following values to select the integration method:

• 0 = 2nd order Runge-Kutta (the default)

• 1 = 4th order Runge-Kutta

SEED_NORMAL

Set this keyword to a three-element vector which selects the initial normal for the
paths. The default value is [0.0, 0.0, 1.0]. This keyword is ignored for 2D data.

TOLERANCE

This keyword is used with adaptive step-size control in the 4th order Runge-Kutta
integration scheme. It is ignored if the UNIFORM keyword is set or the 2nd order
Runge-Kutta scheme is selected.

MAX_ITERATIONS

This keyword specifies the maximum number of line segments to return for each
path. The default value is 200.

MAX_STEPSIZE

This keyword specifies the maximum path step size. The default value is 1.0.

UNIFORM

If this keyword is set, the step size will be set to a fixed value, set via the
MAX_STEPSIZE keyword. If this keyword is not specified, and TOLERANCE is
either unspecified or inapplicable, then the step size is computed based on the
velocity at the current point on the path according to the formula:

stepsize = MIN(MaxStepSize, MaxStepSize/MAX(ABS(U), ABS(V), ABS(W)))

where (U,V,W) is the local velocity vector.

979
PCOMP

The PCOMP function computes the principal components of an m-column, n-row
array, where m is the number of variables and n is the number of observations or
samples. The principal components of a multivariate data set may be used to restate
the data in terms of derived variables or may be used to reduce the dimensionality of
the data by reducing the number of variables (columns). The result is an nvariables-
column (nvariables ≤ m), n-row array of derived variables.

Syntax

Result = PCOMP(A [, COEFFICIENTS=variable] [, /COVARIANCE]
[, /DOUBLE] [, EIGENVALUES=variable] [, NVARIABLES=value]
[, /STANDARDIZE] [, VARIANCES=variable])

Arguments

A

An m-column, n-row, single- or double-precision floating-point array.

Keywords

COEFFICIENTS

Use this keyword to specify a named variable that will contain the principal
components used to compute the derived variables. The principal components are the
coefficients of the derived variables and are returned in an m-column, m-row array.
The rows of this array correspond to the coefficients of the derived variables. The
coefficients are scaled so that the sums of their squares are equal to the eigenvalue
from which they are computed. This keyword must be initialized to a nonzero value
before calling PCOMP if the principal components are desired.

COVARIANCE

Set this keyword to compute the principal components using the covariances of the
original data. The default is to use the correlations of the original data to compute the
principal components.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
IDL Reference Guide PCOMP

980
EIGENVALUES

Use this keyword to specify a named variable that will contain a one-column, m-row
array of eigenvalues that correspond to the principal components. The eigenvalues
are listed in descending order. This keyword must be initialized to a nonzero value
before calling PCOMP if the eigenvalues are desired.

NVARIABLES

Use this keyword to specify the number of derived variables. A value of zero,
negative values, and values in excess of the input array’s column dimension result in
a complete set (m-columns and n-rows) of derived variables.

STANDARDIZE

Set this keyword to convert the variables (the columns) of the input array to
standardized variables (variables with a mean of zero and variance of one).

VARIANCES

Use this keyword to specify a named variable that will contain a one-column, m-row
array of variances. The variances correspond to the percentage of the total variance
for each derived variable.

Example

; Define an array with 4 variables and 20 observations:
array = [[19.5, 43.1, 29.1, 11.9], $

[24.7, 49.8, 28.2, 22.8], $
[30.7, 51.9, 37.0, 18.7], $
[29.8, 54.3, 31.1, 20.1], $
[19.1, 42.2, 30.9, 12.9], $
[25.6, 53.9, 23.7, 21.7], $
[31.4, 58.5, 27.6, 27.1], $
[27.9, 52.1, 30.6, 25.4], $
[22.1, 49.9, 23.2, 21.3], $
[25.5, 53.5, 24.8, 19.3], $
[31.1, 56.6, 30.0, 25.4], $
[30.4, 56.7, 28.3, 27.2], $
[18.7, 46.5, 23.0, 11.7], $
[19.7, 44.2, 28.6, 17.8], $
[14.6, 42.7, 21.3, 12.8], $
[29.5, 54.4, 30.1, 23.9], $
[27.7, 55.3, 25.7, 22.6], $
[30.2, 58.6, 24.6, 25.4], $
[22.7, 48.2, 27.1, 14.8], $
[25.2, 51.0, 27.5, 21.1]]
PCOMP IDL Reference Guide

981
; Compute the derived variables based upon the principal
; components. The COEFFICENTS, EIGENVALUES, and VARIANCES keywords
; must be initialized as nonzero values prior to calling PCOMP:
coefficients = 1 & eigenvalues = 1 & variances = 1
result = PCOMP(array, COEFFICIENTS = coefficients, $

EIGENVALUES = eigenvalues, VARIANCES = variances)

PRINT, 'Result: '
PRINT, result, FORMAT = '(4(f5.1, 2x))'
PRINT, 'Coefficients: '
PRINT, coefficients
PRINT, 'Eigenvalues: '
PRINT, eigenvalues
PRINT, 'Variances: '
PRINT, variances

IDL prints:

Result:
81.4 15.5 -5.5 0.5
102.7 11.1 -4.1 0.6
109.9 20.3 -6.2 0.5
110.5 13.8 -6.3 0.6
81.8 17.1 -4.9 0.6
104.8 6.2 -5.4 0.6
121.3 8.1 -5.2 0.6
111.3 12.6 -4.0 0.6
97.0 6.4 -4.4 0.6
102.5 7.8 -6.1 0.6
118.5 11.2 -5.3 0.6
118.9 9.1 -4.7 0.6
81.5 8.8 -6.3 0.6
88.0 13.4 -3.9 0.6
74.3 7.5 -4.8 0.6
113.4 12.0 -5.1 0.6
109.7 7.7 -5.6 0.6
117.5 5.5 -5.7 0.6
91.4 12.0 -6.1 0.6
102.5 10.6 -4.9 0.6

Coefficients:
0.983668 0.947119 0.358085 0.925647
0.118704 -0.265644 0.932897 -0.215227
-0.134015 -0.179266 0.0378060 0.311214
-0.0185792 0.0161747 0.00707525 0.000456858

Eigenvalues:
2.84969
1.00128
IDL Reference Guide PCOMP

982
0.148380
0.000657078

Variances:
0.712422
0.250319
0.0370950
0.000164269

The first two derived variables account for 96.3% of the total variance of the original
data.

See Also

CORRELATE, EIGENQL
PCOMP IDL Reference Guide

983
PLOT

The PLOT procedure draws graphs of vector arguments. If one parameter is used, the
vector parameter is plotted on the ordinate versus the point number on the abscissa.
To plot one vector as a function of another, use two parameters. PLOT can also be
used to create polar plots by setting the POLAR keyword.

Syntax

PLOT, [X,] Y [, MAX_VALUE=value] [, MIN_VALUE=value] [, NSUM=value]
[, /POLAR] [, THICK=value] [, /XLOG] [, /YLOG] [, /YNOZERO]

Graphics Keywords: [, BACKGROUND=color_index] [, CHARSIZE=value]
[, CHARTHICK=integer] [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, FONT=integer] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}]
[, /NOCLIP] [, /NODATA] [, /NOERASE] [, POSITION=[X0, Y0, X1, Y1]]
[, PSYM=integer{0 to 10}] [, SUBTITLE=string] [, SYMSIZE=value] [, /T3D]
[, THICK=value] [, TICKLEN=value] [, TITLE=string]
[, {X | Y | Z}CHARSIZE=value]
[, {X | Y | Z}GRIDSTYLE=integer{0 to 5}]
[, {X | Y | Z}MARGIN=[left, right]]
[, {X | Y | Z}MINOR=integer]
[, {X | Y | Z}RANGE=[min, max]]
[, {X | Y | Z}STYLE=value]
[, {X | Y | Z}THICK=value]
[, {X | Y | Z}TICK_GET=variable]
[, {X | Y | Z}TICKFORMAT=string]
[, {X | Y | Z}TICKINTERVAL= value]
[, {X | Y | Z}TICKLAYOUT=scalar]
[, {X | Y | Z}TICKLEN=value]
[, {X | Y | Z}TICKNAME=string_array]
[, {X | Y | Z}TICKS=integer]
[, {X | Y | Z}TICKUNITS=string]
[, {X | Y | Z}TICKV=array]
[, {X | Y | Z}TITLE=string]
[, ZVALUE=value{0 to 1}]
IDL Reference Guide PLOT

984
Arguments

X

A vector argument. If X is not specified, Y is plotted as a function of point number
(starting at zero). If both arguments are provided, Y is plotted as a function of X.

This argument is converted to double precision floating-point before plotting. Plots
created with PLOT are limited to the range and precision of double-precision
floating-point values.

Y

The ordinate data to be plotted. This argument is converted to double-precision
floating-point before plotting.

Keywords

ISOTROPIC

Set this keyword to force the scaling of the X and Y axes to be equal.

Note
The X and Y axes will be scaled isotropically and then fit within the rectangle
defined by the POSITION keyword; one of the axes may be shortened. See
“POSITION” on page 2407 for more information.

MAX_VALUE

The maximum value to be plotted. If this keyword is present, data values greater than
the value of MAX_VALUE are treated as missing and are not plotted. Note that the
IEEE floating-point value NaN is also treated as missing data. (See “Special
Floating-Point Values” in Chapter 17 of Building IDL Applications for more
information on IEEE floating-point values.)

MIN_VALUE

The minimum value to be plotted. If this keyword is present, data values less than the
value of MIN_VALUE are treated as missing and are not plotted. Note that the IEEE
floating-point value NaN is also treated as missing data. (See “Special Floating-Point
Values” in Chapter 17 of Building IDL Applications for more information on IEEE
floating-point values.)
PLOT IDL Reference Guide

985
NSUM

The presence of this keyword indicates the number of data points to average when
plotting. If NSUM is larger than 1, every group of NSUM points is averaged to
produce one plotted point. If there are m data points, then m/NSUM points are
displayed. On logarithmic axes a geometric average is performed.

It is convenient to use NSUM when there is an extremely large number of data points
to plot because it plots fewer points, the graph is less cluttered, and it is quicker.

POLAR

Set this keyword to produce polar plots. The X and Y vector parameters, both of
which must be present, are first converted from polar to Cartesian coordinates. The
first parameter is the radius, and the second is the angle (expressed in radians). For
example, to make a polar plot, you would use a command such as:

PLOT, /POLAR, R, THETA

THICK

Controls the thickness of the lines connecting the points. A thickness of 1.0 is normal,
2 is double wide, etc.

XLOG

Set this keyword to specify a logarithmic X axis, producing a log-linear plot. Set both
XLOG and YLOG to produce a log-log plot. Note that logarithmic axes that have
ranges of less than a decade are not labeled.

YNOZERO

Set this keyword to inhibit setting the minimum Y axis value to zero when the Y data
are all positive and nonzero, and no explicit minimum Y value is specified (using
YRANGE, or !Y.RANGE). By default, the Y axis spans the range of 0 to the
maximum value of Y, in the case of positive Y data. Set bit 4 in !Y.STYLE to make
this option the default.

YLOG

Set this keyword to specify a logarithmic Y axis, producing a linear-log plot. Set both
XLOG and YLOG to produce a log-log plot. Note that logarithmic axes that have
ranges of less than a decade are not labeled.
IDL Reference Guide PLOT

986
Graphics Keywords Accepted

See Appendix C, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above. BACKGROUND, CHARSIZE, CHARTHICK, CLIP,
COLOR, DATA, DEVICE, FONT, LINESTYLE, NOCLIP, NODATA, NOERASE,
NORMAL, POSITION, PSYM, SUBTITLE, SYMSIZE, T3D, THICK, TICKLEN,
TITLE, [XYZ]CHARSIZE, [XYZ]GRIDSTYLE, [XYZ]MARGIN, [XYZ]MINOR,
[XYZ]RANGE, [XYZ]STYLE, [XYZ]THICK, [XYZ]TICKFORMAT,
[XYZ]TICKINTERVAL, [XYZ]TICKLAYOUT, [XYZ]TICKLEN,
[XYZ]TICKNAME, [XYZ]TICKS, [XYZ]TICKUNITS, [XYZ]TICKV,
[XYZ]TICK_GET, [XYZ]TITLE, ZVALUE.

Example

The PLOT procedure has many keywords that allow you to create a vast variety of
plots. Here are a few simple examples using the PLOT command.

; Create a simple dataset:
D = FINDGEN(100)

; Create a simple plot with the title "Simple Plot":
PLOT, D, TITLE = 'Simple Plot'

; Plot one argument versus another:
PLOT, SIN(D/3), COS(D/6)

; Create a polar plot:
PLOT, D, D, /POLAR, TITLE = 'Polar Plot'

; Use plotting symbols instead of connecting lines by including the
; PSYM keyword. Label the X and Y axes with XTITLE and YTITLE:
PLOT, SIN(D/10), PSYM=4, XTITLE='X Axis', YTITLE='Y Axis'

See Also

OPLOT, PLOTS
PLOT IDL Reference Guide

987
PLOT_3DBOX

The PLOT_3DBOX procedure plots a function of two variables (e.g., Z=f(X, Y))
inside a 3D box. Optionally, the data can be projected onto the “walls” surrounding
the plot area.

This routine is written in the IDL language. Its source code can be found in the file
plot_3dbox.pro in the lib subdirectory of the IDL distribution.

Syntax

PLOT_3DBOX, X, Y, Z [, GRIDSTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, PSYM=integer{1 to
10}] [, /SOLID_WALLS] [, /XY_PLANE] [, XYSTYLE={0 | 1 | 2 | 3 | 4 | 5}]
[, /XZ_PLANE] [, XZSTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, /YZ_PLANE] [, YZSTYLE={0
| 1 | 2 | 3 | 4 | 5}] [, AX=degrees] [, AZ=degrees] [, ZAXIS={1 | 2 | 3 | 4}]

Graphics Keywords: Accepts all graphics keywords accepted by PLOT except for:
FONT, PSYM, SYMSIZE, {XYZ}TICK_GET, and ZVALUE.

Arguments

X

A vector (i.e., a one-dimensional array) of X coordinates.

Y

A vector of Y coordinates.

Z

A vector of Z coordinates. Z[i] is a function of X[i] and Y[i].
IDL Reference Guide PLOT_3DBOX

988
Keywords

GRIDSTYLE

Set this keyword to the linestyle index for the type of line to be used when drawing
the gridlines. Linestyles are described in the following table:

PSYM

Set this keyword to a plotting symbol index to be used in plotting the data. For more
information, see “PSYM” on page 2408.

SOLID_WALLS

Set this keyword to cause the boundary “walls” of the plot to be filled with the color
index specified by the COLOR keyword.

XY_PLANE

Set this keyword to plot the X and Y values on the Z=0 axis plane.

XYSTYLE

Set this keyword to the linestyle used to draw the XY plane plot. See the table above
for a list of linestyles.

XZ_PLANE

Set this keyword to plot the Y and Z values on the Y=MAX(Y) axis plane.

Index Linestyle

0 Solid

1 Dotted

2 Dashed

3 Dash Dot

4 Dash Dot Dot

5 Long Dashes

Table 75: IDL Linestyles
PLOT_3DBOX IDL Reference Guide

989
XZSTYLE

Set this keyword to the linestyle used to draw the XZ plane plot. See the table above
for a list of linestyles.

YZ_PLANE

Set this keyword to plot the Y and Z values on the X=MAX(X) axis plane.

YZSTYLE

Set this keyword to the linestyle used to draw the YZ plane plot. See the table above
for a list of linestyles.

SURFACE Keywords

In addition to the keywords described above, the AX, AZ, and ZAXIS keywords to
the SURFACE procedure are accepted by PLOT_3DBOX. See “SURFACE” on
page 1366.

Graphics Keywords Accepted

See Appendix C, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above. BACKGROUND, CHARSIZE, CHARTHICK, CLIP,
COLOR, DATA, DEVICE, LINESTYLE, NOCLIP, NOERASE, NORMAL,
POSITION, SUBTITLE, T3D, THICK, TICKLEN, TITLE, [XYZ]CHARSIZE,
[XYZ]GRIDSTYLE, [XYZ]MARGIN, [XYZ]MINOR, [XYZ]RANGE,
[XYZ]STYLE, [XYZ]THICK, [XYZ]TICKFORMAT, [XYZ]TICKLEN,
[XYZ]TICKNAME, [XYZ]TICKS, [XYZ]TICKV, [XYZ]TITLE.

Example

; Create some data to be plotted:
X = REPLICATE(5., 10.)
X1 = COS(FINDGEN(36)*10.*!DTOR)*2.+5.
X = [X, X1, X]
Y = FINDGEN(56)
Z = REPLICATE(5., 10)
Z1 = SIN(FINDGEN(36)*10.*!DTOR)*2.+5.
Z = [Z, Z1, Z]

; Create the box plot with data projected on all of the walls. The
; PSYM value of -4 plots the data as diamonds connected by lines:
PLOT_3DBOX, X, Y, Z, /XY_PLANE, /YZ_PLANE, /XZ_PLANE, $

/SOLID_WALLS, GRIDSTYLE=1, XYSTYLE=3, XZSTYLE=4, $
YZSTYLE=5, AZ=40, TITLE='Example Plot Box', $
XTITLE='X Coordinate', YTITLE='Y Coodinate', $
IDL Reference Guide PLOT_3DBOX

990
ZTITLE='Z Coordinate', SUBTITLE='Sub Title', $
/YSTYLE, ZRANGE=[0,10], XRANGE=[0,10], $
PSYM=-4, CHARSIZE=1.6

See Also

PLOTS, SURFACE
PLOT_3DBOX IDL Reference Guide

991
PLOT_FIELD

The PLOT_FIELD procedure plots a 2D field. N random points are picked, and from
each point a path is traced along the field. The length of the path is proportional to the
field vector magnitude.

This routine is written in the IDL language. Its source code can be found in the file
plot_field.pro in the lib subdirectory of the IDL distribution.

Syntax

PLOT_FIELD, U, V [, ASPECT=ratio] [, LENGTH=value] [, N=num_arrows]
[, TITLE=string]

Arguments

U

A 2D array giving the field vector at each point in the U(X) direction.

V

A 2D array giving the field vector at each point in the V(Y) direction.

Keywords

ASPECT

Set this keyword to the aspect ratio of the plot (i.e., the ratio of the X size to Y size).
The default is 1.0.

LENGTH

Set this keyword to the length of the longest field vector expressed as a fraction of the
plotting area. The default is 0.1.

N

Set this keyword to the number of arrows to draw. The default is 200.

TITLE

Set this keyword to the title of plot. The default is “Velocity Field”.
IDL Reference Guide PLOT_FIELD

992
Example

; Create array X:
X = FINDGEN(20, 20)

; Create array Y:
Y = FINDGEN(20, 20)*3

; Plot X vs. Y:
PLOT_FIELD, X, Y

The above commands produce the following plot:

See Also

FLOW3, VEL, VELOVECT
PLOT_FIELD IDL Reference Guide

993
PLOTERR

The PLOTERR procedure plots individual data points with error bars.

This routine is written in the IDL language. Its source code can be found in the file
ploterr.pro in the lib subdirectory of the IDL distribution.

Syntax

PLOTERR, [X ,] Y , Err [, TYPE={1 | 2 | 3 | 4}] [, PSYM=integer{1 to 10}]

Arguments

X

An optional array of X values. The procedure checks the number of arguments passed
to decide if X was passed. If X is not passed, INDGEN(Y) is assumed for X values.

Y

The array of Y values. Y cannot be of type string.

Err

The array of error-bar values.

Keywords

TYPE

The type of plot to be produced. The possible types are:

• 1 = X Linear - Y Linear (default)

• 2 = X Linear - Y Log

• 3 = X Log - Y Linear

• 4 = X Log - Y Log

PSYM

The plotting symbol to use. The default is +7.

See Also

ERRPLOT, OPLOTERR, PLOT
IDL Reference Guide PLOTERR

994
PLOTS

The PLOTS procedure plots vectors or points on the current graphics device in either
two or three dimensions. The coordinates can be given in data, device, or normalized
form using the DATA (the default), DEVICE, or NORMAL keywords.

The COLOR keyword can be set to a scalar or vector value. If it is set to a vector
value, the line segment connecting (Xi, Yi) to (Xi+1, Yi+1) is drawn with a color index
of COLORi+1. In this case, COLOR must have the same number of elements as X
and Y.

Syntax

PLOTS, X [, Y [, Z]] [, /CONTINUE]

Graphics Keywords: [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, /NOCLIP]
[, PSYM=integer{0 to 10}] [, SYMSIZE=value] [, /T3D] [, THICK=value]
[, Z=value]

Arguments

X

A vector or scalar argument providing the X components of the points to be
connected. If only one argument is specified, X must be an array of either two or three
vectors (i.e., (2,*) or (3,*)). In this special case, X[0,*] are taken as the X
values, X[1,*] are taken as the Y values, and X[2,*] are taken as the Z values.

Y

An optional argument providing the Y coordinate(s) of the points to be connected.

Z

An optional argument providing the Z coordinates of the points to be connected. If Z
is not provided, X and Y are used to draw lines in two dimensions.

Z has no effect if the keyword T3D is not specified and the system variable !P.T3D=
0.
PLOTS IDL Reference Guide

995
Keywords

CONTINUE

Set this keyword to continue drawing a line from the last point of the most recent call
to PLOTS.

For example:

; Position at (0,0):
PLOTS, 0, 0

; Draws vector from (0,0) to (1,1):
PLOTS, 1, 1, /CONTINUE

; Draws two vectors from (1,1) to (2,2) to (3,3):
PLOTS, [2,3], [2,3], /CONTINUE

Graphics Keywords Accepted

See Appendix C, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above. CLIP, COLOR, DATA, DEVICE, LINESTYLE,
NOCLIP, NORMAL, PSYM, SYMSIZE, T3D, THICK, Z.

Examples

; Draw a line from (100, 200) to (600, 700), in device coordinates,
; using color index 12:
PLOTS, [100,600], [200,700], COLOR=12, /DEVICE

; Draw a polyline where the line color is proportional to the
; ordinate that ends each line segment.
; First create datasets X and Y:
X = SIN(FINDGEN(100)) & Y = COS(FINDGEN(100))

; Now plot X and Y in normalized coordinates with colors as
; described above:
PLOTS, X, Y, COLOR = BYTSCL(Y, TOP=!D.N COLORS-1), /NORMAL

; Load a good colortable to better show the result:
LOADCT, 13

; Draw 3D vectors over an established SURFACE plot.
; The SAVE keyword tells IDL to save the 3D transformation
; established by SURFACE.
SURFACE, DIST(5), /SAVE

; Draw a line between (0,0,0) and (3,3,3). The T3D keyword makes
IDL Reference Guide PLOTS

996
; PLOTS use the previously established 3D transformation:
PLOTS, [0,3], [0,3], [0,3], /T3D

; Draw a line between (3,0,0) and (3,3,3):
PLOTS, [3,3], [0,3], [0,3], /T3D

; Draw a line between (0,3,0) and (3,3,3):
PLOTS, [0,3], [3,3], [0,3], /T3D

See Also

ANNOTATE, XYOUTS
PLOTS IDL Reference Guide

997
PNT_LINE

The PNT_LINE function returns the perpendicular distance between a point P0 and a
line between points L0 and L1. This function is limited by the machine accuracy of
single precision floating point.

This routine is written in the IDL language. Its source code can be found in the file
pnt_line.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = PNT_LINE(P0, L0, L1 [, Pl] [, /INTERVAL])

Arguments

P0

The location of the point. P0 may have 2 to n elements, for n dimensions.

L0

One end-point of the line. L0 must have same number of elements as P0.

L1

The other end-point of the line. L1 must have the same number of elements as L0.

Pl

A named variable that will contain the location of the point on the line between L0
and L1 that is closest to P0. Pl is not necessarily in the interval (L0, L1).

Keywords

INTERVAL

If set, and if the point on the line between L0 and L1 that is closest to P0 is not within
the interval (L0, L1), PNT_LINE will return the distance from P0 to the closer of the
two endpoints L0 and L1.

Example

To print the distance between the point (2,3) and the line from (-3,3) to (5,12), and
also the location of the point on the line closest to (2,3), enter the following
command:
IDL Reference Guide PNT_LINE

998
PRINT, PNT_LINE([2,3], [-3,3], [5,12], Pl), Pl

IDL prints:

3.73705 -0.793104 5.48276

See Also

CIR_3PNT, SPH_4PNT
PNT_LINE IDL Reference Guide

999
POINT_LUN

The POINT_LUN procedure sets or obtains the current position of the file pointer for
the specified file.

Note
POINT_LUN cannot be used with files opened with the RAWIO keyword to the
OPEN routines. Depending upon the device in question, the IOCTL function might
be used instead for files of this type.

Syntax

POINT_LUN, Unit, Position

Arguments

Unit

The file unit for the file in question. If Unit is positive, POINT_LUN sets the file
position to the position given by Position. If negative, POINT_LUN gets the current
file position and assigns it to the variable given by Position. Note that POINT_LUN
cannot be used with the 3 standard file units (0, -1, and -2).

Position

If Unit is positive, Position gives the byte offset into the file at which the file pointer
should be set. For example, to rewind the file to the beginning, specify 0.

If Unit is negative, Position must be a named variable into which the current file
position will be stored. The returned type will be a longword signed integer if the
position is small enough to fit, and an unsigned 64-bit integer otherwise.

Under VMS, be careful to move the file pointer only to record boundaries. It is
always safe to move to a file position that was previously obtained via POINT_LUN
or the FSTAT function. Files with indexed organization can only be positioned to the
beginning of the file.

Use Of POINT_LUN On Compressed Files

In general, it is not possible to arbitrarily move the file pointer within a compressed
file (files opened with the COMPRESS keyword to OPEN) because the file
compression code needs to maintain a compression state for the file that includes all
IDL Reference Guide POINT_LUN

1000
the data that has already been passed in the stream. This limitation results in the
following constraints on the use of POINT_LUN with compressed files:

• POINT_LUN is not allowed on compressed files open for output, except to
positions beyond the current file position. The compression code emulates
such motion by outputting enough zero bytes to move the pointer to the new
position.

• POINT_LUN is allowed to arbitrary positions on compressed files opened for
input. However, this feature is emulated by positioning the file to the
beginning of the file and then reading and discarding enough data to move the
file pointer to the desired position. This can be extremely slow.

For these reasons, use of POINT_LUN on compressed files, although possible under
some circumstances, is best avoided.

Example

To move the file pointer 2048 bytes into the file associated with file unit number 1,
enter:

POINT_LUN, 1, 2048

To return the file pointer for file unit number 2, enter:

POINT_LUN, -2, pos

See Also

GET_LUN, OPEN
POINT_LUN IDL Reference Guide

1001
POLAR_CONTOUR

The POLAR_CONTOUR procedure draws a contour plot from data in polar
coordinates. Data can be regularly- or irregularly-gridded. All of the keyword options
supported by CONTOUR are available to POLAR_CONTOUR.

This routine is written in the IDL language. Its source code can be found in the file
polar_contour.pro in the lib subdirectory of the IDL distribution.

Syntax

POLAR_CONTOUR, Z, Theta, R [, C_ANNOTATION=vector_of_strings]
[, C_CHARSIZE=value] [, C_CHARTHICK=integer] [, C_COLORS=vector]
[, C_LINESTYLE=vector] [, /FILL | , CELL_FILL [, C_ORIENTATION=degrees]
[, C_SPACING=value]] [, C_THICK=vector] [, /CLOSED] [, /IRREGULAR]
[, LEVELS=vector | NLEVELS=integer{1 to 29}] [, MAX_VALUE=value]
[, MIN_VALUE=value] [, /OVERPLOT] [, /PATH_DATA_COORDS |
,TRIANGULATION=variable] [, /XLOG] [, /YLOG] [, /ZAXIS]
[, SHOW_TRIANGULATION=color_index]

Arguments

Z

The data values to be contoured. If the data is regularly gridded, Z must have the
dimensions (N_ELEMENTS(Theta), N_ELEMENTS(R). Note that the ordering of
the elements in the array Z is opposite that used by the POLAR_SURFACE routine.

Theta

A vector of angles in radians. For regularly-gridded data, Theta must have the same
number of elements as the first dimension of Z. For a scattered grid, Theta must have
the same number of elements as Z.

R

A vector of radius values. For regularly-gridded data, R must have the same number
of elements as the second dimension of Z. For a scattered grid, R must have the same
number of elements as Z.

Keywords

POLAR_CONTOUR accepts all of the keywords accepted by the CONTOUR
routine except C_LABELS, DOWNHILL, FOLLOW, PATH_FILENAME,
IDL Reference Guide POLAR_CONTOUR

1002
PATH_INFO, and PATH_XY. See “CONTOUR” on page 225. In addition, there is
one unique keyword:

SHOW_TRIANGULATION

Set this keyword to a color index to be used in overplotting the triangulation between
datapoints.

Example

This example uses POLAR_CONTOUR with regularly-gridded data:

;Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Load color table
TEK_COLOR

nr = 12 ; number of radii
nt = 18 ; number of Thetas

; Create a vector of radii:
r = FINDGEN(nr)/(nr-1)

; Create a vector of Thetas:
theta = 2*!PI * FINDGEN(nt)/(nt-1)

; Create some data values to be contoured:
z = COS(theta*3) # (r-0.5)^2

; Create the polar contour plot:
POLAR_CONTOUR, z, theta, r, /FILL, c_color=[2, 3, 4, 5]

See Also

CONTOUR
POLAR_CONTOUR IDL Reference Guide

1003
POLAR_SURFACE

The POLAR_SURFACE function interpolates a surface from polar coordinates (R,
Theta, Z) to rectangular coordinates (X, Y, Z). The function returns a two-
dimensional array of the same type as Z.

This routine is written in the IDL language. Its source code can be found in the file
polar_surface.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = POLAR_SURFACE(Z, R, Theta [, /GRID] [, SPACING=[xspacing,
yspacing]] [, BOUNDS=[x0, y0, x1, y1]] [, /QUINTIC] [, MISSING=value])

Arguments

Z

An array containing the surface value at each point. If the data are regularly gridded
in R and Theta, Z is a two dimensional array, where Zi,j has a radius of Ri and an
azimuth of Thetaj. If the data are irregularly-gridded, Ri and Thetai contain the radius
and azimuth of each Zi. Note that the ordering of the elements in the array Z is
opposite that used by the POLAR_CONTOUR routine.

R

The radius. If the data are regularly gridded in R and Theta, Zi,j has a radius of Ri. If
the data are irregularly-gridded, R must have the same number of elements as Z, and
contains the radius of each point.

Theta

The azimuth, in radians. If the data are regularly gridded in R and Theta, Zi,j has an
azimuth of Thetaj. If the data are irregularly-gridded, Theta must have the same
number of elements as Z, and contains the azimuth of each point.

Keywords

GRID

Set this keyword to indicate that Z is regularly gridded in R and Theta.
IDL Reference Guide POLAR_SURFACE

1004
SPACING

A two element vector containing the desired grid spacing of the resulting array in x
and y. If omitted, the grid will be approximately 51 by 51.

BOUNDS

A four element vector, [x0, y0, x1, y1], containing the limits of the xy grid of the
resulting array. If omitted, the extent of input data sets the limits of the grid.

QUINTIC

Set this keyword to use quintic interpolation, which is slower but smoother than the
default linear interpolation.

MISSING

Use this keyword to specify a value to use for areas within the grid but not within the
convex hull of the data points. The default is 0.0.

Example

; The radius:
R = FINDGEN(50) / 50.0

; Theta:
THETA = FINDGEN(50) * (2 * !PI / 50.0)

; Make a function (tilted circle):
Z = R # SIN(THETA)

; Show it:
SURFACE, POLAR_SURFACE(Z, R, THETA, /GRID)

See Also

POLAR keyword to PLOT
POLAR_SURFACE IDL Reference Guide

1005
POLY

The POLY function evaluates a polynomial function of a variable. The result is equal
to:

C0 + C1x + C2x2 + ...

This routine is written in the IDL language. Its source code can be found in the file
poly.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = POLY(X, C)

Arguments

X

The variable. This value can be a scalar, vector or array.

C

The vector of polynomial coefficients. The degree of the polynomial is
N_ELEMENTS(C) - 1.

See Also

FZ_ROOTS
IDL Reference Guide POLY

1006
POLY_2D

The POLY_2D function performs polynomial warping of images. This function
performs a geometrical transformation in which the resulting array is defined by:

g [x, y] = f [x', y'] = f [a [x, y], b [x, y]]

where g[x, y] represents the pixel in the output image at coordinate (x, y), and f [x', y']
is the pixel at (x', y') in the input image that is used to derive g[x, y]. The functions
a (x, y) and b (x, y) are polynomials in x and y of degree N, whose coefficients are
given by P and Q, and specify the spatial transformation:

Either the nearest neighbor or bilinear interpolation methods can be selected.

Syntax

Result = POLY_2D(Array, P, Q [, Interp [, Dimx, Dimy]] [, CUBIC={-1 to 0}]
[, MISSING=value])

Arguments

Array

A two-dimensional array of any basic type except string. The result has the same type
as Array.

P and Q

P and Q are arrays containing the polynomial coefficients. Each array must contain
(N+1)2 elements (where N is the degree of the polynomial). For example, for a linear
transformation, P and Q contain four elements and can be a 2 x 2 array or a 4-element
vector. Pi,j contains the coefficient used to determine x’, and is the weight of the term
xjyi. The POLYWARP procedure can be used to fit (x’, y’) as a function of (x, y) and
determines the coefficient arrays P and Q.

x ′ a x y,() Pi j, x
j
yi

j 0=

N

∑
i 0=

N

∑= =

y ′ b x y,() Qi j, xjyi

j 0=

N

∑
i 0=

N

∑= =
POLY_2D IDL Reference Guide

1007
Interp

Set this argument to a 1to perform bilinear interpolation. Set this argument to 2 to
perform cubic convolution interpolation (as described under the CUBIC keyword,
below). Otherwise, the nearest neighbor method is used. For the linear case, (N=1),
bilinear interpolation requires approximately twice as much time as does the nearest
neighbor method.

Dimx

If present, Dimx specifies the number of columns in the output. If omitted, the output
has the same number of columns as Array.

Dimy

If present, Dimy specifies the number of rows in the output. If omitted, the output has
the same number of rows as Array.

Keywords

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Setting
this keyword equal to a value greater than zero specifies a value of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest that a
value of -0.5 significantly improves the reconstruction properties of this algorithm.
Note that cubic convolution interpolation works only with one- and two-dimensional
arrays.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal, f, is a band-limited signal, with no frequency
component larger than ω0, and f is sampled with spacing less than or equal to 1/2ω0,
then f can be reconstructed by convolving with a sinc function: sinc (x) = sin (πx) /
(πx).

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used. Note that cubic convolution interpolation is
significantly slower than bilinear interpolation.

For further details see:
IDL Reference Guide POLY_2D

1008
Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniques for
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redondo
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubic
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

MISSING

Specifies the output value for points whose x’, y’ is outside the bounds of Array. If
MISSING is not specified, the resulting output value is extrapolated from the nearest
pixel of Array.

Example

Some simple linear (degree one) transformations are:

POLY_2D is often used in conjunction with the POLYWARP procedure to warp
images.

; Create and display a simple image:
A = BYTSCL(SIN(DIST(250)), TOP=!D.TABLE_SIZE) & TV, A

; Set up the arrays of original points to be warped:
XO = [61, 62, 143, 133]
YO = [89, 34, 38, 105]

; Set up the arrays of points to be fit:
XI = [24, 35, 102, 92]
YI = [81, 24, 25, 92]

; Use POLYWARP to generate the P and Q inputs to POLY_2D:
POLYWARP, XI, YI, XO, YO, 1, P, Q

P0,0 P1,0 P0,1 P1,1 Q0,0 Q1,0 Q0,1 Q1,1 Effect

0 0 1 0 0 1 0 0 Identity

0 0 0.5 0 0 1 0 0 Stretch X by a factor of 2

0 0 1 0 0 2.0 0 0 Shrink Y by a factor of 2

z 0 1 0 0 1 0 0 Shift left by z pixels

0 1 0 0 0 0 1 0 Transpose

Table 76: Simple Transformations for Use with POLY_2D
POLY_2D IDL Reference Guide

1009
; Perform an image warping based on P and Q:
B = POLY_2D(A, P, Q)

; Display the new image:
TV, B, 250, 250

Images can also be warped over irregularly gridded control points using the
WARP_TRI procedure.

See Also

POLYWARP
IDL Reference Guide POLY_2D

1010
POLY_AREA

The POLY_AREA function returns the area of a polygon given the coordinates of its
vertices. This value is always positive.

It is assumed that the polygon has n vertices with n sides and the edges connect the
vertices in the order:

[(x1,y1), (x2,y2), ... , (xn,yn), (x1,y1)]

such that the last vertex is connected to the first vertex.

This routine is written in the IDL language. Its source code can be found in the file
poly_area.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = POLY_AREA(X, Y [, /SIGNED])

Arguments

X

An n-element vector of X coordinate locations for the vertices.

Y

An n-element vector of Y coordinate locations for the vertices.

Keywords

SIGNED

If set, returns a signed area. Polygons with edges traversed in counterclockwise order
have a positive area; polygons traversed in the clockwise order have a negative area.

See Also

DEFROI, POLYFILLV
POLY_AREA IDL Reference Guide

1011
POLY_FIT

The POLY_FIT function performs a least-square polynomial fit with optional
weighting and returns a vector of coefficients.

The POLY_FIT routine uses matrix inversion to determine the coefficients. A
different version of this routine, SVDFIT, uses singular value decomposition (SVD).
The SVD technique is more flexible and robust, but may be slower.

This routine is written in the IDL language. Its source code can be found in the file
poly_fit.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = POLY_FIT(X, Y, Degree [, CHISQ=variable] [, COVAR=variable]
[, /DOUBLE] [, MEASURE_ERRORS=vector] [, SIGMA=variable]
[, STATUS=variable] [, YBAND=variable] [, YERROR=variable]
[, YFIT=variable])

Return Value

POLY_FIT returns a vector of coefficients of length Degree+1. If the DOUBLE
keyword is set, or if X or Y are double precision, then the result will be double
precision, otherwise the result will be single precision.

Arguments

X

An n-element vector of independent variables.

Y

A vector of dependent variables, the same length as X.

Degree

The degree of the polynomial to fit.

Yfit, Yband, Sigma, Corrm

The Yfit, Yband, Sigma, and Corrm arguments are obsolete, and have been replaced
by the YFIT, YBAND, YERROR, and COVAR keywords, respectively. Code using
these arguments will continue to work as before, but new code should use the
keywords instead.
IDL Reference Guide POLY_FIT

1012
Keywords

CHISQ

Set this keyword to a named variable that will contain the value of the chi-sqaure
goodness-of-fit.

COVAR

Set this keyword to a named variable that will contain the Covariance matrix of the
coefficients.

DOUBLE

Set this keyword to force computations to be done in double-precision arithmetic.

MEASURE_ERRORS

Set this keyword to a vector containing standard measurement errors for each point
Y[i]. This vector must be the same length as X and Y.

Note
For Gaussian errors (e.g., instrumental uncertainties), MEASURE_ERRORS
should be set to the standard deviations of each point in Y. For Poisson or statistical
weighting, MEASURE_ERRORS should be set to SQRT(Y).

SIGMA

Set this keyword to a named variable that will contain the 1-sigma uncertainty
estimates for the returned parameters.

Note
If MEASURE_ERRORS is omitted, then you are assuming that a polynomial is the
correct model for your data, and therefore, no independent goodness-of-fit test is
possible. In this case, the values returned in SIGMA are multiplied by
SQRT(CHISQ/(N–M)), where N is the number of points in X, and M is the number
of coefficients. See section 15.2 of Numerical Recipes in C (Second Edition) for
details.

STATUS

Set this keyword to a named variable to receive the status of the operation. Possible
status values are:
POLY_FIT IDL Reference Guide

1013
• 0 = Successful completion.

• 1 = Singular array (which indicates that the inversion is invalid). Result is
NaN.

• 2 = Warning that a small pivot element was used and that significant accuracy
was probably lost.

• 3 = Undefined (NaN) error estimate was encountered.

Note
If STATUS is not specified, any error messages will be output to the screen.

Tip
Status values of 2 or 3 can often be resolved by setting the DOUBLE keyword.

YBAND

Set this keyword to a named variable that will contain the 1 standard deviation error
estimate for each point.

YERROR

Set this keyword to a named variable that will contain the standard error between
YFIT and Y.

YFIT

Set this keyword to a named variable that will contain the vector of calculated Y
values. These values have an error of + or – YBAND.

Example

In this example, we use X and Y data corresponding to the known polynomial
f (x) = 0.25 - x + x2. Using POLY_FIT to compute a second degree polynomial fit
returns the exact coefficients (to within machine accuracy).

; Define an 11-element vector of independent variable data:
X = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

; Define an 11-element vector of dependent variable data:
Y = [0.25, 0.16, 0.09, 0.04, 0.01, 0.00, 0.01, 0.04, 0.09, $
 0.16, 0.25]

; Define a vector of measurement errors:
IDL Reference Guide POLY_FIT

1014
measure_errors = REPLICATE(0.01, 11)

; Compute the second degree polynomial fit to the data:
result = POLY_FIT(X, Y, 2, MEASURE_ERRORS=measure_errors, $

SIGMA=sigma)

; Print the coefficients:
PRINT, 'Coefficients: ', result
PRINT, 'Standard errors: ', sigma

IDL prints:

Coefficients: 0.250000 -1.00000 1.00000
Standard errors: 0.00761853 0.0354459 0.0341395

See Also

COMFIT, CURVEFIT, GAUSSFIT, LINFIT, REGRESS, SFIT, SVDFIT
POLY_FIT IDL Reference Guide

1015
POLYFILL

The POLYFILL procedure fills the interior of a region of the display enclosed by an
arbitrary two or three-dimensional polygon. The available filling methods are: solid
fill, hardware-dependent fill pattern, parallel lines, or a pattern contained in an array.
Not all methods are available on every hardware output device. See “Fill Methods”
below.

The polygon is defined by a list of connected vertices stored in X, Y, and Z. The
coordinates can be given in data, device, or normalized form using the DATA,
DEVICE, or NORMAL keywords.

Syntax

POLYFILL, X [, Y [, Z]] [, IMAGE_COORD=array] [, /IMAGE_INTERP]
[, /LINE_FILL] [, PATTERN=array] [, SPACING=centimeters]
[, TRANSPARENT=value]

Graphics Keywords: [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, /NOCLIP]
[, ORIENTATION=ccw_degrees_from_horiz] [, /T3D] [, THICK=value] [, Z=value]

Fill Methods

Line-fill method: Filling using parallel lines is device-independent and works on all
devices that can draw lines. Crosshatching can be simulated by performing multiple
fills with different orientations. The spacing, linestyle, orientation, and thickness of
the filling lines can be specified using the corresponding keyword parameters. The
LINE_FILL keyword selects this filling style, but is not required if either the
ORIENTATION or SPACING parameters are present.

Solid fill method: Most, but not all, devices can fill with a solid color. Solid fill is
performed using the line-fill method for devices that don’t have this hardware
capability. Method specifying keyword parameters are not required for solid filling.

Patterned fill: The method of patterned filling and the usage of various fill patterns is
hardware dependent. The fill pattern array can be explicitly specified with the
PATTERN keyword parameter for some output devices.
IDL Reference Guide POLYFILL

1016
Arguments

X

A vector argument providing the X coordinates of the points to be connected. The
vector must contain at least three elements. If only one argument is specified, X must
be an array of either two or three vectors (i.e., (2,*) or (3,*)). In this special case,
the vector X[0,*] specifies the X values, X[1,*] specifies Y, and X[2,*] contain
the Z values.

Y

A vector argument providing the Y coordinates of the points to be connected. Y must
contain at least three elements.

Z

An optional vector argument providing the Z coordinates of the points to be
connected. If Z is not provided, X and Y are used to draw lines in two dimensions. Z
must contain at least three elements. Z has no effect if the keyword T3D is not
specified and the system variable !P.T3D= 0.

Keywords

IMAGE_COORD

(Z-Buffer output only) A 2 x n array containing the fill pattern array subscripts of
each of the n polygon vertices. Use this keyword in conjunction with the PATTERN
keyword to warp images over 2D and 3D polygons.

IMAGE_INTERP

(Z-Buffer output only) Specifies the method of sampling the PATTERN array when
the IMAGE_COORD keyword is present. The default method is to use nearest-
neighbor sampling. Bilinear interpolation sampling is performed if IMAGE_INTERP
is set.

LINE_FILL

Set this keyword to indicate that polygons are to be filled with parallel lines, rather
than using solid or patterned filling methods.When using the line-drawing method of
filling, the thickness, linestyle, orientation, and spacing of the lines may be specified
with keywords.
POLYFILL IDL Reference Guide

1017
PATTERN

A rectangular array of pixels giving the fill pattern. If this keyword parameter is
omitted, POLYFILL fills the area with a solid color. The pattern array may be of any
size; if it is smaller than the filled area the pattern array is cyclically repeated.

Note
When the display device selected is PostScript (PS), POLYFILL can only fill with
solid colors.

For example, to fill the current plot window with a grid of dots, enter the following
commands:

; Define pattern array as 10 by 10:
PAT = BYTARR(10,10)

; Set center pixel to bright:
PAT[5,5] = 255

; Fill the rectangle defined by the four corners of the window with
; the pattern:
POLYFILL, !X.WINDOW([0,1,1,0]), $

!Y.WINDOW([0,0,1,1]), /NORM, PAT = PAT

SPACING

The spacing, in centimeters, between the parallel lines used to fill polygons.

TRANSPARENT (Z-Buffer output only)

Specifies the minimum pixel value to draw in conjunction with the PATTERN and
IMAGE_COORD keywords. Pixels less than this value are not drawn and the Z-
buffer is not updated.

Graphics Keywords Accepted

See Appendix C, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above. CLIP, COLOR, DATA, DEVICE, LINESTYLE,
NOCLIP, NORMAL, ORIENTATION, T3D, THICK, Z.

Z-Buffer-Specific Keywords

Certain keyword parameters are only active when the Z-buffer is the currently
selected graphics device: IMAGE_COORD, IMAGE_INTERP, TRANSPARENT
and COLOR. These parameters allow images to be warped over 2D or 3D polygons,
IDL Reference Guide POLYFILL

1018
and the output of shaded polygons. For examples, see “The Z-Buffer Device” on
page 62.

For shaded polygons, the COLOR keyword can specify an array that contains the
color index at each vertex. Color indices are linearly interpolated between vertices. If
COLOR contains a scalar, the entire polygon is drawn with the given color index, just
as with the other graphics output devices.

Images can be warped over polygons by passing in the image with the PATTERN
parameter, and a (2, n) array containing the image space coordinates that correspond
to each of the N vertices with the IMAGE_COORD keyword.

The IMAGE_INTERP keyword indicates that bilinear interpolation is to be used,
rather than the default nearest-neighbor sampling. Pixels less than the value of
TRANSPARENT are not drawn, simulating transparency.

Example

Fill a rectangular polygon that has the vertices (30,30), (100, 30), (100, 100), and (30,
100) in device coordinates:

; Create the vectors of X and Y values:
X = [30, 100, 100, 30] & Y = [30, 30, 100, 100]

; Fill the polygon with color index 175:
POLYFILL, X, Y, COLOR = 175, /DEVICE

See Also

POLYFILLV
POLYFILL IDL Reference Guide

1019
POLYFILLV

The POLYFILLV function returns a vector containing the one-dimensional
subscripts of the array elements contained inside a polygon defined by vectors X and
Y.

If no points are contained within the polygon, a -1 is returned and an informational
message is printed. The X and Y parameters are vectors that contain the subscripts of
the vertices that define the polygon in the coordinate system of the two-dimensional
Sx by Sy array. The Sx and Sy parameters define the number of columns and rows in
the array enclosing the polygon. At least three points must be specified, and all points
should lie within the limits: 0 ≤ Xi < Sx and 0 ≤ Yi < Sy ∀ i.

As with the POLYFILL procedure, the polygon is defined by connecting each point
with its successor and the last point with the first. This function is useful for defining,
analyzing, and displaying regions of interest within a two-dimensional array.

The scan line coordinate system defined by Rogers in Procedural Elements for
Computer Graphics, McGraw-Hill, 1985, page 71, is used. In this system, the scan
lines are considered to pass through the center of each row of pixels. Pixels are
activated if the center of the pixel is to the right of the intersection of the scan line and
the polygon edge within the interval.

Syntax

Result = POLYFILLV(X, Y, Sx, Sy [, Run_Length])

Arguments

X

A vector containing the X subscripts of the vertices that define the polygon.

Y

A vector containing the Y subscripts of the vertices that define the polygon.

Sx

The number of columns in the array surrounding the polygon.

Sy

The number of rows in the array surrounding the polygon.
IDL Reference Guide POLYFILLV

1020
Run_Length

Set this optional parameter to a nonzero value to make POLYFILLV return a vector
of run lengths, rather than subscripts. For large polygons, a considerable savings in
space results. When run-length encoded, each element with an even subscript result
contains the length of the run, and the following element contains the starting index
of the run.

Example

To determine the mean and standard deviation of the elements within a triangular
region defined by the vertices at pixel coordinates (100, 100), (200, 300), and (300,
100), inside a 512 x 512 array called DATA, enter the commands:

; Get the subscripts of the elements inside the triangle:
P = DATA[POLYFILLV([100,200,300], [100,300,100], 512, 512)]

; Use the STDEV function to obtain the mean and standard deviation
; of the selected elements:
STD = STDEV(P,MEAN)

See Also

POLYFILL
POLYFILLV IDL Reference Guide

1021
POLYSHADE

The POLYSHADE function returns a shaded-surface representation of one or more
solids described by a set of polygons. This function accepts, as arguments, an array of
three-dimensional vertices and a list of the indices of the vertices that describe each
polygon. Output is a two-dimensional byte array containing the shaded image unless
the current graphics output device is the Z-buffer. If the current output device is the
Z-buffer, the results are merged with the Z-buffer’s contents and the function result
contains a dummy value.

Shading values are determined from one of three sources: a light source model, a
user-specified array containing vertex shade values, or a user-specified array
containing polygon shade values.

The shaded surface is constructed using the scan line algorithm. The default shading
model is a combination of diffuse reflection and depth cueing. With this shading
model, polygons are shaded using either constant shading, in which each polygon is
given a constant intensity, or with Gouraud shading where the intensity is computed
at each vertex and then interpolated over the polygon. Use the SET_SHADING
procedure to control the direction of the light source and other shading parameters.

User-specified shading arrays allow “4-dimensional” displays that consist of a
surface defined by a set of polygons, shaded with values from another variable.

Syntax

Result = POLYSHADE(Vertices, Polygons)

or

Result = POLYSHADE(X, Y, Z, Polygons)

Keywords: [, /DATA | , /NORMAL] [, POLY_SHADES=array]
[, SHADES=array] [, /T3D] [, TOP=value] [, XSIZE=columns] [, YSIZE=rows]

Arguments

Vertices

A (3, n) array containing the X, Y, and Z coordinates of each vertex. Coordinates can
be in either data or normalized coordinates, depending on which keywords are
present.
IDL Reference Guide POLYSHADE

1022
X, Y, Z

The X, Y, and Z coordinates of each vertex can, alternatively, be specified as three
array expressions of the same dimensions.

Polygons

An integer or longword array containing the indices of the vertices for each polygon.
The vertices of each polygon should be listed in counterclockwise order when
observed from outside the surface. The vertex description of each polygon is a vector
of the form: [n, i0, i1, ..., in-1] and the array Polygons is the concatenation of the lists
of each polygon. For example, to render a pyramid consisting of four triangles,
Polygons would contain 16 elements, made by concatenating four, four-element
vectors of the form [3, V0, V1, V2]. V0, V1, and V2 are the indices of the vertices
describing each triangle.

Keywords

DATA

Set this keyword to indicate that the vertex coordinates are in data units, the default
coordinate system.

NORMAL

Set this keyword to indicate that coordinates are in normalized units, within the three
dimensional (0,1) cube.

POLY_SHADES

An array expression, with the same number of elements as there are polygons defined
in the Polygons array, containing the color index used to render each polygon. No
interpolation is performed if all pixels within a given polygon have the same shade
value. For most displays, this parameter should be scaled into the range of bytes.

SHADES

An array expression, with the same number of elements as Vertices, containing the
color index at each vertex. The shading of each pixel is interpolated from the
surrounding SHADE values. For most displays, this parameter should be scaled into
the range of bytes.
POLYSHADE IDL Reference Guide

1023
Warning
When using the SHADES keyword on TrueColor devices, we recommend that
decomposed color support be turned off by setting DECOMPOSED=0 for
DEVICE.

T3D

Set this keyword to use the three-dimensional to two-dimensional transformation
contained in the homogeneous 4 by 4 matrix !P.T. Note that if T3D is set, !P.T must
contain a valid transformation matrix. The SURFACE, SCALE3, and T3D
procedures (and others) can all be used to set up transformations.

TOP

The maximum shading value when light source shading is in effect. The default value
is one less than the number of colors available in the currently selected graphics
device.

XSIZE

The number of columns in the output image array. If this parameter is omitted, the
number of columns is equal to the X size of the currently selected display device.

Warning: The size parameters should be explicitly specified when the current
graphics device is PostScript or any other high-resolution device. Making the output
image the default full device size is likely to cause an insufficient memory error.

YSIZE

The number of rows in the output image array. If this parameter is omitted, the
number of rows is equal to the Y resolution of the currently selected display device.

Example

POLYSHADE is often used in conjunction with SHADE_VOLUME for volume
visualization. The following example creates a spherical volume dataset and renders
an isosurface from that dataset:

; Create an empty, 3D array:
SPHERE = FLTARR(20, 20, 20)

; Create the spherical dataset:
FOR X=0,19 DO FOR Y=0,19 DO FOR Z=0,19 DO $

SPHERE(X, Y, Z) = SQRT((X-10)^2 + (Y-10)^2 + (Z-10)^2)

; Find the vertices and polygons for a density level of 8:
IDL Reference Guide POLYSHADE

1024
SHADE_VOLUME, SPHERE, 8, V, P

; Set up an appropriate 3D transformation so we can see the
; sphere. This step is very important:
SCALE3, XRANGE=[0,20], YRANGE=[0,20], ZRANGE=[0,20]

; Render the image. Note that the T3D keyword has been set so that
; the previously-established 3D transformation is used:
image = POLYSHADE(V, P, /T3D)

; Display the image:
TV, image

See Also

PROJECT_VOL, RECON3, SET_SHADING, SHADE_SURF, SHADE_VOLUME,
VOXEL_PROJ
POLYSHADE IDL Reference Guide

1025
POLYWARP

The POLYWARP procedure performs polynomial spatial warping.

Using least squares estimation, POLYWARP determines the coefficients Kx(i,j) and
Ky(i,j) of the polynomial functions:

Kx and Ky can be used as inputs P and Q to the built-in function POLY_2D. This
coordinate transformation may be then used to map from Xo, Yo coordinates into Xi,
Yi coordinates.

This routine is written in the IDL language. Its source code can be found in the file
polywarp.pro in the lib subdirectory of the IDL distribution.

Syntax

POLYWARP, Xi, Yi, Xo, Yo, Degree, Kx, Ky

Arguments

Xi, Yi

Vectors of X and Y coordinates to be fit as a function of Xo and Yo.

Xo, Yo

Vectors of X and Y independent coordinates. These vectors must have the same
number of elements as Xi and Yi.

Degree

The degree of the fit. The number of coordinate pairs must be greater than or equal to
(Degree+1)2.

Kx

A named variable that will contain the array of coefficients for Xi as a function of
(Xo, Yo). This parameter is returned as a (Degree+1) by (Degree+1) element array.

Xi Kxi j, Xo
j

Yo
i⋅⋅

i j,
∑=

Yi Kyi j, Xo
j

Yo
i⋅⋅

i j,
∑=
IDL Reference Guide POLYWARP

1026
Ky

A named variable that will contain the array of coefficients for Yi. This parameter is
returned as a (Degree+1) by (Degree+1) element array.

Example

The following example shows how to display an image and warp it using the
POLYWARP and POLY_2D routines.

; Create and display the original image:
A = BYTSCL(SIN(DIST(250)))
TVSCL, A

; Now set up the Xi’s and Yi’s:
XI = [24, 35, 102, 92]
YI = [81, 24, 25, 92]

; Enter the Xo’s and Yo’s:
XO = [61, 62, 143, 133]
YO = [89, 34, 38, 105]

; Run POLYWARP to obtain a Kx and Ky:
POLYWARP, XI, YI, XO, YO, 1, KX, KY

; Create a warped image based on Kx and Ky with POLY_2D:
B = POLY_2D(A, KX, KY)

; Display the new image:
TV, B

See Also

POLY_2D, WARP_TRI
POLYWARP IDL Reference Guide

1027
POPD

The POPD procedure changes the current working directory to the directory saved on
the top of the directory stack maintained by the PUSHD and POPD procedures. This
top entry is then removed from the stack.

Attempting to pop a directory when the stack is empty causes a warning message to
be printed. The current directory is not changed in this case. The common block
DIR_STACK is used to store the directory stack.

This routine is written in the IDL language. Its source code can be found in the file
popd.pro in the lib subdirectory of the IDL distribution.

Syntax

POPD

See Also

CD, PRINTD, PUSHD
IDL Reference Guide POPD

1028
POWELL

The POWELL procedure minimizes a user-written function Func of two or more
independent variables using the Powell method. POWELL does not require a user-
supplied analytic gradient.

POWELL is based on the routine powell described in section 10.5 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

POWELL, P, Xi, Ftol, Fmin, Func [, /DOUBLE] [, ITER=variable]
[, ITMAX=value]

Arguments

P

On input, P is an n-element vector specifying the starting point. On output, it is
replaced with the location of the minimum.

Xi

On input, Xi is an initial n by n element array whose columns contain the initial set of
directions (usually the n unit vectors). On output, it is replaced with the then-current
directions.

Ftol

An input value specifying the fractional tolerance in the function value. Failure to
decrease by more than Ftol in one iteration signals completeness. For single-
precision computations, a value of 1.0 × 10-4 is recommended; for double-precision
computations, a value of 1.0 × 10-8 is recommended.

Fmin

On output, Fmin contains the value at the minimum-point P of the user-supplied
function specified by Func.

Func

A scalar string specifying the name of a user-supplied IDL function of two or more
independent variables to be minimized. This function must accept a vector argument
X and return a scalar result.
POWELL IDL Reference Guide

1029
For example, suppose we wish to minimize the function

To evaluate this expression, we define an IDL function named POWFUNC:

FUNCTION powfunc, X
RETURN, (X[0] + 2.0*X[1]) * EXP(-X[0]^2 -X[1]^2)

END

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

ITER

Use this keyword to specify an output variable that will be set to the number of
iterations performed.

ITMAX

Use this keyword to specify the maximum allowed number of iterations. The default
is 200.

Warning
POWELL halts once the value specified with ITMAX has been reached.

Example

We can use POWELL to minimize the function POWFUNC given above.

PRO TEST_POWELL

; Define the fractional tolerance:
ftol = 1.0e-4

; Define the starting point:
P = [.5d, -.25d]

; Define the starting directional vectors in column format:
xi = TRANSPOSE([[1.0, 0.0],[0.0, 1.0]])

; Minimize the function:
POWELL, P, xi, ftol, fmin, 'powfunc'

f x y,() x 2y+()e
x2– y2–

=

IDL Reference Guide POWELL

1030
; Print the solution point:
PRINT, 'Solution point: ', P

; Print the value at the solution point:
PRINT, 'Value at solution point: ', fmin

END

FUNCTION powfunc, X
RETURN, (X[0] + 2.0*X[1]) * EXP(-X[0]^2 -X[1]^2)

END

IDL prints:

Solution point: -0.31622777 -0.63245552
Value at solution point: -0.95900918

The exact solution point is [-0.31622777, -0.63245553].

The exact minimum function value is -0.95900918.

See Also

AMOEBA, DFPMIN
POWELL IDL Reference Guide

1031
PRIMES

The PRIMES function computes the first K prime numbers. The result is a K-element
long integer vector.

This routine is written in the IDL language. Its source code can be found in the file
primes.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = PRIMES(K)

Arguments

K

An integer or long integer scalar that specifies the number of primes to be computed.

Example

To compute the first 25 prime numbers:

PRINT, PRIMES(25)

IDL prints:

2 3 5 7 11 13
17 19 23 29 31 37
41 43 47 53 59 61
67 71 73 79 83 89
97
IDL Reference Guide PRIMES

1032
PRINT/PRINTF

The two PRINT procedures perform formatted output. PRINT performs output to the
standard output stream (IDL file unit -1), while PRINTF requires a file unit to be
explicitly specified.

Syntax

PRINT [, Expr1, ..., Exprn]

PRINTF [, Unit, Expr1, ..., Exprn]

Keywords: [, AM_PM=[string, string]] [, DAYS_OF_WEEK=string_array{7
names}] [, FORMAT=value] [, MONTHS=string_array{12 names}]
[, /STDIO_NON_FINITE]

VMS Keywords: [, /REWRITE]

Arguments

Unit

For PRINTF, Unit specifies the file unit to which the output is sent.

Expri

The expressions to be output.

Keywords

AM_PM

Supplies a string array of 2 names to be used for the names of the AM and PM string
when processing explicitly formatted dates (CAPA, CApA, and CapA format codes)
with the FORMAT keyword.

DAYS_OF_WEEK

Supplies a string array of 7 names to be used for the names of the days of the week
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

FORMAT

If FORMAT is not specified, IDL uses its default rules for formatting the output.
FORMAT allows the format of the output to be specified in precise detail, using a
PRINT/PRINTF IDL Reference Guide

1033
FORTRAN-style specification. See “Using Explicitly Formatted Input/Output” in
Chapter 8 of Building IDL Applications.

MONTHS

Supplies a string array of 12 names to be used for the names of the months when
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) with
the FORMAT keyword.

STDIO_NON_FINITE

Set this keyword to allow the writing of data files readable by C or FORTRAN
programs on a given platform; it is otherwise unnecessary.The various systems
supported by IDL differ widely in the representation used for non-finite floating point
values (i.e., NaN and Infinity). Consider that the following are all possible
representations for NaN on at least one IDL platform:

NaN, NanQ, ?.0000, nan0x2, nan0x7, 1.#QNAN, -1.#IND0.

And the following are considered to be Infinity:

Inf, Infinity, ++.0000, ----.0000, 1.#INF

On input, IDL can recognize any of these, but on output, it uses the same standard
representation on all platforms. This promotes cross-platform consistency. To cause
IDL to use the system C library sprintf() function to format such values, yielding
the native representation for that platform, set the STDIO_NON_FINITE keyword.

VMS Keywords

REWRITE

When writing data to a file with indexed organization, set the REWRITE keyword to
specify that the data should update the contents of the most recently input record
instead of creating a new record.

Format Compatibility

If the FORMAT keyword is not present and PRINT is called with more than one
argument, and the first argument is a scalar string starting with the characters “$(”,
this initial argument is taken to be the format specification, just as if it had been
specified via the FORMAT keyword. This feature is maintained for compatibility
with version 1 of VMS IDL.
IDL Reference Guide PRINT/PRINTF

1034
Example

To print the string “IDL is fun.” enter the command:

PRINT, 'IDL is fun.'

To print the same message to the open file associated with file unit number 2, use the
command:

PRINTF, 2, 'IDL is fun.'

See Also

ANNOTATE, MESSAGE, WRITEU, XYOUTS
PRINT/PRINTF IDL Reference Guide

1035
PRINTD

The PRINTD procedure prints the contents of the directory stack maintained by the
PUSHD and POPD procedures. The contents of the directory stack are listed on the
default output device. The common block DIR_STACK is used to store the directory
stack.

This routine is written in the IDL language. Its source code can be found in the file
printd.pro in the lib subdirectory of the IDL distribution.

Syntax

PRINTD

See Also

CD, POPD, PUSHD
IDL Reference Guide PRINTD

1036
PRO

The PRO statement defines an IDL procedure.

Note
For information on using the PRO statement, see Chapter 12, “Procedures and
Functions” in Building IDL Applications.

Syntax

PRO Procedure_Name, argument1, ..., argumentn
⋅ ⋅ ⋅

END

Arguments

argumentn
A parameter that is passed to the procedure.

Example

The following example demonstrates the use of arguments in a PRO statement:

PRO MYPROCEDURE
X = 5
; Call the ADD procedure:
ADD, 3, X

END

PRO ADD, A, B
PRINT, 'A = ', A
PRINT, 'B = ', B
A = A + B
PRINT, 'A = ', A

END

After running myprocedure.pro, IDL returns:

A = 3
B = 5
A = 8
PRO IDL Reference Guide

1037
PROFILE

The PROFILE function extracts a profile from an image and returns a floating-point
vector containing the values of the image along the profile line marked by the user.

This routine is written in the IDL language. Its source code can be found in the file
profile.pro in the lib subdirectory of the IDL distribution.

Using PROFILE

To mark a profile line after calling PROFILE, click in the image with the left mouse
button to mark the beginning and ending points. The pixel coordinates of the selected
points are displayed in the IDL command log.

Syntax

Result = PROFILE(Image [, XX, YY] [, /NOMARK] [, XSTART=value]
[, YSTART=value])

Arguments

Image

The data array representing the image. This array can be of any type except complex.

XX

A named variable that will contain the X coordinates of the points along the selected
profile.

YY

A named variable that will contain the Y coordinates of the points along the selected
profile.

Keywords

NOMARK

Set this keyword to inhibit marking the image with the profile line.

XSTART

The starting X location of the lower-left corner of Image. If this keyword is not
specified, 0 is assumed.
IDL Reference Guide PROFILE

1038
YSTART

The starting Y location of the lower-left corner of Image. If this keyword is not
specified, 0 is assumed.

Example

This example displays an image, selects a profile, and plots that profile in a new
window:

; Create an image:
A = BYTSCL(DIST(256))

; Display the image:
TV, A

; Extract a profile from the image:
R = PROFILE(A)

Mark two points on the image with the mouse.

; Create a new plotting window:
WINDOW, /FREE

; Plot the profile:
PLOT, R

Note
The PROFILES procedure is an interactive version of this routine.

See Also

PROFILES
PROFILE IDL Reference Guide

1039
PROFILER

The PROFILER procedure allows you to access the IDL Code Profiler. The IDL
Code Profiler helps you analyze the performance of your applications. You can easily
monitor the calling frequency and execution time for procedures and functions.

Syntax

PROFILER [, Module] [, /CLEAR] [, DATA=variable] [, OUTPUT=variable]
[, /REPORT] [, /RESET] [, /SYSTEM]

Arguments

Module

The program to which changes in profiling will be applied. If Module is not specified,
profiling changes will be applied to all currently-compiled programs.

Note
The Module is often named with respect to the file in which it is stored. For
example, the file build_it.pro may contain the module, build_it. If you
specify the file name, you will incur a syntax error.

Keywords

CLEAR

Set this keyword to disable profiling of Module or of all compiled modules if Module
is not specified.

OUTPUT

Set this keyword to a specified variable in which to store the results of the REPORT
keyword.

REPORT

Set this keyword to report the results of profiling. If you enter a program at the
command line, the PROFILER procedure will report the status of all the specified
modules used either since the beginning of the IDL session, or since the PROFILER
was reset.
IDL Reference Guide PROFILER

1040
RESET

Set this keyword to clear the results of profiling.

SYSTEM

Set this keyword to profile IDL system procedures and functions. By default, only
user-written or library files, which have been compiled, are profiled.

Example

; Include IDL system procedures and functions when profiling:
PROFILER, /SYSTEM

; Create a dataset using the library function DIST. Note that DIST
; is immediately compiled:
A= DIST(500)

; Display the image:
TV, A

; Retrieve the profiling results:
PROFILER, /REPORT

IDL prints:

Module Type Count Only(s) Avg.(s) Time(s) Avg.(s)
FINDGEN (S) 1 0.000239 0.000239 0.000239 0.000239
FLTARR (S) 1 0.010171 0.010171 0.010171 0.010171
N_ELEMENTS (S) 1 0.000104 0.000104 0.000104 0.000104
ON_ERROR (S) 1 0.000178 0.000178 0.000178 0.000178
SQRT (S) 251 0.099001 0.000394 0.099001 0.000394
TV (S) 1 2.030000 2.030000 2.030000 2.030000

See Also

Chapter 18, “Debugging an IDL Program” in the Building IDL Applications manual.
PROFILER IDL Reference Guide

1041
PROFILES

The PROFILES procedure interactively draws row or column profiles of an image in
a separate window. A new window is created and the mouse location in the original
window is used to plot profiles in the new window.

This routine is written in the IDL language. Its source code can be found in the file
profiles.pro in the lib subdirectory of the IDL distribution.

Using PROFILES

Moving the mouse within the original image interactively creates profile plots in the
newly-created profile window. Pressing the left mouse button toggles between row
and column profiles. The right mouse button exits.

Syntax

PROFILES, Image [, /ORDER] [, SX=value] [, SY=value] [, WSIZE=value]

Arguments

Image

The variable that represents the image displayed in the current window. This data
need not be scaled into bytes. The profile graphs are made from this array, even if it is
not currently displayed.

Keywords

ORDER

Set this keyword to 1 for images written top down or 0 for bottom up. Default is the
current value of !ORDER.

SX

Starting X position of the image in the window. If this keyword is omitted, 0 is
assumed.

SY

Starting Y position of the image in the window. If this keyword is omitted, 0 is
assumed.
IDL Reference Guide PROFILES

1042
WSIZE

The size of the PROFILES window as a fraction or multiple of 640 by 512.

Example

Create and display an image and use the PROFILES routine on it.

; Create an image:
A = BYTSCL(DIST(256))

; Display the image:
TV, A

; Run the PROFILES routine:
PROFILES, A, WSIZE = .5

A 320 x 256 pixel PROFILES window should appear. Move the cursor over the
original image to see the profile at the cursor position. Press the left mouse button to
toggle between row and column profiles. Press the right mouse button (with the
cursor over the original image) to exit the routine.

See Also

PROFILE
PROFILES IDL Reference Guide

1043
PROJECT_VOL

The PROJECT_VOL function returns a two-dimensional image that is the projection
of a 3D volume of data onto a plane (similar to an X-ray). The returned image is a
translucent rendering of the volume (the highest data values within the volume show
up as the brightest regions in the returned image). Depth queuing and opacity may be
used to affect the image. The volume is projected using a 4x4 matrix, so any type of
projection may be used including perspective. Typically the system viewing matrix
(!P.T) is used as the 4x4 matrix.

Note that the VOXEL_PROJ procedure performs many of the same functions as this
routine, and is faster.

This routine is written in the IDL language. Its source code can be found in the file
project_vol.pro in the lib subdirectory of the IDL distribution.

Syntax

Return = PROJECT_VOL(Vol, X_Sample, Y_Sample, Z_Sample
[, DEPTH_Q=value] [, OPAQUE=3D_array] [, TRANS=array])

Arguments

Vol

A 3D array of any type except string or structure containing the three dimensional
volume of data to project.

X_Sample

A long integer specifying the number of rays to project along the X dimension of the
image. The returned image will have the dimensions X_sample by Y_sample.

Y_Sample

A long integer specifying the number of rays to project along the Y dimension of the
image. To preserve the correct aspect ratio of the data, Y_sample should equal
X_sample.

Z_Sample

A long integer specifying the number of samples to take along each ray. Higher
values for X_sample, Y_sample, and Z_sample increase the image resolution as well
as execution time.
IDL Reference Guide PROJECT_VOL

1044
Keywords

DEPTH_Q

Set this keyword to indicate that the image should be created using depth queuing.
The depth queuing should be a single floating-point value between 0.0 and 1.0. This
value specifies the brightness of the farthest regions of the volume relative to the
closest regions of the volume. A value of 0.0 will cause the back side of the volume
to be completely blacked out, while a value of 1.0 indicates that the back side will
show up just as bright as the front side. The default is 1.0 (indicating no depth
queuing).

OPAQUE

A 3D array of any type except string or structure, with the same size and dimensions
as Vol. This array specifies the opacity of each cell in the volume. OPAQUE values
of 0 allow all light to pass through. OPAQUE values are cumulative. For example, if
a ray emanates from a data value of 50, and then passes through 10 opaque cells (each
with a data value of 0 and an opacity value of 5) then that ray would be completely
blocked out (the cell with the data value of 50 would be invisible on the returned
image). The default is no opacity.

TRANS

A 4x4 floating-point array to use as the transformation matrix when projecting the
volume. The default is to use the system viewing matrix (!P.T).

Example

Use the T3D routine to set up a viewing projection and render a volume of data using
PROJECT_VOL.

; First, create some data:
vol = RANDOMU(S, 40, 40, 40)
FOR I=0, 10 DO vol = SMOOTH(vol, 3)
vol = BYTSCL(vol(3:37, 3:37, 3:37))
opaque = RANDOMU(S, 40, 40, 40)
FOR I=0, 10 DO opaque = SMOOTH(opaque, 3)
opaque = BYTSCL(opaque(3:37, 3:37, 3:37), TOP=25B)

; Set up the view:
xmin = 0 & ymin = 0 & zmin = 0
xmax = 34 & ymax = 34 & zmax = 34
!X.S = [-xmin, 1.0] / (xmax - xmin)
!Y.S = [-ymin, 1.0] / (ymax - ymin)
!Z.S = [-zmin, 1.0] / (zmax - zmin)
PROJECT_VOL IDL Reference Guide

1045
T3D, /RESET
T3D, TRANSLATE=[-0.5, -0.5, -0.5]
T3D, SCALE=[0.7, 0.7, 0.7]
T3D, ROTATE=[30, -30, 60]
T3D, TRANSLATE=[0.5, 0.5, 0.5]
WINDOW, 0, XSIZE=512, YSIZE=512

; Generate and display the image:
img = PROJECT_VOL(vol, 64, 64, 64, DEPTH_Q=0.7, $

OPAQUE=opaque, TRANS=(!P.T))
TVSCL, img

See Also

POLYSHADE, VOXEL_PROJ
IDL Reference Guide PROJECT_VOL

1046
PS_SHOW_FONTS

The PS_SHOW_FONTS procedure displays all the PostScript fonts that IDL knows
about, with both the StandardAdobe and ISOLatin1 encodings. Each display takes a
separate page, and each character in each font is shown with its character index.

A PostScript file is produced, one page per font/mapping combination. The output
file contains almost 70 pages of output. A PostScript previewer is recommended
rather than sending it to a printer.

This routine is written in the IDL language. Its source code can be found in the file
ps_show_fonts.pro in the lib subdirectory of the IDL distribution.

Syntax

PS_SHOW_FONTS [, /NOLATIN]

Keywords

NOLATIN

Set this keyword to prevent output of ISOLatin1 encodings.

See Also

PSAFM
PS_SHOW_FONTS IDL Reference Guide

1047
PSAFM

The PSAFM procedure takes an Adobe Font Metrics file as input and generates a
new AFM file in the format that IDL likes. This new file differs from the original in
the following ways:

• Information not used by IDL is removed.

• AFM files with the AdobeStandardEncoding are supplemented with an
ISOLatin1Encoding.

This routine is written in the IDL language. Its source code can be found in the file
psafm.pro in the lib subdirectory of the IDL distribution.

Syntax

PSAFM, Input_Filename, Output_Filename

Arguments

Input_Filename

A string that contains the name of existing AFM file from Adobe.

Output_Filename

A string that specifies the name of new IDL-format AFM file to be created.

See Also

PS_SHOW_FONTS
IDL Reference Guide PSAFM

1048
PSEUDO

The PSEUDO procedure creates a pseudo-color table based on the LHB (Lightness,
Hue, and Brightness) system and loads it.

The pseudo-color mapping used is generated by first translating from the LHB
coordinate system to the LAB coordinate system, finding N colors spread out along a
helix that spans this LAB space (supposedly a near maximal entropy mapping for the
eye, given a particular N) and remapping back into the RGB (Red, Green, and Blue)
colorspace. The result is loaded as the current colortable.

This routine is written in the IDL language. Its source code can be found in the file
pseudo.pro in the lib subdirectory of the IDL distribution.

Syntax

PSEUDO, Litlo, Lithi, Satlo, Sathi, Hue, Loops [, Colr]

Arguments

Litlo

Starting lightness, from 0 to 100%.

Lithi

Ending lightness, from 0 to 100%.

Satlo

Starting saturation, from 0 to 100%.

Sathi

Ending saturation, from 0 to 100%.

Hue

Starting hue, in degrees, from 0 to 360.

Loops

The number of loops of hue to make in the color helix. This value can range from 0 to
around 3 to 5 and need not be an integer.
PSEUDO IDL Reference Guide

1049
Colr

An optional (256,3) integer array in which the new R, G, and B values are returned.
Red = Colr[*,0], green = Colr[*,1], blue = Colr[*,2].

See Also

COLOR_CONVERT, COLOR_QUAN
IDL Reference Guide PSEUDO

1050
PTR_FREE

The PTR_FREE procedure destroys the heap variables pointed at by its pointer
arguments. Any memory used by the heap variable is released, and the variable
ceases to exist. No change is made to the arguments themselves and all pointers to the
destroyed variables continue to exist. Such pointers are known as dangling
references. PTR_FREE is the only way that pointer heap variables can be destroyed.
If PTR_FREE is not called on a heap variable, it continues to exist until the IDL
session ends, even if no pointers remain that can be used to reference it.

Note that PTR_FREE does not recurse. That is, if the heap variable pointed at by
pointer1 contains pointer2, destroying pointer1 will not destroy the heap
variable pointed at by pointer2. Take care not to lose the only pointer to a heap
variable by destroying a pointer to a heap variable that contains that pointer.

Syntax

PTR_FREE, P1, ... …, Pn

Arguments

Pi

Scalar or array arguments of pointer type. If the NULL pointer is passed, PTR_FREE
ignores it quietly.
PTR_FREE IDL Reference Guide

1051
PTR_NEW

The PTR_NEW function provides the primary mechanism for creating heap
variables. It returns a pointer to the created variable.

Syntax

Result = PTR_NEW([InitExpr] [, /ALLOCATE_HEAP] [, /NO_COPY])

Arguments

InitExpr

If InitExpr is provided, PTR_NEW uses it to initialize the newly created heap
variable. Note that the new heap variable does not point at the InitExpr variable in
any sense—the new heap variable simply contains a copy of its value.

If InitExpr is not provided, PTR_NEW does not create a new heap variable, and
returns the Null Pointer, a special pointer with a fixed known value that can never
point at a heap variable. The null pointer is useful as a terminator in dynamic data
structures, or as a placeholder in structure definitions.

Keywords

ALLOCATE_HEAP

Set this keyword to cause PTR_NEW to allocate an undefined heap variable rather
than return a null pointer when InitExpr is not specified.

NO_COPY

Usually, when the InitExpr argument is provided, PTR_NEW allocates additional
memory to make a copy. If the NO_COPY keyword is set, the value data is taken
away from the InitExpr variable and attached directly to the heap variable. This
feature can be used to move data very efficiently. However, it has the side effect of
causing the InitExpr variable to become undefined. Using the NO_COPY keyword is
completely equivalent to the statement:

Result = PTR_NEW(TEMPORARY(InitExpr))

and is provided as a syntactic convenience.
IDL Reference Guide PTR_NEW

1052
PTR_VALID

The PTR_VALID function verifies the validity of its pointer arguments, or
alternatively returns a vector of pointers to all the existing valid pointer heap
variables.

If called with an pointer or array of pointers as its argument, PTR_VALID returns a
byte array of the same size as the argument. Each element of the result is set to True
(1) if the corresponding pointer in the argument refers to an existing valid heap
variable, or to False (0) otherwise.

If called with an integer or array of integers as its argument and the CAST keyword is
set, PTR_VALID returns an array of pointers. Each element of the result is a pointer
to the heap variable indexed by the integer value. Integers used to index heap
variables are shown in the output of the HELP and PRINT commands. This is useful
primarily in programming/debugging when you have lost a reference but see it with
HELP and need to get a reference to it interactively in order to determine what it is
and take steps to fix the code. See the “Examples” section below for an example.

If no argument is specified, PTR_VALID returns a vector of pointers to all existing
valid pointer heap variables—even if there are currently no pointers to the heap
variable. This usage allows you to “reclaim” pointer heap variables to which all
pointers have been lost. If no valid pointer heap variables exist, a scalar null pointer is
returned.

Syntax

Result = PTR_VALID([Arg] [, /CAST] [, COUNT=variable])

Arguments

Arg

Arg can be one of the following:

1. A scalar or array argument of pointer type.

2. If the CAST keyword is set, an integer index or array of integer indices to heap
variables. Integers used to index heap variables are shown in the output of the
HELP and PRINT commands.
PTR_VALID IDL Reference Guide

1053
Keywords

CAST

Set this keyword to create a new pointer to each heap variable index specified in Arg.

COUNT

Set this keyword equal to a named variable that will contain the number of currently
valid heap variables. This value is returned as a longword integer.

Examples

To determine if a given pointer refers to a valid heap variable:

IF (PTR_VALID(p)) THEN …

To destroy all existing pointer heap variables:

PTR_FREE, PTR_VALID()

You can use the CAST keyword to “reclaim” lost heap variables. For example:

A = PTR_NEW(10)
PRINT, A

IDL prints:

<PtrHeapVar2>

In this case, the integer index to the heap variable is 2. If we reassign the variable A,
we will “lose” the pointer, but the heap variable will still exist:

A=0
PRINT, A, PTR_VALID()

IDL prints:

0 <PtrHeapVar2>

We can reclaim the lost heap variable using the CAST keyword:

A = PTR_VALID(2, /CAST)
PRINT, A

IDL prints:

<PtrHeapVar2>
IDL Reference Guide PTR_VALID

1054
PTRARR

The PTRARR function returns a pointer vector or array. The individual elements of
the array are set to the Null Pointer.

Syntax

Result = PTRARR(D1, ... …, D8 [, /ALLOCATE_HEAP | , /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

ALLOCATE_HEAP

Normally, PTRARR sets every element of the result to the null pointer. It you wish
IDL to allocate heap variables for every element of the array instead, set the
ALLOCATE_HEAP keyword. In this case, every element of the array will be
initialized to point at an undefined heap variable.

NOZERO

If ALLOCATE_HEAP is not specified, PTRARR sets every element of the result to
the null pointer. If NOZERO is nonzero, this initialization is not performed and
PTRARR executes faster. NOZERO is ignored if ALLOCATE_HEAP is specified.

Warning
If you specify NOZERO, the resulting array will have whatever value happens to
exist at the system memory location that the array is allocated from. You should be
careful to initialize such an array to valid pointer values.

Example

Create P, a 3 element by 3 element pointer array with each element containing the
Null Pointer by entering:

P = PTRARR(3, 3)
PTRARR IDL Reference Guide

1055
PUSHD

The PUSHD procedure pushes a directory onto the top of the directory stack
maintained by the PUSHD and POPD procedures. The name of the current directory
is pushed onto the directory stack. This directory becomes the next directory used by
POPD. IDL changes directories to the one specified by the Dir argument. The
common block DIR_STACK is used to store the directory stack.

This routine is written in the IDL language. Its source code can be found in the file
pushd.pro in the lib subdirectory of the IDL distribution.

Syntax

PUSHD, Dir

Arguments

Dir

A string containing the name of the directory to change to. The current directory is
pushed onto the top of the directory stack.

See Also

CD, POPD, PRINTD
IDL Reference Guide PUSHD

1056
QROMB

The QROMB function evaluates the integral of a function over the closed interval [A,
B] using Romberg integration. The result will have the same structure as the smaller
of A and B, and the resulting type will be single- or double-precision floating,
depending on the input types.

QROMB is based on the routine qromb described in section 4.3 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = QROMB(Func, A, B [, /DOUBLE] [, EPS=value] [, JMAX=value]
[, K=value])

Arguments

Func

A scalar string specifying the name of a user-supplied IDL function to be integrated.
This function must accept a single scalar argument X and return a scalar result. It
must be defined over the closed interval [A, B].

For example, if we wish to integrate the cubic polynomial

y = x3 + (x - 1)2 + 3

we define a function CUBIC to express this relationship in the IDL language:

FUNCTION cubic, X
RETURN, X^3 + (X - 1.0)^2 + 3.0

END

A

The lower limit of the integration. A can be either a scalar or an array.

B

The upper limit of the integration. B can be either a scalar or an array.
QROMB IDL Reference Guide

1057
Note
If arrays are specified for A and B, then QROMB integrates the user-supplied
function over the interval [Ai, Bi] for each i. If either A or B is a scalar and the other
an array, the scalar is paired with each array element in turn.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

EPS

The desired fractional accuracy. For single-precision calculations, the default value is
1.0 × 10-6. For double-precision calculations, the default value is 1.0 × 10-12.

JMAX

2(JMAX - 1) is the maximum allowed number of steps. If this keyword is not specified,
a default of 20 is used.

K

Integration is performed by Romberg’s method of order 2K. If not specified, the
default is K=5. (K=2 is Simpson’s rule).

Example

To integrate the CUBIC function (listed above) over the interval [0, 3] and print the
result:

PRINT, QROMB('cubic', 0.0, 3.0)

IDL prints:

32.2500

This is the exact solution.

See Also

INT_2D, INT_3D, INT_TABULATED, QROMO, QSIMP
IDL Reference Guide QROMB

1058
QROMO

The QROMO function evaluates the integral of a function over the open interval (A,
B) using a modified Romberg’s method.

QROMO is based on the routine qromo described in section 4.4 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = QROMO(Func, A [, B] [, /DOUBLE] [, EPS=value] [, JMAX=value]
[, K=value] [, /MIDEXP | , /MIDINF | , /MIDPNT | , /MIDSQL | , /MIDSQU])

Arguments

Func

A scalar string specifying the name of a user-supplied IDL function to be integrated.
This function must accept a single scalar argument X and return a scalar result. It
must be defined over the open interval (A, B).

For example, if we wish to integrate the fourth-order polynomial

y = 1 / x4

we define a function HYPER to express this relationship in the IDL language:

FUNCTION hyper, X
RETURN, 1.0 / X^4

END

A

The lower limit of the integration. A can be either a scalar or an array.

 B

The upper limit of the integration. B can be either a scalar or an array. If the MIDEXP
keyword is specified, B is assumed to be infinite, and should not be supplied by the
user.

Note: If arrays are specified for A and B, then QROMO integrates the user-supplied
function over the interval [Ai, Bi] for each i. If either A or B is a scalar and the other
an array, the scalar is paired with each array element in turn.
QROMO IDL Reference Guide

1059
Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

EPS

The fractional accuracy desired, as determined by the extrapolation error estimate.
For single-precision calculations, the default value is 1.0 × 10-6. For double-precision
calculations, the default value is 1.0 × 10-12.

JMAX

Set to specify the maximum allowed number of mid quadrature points to be 3(JMAX -

1). The default value is 14.

K

Integration is performed by Romberg’s method of order 2K. If not specified, the
default is K=5.

MIDEXP

Use the midexp() function (see Numerical Recipes, section 4.4) as the integrating
function. If the MIDEXP keyword is specified, argument B is assumed to be infinite,
and should not be supplied by the user.

MIDINF

Use the midinf() function (see Numerical Recipes, section 4.4) as the integrating
function.

MIDPNT

Use the midpnt() function (see Numerical Recipes, section 4.4) as the integrating
function. This is the default if no other integrating function keyword is specified.

MIDSQL

Use the midsql() function (see Numerical Recipes, section 4.4) as the integrating
function.

MIDSQU

Use the midsqu() function (see Numerical Recipes, section 4.4) as the integrating
function.
IDL Reference Guide QROMO

1060
Example

Consider the following function:

FUNCTION hyper, X
RETURN, 1.0 / X^4

END

This example integrates the HYPER function over the open interval (2, ∞) and prints
the result:

PRINT, QROMO('hyper', 2.0, /MIDEXP)

IDL prints:

0.0412050

Warning
When using the MIDEXP keyword, the upper integration limit is assumed to be
infinity and is not supplied.

See Also

INT_2D, INT_3D, INT_TABULATED, QROMB, QSIMP
QROMO IDL Reference Guide

1061
QSIMP

The QSIMP function performs numerical integration of a function over the closed
interval [A, B] using Simpson’s rule. The result will have the same structure as the
smaller of A and B, and the resulting type will be single- or double-precision floating,
depending on the input types.

QSIMP is based on the routine qsimp described in section 4.2 of Numerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

Result = QSIMP(Func, A, B [, /DOUBLE] [, EPS=value] [, JMAX=value])

Arguments

Func

A scalar string specifying the name of a user-supplied IDL function to be integrated.
This function must accept a single scalar argument X and return a scalar result. It
must be defined over the closed interval [A, B].

For example, if we wish to integrate the fourth-order polynomial

y = (x4 - 2x2) sin(x)

we define a function SIMPSON to express this relationship in the IDL language:

FUNCTION simpson, X
RETURN, (X^4 - 2.0 * X^2) * SIN(X)

END

A

The lower limit of the integration. A can be either a scalar or an array.

B

The upper limit of the integration. B can be either a scalar or an array.

Note: If arrays are specified for A and B, then QSIMP integrates the user-supplied
function over the interval [Ai, Bi] for each i. If either A or B is a scalar and the other
an array, the scalar is paired with each array element in turn.
IDL Reference Guide QSIMP

1062
Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

EPS

The desired fractional accuracy. For single-precision calculations, the default value is
1.0 × 10-6. For double-precision calculations, the default value is 1.0 × 10-12.

JMAX

2(JMAX - 1) is the maximum allowed number of steps. If not specified, a default of 20
is used.

Example

To integrate the SIMPSON function (listed above) over the interval [0, π/2] and print
the result:

; Define lower limit of integration:
A = 0.0

; Define upper limit of integration:
B = !PI/2.0

PRINT, QSIMP('simpson', A, B)

IDL prints:

-0.479158

The exact solution can be found using the integration-by-parts formula:

FB = 4.*B*(B^2-7.)*SIN(B) - (B^4-14.*B^2+28.)*COS(B)
FA = 4.*A*(A^2-7.)*SIN(A) - (A^4-14.*A^2+28.)*COS(A)
exact = FB - FA
PRINT, exact

IDL prints:

-0.479156

See Also

INT_2D, INT_3D, INT_TABULATED, QROMB, QROMO
QSIMP IDL Reference Guide

1063
QUERY_* Routines

Query routines allow users to obtain information about an image file without having
to read the file. The following QUERY_* routines are available in IDL:

All of the QUERY_* routines return a result, which is a long with the value of 1 if the
query was successful (and the file type was correct) or 0 on failure. If the query was
successful, the return argument will be an anonymous structure containing all of the
available information for that image format.

The status is intended to be used to determine if it is appropriate to use the
corresponding READ_ routine for a given file. The return status of the QUERY_*
will indicate success if the corresponding READ_ routine is likely to be able to read
the file. The return status will indicate failure for cases that contain formats that are
not supported by the READ_ routines, even though the files may be valid outside of
the IDL environment. For example, IDL’s READ_BMP does not support 1-bit-deep
images and so the QUERY_BMP function would return failure in the case of a
monochrome BMP file.

The returned anonymous structure will have (minimally) the following fields for all
file formats. If the file does not support multiple images in a single file, the
NUM_IMAGES field will always be 1 and the IMAGE_INDEX field will always be
0. Individual routines will document additional fields which are returned for a
specific format.

• QUERY_BMP • QUERY_PNG

• QUERY_DICOM • QUERY_PPM

• QUERY_IMAGE • QUERY_SRF

• QUERY_JPEG • QUERY_TIFF

• QUERY_PICT • QUERY_WAV

Field IDL data type Description

CHANNELS Long Number of samples per pixel

DIMENSIONS 2-D long array Size of the image in pixels

HAS_PALETTE Integer True if a palette is present

Table 77: Query Routines Info Structure
IDL Reference Guide QUERY_* Routines

1064
All the routines accept the IMAGE_INDEX keyword although formats which do not
support multiple images in a single file will ignore this keyword.

NUM_IMAGES Long Number of images in the file

IMAGE_INDEX Long Image number for which this structure
is valid

PIXEL_TYPE Integer IDL basic type code for a pixel sample

TYPE String String identifying the file format

Field IDL data type Description

Table 77: Query Routines Info Structure
QUERY_* Routines IDL Reference Guide

1065
QUERY_BMP

QUERY_BMP is a method of obtaining information about a BMP image file without
having to read the file. See “QUERY_* Routines” on page 1063 for more
information.

This routine returns a long with the value of 1 if the query was successful (and the file
type was correct) or 0 on failure.

Syntax

Result = QUERY_BMP (Filename [, Info])

Arguments

Filename

A scalar string containing the pathname of the BMP file to query.

Info

Returns an anonymous structure containing information about the image in the file.
The Info.TYPE field will return the value ‘BMP’.

Note
See “QUERY_* Routines” on page 1063 for detailed structure info.

Keywords

There are no keywords for this routine.

See Also

QUERY_* Routines, READ_BMP, WRITE_BMP
IDL Reference Guide QUERY_BMP

1066
QUERY_DICOM

The QUERY_DICOM function tests a file for compatibility with READ_DICOM
and returns an optional structure containing information about images in the DICOM
file. This function supports cases in which a blank DICOM tag is supplied. The result
is 0 on failure, and 1 on success. A result of 1 means it is likely that the file can be
read by READ_DICOM.

This routine is written in the IDL language. Its source code can be found in the file
query_dicom.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = QUERY_DICOM(Filename [, Info] [, IMAGE_INDEX=index])

Arguments

Filename

A scalar string containing the full pathname of the file to query.

Info

Returns an anonymous structure containing information about the image in the file.
The Info.TYPE field will return the value ‘DICOM’.

Note
See “QUERY_* Routines” on page 1063 for detailed structure info.

Keywords

IMAGE_INDEX

Set this keyword to the index (zero based) of the image being queried in the file. This
keyword has no effect on files containing a single image.

Example

DICOM palette vectors are 16 bit quantities and may not cover the entire dynamic
range of the image. To view a paletted DICOM image use the following:

IF (QUERY_DICOM('file.dcm',info)) THEN BEGIN
IF (info.has_palette) THEN BEGIN
QUERY_DICOM IDL Reference Guide

1067
TV, READ_IMAGE('file.dcm',r, g, b), /ORDER
TVLCT,r/256, g/256, b/256

ENDIF
ENDIF

See Also

READ_DICOM
IDL Reference Guide QUERY_DICOM

1068
QUERY_IMAGE

The QUERY_IMAGE function determines whether a file is recognized as a
supported image file. QUERY_IMAGE first checks the filename suffix, and if found,
calls the corresponding QUERY_ routine. For example, if the specified file is
image.bmp, QUERY_BMP is called to determine if the file is a valid .bmp file. If the
file does not contain a filename suffix, or if the query fails on the specified filename
suffix, QUERY_IMAGE checks against all supported file types. If the file is a
supported image file, an optional structure containing information about the image is
returned. If the file is not a supported image file, QUERY_IMAGE returns 0.

Syntax

Result = QUERY_IMAGE (Filename[, Info] [, CHANNELS=variable]
[, DIMENSIONS=variable] [, HAS_PALETTE=variable]
[, IMAGE_INDEX=index] [, NUM_IMAGES=variable] [, PIXEL_TYPE=variable]
[, SUPPORTED_READ=variable] [, SUPPORTED_WRITE=variable]
[, TYPE=variable])

Return Value

Result is a long with the value of 1 if the query was successful (the file was
recognized as an image file) or 0 on failure. The return status will indicate failure for
files that contain formats that are not supported by the corresponding READ_*
routine, even though the file may be valid outside the IDL environment.

Arguments

Filename

A scalar string containing the name of the file to query.
QUERY_IMAGE IDL Reference Guide

1069
Info

An optional anonymous structure containing information about the image. This
structure is valid only when the return value of the function is 1. The Info structure
for all image types has the following fields:

Keywords

CHANNELS

Set this keyword to a named variable to retrieve the number of channels in the image.

DIMENSIONS

Set this keyword to a named variable to retrieve the image dimensions as a two-
dimensional array.

HAS_PALETTE

Set this keyword to a named variable to equal to 1 if a palette is present, else 0.

IMAGE_INDEX

Set this keyword to the index of the image to query from the file. The default is 0, the
first image.

NUM_IMAGES

Set this keyword to a named variable to retrieve the number of images in the file.

Tag Type

CHANNELS Long

DIMENSIONS Two-dimensional long array

FILENAME Scalar string

HAS_PALETTE Integer

IMAGE_INDEX Long

NUM_IMAGES Long

PIXEL_TYPE Integer

TYPE Scalar string

Table 78: The Info Structure for All Image Types
IDL Reference Guide QUERY_IMAGE

1070
PIXEL_TYPE

Set this keyword to a named variable to retrieve the IDL Type Code of the image
pixel format. See the documentation for the SIZE routine for a complete list of IDL
Type Codes.

The valid types for PIXEL_TYPE are:

• 1 = Byte

• 2 = Integer

• 3 = Longword Integer

• 4 = Floating Point

• 5 = Double-precision Floating Point

• 12 = Unsigned Integer

• 13 - Unsigned Longword Integer

• 14 - 64-bit Integer

• 15 - Unsigned 64-bit Integer

SUPPORTED_READ

Set this keyword to a named variable to retrieve a string array of image types
recognized by READ_IMAGE. If the SUPPORTED_READ keyword is used the
filename and info arguments are optional.

SUPPORTED_WRITE

Set this keyword to a named variable to retrieve a string array of image types
recognized by WRITE_IMAGE. If the SUPPORTED_WRITE keyword is used the
filename and info arguments are optional.

TYPE

Set this keyword to a named variable to retrieve the image type as a scalar string.
Possible return values are BMP, JPEG, PNG, PPM, SRF, TIFF, or DICOM.
QUERY_IMAGE IDL Reference Guide

1071
QUERY_JPEG

QUERY_JPG is a method of obtaining information about a JPEG image file without
having to read the file. See “QUERY_* Routines” on page 1063 for more
information.

This routine returns a long with the value of 1 if the query was successful (and the file
type was correct) or 0 on failure.

Syntax

Result = QUERY_JPEG (Filename [, Info])

Arguments

Filename

A scalar string containing the pathname of the JPEG file to query.

Info

Returns an anonymous structure containing information about the image in the file.
The Info.TYPE field will return the value ‘JPEG’.

Note
See “QUERY_* Routines” on page 1063 for detailed structure info.

Keywords

None

See Also

QUERY_* Routines, READ_JPEG, WRITE_JPEG
IDL Reference Guide QUERY_JPEG

1072
QUERY_PICT

QUERY_PICT is a method of obtaining information about a PICT image file without
having to read the file. See “QUERY_* Routines” on page 1063 for more
information.

This routine returns a long with the value of 1 if the query was successful (and the file
type was correct) or 0 on failure.

Syntax

Result = QUERY_PICT (Filename [, Info])

Arguments

Filename

A scalar string containing the pathname of the PICT file to query.

Info

Returns an anonymous structure containing information about the image in the file.
The Info.TYPE field will return the value ‘PICT’.

Note
See “QUERY_* Routines” on page 1063 for detailed structure info.

Keywords

None

See Also

QUERY_* Routines, READ_PICT, WRITE_PICT
QUERY_PICT IDL Reference Guide

1073
QUERY_PNG

QUERY_PNG is a method of obtaining information about a PNG image file without
having to read the file. See “QUERY_* Routines” on page 1063 for more
information.

This routine returns a long with the value of 1 if the query was successful (and the file
type was correct) or 0 on failure.

Syntax

Result = QUERY_PNG (Filename [, Info])

Arguments

Filename

A scalar string containing the pathname of the PNG file to query.

Info

Returns an anonymous structure containing information about the image in the file.
The Info.TYPE field will return the value ‘PNG’.

Note
See “QUERY_* Routines” on page 1063 for detailed structure info.

Keywords

None

Example

Query included in creating RGBA (16-bit/channel) and Color Indexed
(8-bits/channel) image.

rgbdata = UINDGEN(4,320,240)
cidata = BYTSCL(DIST(256))
red = indgen(256)
green = indgen(256)
blue = indgen(256)
WRITE_PNG,'rgb_image.png',rgbdata
WRITE_PNG,'ci_image.png',cidata,red,green,blue
IDL Reference Guide QUERY_PNG

1074
; Query and Read the data:
names = ['rgb_image.png','ci_image.png','unknown.png']

FOR i=0,N_ELEMENTS(names)-1 DO BEGIN
ok = QUERY_PNG(names[i],s)
IF (ok) THEN BEGIN
HELP,s,/STRUCTURE
IF (s.HAS_PALETTE) THEN BEGIN

img = READ_PNG(names[i],rpal,gpal,bpal)
HELP,img,rpal,gpal,bpal

ENDIF ELSE BEGIN
img = READ_PNG(names[i])
HELP,img

ENDELSE
ENDIF ELSE BEGIN

PRINT,names[i],' is not a PNG file'
ENDELSE

ENDFOR
END

See Also

QUERY_* Routines, READ_PNG, WRITE_PNG
QUERY_PNG IDL Reference Guide

1075
QUERY_PPM

QUERY_PPM is a method of obtaining information about a PPM image file without
having to read the file. See “QUERY_* Routines” on page 1063 for more
information.

This routine returns a long with the value of 1 if the query was successful (and the file
type was correct) or 0 on failure.

Syntax

Result = QUERY_PPM (Filename [, Info] [, MAXVAL=variable])

Arguments

Filename

A scalar string containing the pathname of the PPM file to query.

Info

Returns an anonymous structure containing information about the image. The
Info.TYPE field will return the value ‘PPM’.

Additional field in the Info structure: MAXVAL - maximum pixel value in the
image.

Note
See “QUERY_* Routines” on page 1063 for detailed structure info.

Keywords

MAXVAL

Set this keyword to a named variable to retrieve the maximum pixel value in the
image.

See Also

QUERY_* Routines, READ_PPM, WRITE_PPM
IDL Reference Guide QUERY_PPM

1076
QUERY_SRF

QUERY_SRF is a method of obtaining information about an SRF image file without
having to read the file. See “QUERY_* Routines” on page 1063 for more
information.

This routine returns a long with the value of 1 if the query was successful (and the file
type was correct) or 0 on failure.

Syntax

Result = QUERY_SRF (Filename [, Info])

Arguments

Filename

A scalar string containing the pathname of the SRF file to query.

Info

Returns an anonymous structure containing information about the image in the file.
The Info.TYPE field will return the value ‘SRF’.

Note
See “QUERY_* Routines” on page 1063 for detailed structure info.

Keywords

None

See Also

QUERY_* Routines, READ_SRF, WRITE_SRF
QUERY_SRF IDL Reference Guide

1077
QUERY_TIFF

QUERY_TIFF is a method of obtaining information about a TIFF image file without
having to read the file. See “QUERY_* Routines” on page 1063 for more
information.

This routine returns a long with the value of 1 if the query was successful (and the file
type was correct) or 0 on failure.

Syntax

Result = QUERY_TIFF (Filename [, Info] [, IMAGE_INDEX=index])

Arguments

Filename

A scalar string containing the pathname of the TIFF file to query.

Info

Returns an anonymous structure containing information about the image in the file.
The Info.TYPE field will return the value ‘TIFF’.

Additional field in the Info structure: PLANAR_CONFIG.

Note
See “QUERY_* Routines” on page 1063 for detailed structure info.

Keywords

IMAGE_INDEX

Image number index. If this value is larger than the number of images in the file, the
function returns 0 (failure).

Example

This is an example of using QUERY_TIFF to write and read a multi-image TIFF file.
The first image is a 16-bit, single channel image stored using compression. The second
image is an RGB image stored using 32-bits/channel uncompressed.

; Write the image data:
data = FIX(DIST(256))
IDL Reference Guide QUERY_TIFF

1078
rgbdata = LONARR(3,320,240)
WRITE_TIFF,'multi.tif',data,COMPRESSION=1,/SHORT
WRITE_TIFF,'multi.tif',rgbdata,/LONG,/APPEND

; Read the image data back:
ok = QUERY_TIFF('multi.tif',s)
IF (ok) THEN BEGIN

FOR i=0,s.NUM_IMAGES-1 DO BEGIN
imp = QUERY_TIFF('multi.tif',t,IMAGE_INDEX=i)
img = READ_TIFF('multi.tif',IMAGE_INDEX=i)
HELP,t,/STRUCTURE
HELP,img

ENDFOR
ENDIF

See Also

QUERY_* Routines, READ_TIFF, WRITE_TIFF
QUERY_TIFF IDL Reference Guide

1079
QUERY_WAV

The QUERY_WAV function checks that the file is actually a .WAV file and that the
READ_WAV function can read the data in the file. Optionally, it can return
additional information about the data in the file. This function returns the value of 1 if
the query was successful (and the file type was correct) or 0 on failure.

Syntax

Result = QUERY_WAV (Filename[, Info])

Arguments

Filename

A scalar string containing the full pathname of the .WAV file to read.

Info

An anonymous structure containing information about the data in the file. The fields
are defined as:

Keywords

None.

Tag Type Definition

CHANNELS INT Number of data channels in the file.

SAMPLES_PER_SEC LONG Data sampling rate in samples per
second.

BITS_PER_SAMPLE INT Number of valid bits in the data.

Table 79: The Info Structure for Info Fields
IDL Reference Guide QUERY_WAV

1080
R_CORRELATE

The R_CORRELATE function computes Spearman’s (rho) or Kendalls’s (tau) rank
correlation of two sample populations X and Y. The result is a two-element vector
containing the rank correlation coefficient and the two-sided significance of its
deviation from zero. The significance is a value in the interval [0.0, 1.0]; a small
value indicates a significant correlation.

where Rxi and Ryi are the magnitude-based ranks among X and Y, respectively.
Elements of identical magnitude are ranked using a rank equal to the mean of the
ranks that would otherwise be assigned.

This routine is written in the IDL language. Its source code can be found in the file
r_correlate.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = R_CORRELATE(X, Y [, D=variable] [, /KENDALL] [, PROBD=variable]
[, ZD=variable])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An n-element integer, single-, or double-precision floating-point vector.

Keywords

D

Set this keyword to a named variable that will contain the sum-squared difference of
ranks. If the KENDALL keyword is set, this parameter is returned as zero.

rho

Rxi Rx–() Ryi Ry–()
i 0=

N 1–

∑

Rxi Rx–()
2

i 0=

N 1–

∑ Ryi Ry–()
2

i 0=

N 1–

∑
---=
R_CORRELATE IDL Reference Guide

1081
KENDALL

Set this keyword to compute Kendalls’s (tau) rank correlation. By default,
Spearman’s (rho) rank correlation is computed.

PROBD

Set this keyword to a named variable that will contain the two-sided significance
level of ZD. If the KENDALL keyword is set, this parameter is returned as zero.

ZD

Set this keyword to a named variable that will contain the number of standard
deviations by which D deviates from its null-hypothesis expected value. If the
KENDALL keyword is set, this parameter is returned as zero.

Example

; Define two n-element sample populations:
X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, $

305, 270, 260, 251, 275, 288, 242, 304, 267]
Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, $

271, 214, 216, 175, 192, 208, 150, 281, 196]

; Compute Spearman’s (rho) rank correlation of X and Y.
result = R_CORRELATE(X, Y)
PRINT, 'Spearman’s (rho) rank correlation: ', result

; Compute Kendalls’s (tau) rank correlation of X and Y:
result = R_CORRELATE(X, Y, /KENDALL)
PRINT, 'Kendalls’s (tau) rank correlation: ', result

IDL prints:

Spearman’s (rho) rank correlation: 0.835967 4.42899e-006
Kendalls’s (tau) rank correlation: 0.624347 0.000118729

See Also

A_CORRELATE, C_CORRELATE, CORRELATE, M_CORRELATE,
P_CORRELATE
IDL Reference Guide R_CORRELATE

1082
R_TEST

The R_TEST function tests the hypothesis that a binary population (a sequence of 1s
and 0s) represents a “random sampling”. The result is a two-element vector
containing the nearly-normal test statistic Z and its associated probability. This two-
tailed test is based on the “theory of runs” and is often referred to as the “Runs Test
for Randomness.”

This routine is written in the IDL language. Its source code can be found in the file
r_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = R_TEST(X [, N0=variable] [, N1=variable] [, R=variable])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector. Elements not
equal to 0 or 1 are removed and the length of X is correspondingly reduced.

Keywords

N0

Set this keyword to a named variable that will contain the number of 0s in X.

N1

Set this keyword to a named variable that will contain the number of 1s in X.

R

Set this keyword to a named variable that will contain the number of runs (clusters of
0s and 1s) in X.

Example

; Define a binary population:
X = [0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, $

1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1]

; Test the hypothesis that X represents a random sampling against
; the hypothesis that it does not represent a random sampling at
R_TEST IDL Reference Guide

1083
; the 0.05 significance level:
result = R_TEST(X, R = r, N0 = n0, N1 = n1)
PRINT, result

IDL prints:

[2.26487, 0.0117604]

Print the values of the keyword parameters:

PRINT, 'Runs: ', r & PRINT, 'Zeros: ', n0 & PRINT, 'Ones: ', n1
Runs: 22
Zeros: 16
Ones: 14

The computed probability (0.0117604) is less than the 0.05 significance level and
therefore we reject the hypothesis that X represents a random sampling. The results
show that there are too many runs, indicating a non-random cyclical pattern.

See Also

CTI_TEST, FV_TEST, KW_TEST, LNP_TEST, MD_TEST, RS_TEST, S_TEST,
TM_TEST, XSQ_TEST
IDL Reference Guide R_TEST

1084
RADON

The RADON function implements the Radon transform, used to detect features
within a two-dimensional image. This function can be used to return either the Radon
transform, which transforms lines through an image to points in the Radon domain,
or the Radon backprojection, where each point in the Radon domain is transformed to
a straight line in the image.

Syntax

Radon Transform:

Result = RADON(Array [, /DOUBLE] [, DRHO=scalar] [, DX=scalar]
[, DY=scalar] [, /GRAY] [, /LINEAR] [, NRHO=scalar] [, NTHETA=scalar]
[, RHO=variable] [, RMIN=scalar] [, THETA=variable] [, XMIN=scalar]
[, YMIN=scalar])

Radon Backprojection:

Result = RADON(Array, /BACKPROJECT, RHO=variable, THETA=variable
[, /DOUBLE] [, DX=scalar] [, DY=scalar] [, /LINEAR] [, NX=scalar]
[, NY=scalar] [, XMIN=scalar] [, YMIN=scalar])

Return Value

The result of this function is a two-dimensional floating-point array, or a complex
array if the input image is complex. If Array is double-precision, or if the DOUBLE
keyword is set, the result is double-precision, otherwise, the result is single-precision.

Radon Transform Theory

The Radon transform is used to detect features within an image. Given a function
A(x, y), the Radon transform is defined as:

R θ ρ,() A ρ θcos s θsin– ρ θsin s θcos+(,)∞–
∞∫= ds
RADON IDL Reference Guide

1085
This equation describes the integral along a line s through the image, where ρ is the
distance of the line from the origin and θ is the angle from the horizontal.

In medical imaging, each point R(θ, ρ) is called a ray-sum, while the resulting image
is called a shadowgram. An image can be reconstructed from its ray-sums using the
backprojection operator:

 where the output, B(x, y), is an image of A(x, y) blurred by the Radon transform.

How IDL Implements the Radon Transform

To avoid the use of a two-dimensional interpolation and decrease the interpolation
errors, the Radon transform equation is rotated by θ, and the interpolation is then
done along the line s. The transform is divided into two regions, one for nearly-
horizontal lines (45° < θ < 135°), and the other for steeper lines
(θ ≤ 45°; 135°≤ θ ≤ 180°), where θ is assumed to lie on the interval [0°,180°].

Figure 17: The Radon Transform

B x y,() R θ x θcos, y θsin+()
0
π∫= dθ
IDL Reference Guide RADON

1086
For nearest-neighbor interpolation (the default), the discrete transform formula for an
image A(m, n) [m = 0, ..., M–1, n = 0, ..., N–1] is:

where brackets [⋅] indicate rounding to the nearest integer, and the slope and offsets
are given by:

For linear interpolation, the transform is:

where the slope and offsets are the same as above, and ⋅ indicates flooring to the
nearest lower integer. The weighting w is given by the difference between am + b and
its floored value, or between a’n + b’ and its floored value.

How IDL Implements the Radon Backprojection

For the backprojection transform, the discrete formula for nearest-neighbor
interpolation is:

R θ ρ(,)

∆x
θsin

-------------- A
m
∑ m am b+[](,)

∆y
θcos

--------------- A
n
∑ a'n b'+[] n(,)

θsin
2

2
------->

θsin
2

2
-------≤

=

a
∆x
∆y
------ θcos

θsin
------------– b

ρ xmin– θcos ymin– θsin

∆y θsin
--==

a'
1
a
--- b'

ρ xmin– θcos ymin– θsin

∆x θcos
--==

R θ ρ(,)

∆x
θsin

-------------- 1(w–)
m
∑ A m am b+(,) wA m am b+ 1+(,)+

∆y
θcos

--------------- 1 w–()A
n
∑ a'n b'+ n(,) wA a'n b'+ 1+ n(,)+

θsin
2

2
------->

θsin
2

2
-------≤

=

B m n(,) ∆θ R
t

∑ θt ρ[](,)=
RADON IDL Reference Guide

1087
with the nearest-neighbor for ρ given by:

For backprojection with linear interpolation:

and ρ is the same as in the nearest-neighbor.

Arguments

Array

The two-dimensional array of size M by N to be transformed.

Keywords

BACKPROJECT

If set, the backprojection is computed, otherwise, the forward transform is computed.

Note
The Radon backprojection does not return the original image. Instead, it returns an
image blurred by the Radon transform. Because the Radon transform is not one-to-
one, multiple (x, y) points are mapped to a single (θ, ρ).

DOUBLE

Set this keyword to force the computation to be done using double-precision
arithmetic.

DRHO

Set this keyword equal to a scalar specifying the spacing between ρ coordinates,
expressed in the same units as Array. The default is one-half of the diagonal distance
between pixels, 0.5[(DX2 + DY2)]1/2 . Smaller values produce finer resolution, and
are useful for zooming in on interesting features. Larger values may result in

ρ m(∆x xmin) θcos t n∆y ymin+()+ + θsin t ρmin–{ }∆ρ 1–
=

B m n(,) ∆θ 1 w–()
t

∑ R θt ρ(,) wR θt ρ 1+(,)+=

w ρ ρ–=
IDL Reference Guide RADON

1088
undersampling, and are not recommended. If BACKPROJECT is specified, this
keyword is ignored.

DX

Set this keyword equal to a scalar specifying the spacing between the horizontal (x)
coordinates. The default is 1.0.

DY

Set this keyword equal to a scalar specifying the spacing between the vertical (y)
coordinates. The default is 1.0.

GRAY

Set or omit this keyword to perform a weighted Radon transform, with the weighting
given by the pixel values. If GRAY is explicitly set to zero, the image is treated as a
binary image with all nonzero pixels considered as 1.

LINEAR

Set this keyword to use linear interpolation rather than the default nearest-neighbor
sampling. Results are more accurate but slower when linear interpolation is used.

NRHO

Set this keyword equal to a scalar specifying the number of ρ coordinates to use. The
default is 2 CEIL([MAX(x2 + y2)]1/2 / DRHO) + 1. If BACKPROJECT is specified,
this keyword is ignored.

NTHETA

Set this keyword equal to a scalar specifying the number of θ coordinates to use over
the interval [0, π]. The default is CEIL(π [(M2 + N2)/2]1/2). Larger values produce
smoother results, and are useful for filtering before backprojection. Smaller values
result in broken lines in the transform, and are not recommended. If BACKPROJECT
is specified, this keyword is ignored.

NX

If BACKPROJECT is specified, set this keyword equal to a scalar specifying the
number of horizontal coordinates in the output Result. The default is
FLOOR(2 MAX(|RHO|)(DX2 + DY2)-1/2 + 1). For the forward transform this
keyword is ignored.
RADON IDL Reference Guide

1089
NY

If BACKPROJECT is specified, set this keyword equal to a scalar specifying the
number of vertical coordinates in the output Result. The default is
FLOOR(2 MAX(|RHO|)(DX2 + DY2)-1/2 + 1). For the forward transform, this
keyword is ignored.

RHO

For the forward transform, set this keyword to a named variable that will contain the
radial (ρ) coordinates. If BACKPROJECT is specified, this keyword must contain the
ρ coordinates of the input Array. The ρ coordinates should be evenly spaced and in
increasing order.

RMIN

Set this keyword equal to a scalar specifying the minimum ρ coordinate to use for the
forward transform. The default is –0.5(NRHO – 1) DRHO. If BACKPROJECT is
specified, this keyword is ignored.

THETA

For the forward transform, set this keyword to a named variable containing a vector
of angular (θ) coordinates to use for the transform. If NTHETA is specified instead,
and THETA is set to a named variable, on exit THETA will contain the θ
coordinates. If BACKPROJECT is specified, this keyword must contain the θ
coordinates of the input Array.

XMIN

Set this keyword equal to a scalar specifying the x-coordinate of the lower-left corner
of the input Array. The default is – (M–1)/2, where Array is an M by N array. If
BACKPROJECT is specified, set this keyword equal to a scalar specifying the x-
coordinate of the lower-left corner of the Result. In this case the default is
–DX (NX–1)/2.

YMIN

Set this keyword equal to a scalar specifying the y-coordinate of the lower-left corner
of the input Array. The default is – (N–1)/2, where Array is an M by N array. If
BACKPROJECT is specified, set this keyword equal to a scalar specifying the y-
coordinate of the lower-left corner of the Result. In this case, the default is
–DY (NY–1)/2.
IDL Reference Guide RADON

1090
Example

This example displays the Radon transform and the Radon backprojection:

PRO radon_example

DEVICE, DECOMPOSED=0

;Create an image with a ring plus random noise:
x = (LINDGEN(128,128) MOD 128) - 63.5
y = (LINDGEN(128,128)/128) - 63.5
radius = SQRT(x^2 + y^2)
array = (radius GT 40) AND (radius LT 50)
array = array + RANDOMU(seed,128,128)

;Create display window, set graphics properties:
WINDOW, XSIZE=440,YSIZE=700, TITLE='Radon Example'
!P.BACKGROUND = 255 ; white
!P.COLOR = 0 ; black
!P.FONT=2
ERASE

XYOUTS, .05, .94, 'Ring and Random Pixels', /NORMAL
;Display the image. 255b changes black values to white:
TVSCL, 255b - array, .05, .75, /NORMAL

;Calculate and display the Radon transform:
XYOUTS, .05, .70, 'Radon Transform', /NORMAL
result = RADON(array, RHO=rho, THETA=theta)
TVSCL, 255b - result, .08, .32, /NORMAL
PLOT, theta, rho, /NODATA, /NOERASE, $

POSITION=[0.08,0.32, 1, 0.68], $
XSTYLE=9,YSTYLE=9,XTITLE='Theta', YTITLE='R'

;For simplicity in this example, remove everything except
;the two stripes. A better (and more complicated) method would
;be to choose a threshold for the result at each value of theta,
;perhaps based on the average of the result over the theta
;dimension.
result[*,0:55] = 0
result[*,73:181] = 0
result[*,199:*] = 0

;Find the Radon backprojection and display the output:
XYOUTS, .05, .26, 'Radon Backprojection', /NORMAL
backproject = RADON(result, /BACKPROJECT, RHO=rho, THETA=theta)
TVSCL, 255b - backproject, .05, .07, /NORMAL

END
RADON IDL Reference Guide

1091
The following figure displays the program output. The top image is an image of a
ring and random pixels, or noise. The center image is the Radon transform, and
displays the line integrals through the image. The bottom image is the Radon
backprojection, after filtering all noise except for the two strong horizontal stripes in
the middle image.

See Also

HOUGH, VOXEL_PROJ

References

1. Herman, Gabor T. Image Reconstruction from Projections. New York:
Academic Press, 1980.

2. Hiriyannaiah, H. P. X-ray computed tomography for medical imaging. IEEE
Signal Processing Magazine, March 1997: 42-58.

Figure 18: Radon Example - Original image (top), Radon transform (center), and
backprojection of the altered Radon transform (bottom).
IDL Reference Guide RADON

1092
3. Jain, Anil K. Fundamentals of Digital Image Processing. Englewood Cliffs,
NJ: Prentice-Hall, 1989.

4. Toft, Peter. The Radon Transform: Theory and Implementation. Denmark:
Technical University; 1996. Ph.D. Thesis.
RADON IDL Reference Guide

1093
RANDOMN

The RANDOMN function returns one or more normally-distributed, floating-point,
pseudo-random numbers with a mean of zero and a standard deviation of one.
RANDOMN uses the Box-Muller method for generating normally-distributed
(Gaussian) random numbers.

Syntax

Result = RANDOMN(Seed [, D1, ..., D8] [[, BINOMIAL=[trials, probability]]
[, /DOUBLE] [, GAMMA=integer{>0}] [, /NORMAL] [, POISSON=value]
[, /UNIFORM] | [, /LONG]])

Arguments

Seed

A variable or constant used to initialize the random sequence on input, and in which
the state of the random number generator is saved on output.

The state of the random number generator is contained in a long integer vector. This
state is saved in the Seed argument when the argument is a named variable. To
continue the pseudo-random number sequence, input the variable containing the
saved state as the Seed argument in the next call to RANDOMN or RANDOMU.
Each independent random number sequence should maintain its own state variable.
To maintain a state over repeated calls to a procedure, the seed variable may be stored
in a COMMON block.

In addition to states maintained by the user in variables, the RANDOMU and
RANDOMN functions contain a single shared generic state that is used if a named
variable is not supplied as the Seed argument or the named variable supplied is
undefined. The generic state is initialized once using the time-of-day, and may be re-
initialized by providing a Seed argument that is a constant or expression.

If the Seed argument is:

• an undefined variable — the generic state is used and the resulting generic
state array is stored in the variable.

• a named variable that contains a longword array of the proper length — it is
used to continue the pseudo-random sequence, and is updated.

• a named variable containing a scalar — the scalar value is used to start a new
sequence and the resulting state array is stored back in the variable.
IDL Reference Guide RANDOMN

1094
• a constant or expression — the value is used to re-initialize the generic state.

Note
RANDOMN and RANDOMU use the same sequence. Starting or restarting the
sequence for one starts or restarts the sequence for the other. Some IDL routines use
the random number generator, so using them will initialize the seed sequence. An
example of such a routine is CLUST_WTS.

Note
Do not alter the seed value returned by this function. The only valid use for the seed
argument is to pass it back to a subsequent call. Changing the value of the seed will
corrupt the random sequence.

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If no dimensions are specified,
RANDOMN returns a scalar result

Keywords

The formulas for the binomial, gamma, and Poisson distributions are from section 7.3
of Numerical Recipes in C: The Art of Scientific Computing (Second Edition),
published by Cambridge University Press.

BINOMIAL

Set this keyword to a 2-element array, [n, p], to generate random deviates from a
binomial distribution. If an event occurs with probability p, with n trials, then the
number of times it occurs has a binomial distribution.

Note
For n > 1.0 × 107, you should set the DOUBLE keyword.

DOUBLE

Set this keyword to force the computation to be done using double-precision
arithmetic.
RANDOMN IDL Reference Guide

1095
Note
RANDOMN constructs double-precision uniform random deviates using the
formula:

where i1 and i2 are integer random deviates in the range [1...imax], and
imax = 231 – 2 is the largest possible integer random deviate. The Y values will be in
the range 0 < Y < 1.

GAMMA

Set this keyword to an integer order i > 0 to generate random deviates from a gamma
distribution. The gamma distribution is the waiting time to the ith event in a Poisson
random process of unit mean. A gamma distribution of order equal to 1 is the same as
the exponential distribution.

Note
For GAMMA > 1.0 × 107, you should set the DOUBLE keyword.

LONG

Set this keyword to return integer uniform random deviates in the range
[1...231 – 2]. If LONG is set, all other keywords are ignored.

NORMAL

Set this keyword to generate random deviates from a normal distribution.

POISSON

Set this keyword to the mean number of events occurring during a unit of time. The
POISSON keyword returns a random deviate drawn from a Poisson distribution with
that mean.

Note
For POISSON > 1.0 × 107, you should set the DOUBLE keyword.

UNIFORM

Set this keyword to generate random deviates from a uniform distribution.

Y
i1 1–() imax i2+⋅

imax
2

1+
---=
IDL Reference Guide RANDOMN

1096
Examples

If you start the sequence with an undefined variable—if RANDOMN has already
been called, Seed is no longer undefined—IDL initializes the sequence with the
system time:

; Generate one random variable and initialize the sequence with an
; undefined variable:
randomValue = RANDOMN(seed)

The new state is saved in seed. To generate repeatable experiments, begin the
sequence with a particular seed:

seed_value = 5L

; Generate one random variable and initialize the sequence with 5:
randomValue = RANDOMN(seed_value)

PRINT, randomValue

IDL prints:

0.521414

To restart the sequence with a particular seed, re-initialize the variable:

seed = 5L

;Get a normal random number, and restart the sequence with a seed
;of 5.
randomValue = RANDOMN(seed)

PRINT, randomValue

IDL prints:

0.521414

To continue the same sequence:

PRINT, RANDOMN(seed)

IDL prints:

-0.945489

To create a 10 by 10 array of normally-distributed, random numbers, type:

R = RANDOMN(seed, 10, 10)

Since seed is undefined, the generic state is used to initialize the random number
generator. Print the resulting values by entering:
RANDOMN IDL Reference Guide

1097
PRINT, R

A more interesting example plots the probability function of 2000 numbers returned
by RANDOMN. Type:

PLOT, HISTOGRAM(RANDOMN(SEED, 2000), BINSIZE=0.1)

To obtain a sequence of 1000 exponential (gamma distribution, order 1) deviates,
type:

Result = RANDOMN(seed, 1000, GAMMA=1)

Intuitively, the result contains a random series of waiting times for events occurring
an average of one per time period.

To obtain a series of 1000 random elapsed times required for the arrival of two
events, type:

;Returns a series of 1000 random elapsed times required for the
;arrival of two events.
Result = RANDOMN(seed, 1000, GAMMA=2)

To obtain a 128 x 128 array filled with Poisson deviates, with a mean of 1.5, type:

Result = RANDOMN(seed, 128, 128, POISSON=1.5)

To simulate the count of “heads” obtained when flipping a coin 10 times, type:

Result = RANDOMN(seed, BINOMIAL=[10,.5])

See Also

RANDOMU
IDL Reference Guide RANDOMN

1098
RANDOMU

The RANDOMU function returns one or more uniformly-distributed, floating-point,
pseudo-random numbers in the range 0 < Y <1.0.

The random number generator is taken from: “Random Number Generators: Good
Ones are Hard to Find”, Park and Miller, Communications of the ACM, Oct 1988,
Vol 31, No. 10, p. 1192. To remove low-order serial correlations, a Bays-Durham
shuffle is added, resulting in a random number generator similar to ran1() in Section
7.1 of Numerical Recipes in C: The Art of Scientific Computing (Second Edition),
published by Cambridge University Press.

Syntax

Result = RANDOMU(Seed [, D1, ..., D8] [[, BINOMIAL=[trials, probability]]
[, /DOUBLE] [, GAMMA=integer{>0}] [, /NORMAL] [, POISSON=value]
[, /UNIFORM] | [, /LONG]])

Arguments

Seed

A variable or constant used to initialize the random sequence on input, and in which
the state of the random number generator is saved on output.

The state of the random number generator is contained in a long integer vector. This
state is saved in the Seed argument when the argument is a named variable. To
continue the pseudo-random number sequence, input the variable containing the
saved state as the Seed argument in the next call to RANDOMN or RANDOMU.
Each independent random number sequence should maintain its own state variable.
To maintain a state over repeated calls to a procedure, the seed variable may be stored
in a COMMON block.

In addition to states maintained by the user in variables, the RANDOMU and
RANDOMN functions contain a single shared generic state that is used if a named
variable is not supplied as the Seed argument or the named variable supplied is
undefined. The generic state is initialized once using the time-of-day, and may be re-
initialized by providing a Seed argument that is a constant or expression.

If the Seed argument is:

• an undefined variable — the generic state is used and the resulting generic
state array is stored in the variable.
RANDOMU IDL Reference Guide

1099
• a named variable that contains a longword array of the proper length — it is
used to continue the pseudo-random sequence, and is updated.

• a named variable containing a scalar — the scalar value is used to start a new
sequence and the resulting state array is stored back in the variable.

• a constant or expression — the value is used to re-initialize the generic state.

Note
RANDOMN and RANDOMU use the same sequence, so starting or restarting the
sequence for one starts or restarts the sequence for the other. Some IDL routines use
the random number generator, so using them will initialize the seed sequence. An
example of such a routine is CLUST_WTS.

Note
Do not alter the seed value returned by this function. The only valid use for the seed
argument is to pass it back to a subsequent call. Changing the value of the seed will
corrupt the random sequence.

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If no dimensions are specified,
RANDOMU returns a scalar result.

Keywords

The formulas for the binomial, gamma, and Poisson distributions are from Section
7.3 of Numerical Recipes in C: The Art of Scientific Computing (Second Edition),
published by Cambridge University Press.

BINOMIAL

Set this keyword to a 2-element array, [n, p], to generate random deviates from a
binomial distribution. If an event occurs with probability p, with n trials, then the
number of times it occurs has a binomial distribution.

Note
For n > 1.0 × 107, you should set the DOUBLE keyword.
IDL Reference Guide RANDOMU

1100
DOUBLE

Set this keyword to force the computation to be done using double-precision
arithmetic.

Note
RANDOMU constructs double-precision uniform random deviates using the
formula:

where i1 and i2 are integer random deviates in the range [1...imax], and
imax = 231 – 2 is the largest possible integer random deviate. The Y values will be in
the range 0 < Y < 1.

GAMMA

Set this keyword to an integer order i > 0 to generate random deviates from a gamma
distribution. The gamma distribution is the waiting time to the ith event in a Poisson
random process of unit mean. A gamma distribution of order equal to 1 is the same as
the exponential distribution.

Note
For GAMMA > 1.0 × 107, you should set the DOUBLE keyword.

LONG

Set this keyword to return integer uniform random deviates in the range
[1...231 – 2]. If LONG is set, all other keywords are ignored.

NORMAL

Set this keyword to generate random deviates from a normal distribution.

POISSON

Set this keyword to the mean number of events occurring during a unit of time. The
POISSON keyword returns a random deviate drawn from a Poisson distribution with
that mean.

Y
i1 1–() imax i2+⋅

imax
2

1+
---=
RANDOMU IDL Reference Guide

1101
Note
For POISSON > 1.0 × 107, you should set the DOUBLE keyword.

UNIFORM

Set this keyword to generate random deviates from a uniform distribution.

Example

This example simulates rolling two dice 10,000 times and plots the distribution of the
total using RANDOMU. Enter:

PLOT, HISTOGRAM(FIX(6 * RANDOMU(S, 10000)) + $
FIX(6 * RANDOMU(S, 10000)) + 2)

In the above statement, the expression RANDOMU(S, 10000) is a 10,000-element,
floating-point array of random numbers greater than or equal to 0 and less than 1.
Multiplying this array by 6 converts the range to 0 ≤ Y < 6.

Applying the FIX function yields a 10,000-point integer vector with values from 0 to
5, one less than the numbers on one die. This computation is done twice, once for
each die, then 2 is added to obtain a vector from 2 to 12, the total of two dice.

The HISTOGRAM function makes a vector in which each element contains the
number of occurrences of dice rolls whose total is equal to the subscript of the
element. Finally, this vector is plotted by the PLOT procedure.

An example of reusing a state vector to generate a repeatable sequence:

; Init seed for a repeatable sequence:
seed = 1001L

; Print 1st 5 numbers of sequence:
print,randomu(seed,5)

IDL prints:

 0.705884 0.285924 0.231151 0.715447 0.532836

Reuse a state vector:

; Re-init seed to same sequence:
seed = 1001L

; Get 5 number of sequence with 5 calls:
for i=0,4 do print, randomu(seed)

IDL prints:
IDL Reference Guide RANDOMU

1102
 0.705884
 0.285924
 0.231151
 0.715447
 0.532836

See Also

RANDOMN
RANDOMU IDL Reference Guide

1103
RANKS

The RANKS function computes the magnitude-based ranks of a sample population X.
Elements of identical magnitude “ties” are ranked according to the mean of the ranks
that would otherwise be assigned. The result is a vector of ranks equal in length to X.

This routine is written in the IDL language. Its source code can be found in the file
ranks.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = RANKS(X)

Arguments

X

An n-element integer, single-, or double-precision floating-point vector. The
elements of this vector must be in ascending order based on their magnitude.

Example

; Define an n-element sample population:
X = [-0.8, 0.1, -2.3, -0.6, 0.2, 1.1, -0.3, 0.6, -0.2, 1.1, $

-0.7, -0.2, 0.6, 0.4, -0.1, 1.1, -0.3, 0.3, -1.3, 1.1]

; Allocate a two-column, n-row array to store the results:
array = FLTARR(2, N_ELEMENTS(X))

; Sort the sample population and store in the 0th column of ARRAY:
array[0, *] = X[SORT(X)]
; Compute the ranks of the sorted sample population and store in
; the 1st column of ARRAY:
array[1, *] = RANKS(X[SORT(X)])

; Display the sorted sample population and corresponding ranks
; with a two-decimal format:
PRINT, array, FORMAT = '(2(5x, f5.2))'

IDL prints:

-2.30 1.00
-1.30 2.00
-0.80 3.00
-0.70 4.00
-0.60 5.00
IDL Reference Guide RANKS

1104
-0.30 6.50
-0.30 6.50
-0.20 8.50
-0.20 8.50
-0.10 10.00
0.10 11.00
0.20 12.00
0.30 13.00
0.40 14.00
0.60 15.50
0.60 15.50
1.10 18.50
1.10 18.50
1.10 18.50
1.10 18.50

See Also

R_CORRELATE
RANKS IDL Reference Guide

1105
RDPIX

The RDPIX procedure interactively displays the X position, Y position, and pixel
value at the cursor.

This routine is written in the IDL language. Its source code can be found in the file
rdpix.pro in the lib subdirectory of the IDL distribution.

Using RDPIX

RDPIX displays a stream of X, Y, and pixel values when the mouse cursor is moved
over a graphics window. Press the left or center mouse button to create a new line of
output. Press the right mouse button to exit the procedure.

Syntax

RDPIX, Image [, X0, Y0]

Arguments

Image

The array that contains the image being displayed. This array may be of any type.
Rather than reading pixel values from the display, values are taken from this
parameter, avoiding scaling difficulties.

X0, Y0

The location of the lower-left corner of the image area on screen. If these parameters
are not supplied, they are assumed to be zero.

See Also

CURSOR, TVRD
IDL Reference Guide RDPIX

1106
READ/READF

The READ procedures perform formatted input into variables.

READ performs input from the standard input stream (IDL file unit 0), while READF
requires a file unit to be explicitly specified.

Syntax

READ, [Prompt,] Var1, ..., Varn

READF, [Prompt,] Unit, Var1, ..., Varn

Keywords: [, AM_PM=[string, string]] [, DAYS_OF_WEEK=string_array{7
names}] [, FORMAT=value] [, MONTHS=string_array{12 names}]
[, PROMPT=string]

VMS Keywords: [, KEY_ID=value] [, KEY_MATCH=relation]
[, KEY_VALUE=value]

Arguments

Prompt

Note that the PROMPT keyword should be used instead of the Prompt argument for
compatibility with window-based versions of IDL.

A string or explicit expression (i.e, not a named variable) to be used as a prompt. This
argument should not be included if the FORMAT keyword is specified. Also, if this
argument begins with the characters “$(”, it is taken to be a format specification as
described below under “Format Compatibility”.

Using the Prompt argument does not work well with IDL for Windows and IDL for
Macintosh. The desired prompt string is written to the log window instead of the
command input window. To create custom prompts compatible with these versions of
IDL, use the PROMPT keyword, described below.

Unit

For READF, Unit specifies the file unit from which the input is taken.

Vari

The named variables to receive the input.
READ/READF IDL Reference Guide

1107
Note
If the variable specified for the Vari argument has not been previously defined, the
input data is assumed to be of type float, and the variable will be cast as a float.

Keywords

AM_PM

Supplies a string array of two names to be used for the names of the AM and PM
string when processing explicitly formatted dates (CAPA, CApA, and CapA format
codes) with the FORMAT keyword.

DAYS_OF_WEEK

Supplies a string array of 7 names to be used for the names of the days of the week
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

FORMAT

If FORMAT is not specified, IDL uses its default rules for formatting the input.
FORMAT allows the format of the input to be specified in precise detail, using a
FORTRAN-style specification. See “Using Explicitly Formatted Input/Output” in
Chapter 8 of Building IDL Applications.

MONTHS

Supplies a string array of 12 names to be used for the names of the months when
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) with
the FORMAT keyword.

PROMPT

Set this keyword to a scalar string to be used as a customized prompt for the READ
command. If the PROMPT keyword or Prompt argument is not supplied, IDL uses a
colon followed by a space (“: ”) as the input prompt.

VMS Keywords

Note also that the obsolete VMS-only routine READ_KEY has been replaced by the
keywords below.
IDL Reference Guide READ/READF

1108
KEY_ID

The index key to be used (primary = 0, first alternate key = 1, etc...) when accessing
data from a file with indexed organization. If this keyword is omitted, the primary
key is used.

KEY_MATCH

The relation to be used when matching the supplied key with key field values (EQ =
0, GE = 1, GT = 2) when accessing data from a file with indexed organization. If this
keyword is omitted, the equality relation (0) is used.

KEY_VALUE

The value of a key to be found when accessing data from a file with indexed
organization. This value must match the key definition that is determined when the
file was created in terms of type and size—no conversions are performed. If this
keyword is omitted, the next sequential record is used.

Format Compatibility

If the FORMAT keyword is not present and READ is called with more than one
argument, and the first argument is a scalar string starting with the characters “$(”,
this initial argument is taken to be the format specification, just as if it had been
specified via the FORMAT keyword. This feature is maintained for compatibility
with version 1 of VMS IDL.

Example

To read a string value into the variable B from the keyboard, enter:

; Define B as a string before reading:
B = ''

; Read input from the terminal:
READ, B, PROMPT='Enter Name: '

To read formatted data from the previously-opened file associated with logical unit
number 7 into variable C, use the command:

READF, 7, C

See Also

READS, READU, WRITEU
READ/READF IDL Reference Guide

1109
READ_ASCII

The READ_ASCII function reads data from an ASCII file into an IDL structure
variable. READ_ASCII may be used with templates created by the
ASCII_TEMPLATE function.

This routine handles ASCII files consisting of an optional header of a fixed number
of lines, followed by columnar data. One or more rows of data constitute a record.
Each data element within a record is considered to be in a different column, or field.
The data in one field must be of, or promotable to, a single type (e.g., FLOAT).
Adjacent fields may be collected into multi-column fields, called groups. Files may
also contain comments, which exist between a user-specified comment string and the
corresponding end-of-line.

READ_ASCII is designed to be used with templates created by the ASCII template
function.

This routine is written in the IDL language. Its source code can be found in the file
read_ascii.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = READ_ASCII([Filename] [, COMMENT_SYMBOL=string]
[, COUNT=variable] [, DATA_START=lines_to_skip] [, DELIMITER=string]
[, HEADER=variable] [, MISSING_VALUE=value] [, NUM_RECORDS=value]
[, RECORD_START=index] [, TEMPLATE=value] [, /VERBOSE])

Arguments

Filename

A string containing the name of an ASCII file to read into an IDL variable. If
filename is not specified, a dialog allows the user to choose a file.

Keywords

You can define the attributes of a field in two ways. If you use a template, you can
either use a previously generated template, or create a template with
ASCII_TEMPLATE. You can use COMMENT_SYMBOL, DATA_START,
DELIMITER, or MISSING_VALUE to either override template attributes or to
provide one-time attributes for the file to be read, without a template.
IDL Reference Guide READ_ASCII

1110
COMMENT_SYMBOL

Set this keyword to a string that identifies the character used to delineate comments
in the ASCII file to be read. When READ_ASCII encounters the comment character,
it discards data from that point until it reaches the end of the current line, identifying
the rest of the line as a comment. The default character the null string, ‘’, specifying
that no comments will be recognized.

COUNT

Set this keyword equal to a named variable that will contain the number of records
read.

DATA_START

Set this keyword equal to the number of header lines you want to skip. The default
value is 0 if no template is specified.

DELIMITER

Set this keyword to a string that identifies the end of a field. If no delimiter is
specified, READ_ASCII uses information provided by the template in use. The
default is a space, ‘ ’, specifying that an empty element constitutes the end of a field.

HEADER

Set this keyword equal to a named variable that will contain the header in a string
array of length DATA_START. If no header exists, an empty string is returned.

MISSING_VALUE

Set this keyword equal to a value used to replace any missing or invalid data. The
default value, if no template is supplied, is !VALUES.F_NAN. See “!VALUES” on
page 2423 for details.

NUM_RECORDS

Set this keyword equal to the number of records to read. The default is to read up to
and including the last record.

RECORD_START

Set this keyword equal to the index of the first record to read. The default is the first
record of the file (record 0).
READ_ASCII IDL Reference Guide

1111
TEMPLATE

Use this keyword to specify the ASCII file template (generated by the function
ASCII_TEMPLATE), that defines attributes of the file to be read. Specific attributes
of the template may be overridden by the following keywords:
COMMENT_SYMBOL, DATA_START, DELIMITER, MISSING_VALUE.

VERBOSE

Set this keyword to print runtime messages.

Examples

To read ASCII data using default file attributes, except for setting the number of
skipped header lines to 10, type:

data = READ_ASCII(file, DATA_START=10)

To use a template to define file attributes, overriding the number of skipped header
lines defined in the template, type:

data = READ_ASCII(file, TEMPLATE=template, DATA_START=10)

To use the ASCII_TEMPLATE GUI to generate a template within the function, type:

data = READ_ASCII(myfile, TEMPLATE=ASCII_TEMPLATE(myfile))

See Also

ASCII_TEMPLATE
IDL Reference Guide READ_ASCII

1112
READ_BINARY

The READ_BINARY function reads the contents of a binary file using a passed
template or basic command line keywords. The result is an array or anonymous
structure containing all of the entities read from the file. Data is read from the given
filename or from the current file position in the open file pointed to by FileUnit. If no
template is provided, keywords can be used to read a single IDL array of data.

Note
The READ_BINARY function does not work on VMS platforms due to limitations
in the POINT_LUN procedure. For more information, see POINT_LUN.

Syntax

Result = READ_BINARY ([Filename] | FileUnit [, TEMPLATE=template] |
[[, DATA_START=value] [, DATA_TYPE=typecodes] [, DATA_DIMS=array]
[, ENDIAN=string]])

Arguments

Filename

A scalar string containing the name of the binary file to read. If filename and file unit
are not specified, a dialog allows the user to choose a file.

FileUnit

A scalar containing an open IDL file unit number to read from.

Keywords

DATA_DIMS

Set this keyword to a scalar or array of up to eight elements specifying the size of the
data to be read and returned. For example, DATA_DIMS=[512,512] specifies that a
two-dimensional, 512 by 512 array be read and returned. DATA_DIMS=0 specifies
that a single, scalar value be read and returned. Default is -1, which, if a TEMPLATE
is not supplied that specifies otherwise, indicates that READ_BINARY will read to
end-of-file and store the result in a 1D array.
READ_BINARY IDL Reference Guide

1113
DATA_START

Set this keyword to specify where to begin reading in a file. This value is as an offset,
in bytes, that will be applied to the initial position in the file. Default is 0.

DATA_TYPE

Set this keyword to an IDL typecode of the data to be read. See documentation for the
SIZE function for a listing of typecodes. Default is 1 (IDL’s BYTE typecode).

ENDIAN

Set this keyword to one of three string values: ‘big”, “little” or “native” which
specifies the byte ordering of the file to be read. If the computer running
READ_BINARY uses byte ordering that is different than that of the file,
READ_BINARY will swap the order of bytes in multi-byte data types read from the
file. (Default: “native” = perform no byte swapping.)

TEMPLATE

Set this keyword to a template structure describing the file to be read. A template can
be created using BINARY_TEMPLATE. The TEMPLATE keyword cannot be used
simultaneously with keywords DATA_START, DATA_TYPE, DATA_DIMS, or
ENDIAN.

When a template is used with READ_BINARY, the result of a successful call to
READ_BINARY is a structure containing fields specified by the template.

If a template is not used with READ_BINARY, the result of a successful call to
READ_BINARY is an array.
IDL Reference Guide READ_BINARY

1114
READ_BMP

The READ_BMP function reads a Microsoft Windows Version 3 device independent
bitmap file (.BMP) and returns a byte array containing the image. Dimensions are
taken from the BITMAPINFOHEADER of the file. In the case of 4-bit or 8-bit
images, the dimensions of the resulting array are (biWidth, biHeight).

For 24-bit images, the dimensions are (3, biWidth, biHeight). Color interleaving
is blue, green, red; i.e., Result[0,i,j] = blue, Result[1,i,j] = green, etc.

READ_BMP does not handle 1-bit-deep images or compressed images, and is not
fast for 4-bit images. The algorithm works best on images where the number of bytes
in each scan-line is evenly divisible by 4.

This routine is written in the IDL language. Its source code can be found in the file
read_bmp.pro in the lib subdirectory of the IDL distribution.

Note
To find information about a potential BMP file before trying to read its data, use the
QUERY_BMP function.

Syntax

Result = READ_BMP(Filename, [, R, G, B] [, Ihdr] [, /RGB])

Arguments

Filename

A scalar string specifying the full path name of the bitmap file to read.

R, G, B

Named variables that will contain the color tables from the file. There 16 elements
each for 4 bit images, 256 elements each for 8 bit images. Color tables are not defined
or used for 24 bit images.

Ihdr

A named variable that will contain a structure holding the BITMAPINFOHEADER
from the file. Tag names are as defined in the MS Windows Programmer’s Reference
Manual, Chapter 7.
READ_BMP IDL Reference Guide

1115
Keywords

RGB

If this keyword is set, color interleaving of 16- and 24-bit images will be R, G, B, i.e.,
Result[0,i,j] = red, Result[1,i,j] = green, Result[2,i,j] = blue.

Example

To open, read, and display the BMP file named foo.bmp in the current directory and
store the color vectors in the variables R, G, and B, enter:

; Read and display an image:
TV, READ_BMP('foo.bmp', R, G, B)

; Load its colors:
TVLCT, R, G, B

Many applications that use 24-bit BMP files outside IDL expect BMP files to be
stored as BGR. For example, enter the following commands.

; Make a red square image:
a = BYTARR(3, 200, 200)
a[0, *, *] = 255

;View the image:
TV, a, /TRUE
WRITE_BMP, 'foo.bmp', a

If you open the .bmp file in certain bitmap editors, you may find that the square is
blue.

image = READ_BMP('foo.bmp')

; IDL reads the image back in and interprets it as red:
TV, image, /TRUE

; Flip the order of the indices by adding the RGB keyword:
image = READ_BMP('foo.bmp', /RGB)

; Displays the image in blue:
TV, image, /TRUE

See Also

WRITE_BMP, QUERY_BMP
IDL Reference Guide READ_BMP

1116
READ_DICOM

The READ_DICOM function reads an image from a DICOM file along with any
associated color table. The return value can be a 2D array for grayscale or a 3D array
for TrueColor images. TrueColor images are always returned in pixel interleave
format. The return array type depends on the DICOM image pixel type.

This routine is written in the IDL language. Its source code can be found in the file
read_dicom.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = READ_DICOM (Filename [, Red, Green, Blue] [, IMAGE_INDEX=index])

Arguments

Filename

This argument is a scalar string that contains the full pathname of the file to read.

Red, Green, Blue

Named variables that will contain the red, green, and blue color vectors from the
DICOM file if they exist.

Note
DICOM color vectors contain 16- bit color values that may need to be converted for
use with IDL graphics routines.

Keywords

IMAGE_INDEX

Set this keyword to the index of the image to read from the file.

Example

TVSCL,READ_DICOM(FILEPATH('mr_knee.dcm',$
SUBDIR=['examples','data']))

See Also

QUERY_DICOM
READ_DICOM IDL Reference Guide

1117
READ_IMAGE

The READ_IMAGE function reads the image contents of a file and returns the image
in an IDL variable. If the image contains a palette it can be returned as well in three
IDL variables. READ_IMAGE returns the image in the form of a two-dimensional
array (for grayscale images) or a (3, n, m) array (for TrueColor images).
READ_IMAGE can read most types of image files supported by IDL. See
QUERY_IMAGE for a list of supported formats.

Syntax

Result = READ_IMAGE (Filename [, Red, Green, Blue]
[, IMAGE_INDEX=index])

Return Value

Result is the image array read from the file or scalar value of -1 if the file could not be
read.

Arguments

Filename

A scalar string containing the name of the file to read.

Red

An optional named variable to receive the red channel of the color table if a color
table exists.

Green

An optional named variable to receive the green channel of the color table if a color
table exists.

Blue

An optional named variable to receive the blue channel of the color table if a color
table exists.
IDL Reference Guide READ_IMAGE

1118
Keywords

IMAGE_INDEX

Set this keyword to the index of the image to read from the file. The default is 0, the
first image.
READ_IMAGE IDL Reference Guide

1119
READ_INTERFILE

The READ_INTERFILE procedure reads image data stored in Interfile (v3.3) format
and returns a 3D array.

READ_INTERFILE can only read a series of images if all images have the same
height and width. It does not get additional keyword information beyond what is
needed to read the image data. If any problems occur when reading the file,
READ_INTERFILE prints a message and stops.

If the data is stored on a bigendian machine and read on a littleendian machine (or
vice versa) the order of bytes in each pixel element may be reversed, requiring a call
to BYTEORDER

This routine is written in the IDL language. Its source code can be found in the file
read_interfile.pro in the lib subdirectory of the IDL distribution.

Syntax

READ_INTERFILE, File, Data

Arguments

File

A scalar string containing the name of the Interfile to read. Note: if the Interfile has a
header file and a data file, this should be the name of the header file (also called the
administrative file).

Data

A named variable that will contain a 3D array of data as read from the file. Assumed
to be a series of 2D images.

Example

READ_INTERFILE, '0_11.hdr', X
IDL Reference Guide READ_INTERFILE

1120
READ_JPEG

The READ_JPEG procedure reads JPEG (Joint Photographic Experts Group) format
compressed images from files or memory. JPEG is a standardized compression
method for full-color and gray-scale images. This procedure reads JFIF, the JPEG
File Interchange Format, including those produced by WRITE_JPEG. Such files are
usually simply called JPEG files

READ_JPEG can optionally quantize TrueColor images contained in files to a
pseudo-color palette with a specified number of colors, and with optional color
dithering.

This procedure is based in part on the work of the Independent JPEG Group. For a
brief explanation of JPEG, see “WRITE_JPEG” on page 1669.

Note
All JPEG files consist of byte data. Input data is converted to bytes before being
written to a JPEG file.

Note
To find information about a potential JPEG file before trying to read its data, use
the QUERY_JPEG function.

Syntax

READ_JPEG [, Filename | , UNIT=lun] , Image [, Colortable] [, BUFFER=variable]
[, COLORS=value{8 to 256}] [, DITHER={0 | 1 | 2}] [, /GRAYSCALE]
[, /ORDER] [, TRUE={1 | 2 | 3}] [, /TWO_PASS_QUANTIZE]

Arguments

Filename

A scalar string specifying the full pathname of the JFIF format (JPEG) file to be read.
If this parameter is not present, the UNIT and/or the BUFFER keywords must be
specified.

Image

A named variable to contain the image data read from the file.
READ_JPEG IDL Reference Guide

1121
Colortable

A named variable to contain the colormap, when reading a TrueColor image that is to
be quantized. On completion, this variable contains a byte array with dimensions
(NCOLORS, 3). This argument is filled only if the image is color quantized (refer to
the COLORS keyword).

Keywords

BUFFER

Set this keyword to a named variable that is used for a buffer. A buffer variable need
only be supplied when reading multiple images per file. Initialize the buffer variable
to empty by setting it to 0.

COLORS

If the image file contains a TrueColor image that is to be displayed on an indexed
color destination, set COLORS to the desired number of colors to be quantized.
COLORS can be set to a value from 8 to 256. The DITHER and
TWO_PASS_QUANTIZE keywords affect the method, speed, and quality of the
color quantization. These keywords have no effect if the file contains a grayscale
image.

DITHER

Set this keyword to use dithering with color quantization (i.e., if the COLORS
keyword is in use). Dithering is a method that distributes the color quantization error
to surrounding pixels, to achieve higher-quality results. Set the DITHER keyword to
one of the following values:

• 0 = No dithering. Images are read quickly, but quality is low.

• 1 = Floyd-Steinberg dithering. This method is relatively slow, but produces the
highest quality results. This is the default behavior.

• 2 = Ordered dithering. This method is faster than Floyd-Steinberg dithering,
but produces lower quality results.

GRAYSCALE

Set this keyword to return a monochrome (grayscale) image, regardless of whether
the file contains an RGB or grayscale image.
IDL Reference Guide READ_JPEG

1122
ORDER

JPEG/JFIF images are normally written in top-to-bottom order. If the image is to be
stored into the Image array in the standard IDL order (from bottom-to-top) set
ORDER to 0. This is the default. If the image array is to be top-to-bottom order, set
ORDER to 1.

TRUE

Use this keyword to specify the index of the dimension for color interleaving when
reading a TrueColor image. The default is 1, for pixel interleaving, (3, m, n). A value
of 2 indicates line interleaving (m, 3, n), and 3 indicates band interleaving, (m, n, 3).

TWO_PASS_QUANTIZE

Set this keyword to use a two-pass color quantization method when quantization is in
effect (i.e., the COLORS keyword is in use). This method requires more memory and
time, but produces superior results to the default one-pass quantization method.

UNIT

This keyword can be used to designate the logical unit number of an already open
JFIF file, allowing the reading of multiple images per file or the embedding of JFIF
images in other data files. When using this keyword, Filename should not be
specified.

Note
When using VMS, open the file with the /STREAM keyword.

Note
When opening a file intended for use with the UNIT keyword, if the filename does
not end in .jpg, or .jpeg, you must specify the STDIO keyword to OPEN in order
for the file to be compatible with READ_JPEG.

Examples

; Read a JPEG grayscale image:
READ_JPEG, 'test.jpg', a

; Display the image:
TV, a

; Read and display a JPEG TrueColor image on a TrueColor display:
READ_JPEG, 'test.jpg', a, TRUE=1
READ_JPEG IDL Reference Guide

1123
; Display the image returned with pixel interleaving
; (i.e., with dimensions 3, m, n):
TV, a, TRUE=1

Read the image, setting the number of colors to be quantized to the maximum number
of available colors.

; Read a JPEG TrueColor image on an 8-bit pseudo-color display:
READ_JPEG, 'test.jpg', a, ctable, COLORS=!D.N_COLORS-1

; Display the image:
TV, a

; Load the quantized color table:
TVLCT, ctable

We could have also included the TWO_PASS_QUANTIZE and DITHER keywords
to improve the image’s appearance.

Using the BUFFER keyword on VMS.

; Initialize buffer:
buff = 0
OPENR, 1, 'images.jpg', /STREAM

; Process each image:
FOR i=1, nimages DO BEGIN

; Read next image:
READ_JPEG, UNIT=1, BUFFER=buff, a

; Display the image:
TV, a

ENDFOR

; Done:
CLOSE, 1

See Also

WRITE_JPEG, QUERY_JPEG
IDL Reference Guide READ_JPEG

1124
READ_PICT

The READ_PICT procedure reads the contents of a PICT (version 2) format image
file and returns the image and color table vectors (if present) in the form of IDL
variables. The PICT format is used by Apple Macintosh computers.

This routine is written in the IDL language. Its source code can be found in the file
read_pict.pro in the lib subdirectory of the IDL distribution.

Note
To find information about a potential PICT file before trying to read its data, use the
QUERY_PICT function.

Syntax

READ_PICT, Filename, Image [, R, G, B]

Arguments

Filename

A scalar string specifying the full pathname of the PICT file to read.

Image

A named variable that will contain the 2D image read from Filename.

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors read from
the PICT file.

Example

To open and read the PICT image file named foo.pict in the current directory,
store the image in the variable image1, and store the color vectors in the variables R,
G, and B, enter:

READ_PICT, 'foo.pict', image1, R, G, B

To load the new color table and display the image, enter:

TVLCT, R, G, B
TV, image1
READ_PICT IDL Reference Guide

1125
See Also

WRITE_PICT, QUERY_PICT
IDL Reference Guide READ_PICT

1126
READ_PNG

The READ_PNG routine reads the image contents of a Portable Network Graphics
(PNG) file and returns the image in an IDL variable. If the image contains a palette
(see QUERY_PNG), it can be returned as well in three IDL variables. READ_PNG
supports 1, 2, 3 and 4 channel images with channel depths of 8 or 16 bits.

Note
IDL supports version 1.0.5 of the PNG Library.

Note
Only single channel 8-bit images may have palettes. If an 8-bit, single-channel
image has index values marked as “transparent,” these can be retrieved as well.

Note
To find information about a potential PNG file before trying to read its data, use the
QUERY_PNG function.

Syntax

Result = READ_PNG (Filename [, R, G, B] [,/ORDER] [, /VERBOSE]
[, /TRANSPARENT])

or

READ_PNG, Filename, Image [, R, G, B] [,/ORDER] [, /VERBOSE]
[, /TRANSPARENT]

Note
The procedure form of READ_PNG is available to ease the conversion of IDL code
that uses the removed READ_GIF procedure. Instances of READ_GIF can be
changed to READ_PNG by simply replacing “READ_GIF” with “READ_PNG”.
Note, however, that the CLOSE and MULTIPLE keywords to READ_GIF are not
accepted by the READ_PNG procedure.
READ_PNG IDL Reference Guide

1127
Return Value

For 8-bit images, Result will be a two- or three-dimensional array of type byte. For
16-bit images, Result will be of type unsigned integer (UINT).

Arguments

Filename

A scalar string containing the full pathname of the PNG file to read.

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors if a color
table exists.

Keywords

ORDER

Set this keyword to indicate that the rows of the image should be read from bottom to
top. The rows are read from top to bottom by default. ORDER provides compatibility
with PNG files written using versions of IDL prior to IDL 5.4, which wrote PNG files
from bottom to top.

VERBOSE

Produces additional diagnostic output during the read.

TRANSPARENT

Returns an array of pixel index values that are to be treated as “transparent” for the
purposes of image display. If there are no transparent values then TRANSPARENT
will be set to a long-integer scalar with the value 0.

Example

Create an RGBA (16-bits/channel) and a Color Indexed (8-bit/channel) image with a
palette:

rgbdata = UINDGEN(4,320,240)
cidata = BYTSCL(DIST(256))
red = indgen(256)
green = indgen(256)
blue = indgen(256)
WRITE_PNG,'rgb_image.png',rgbdata
WRITE_PNG,'ci_image.png',cidata,red,green,blue
IDL Reference Guide READ_PNG

1128
;Query and read the data
names = ['rgb_image.png','ci_image.png','unknown.png']
FOR i=0,N_ELEMENTS(names)-1 DO BEGIN

ok = QUERY_PNG(names[i],s)
IF (ok) THEN BEGIN

HELP,s,/STRUCTURE
IF (s.HAS_PALETTE) THEN BEGIN

img = READ_PNG(names[i],rpal,gpal,bpal)
HELP,img,rpal,gpal,bpal

ENDIF ELSE BEGIN
img = READ_PNG(names[i])
HELP,img

ENDELSE
ENDIF ELSE BEGIN

PRINT,names[i],' is not a PNG file'
ENDELSE

ENDFOR
END

See Also

WRITE_PNG, QUERY_PNG
READ_PNG IDL Reference Guide

1129
READ_PPM

The READ_PPM procedure reads the contents of a PGM (gray scale) or PPM
(portable pixmap for color) format image file and returns the image in the form of a
2D byte array (for grayscale images) or a (3, n, m) byte array (for TrueColor images).

Files to be read should adhere to the PGM/PPM standard. The following file types are
supported: P2 (graymap ASCII), P5 (graymap RAWBITS), P3 (TrueColor ASCII
pixmaps), and P6 (TrueColor RAWBITS pixmaps). Maximum pixel values are
limited to 255. Images are always stored with the top row first.

PPM/PGM format is supported by the PBMPLUS toolkit for converting various
image formats to and from portable formats, and by the Netpbm package.

This routine is written in the IDL language. Its source code can be found in the file
read_ppm.pro in the lib subdirectory of the IDL distribution.

Note
To find information about a potential PPM file before trying to read its data, use the
QUERY_PPM function.

Syntax

READ_PPM, Filename, Image [, MAXVAL=variable]

Arguments

Filename

A scalar string specifying the full path name of the PGM or PPM file to read.

Image

A named variable that will contain the image. For grayscale images, Image is a 2D
byte array. For TrueColor images, Image is a (3, n, m) byte array.

Keywords

MAXVAL

A named variable that will contain the maximum pixel value.
IDL Reference Guide READ_PPM

1130
Example

To open and read the PGM image file named “foo.pgm” in the current directory and
store the image in the variable IMAGE1:

READ_PPM, 'foo.pgm', IMAGE1

See Also

WRITE_PPM, QUERY_PPM
READ_PPM IDL Reference Guide

1131
READ_SPR

The READ_SPR function reads a row-indexed sparse array from a specified file and
returns the array as the result. Row-indexed sparse arrays are created using the
SPRSIN function and written to a file using the WRITE_SPR function.

This routine is written in the IDL language. Its source code can be found in the file
read_spr.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = READ_SPR(Filename)

Arguments

Filename

A scalar string specifying the name of the file containing a row-indexed sparse array.

Example

Suppose we have already saved a row-indexed sparse array to a file named sprs.as,
as described in the documentation for the WRITE_SPR routine. To read the sparse
array from the file and store it in a variable sprs, use the following command:

sprs = READ_SPR('sprs.as')

See Also

FULSTR, LINBCG, SPRSAB, SPRSAX, SPRSIN, WRITE_SPR
IDL Reference Guide READ_SPR

1132
READ_SRF

The READ_SRF procedure reads the contents of a Sun rasterfile and returns the
image and color table vectors (if present) in the form of IDL variables.

READ_SRF only handles 1-, 8-, 24-, and 32-bit rasterfiles of type RT_OLD and
RT_STANDARD. See the file /usr/include/rasterfile.h for the structure of
Sun rasterfiles.

This routine is written in the IDL language. Its source code can be found in the file
read_srf.pro in the lib subdirectory of the IDL distribution.

Note
To find information about a potential SRF file before trying to read its data, use the
QUERY_SRF function.

Syntax

READ_SRF, Filename, Image [, R, G, B]

Arguments

Filename

A scalar string containing the name of the rasterfile to read.

Image

A named variable that will contain the 2D byte array (image).

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors, if the
rasterfile contains colormaps.

Example

To open and read the Sun rasterfile named sun.srf in the current directory, store the
image in the variable image1, and store the color vectors in the variables R, G, and B,
enter:

READ_SRF, 'sun.srf', image1, R, G, B

To load the new color table and display the image, enter:
READ_SRF IDL Reference Guide

1133
TVLCT, R, G, B
TV, image1

See Also

WRITE_SRF, QUERY_SRF
IDL Reference Guide READ_SRF

1134
READ_SYLK

The READ_SYLK function reads the contents of a SYLK (Symbolic Link) format
spreadsheet data file and returns the contents of the file, or of a cell data range, in an
IDL variable. READ_SYLK returns either a vector of structures or a 2D array
containing the spreadsheet cell data.

By default, READ_SYLK returns a vector of structures, each of which contains the
data from one row of the table being read. In this case, the individual fields in the
structures have the tag names “Col0”, “Col1”, ..., “Coln”. If the COLMAJOR
keyword is specified, each of the structures returned contains data from one column
of the table, and the tag names are “Row0”, “Row1”, ..., “Rown”.

Note: This routine reads only numeric and string SYLK data. It ignores all
spreadsheet and cell formatting information (cell width, text justification, font type,
date, time, and monetary notations, etc). Note also that the data in a given cell range
must be of the same data type (all integers, for example) in order for the read
operation to succeed. See the example below for further information.

This routine is written in the IDL language. Its source code can be found in the file
read_sylk.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = READ_SYLK(File [, /ARRAY] [, /COLMAJOR] [, NCOLS=columns]
[, NROWS=rows] [, STARTCOL=column] [, STARTROW=row]
[, /USEDOUBLES] [, /USELONGS])

Arguments

File

A scalar string specifying the full path name of the SYLK file to read.

Keywords

ARRAY

Set this keyword to return an IDL array rather than a vector of structures. Note that all
the data in the cell range specified must be of the same data type to successfully
return an array.
READ_SYLK IDL Reference Guide

1135
COLMAJOR

Set this keyword to create a vector of structures each containing data from a single
column of the table being read. If you are creating an array rather than a vector of
structures (the ARRAY keyword is set), setting COLMAJOR has the same effect as
transposing the resulting array.

This keyword should be set when importing spreadsheet data which has column
major organization (data stored in columns rather than rows).

NCOLS

Set this keyword to the number of spreadsheet columns to read. If not specified, all of
the cell columns found in the file are read.

NROWS

Set this keyword to the number of spreadsheet rows to read. If not specified, all of the
cell rows found in the file are read.

STARTCOL

Set this keyword to the first column of spreadsheet cells to read. If not specified, the
read operation begins with the first column found in the file (column 0).

STARTROW

Set this keyword to the first row of spreadsheet cells to read. If not specified, the read
operation begins with the first row of cells found in the file (row 0).

USEDOUBLES

Set this keyword to read any floating-point cell data as double-precision rather than
the default single-precision.

USELONGS

Set this keyword to read any integer cell data as long integer type rather than the
default integer type.

Examples

Suppose the following spreadsheet table, with the upper left cell (value = “Index”) at
location (0, 0), has been saved as the SYLK file “file.slk”:

Index Name Gender Platform
1 Beth F UNIX
2 Lubos M VMS
3 Louis M Windows
IDL Reference Guide READ_SYLK

1136
4 Thierry M Macintosh

Note that the data format of the title row (string, string, string, string) is inconsistent
with the following four rows (int, string, string, string) in the table. Because of this, it
is impossible to read all of the table into a single IDL variable. The following two
commands, however, will read all of the data:

title = READ_SYLK("file.slk", NROWS = 1)
table = READ_SYLK("file.slk", STARTROW = 1)

;Display the top row of the table.
PRINT, title

IDL prints:

{ Index Name Gender Platform}

Print the table:

PRINT, table

IDL prints:

{1 Beth F UNIX}{2 Lubos M VMS}{3 Louis M Windows}{4 Thierry M
Macintosh}

To retrieve only the “Name” column:

names = READ_SYLK("file.slk", /ARRAY, STARTROW = 1, $

STARTCOL = 1, NCOLS = 1)

PRINT, names

IDL prints:

Beth Lubos Louis Thierry

To retrieve the “Name” column in column format:

namescol = READ_SYLK("file.slk", /ARRAY, /COLMAJOR, $
STARTROW = 1, STARTCOL = 1, NCOLS = 1)

PRINT, namescol

IDL prints:

Beth
Lubos
Louis
Thierry

See Also

WRITE_SYLK
READ_SYLK IDL Reference Guide

1137
READ_TIFF

The READ_TIFF function reads single or multi-channel images from TIFF format
files and returns the image and color table vectors in the form of IDL variables.

Note
To find information about a potential TIFF file before trying to read its data, use the
QUERY_TIFF function. The obsolete routine TIFF_DUMP may also be used to
examine the structure and tags of a TIFF file.

Syntax

Result = READ_TIFF(Filename [, R, G, B] [, CHANNELS=scalar or vector]
[, GEOTIFF=variable] [, IMAGE_INDEX=value] [, INTERLEAVE={0 | 1 |2}]
[, ORDER=variable] [, PLANARCONFIG=variable] [, SUB_RECT=[x, y, width,
height]] [, /UNSIGNED] [, /VERBOSE])

Return Value

READ_TIFF returns a byte, unsigned integer, long, or float array (based on the data
format in the TIFF file) containing the image data. The dimensions of the Result are
[Columns, Rows] for single-channel images, or [Channels, Columns, Rows] for
multi-channel images, unless a different type of interleaving is specified with the
INTERLEAVE keyword.

RGB images are a special case of multi-channel images, and contain three channels.
Most TIFF readers and writers can handle only images with one or three channels.

As a special case, for three-channel TIFF image files that are stored in planar
interleave format, and if four parameters are provided, READ_TIFF returns the
integer value zero, sets the variable defined by the PLANARCONFIG keyword to 2,
and returns three separate images in the variables defined by the R, G, and B
arguments.

Arguments

Filename

A scalar string specifying the full pathname of the TIFF file to read.
IDL Reference Guide READ_TIFF

1138
R, G, B

Named variables that will contain the Red, Green, and Blue color vectors of the color
table from the file if one exists. If the TIFF file is written as a three-channel image,
interleaved by plane, and the R, G, and B parameters are present, the three channels
of the image are returned in the R, G, and B variables.

Keywords

CHANNELS

Set this keyword to a scalar or vector giving the channel numbers to be returned for a
multi-channel image, starting with zero. The default is to return all of the channels.
This keyword is ignored for single-channel images, or for three-channel planar-
interleaved images when the R, G, and B arguments are specified.

GEOTIFF

Returns an anonymous structure containing one field for each of the GeoTIFF tags
and keys found in the file. If no GeoTIFF information is present in the file, the
returned variable is undefined.

The GeoTIFF structure is formed using fields named from the following table.

Anonymous Structure Field Name IDLDatatype

TAGS:

"MODELPIXELSCALETAG" DOUBLE[3]

"MODELTRANSFORMATIONTAG" DOUBLE[4,4]

"MODELTIEPOINTTAG" DOUBLE[6,*]

KEYS:

"GTMODELTYPEGEOKEY" INT

"GTRASTERTYPEGEOKEY" INT

"GTCITATIONGEOKEY" STRING

"GEOGRAPHICTYPEGEOKEY" INT

"GEOGCITATIONGEOKEY" STRING

"GEOGGEODETICDATUMGEOKEY" INT

Table 80: GEOTIFF Structures
READ_TIFF IDL Reference Guide

1139
"GEOGPRIMEMERIDIANGEOKEY" INT

"GEOGLINEARUNITSGEOKEY" INT

"GEOGLINEARUNITSIZEGEOKEY" DOUBLE

"GEOGANGULARUNITSGEOKEY" INT

"GEOGANGULARUNITSIZEGEOKEY" DOUBLE

"GEOGELLIPSOIDGEOKEY" INT

"GEOGSEMIMAJORAXISGEOKEY" DOUBLE

"GEOGSEMIMINORAXISGEOKEY" DOUBLE

"GEOGINVFLATTENINGGEOKEY" DOUBLE

"GEOGAZIMUTHUNITSGEOKEY" INT

"GEOGPRIMEMERIDIANLONGGEOKEY" DOUBLE

"PROJECTEDCSTYPEGEOKEY" INT

"PCSCITATIONGEOKEY" STRING

"PROJECTIONGEOKEY" INT

"PROJCOORDTRANSGEOKEY" INT

"PROJLINEARUNITSGEOKEY" INT

"PROJLINEARUNITSIZEGEOKEY" DOUBLE

"PROJSTDPARALLEL1GEOKEY" DOUBLE

"PROJSTDPARALLEL2GEOKEY" DOUBLE

"PROJNATORIGINLONGGEOKEY" DOUBLE

"PROJNATORIGINLATGEOKEY" DOUBLE

"PROJFALSEEASTINGGEOKEY" DOUBLE

"PROJFALSENORTHINGGEOKEY" DOUBLE

"PROJFALSEORIGINLONGGEOKEY" DOUBLE

"PROJFALSEORIGINLATGEOKEY" DOUBLE

Anonymous Structure Field Name IDLDatatype

Table 80: GEOTIFF Structures
IDL Reference Guide READ_TIFF

1140
Note
If a GeoTIFF key appears multiple times in a file, only the value for the first
instance of the key is returned.

IMAGE_INDEX

Selects the image number within the file to be read (see QUERY_TIFF to determine
the number of images in the file).

INTERLEAVE

For multi-channel images, set this keyword to one of the following values to force the
Result to have a specific interleaving, regardless of the type of interleaving in the file
being read:

• 0 = Pixel interleaved: Result will have dimensions
[Channels, Columns, Rows].

"PROJFALSEORIGINEASTINGGEOKEY" DOUBLE

"PROJFALSEORIGINNORTHINGGEOKEY" DOUBLE

"PROJCENTERLONGGEOKEY" DOUBLE

"PROJCENTERLATGEOKEY" DOUBLE

"PROJCENTEREASTINGGEOKEY" DOUBLE

"PROJCENTERNORTHINGGEOKEY" DOUBLE

"PROJSCALEATNATORIGINGEOKEY" DOUBLE

"PROJSCALEATCENTERGEOKEY" DOUBLE

"PROJAZIMUTHANGLEGEOKEY" DOUBLE

"PROJSTRAIGHTVERTPOLELONGGEOKEY" DOUBLE

"VERTICALCSTYPEGEOKEY" INT

"VERTICALCITATIONGEOKEY" STRING

"VERTICALDATUMGEOKEY" INT

"VERTICALUNITSGEOKEY" INT

Anonymous Structure Field Name IDLDatatype

Table 80: GEOTIFF Structures
READ_TIFF IDL Reference Guide

1141
• 1 = Scanline (row) interleaved: Result will have dimensions
[Columns, Channels, Rows].

• 2 = Planar interleaved: Result will have dimensions
[Columns, Rows, Channels].

If this keyword is not specified, the Result will always be pixel interleaved,
regardless of the type of interleaving in the file being read. For files stored in planar-
interleave format, this keyword is ignored if the R, G, and B arguments are specified.

ORDER

Set this keyword to a named variable that will contain the order value from the TIFF
file. This value is returned as 0 for images written bottom to top, and 1 for images
written top to bottom. If an order value does not appear in the TIFF file, an order of 1
is returned.

The ORDER keyword can return any of the following additional values (depending
on the source of the TIFF file):

Reference: Aldus TIFF 6.0 spec (TIFF version 42).

PLANARCONFIG

Set this keyword to a named variable that will contain the interleave parameter for the
TIFF file. This parameter is returned as 1 for TIFF files that are GrayScale, Palette, or
interleaved by pixel. This parameter is returned as 2 for multi-channel TIFF files
interleaved by image.

Rows Columns

1 top to bottom, left to right

2 top to bottom, right to left

3 bottom to top, right to left

4 bottom to top, left to right

5 top to bottom, left to right

6 top to bottom, right to left

7 bottom to top, right to left

8 bottom to top, left to right

Table 81: Values for the ORDER keyword
IDL Reference Guide READ_TIFF

1142
SUB_RECT

Set this keyword to a four-element array, [x, y, width, height], that specifies a
rectangular region within the file to extract. Only the rectangular portion of the image
selected by this keyword is read and returned. The rectangle is measured in pixels
from the lower left corner (right hand coordinate system).

UNSIGNED

This keyword is now obsolete because older versions of IDL did not support the
unsigned 16-bit integer data type. Set this keyword to return TIFF files containing
unsigned 16-bit integers as signed 32-bit longword arrays. If not set, return an
unsigned 16-bit integer for these files. This keyword has no effect if the input file
does not contain 16-bit integers.

VERBOSE

Produce additional diagnostic output during the read.

Examples

Example 1

Read the file my.tif in the current directory into the variable image, and save the
color tables in the variables, R, G, and B by entering:

image = READ_TIFF('my.tif', R, G, B)

To view the image, load the new color table and display the image by entering:

TVLCT, R, G, B
TV, image

Example 2

Write and read a multi-image TIFF file. The first image is a 16-bit single-channel
image stored using compression. The second image is an RGB image stored using 32-
bits/channel uncompressed.

; Write the image data:
data = FIX(DIST(256))
rgbdata = LONARR(3,320,240)
WRITE_TIFF,'multi.tif',data,COMPRESSION=1,/SHORT
WRITE_TIFF,'multi.tif',rgbdata,/LONG,/APPEND

; Read the image data back:
ok = QUERY_TIFF('multi.tif',s)
IF (ok) THEN BEGIN
FOR i=0,s.NUM_IMAGES-1 DO BEGIN
READ_TIFF IDL Reference Guide

1143
imp = QUERY_TIFF('multi.tif',t,IMAGE_INDEX=i)
img = READ_TIFF('multi.tif',IMAGE_INDEX=i)
HELP,t,/STRUCTURE
HELP,img
ENDFOR
ENDIF

Example 3

Write and read a multi-channel image:

data = LINDGEN(10, 256, 256) ; 10 channels

; Write the image data:
WRITE_TIFF, 'multichannel.tif', data, /LONG

; Read back only channels [0,2,4,6,8], using planar-interleaving
img = READ_TIFF('multichannel.tif', CHANNELS=[0,2,4,6,8], $

INTERLEAVE=2)

HELP, img

IDL prints:

IMG LONG = Array[256, 256, 5]

See Also

WRITE_TIFF, QUERY_TIFF
IDL Reference Guide READ_TIFF

1144
READ_WAV

The READ_WAV function reads the audio stream from the named .WAV file.
Optionally, it can return the sampling rate of the audio stream.

Syntax

Result = READ_WAV (Filename [, Rate])

Return Value

In the case of a single channel stream, the returned variable is a BYTE or INT
(depending on the number of bits per sample) one-dimensional array. In the case of a
file with multiple channels, a similar two-dimensional array is returned, with the
leading dimension being the channel number.

Arguments

Filename

A scalar string containing the full pathname of the .WAV file to read.

Rate

Returns an IDL long containing the sampling rate of the stream in samples per
second.

Keywords

None.
READ_WAV IDL Reference Guide

1145
READ_WAVE

The READ_WAVE procedure reads a .wave or .bwave file created by the
Wavefront Advanced Data Visualizer into an series of IDL variables.

Note
READ_WAVE only preserves the structure of the variables if they are regularly
gridded.

This routine is written in the IDL language. Its source code can be found in the file
read_wave.pro in the lib subdirectory of the IDL distribution.

Syntax

READ_WAVE, File, Variables, Names, Dimensions [, MESHNAMES=variable]

Arguments

File

A scalar string containing the name of the Wavefront file to read.

Variables

A named variable that will contain a block of the variables contained in the wavefront
file. Since each variable in a wavefront file can have more than one field (for
instance, a vector variable has 3 fields), the fields of each variable make up the major
index into the variable block. For instance, if a Wavefront file had one scalar variable
and one vector variable, the scalar would be extracted as follows:

scalar_variable = variables[0,*,*,*]

and the vector variable would be extracted as follows:

vector_variable = variables[1:3,*,*,*]

To find the dimensions of the returned variable, see the description of the Dimensions
argument.

Names

A named variable that will contain the string names of each variable contained in the
file.
IDL Reference Guide READ_WAVE

1146
Dimensions

A named variable that will contain a long array describing how many fields in the
large returned variable block each variable occupies. In the above example of one
scalar variable followed by a vector variable, the dimension variable would be
[1,3].

This indicates that the first field of the returned variable block would be the scalar
variable and the following 3 fields would comprise the vector variable.

Keywords

MESHNAMES

Set this keyword to a named variable that will contain the name of the mesh used in
the Wavefront file for each variable.

See Also

WRITE_WAVE
READ_WAVE IDL Reference Guide

1147
READ_X11_BITMAP

The READ_X11_BITMAP procedure reads bitmaps stored in the X Windows X11
format. The X Windows bitmap program produces a C header file containing the
definition of a bitmap produced by that program. This procedure reads such a file and
creates an IDL byte array containing the bitmap. It is used primarily to read bitmaps
to be used as IDL widget button labels.

This routine is written in the IDL language. Its source code can be found in the file
read_x11_bitmap.pro in the lib subdirectory of the IDL distribution.

Syntax

READ_X11_BITMAP, File, Bitmap [, X, Y] [, /EXPAND_TO_BYTES]

Arguments

File

A scalar string containing the name of the file containing the bitmap.

Bitmap

A named variable that will contain the bitmap. This variable is returned as a byte
array.

X

A named variable that will contain the width of the bitmap.

Y

A named variable that will contain the height of the bitmap.

Keywords

EXPAND_TO_BYTES

Set this keyword to instruct READ_X11_BITMAP to return a 2D array which has
one bit per byte (0 for a 0 bit, 255 for a 1 bit) instead.
IDL Reference Guide READ_X11_BITMAP

1148
Example

To open and read the X11 bitmap file named my.x11 in the current directory, store
the bitmap in the variable bitmap1, and the width and height in the variables X and
Y, enter:

READ_X11_BITMAP, 'my.x11', bitmap1, X, Y

To display the new bitmap, enter:

READ_X11_BITMAP, 'my.x11', image, /EXPAND_TO_BYTES
TV, image, /ORDER

See Also

READ_XWD
READ_X11_BITMAP IDL Reference Guide

1149
READ_XWD

The READ_XWD function reads the contents of a file created by the xwd (X
Windows Dump) command and returns the image and color table vectors in the form
of IDL variables. READ_XWD returns a 2D byte array containing the image. If the
file cannot be open or read, the return value is zero.

Note: this function is intended to be used only on files containing 8-bit pixmaps
created with xwd version 6 or later.

This routine is written in the IDL language. Its source code can be found in the file
read_xwd.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = READ_XWD(Filename[, R, G, B])

Arguments

Filename

A scalar string specifying the full pathname of the XWD file to read.

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors, if the
XWD file contains color tables.

Example

To open and read the X Windows Dump file named my.xwd in the current directory,
store the image in the variable image1, and store the color vectors in the variables, R,
G, and B, enter:

image1 = READ_XWD('my.xwd', R, G, B)

To load the new color table and display the image, enter:

TVLCT, R, G, B
TV, image1

See Also

READ_X11_BITMAP
IDL Reference Guide READ_XWD

1150
READS

The READS procedure performs formatted input from a string variable and writes
the results into one or more output variables. This procedure differs from the READ
procedure only in that the input comes from memory instead of a file.

This routine is useful when you need to examine the format of a data file before
reading the information it contains. Each line of the file can be read into a string using
READF. Then the components of that line can be read into variables using READS.

Syntax

READS, Input, Var1, ..., Varn [, AM_PM=[string, string]]
[, DAYS_OF_WEEK=string_array{7 names}] [, FORMAT=value]
[, MONTHS=string_array{12 names}]

Arguments

Input

The string variable from which the input is taken. If the supplied argument is not a
string, it is automatically converted. The argument can be scalar or array. If Input is
an array, the individual string elements are treated as successive lines of input.

Vari

The named variables to receive the input.

Note
If the variable specified for the Vari argument has not been previously defined, the
input data is assumed to be of type float, and the variable will be cast as a float.

Keywords

AM_PM

Supplies a string array of 2 names to be used for the names of the AM and PM string
when processing explicitly formatted dates (CAPA, CApA, and CapA format codes)
with the FORMAT keyword.
READS IDL Reference Guide

1151
DAYS_OF_WEEK

Supplies a string array of 7 names to be used for the names of the days of the week
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

FORMAT

If FORMAT is not specified, IDL uses its default rules for formatting the input.
FORMAT allows the format of the input to be specified in precise detail, using a
FORTRAN-style specification. See “Using Explicitly Formatted Input/Output” in
Chapter 8 of Building IDL Applications.

MONTHS

Supplies a string array of 12 names to be used for the names of the months when
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) with
the FORMAT keyword.

See Also

READ/READF, READU
IDL Reference Guide READS

1152
READU

The READU procedure reads unformatted binary data from a file into IDL variables.
READU transfers data directly with no processing of any kind performed on the data.

Syntax

READU, Unit, Var1, ..., Varn [, TRANSFER_COUNT=variable]

VMS-Only Keywords: [, KEY_ID=index] [, KEY_MATCH=relation]
[, KEY_VALUE=value]

Arguments

Unit

The IDL file unit from which input is taken.

Vari

Named variables to receive the data. For non-string variables, the number of bytes
required for Var are read. When READU is used with a variable of type string, IDL
reads exactly the number of bytes contained in the existing string. For example, to
read a 5-character string, enter:

temp = '12345'
READU, unit, temp

Keywords

TRANSFER_COUNT

Set this keyword to a named variable in which to return the number of elements
transferred by the input operation. Note that the number of elements is not the same
as the number of bytes (except in the case where the data type being transferred is
bytes). For example, transferring 256 floating-point numbers yields a transfer count
of 256, not 1024 (the number of bytes transferred).

This keyword is useful with files opened with the RAWIO keyword to the OPEN
routines. Normally, attempting to read more data than is available from a file causes
the unfilled space to be zeroed and an error to be issued. This does not happen with
files opened with the RAWIO keyword. Instead, the programmer must keep track of
the transfer count.
READU IDL Reference Guide

1153
VMS-Only Keywords

Note
The obsolete VMS routines FORRD, and FORRD_KEY have been replaced by the
READU command used with the following keywords.

KEY_ID

The index key to be used (primary = 0, first alternate key = 1, etc...) when accessing
data from a file with indexed organization. If this keyword is omitted, the primary
key is used.

KEY_MATCH

The relation to be used when matching the supplied key with key field values (EQ =
0, GE = 1, GT = 2) when accessing data from a file with indexed organization. If this
keyword is omitted, the equality relation (0) is used.

KEY_VALUE

The value of a key to be found when accessing data from a file with indexed
organization. This value must match the key definition that is determined when the
file was created in terms of type and size—no conversions are performed. If this
keyword is omitted, the previous key value is used.

Example

The following commands can be used to open the IDL distribution file people.dat and
read an image from that file:

; Open the file for reading as file unit 1:
OPENR, 1, FILEPATH('people.dat', SUBDIR = ['examples','data'])

; The image is a 192 by 192 byte array, so make B that size:
B = BYTARR(192, 192)

; Read the data into B:
READU, 1, B

; Close the file:
CLOSE, 1

; Display the image:
TV, B
IDL Reference Guide READU

1154
See Also

READ/READF, READS, WRITEU, Building IDL Applications Chapter 8, “Files
and Input/Output”, “Unformatted Input/Output with Structures” in Chapter 6 of
Building IDL Applications
READU IDL Reference Guide

1155
REBIN

The REBIN function resizes a vector or array to dimensions given by the parameters
Di. The supplied dimensions must be integral multiples or factors of the original
dimension. The expansion or compression of each dimension is independent of the
others, so that each dimension can be expanded or compressed by a different value.

If the dimensions of the desired result are not integer multiples of the original
dimensions, use the CONGRID function.

Syntax

Result = REBIN(Array, D1 [, ..., D8] [, /SAMPLE])

Arguments

Array

The array to be resampled. Array can be of any basic type except complex or string.

Di

The dimensions of the resulting resampled array. These dimensions must be integer
multiples or factors of the corresponding original dimensions.

Keywords

SAMPLE

Normally, REBIN uses bilinear interpolation when magnifying and neighborhood
averaging when minifying. Set the SAMPLE keyword to use nearest neighbor
sampling for both magnification and minification. Bilinear interpolation gives higher
quality results but requires more time.

Rules Used by REBIN

Assume the original vector X has n elements and the result is to have m elements.

Let f = n/m, the ratio of the size of the original vector, X to the size of the result. 1/f
must be an integer if n < m (expansion). f must be an integer if compressing, (n > m).
The various resizing options can be described as:

• Expansion, n < m, SAMPLE = 0: Yi = F(X, f ⋅ i) i = 0, 1, ... , m-1
IDL Reference Guide REBIN

1156
The linear interpolation function, F(X, p) that interpolates X at location p, is
defined as:

• Expansion, n < m, SAMPLE = 1:

• Compression, n > m, SAMPLE = 0:

• Compression, n > m, SAMPLE = 1:

• No change, n = m: Yi = Xi

Endpoint Effects When Expanding

When expanding an array, REBIN interpolates, it never extrapolates. Each of the n-1
intervals in the n-element input array produces m/n interpolates in the m-element
output array. The last m/n points of the result are obtained by duplicating element n-1
of the input array because their interpolates would lie outside the input array.

For example

; A four point vector:
A = [0, 10, 20, 30]

; Expand by a factor of 3:
B = REBIN(A, 12)

PRINT, B

IDL prints:

0 3 6 10 13 16 20 23 26 30 30 30

F X p,()
X p p p–() X p 1+ X p–()⋅+ if p n 1–<

X p if p n 1–≥

=

Yi X fi=

Yi 1 f⁄() Xj
j fi=

f i 1+() 1–

∑=

Yi X fi=
REBIN IDL Reference Guide

1157
Note that the last element is repeated three times. If this effect is undesirable, use the
INTERPOLATE function. For example, to produce 12 equally spaced interpolates
from the interval 0 to 30:

B = INTERPOLATE(A, 3./11. * FINDGEN(12))
PRINT, B

IDL prints:

0 2 5 8 10 13 16 19 21 24 27 30

Here, the sampling ratio is (n - 1)/(m - 1).

Example

Create and display a simple image by entering:

D = SIN(DIST(50)/4) & TVSCL, D

Resize the image to be 5 times its original size and display the result by entering:

D = REBIN(D, 250, 250) & TVSCL, D

See Also

CONGRID
IDL Reference Guide REBIN

1158
RECALL_COMMANDS

The RECALL_COMMANDS function returns a string array containing the entries in
IDL’s command recall buffer. The size of the returned array is the size of recall
buffer, even if fewer than commands have been entered (any “empty” buffer entries
will contain null strings). The default size of the command recall buffer is 20 lines.
(See “!EDIT_INPUT” on page 2429 for more information about the command recall
buffer.)

Element zero of the returned array contains the most recent command.

Syntax

Result = RECALL_COMMANDS()
RECALL_COMMANDS IDL Reference Guide

1159
RECON3

The RECON3 function can reconstruct a three-dimensional data array from two or
more images (or projections) of an object. For example, if you placed a dark object in
front of a white background and then photographed it three times (each time rotating
the object a known amount) then these three images could be used with RECON3 to
approximate a 3D volumetric representation of the object. RECON3 also works with
translucent projections of an object. RECON3 returns a 3D byte array.

This routine is written in the IDL language. Its source code can be found in the file
recon3.pro in the lib subdirectory of the IDL distribution.

Using RECON3

Images used in reconstruction should show strong light/dark contrast between the
object and the background. If the images contain low (dark) values where the object
is and high (bright) values where the object isn’t, the MODE keyword should be set
to +1 and the returned volume will have low values where the object is, and high
values where the object isn’t. If the images contain high (bright) values where the
object is and low (dark) values where the object isn’t, the MODE keyword should be
set to -1 and the returned volume will have high values where the object is, and low
values where the object isn’t.

In general, the object must be CONVEX for a good reconstruction to be possible.
Concave regions are not easily reconstructed. An empty coffee cup, for example,
would be reconstructed as if it were full.

The more images the better. Images from many different angles will improve the
quality of the reconstruction. It is also important to supply images that are parallel
and perpendicular to any axes of symmetry. Using the coffee cup as an example, at
least one image should be looking through the opening in the handle. Telephoto
images are also better for reconstruction purposes than wide angle images.

Syntax

Result = RECON3(Images, Obj_Rot, Obj_Pos, Focal, Dist,Vol_Pos, Img_Ref,
Img_Mag, Vol_Size [, /CUBIC] [, MISSING=value] [, MODE=value])
IDL Reference Guide RECON3

1160
Arguments

Images

A 3D array containing the images to use to reconstruct the volume. Execution time
increases linearly with more images. Images must be an 8-bit (byte) array with
dimensions (x, y, n) where x is the horizontal image dimension, y is the vertical image
dimension, and n is the number of images. Note that n must be at least 2.

Obj_Rot

A 3 x n floating-point array specifying the amount the object is rotated to make it
appear as it does in each image. The object is first rotated about the X axis, then about
the Y axis, and finally about the Z axis (with the object’s reference point at the
origin). Obj_Rot[0, *] is the X rotation for each image, Obj_Rot[1, *] is the Y
rotation, and Obj_Rot[2, *] is the Z rotation.

Obj_Pos

A 3 x n floating-point array specifying the position of the object’s reference point
relative to the camera lens. The camera lens is located at the coordinate origin and
points in the negative Z direction (the view up vector points in the positive Y
direction). Obj_Pos should be expressed in this coordinate system. Obj_Pos[0, *] is
the X position for each image, Obj_Pos[1, *] is the Y position, and Obj_Pos[2, *] is
the Z position. All the values in Obj_Pos[2, *] should be less than zero. Note that the
values for Obj_Pos, Focal, Dist, and Vol_Pos should all be expressed in the same
units (mm, cm, m, in, ft, etc.).

Focal

An n-element floating-point array specifying the focal length of the lens for each
image. Focal may be set to zero to indicate a parallel image projection (infinite focal
length).

Dist

An n-element floating-point array specifying the distance from the camera lens to the
image plane (film) for each image. Dist should be greater than Focal.

Vol_Pos

A 3 x 2 floating-point array specifying the two opposite corners of a cube that
surrounds the object. Vol_Pos should be expressed in the object’s coordinate system
relative to the object’s reference point. Vol_Pos[*, 0] specifies one corner and
Vol_Pos[*, 1] specifies the opposite corner.
RECON3 IDL Reference Guide

1161
Img_Ref

A 2 x n integer or floating-point array that specifies the pixel location at which the
object’s reference point appears in each of the images. Img_Ref[0, *] is the X
coordinate for each image and Img_Ref[1, *] is the Y coordinate.

Img_Mag

A 2 x n integer or floating-point array that specifies the magnification factor for each
image. This number is actually the length (in pixels) that a test object would appear in
an image if it were n units long and n units distant from the camera lens. Img_Mag[0,
*] is the X dimension (in pixels) of a test object for each image, and Img_Mag[1, *] is
the Y dimension. All elements in Img_Mag should be greater than or equal to 1.

Vol_Size

A 3-element integer or floating-point array that specifies the size of the 3D byte array
to return. Execution time (and resolution) increases exponentially with larger values
for Vol_Size. Vol_Size[0] specifies the X dimension of the volume, Vol_Size[1]
specifies the Y dimension, and Vol_Size[2] specifies the Z dimension.

Keywords

CUBIC

Set this keyword to use cubic interpolation. The default is to use tri-linear
interpolation, which is slightly faster.

MISSING

Set this keyword equal to a byte value for cells in the 3D volume that do not map to
any of the supplied images. The value of MISSING is passed to the INTERPOLATE
function. The default value is zero.

MODE

Set this keyword to a value less than zero to define each cell in the 3D volume as the
minimum of the corresponding pixels in the images. Set MODE to a value greater
than zero to define each cell in the 3D volume as the maximum of the corresponding
pixels in the images. If MODE is set equal to zero then each cell in the 3D volume is
defined as the average of the corresponding pixels in the images.

MODE should usually be set to -1 when the images contain a bright object in front of
a dark background or to +1 when the images contain a dark object in front of a light
background. Setting MODE=0 (the default) requires more memory since the volume
array must temporarily be kept as an integer array instead of a byte array.
IDL Reference Guide RECON3

1162
Example

Assumptions for this example:

• The object’s major axis is parallel to the Z axis.

• The object’s reference point is at its center.

• The camera lens is pointed directly at this reference point.

• The reference point is 5000 mm in front of the camera lens.

• The focal length of the camera lens is 200 mm.

If the camera is focused on the reference point, then the distance from the lens to the
camera’s image plane must be

dist = (d * f) / (d - f) = (5000 * 200) / (5000 - 200) = (1000000 / 4800) = 208.333 mm

The object is roughly 600 mm wide and 600 mm high. The reference point appears in
the exact center of each image.

If the object is 600 mm high and 5000 mm distant from the camera lens, then the
object image height must be

hi = (h * f) / (d - f) = (600 * 200) / (5000 - 200) = (120000 / 4800) = 25.0 mm

The object image appears 200 pixels high so the final magnification factor is

img_mag = (200 / 25) = 8.0

From these assumptions, we can set up the following reconstruction:

; First, define the variables:
imgx = 256
imgy = 256
frames = 3
images = BYTARR(imgx, imgy, frames)
obj_rot = Fltarr(3, frames)
obj_pos = Fltarr(3, frames)
focal = Fltarr(frames)
dist = Fltarr(frames)
vol_pos = Fltarr(3, 2)
img_ref = Fltarr(2, frames)
img_mag = Fltarr(2, frames)
vol_size = [40, 40, 40]

; The object is 5000 mm directly in front of the camera:
obj_pos[0, *] = 0.0
obj_pos[1, *] = 0.0
RECON3 IDL Reference Guide

1163
obj_pos[2, *] = -5000.0

; The focal length of the lens is constant for all the images:
focal[*] = 200.0

; The distance from the lens to the image plane is also constant:
dist[*] = 208.333

; The cube surrounding the object is 600 mm x 600 mm:
vol_pos[*, 0] = [-300.0, -300.0, -300.0]
vol_pos[*, 1] = [300.0, 300.0, 300.0]

; The image reference point appears at the center of all the
; images:
img_ref[0, *] = imgx / 2
img_ref[1, *] = imgy / 2

; The image magnification factor is constant for all images.
; (The images haven’t been cropped or resized):
img_mag[*,*] = 8.0

; Only the object rotation changes from one image to the next.
; Note that the object is rotated about the X axis first, then Y,
; and then Z. Create some fake images for this example:
images[30:160, 20:230, 0] = 255
images[110:180, 160:180, 0] = 180
obj_rot[*, 0] = [-90.0, 0.0, 0.0]
images[70:140, 100:130, 1] = 255
obj_rot[*, 1] = [-70.0, 75.0, 0.0]
images[10:140, 70:170, 2] = 255
images[80:90, 170:240, 2] = 150
obj_rot[*, 2] = [-130.0, 215.0, 0.0]

; Reconstruct the volume:
vol = RECON3(images, obj_rot, obj_pos, focal, dist, $

vol_pos, img_ref, img_mag, vol_size, Missing=255B, Mode=(-1))

; Display the volume:
shade_volume, vol, 8, v, p
scale3, xrange=[0,40], yrange=[0,40], zrange=[0,40]
image = polyshade(v, p, /t3d, xs=400, ys=400)
tvscl, image

See Also

POLYSHADE, SHADE_VOLUME, VOXEL_PROJ
IDL Reference Guide RECON3

1164
REDUCE_COLORS

The REDUCE_COLORS procedure reduces the number of colors used in an image
by eliminating pixel values without members.

The pixel distribution histogram is obtained and the WHERE function is used to find
bins with non-zero values. Next, a lookup table is made where table[old_pixel_value]
contains new_pixel_value, and is then applied to the image.

This routine is written in the IDL language. Its source code can be found in the file
reduce_colors.pro in the lib subdirectory of the IDL distribution.

Syntax

REDUCE_COLORS, Image, Values

Arguments

Image

On input, a variable that contains the original image array. On output, this variable
contains the color-reduced image array, writing over the original.

Values

A named variable that, on output, contains a vector of non-zero pixel values. If Image
contains pixel values from 0 to M, Values will be an M+1 element vector containing
the mapping from the old values to the new. Values[i] contains the new color index
of old pixel index i.

Example

To reduce the number of colors and display an image with the original color tables R,
G, B enter the commands:

REDUCE_COLORS, image, v
TVLCT, R[V], G[V], B[V]

See Also

COLOR_QUAN
REDUCE_COLORS IDL Reference Guide

1165
REFORM

The REFORM function changes the dimensions of an array without changing the
total number of elements. If no dimensions are specified, REFORM returns a copy of
Array with all dimensions of size 1 removed. If dimensions are specified, the result is
given those dimensions. Only the dimensions of Array are changed—the actual data
remains unmodified.

Syntax

Result = REFORM(Array, D1, ..., D8 [, /OVERWRITE])

Arguments

Array

The array to have its dimensions modified.

Di

The dimensions of the result. The Di arguments can be either a single array
containing the new dimensions or a sequence of scalar dimensions. Array must have
the same number of elements as specified by the product of the new dimensions.

Keywords

OVERWRITE

Set this keyword to cause the specified dimensions to overwrite the present
dimensions of the Array parameter. No data are copied, only the internal array
descriptor is changed. The result of the function, in this case, is the Array parameter
with its newly-modified dimensions. For example, to change the dimensions of the
variable a, without moving data, enter:

a = REFORM(a, n1, n2, /OVERWRITE)

Example

REFORM can be used to remove “degenerate” leading dimensions of size one. Such
dimensions can appear when a subarray is extracted from an array with more
dimensions. For example

; a is a 3-dimensional array:
a = INTARR(10,10,10)
IDL Reference Guide REFORM

1166
; Extract a "slice" from a:
b = a[5,*,*]

; Use HELP to show what REFORM does:
HELP, b, REFORM(b)

Executing the above statements produces the output:

B INT = Array[1, 10, 10]
<Expression> INT = Array[10, 10]

The statements:

b = REFORM(a,200,5)
b = REFORM(a,[200,5])

have identical effect. They create a new array, b, with dimensions of (200, 5), from a.

See Also

REVERSE, ROT, ROTATE, TRANSPOSE
REFORM IDL Reference Guide

1167
REGRESS

The REGRESS function performs a multiple linear regression fit and returns an
Nterm-element column vector of coefficients.

REGRESS fits the function:

yi = const + a0x0, i + a1x1, i + ... + aNterms-1xNterms-1, i

 This routine is written in the IDL language. Its source code can be found in the file
regress.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = REGRESS(X, Y, [, CHISQ=variable] [, CONST=variable]
[, CORRELATION=variable] [, /DOUBLE] [, FTEST=variable]
[, MCORRELATION=variable] [, MEASURE_ERRORS=vector]
[, SIGMA=variable] [, STATUS=variable] [, YFIT=variable])

Return Value

REGRESS returns a 1 x Nterm array of coefficients. If the DOUBLE keyword is set,
or if X or Y are double-precision, then the result will be double precision, otherwise
the result will be single precision.

Arguments

X

An Nterms by Npoints array of independent variable data, where Nterms is the
number of coefficients (independent variables) and Npoints is the number of samples.

Y

An Npoints-element vector of dependent variable points.

Weights

The Weights argument is obsolete, and has been replaced by the
MEASURE_ERRORS keyword. Code that uses the Weights argument will continue to
work as before, but new code should use the MEASURE_ERRORS keyword instead.
Note that the definition of the MEASURE_ERRORS keyword is different from that of
the Weights argument. Using the Weights argument, SQRT(1/Weights[i]) represents
the measurement error for each point Y[i]. Using the MEASURE_ERRORS keyword,
the measurement error for each point is represented as simply
IDL Reference Guide REGRESS

1168
MEASURE_ERRORS[i]. Also note that the RELATIVE_WEIGHTS keyword is not
necessary when using the MEASURE_ERRORS keyword.

Yfit, Const, Sigma, Ftest, R, Rmul, Chisq, Status

The Yfit, Const, Sigma, Ftest, R, Rmul, Chisq, and Status arguments are obsolete, and
have been replaced by the YFIT, CONST, SIGMA, FTEST, CORRELATION,
MCORRELATION, CHISQ, and STATUS keywords, respectively. Code that uses
these arguments will continue to work as before, but new code should use the
keywords instead.

Keywords

CHISQ

Set this keyword equal to a named variable that will contain the value of the
chi-sqaure goodness-of-fit.

CONST

Set this keyword to a named variable that will contain the constant term of the fit.

CORRELATION

Set this keyword to a named variable that will contain the vector of linear correlation
coefficients.

DOUBLE

Set this keyword to force computations to be done in double-precision arithmetic.

FTEST

Set this keyword to a named variable that will contain the F-value for the goodness-
of-fit test.

MCORRELATION

Set this keyword to a named variable that will contain the multiple linear correlation
coefficient.

MEASURE_ERRORS

Set this keyword to a vector containing standard measurement errors for each point
Y[i]. This vector must be the same length as X and Y.
REGRESS IDL Reference Guide

1169
Note
For Gaussian errors (e.g., instrumental uncertainties), MEASURE_ERRORS
should be set to the standard deviations of each point in Y. For Poisson or statistical
weighting, MEASURE_ERRORS should be set to SQRT(Y).

RELATIVE_WEIGHT

This keyword is obsolete. Code using the Weights argument and
RELATIVE_WEIGHT keyword will continue to work as before, but new code should
use the MEASURE_ERRORS keyword, for which case the RELATIVE_WEIGHT
keyword is not necessary. Using the Weights argument, it was necessary to specify
the RELATIVE_WEIGHT keyword if no weighting was desired. This is not the case
with the MEASURE_ERRORS keyword—when MEASURE_ERRORS is omitted,
REGRESS assumes you want no weighting.

SIGMA

Set this keyword to a named variable that will contain the 1-sigma uncertainty
estimates for the returned parameters.

Note
If MEASURE_ERRORS is omitted, then you are assuming that the regression
model is the correct model for your data, and therefore, no independent goodness-
of-fit test is possible. In this case, the values returned in SIGMA are multiplied by
SQRT(CHISQ/(N–M)), where N is the number of points in X, and M is the number
of coefficients. See section 15.2 of Numerical Recipes in C (Second Edition) for
details.

STATUS

Set this keyword to a named variable that will contain the status of the operation.
Possible status values are:

• 0 = successful completion

• 1 = singular array (which indicates that the inversion is invalid)

• 2 = warning that a small pivot element was used and that significant accuracy
was probably lost.

Note
If STATUS is not specified, any error messages will be output to the screen.
IDL Reference Guide REGRESS

1170
YFIT

Set this keyword to a named variable that will contain the vector of calculated Y
values.

Example

; Create two vectors of independent variable data:
X1 = [1.0, 2.0, 4.0, 8.0, 16.0, 32.0]
X2 = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0]
; Combine into a 2x6 array
X = [TRANSPOSE(X1), TRANSPOSE(X2)]

; Create a vector of dependent variable data:
Y = 5 + 3*X1 - 4*X2

; Assume Gaussian measurement errors for each point:
measure_errors = REPLICATE(0.5, N_ELEMENTS(Y))

; Compute the fit, and print the results:
result = REGRESS(X, Y, SIGMA=sigma, CONST=const, $

MEASURE_ERRORS=measure_errors)
PRINT, 'Constant: ', const
PRINT, 'Coefficients: ', result[*]
PRINT, 'Standard errors: ', sigma

IDL prints:

Constant: 4.99999
Coefficients: 3.00000 -3.99999
Standard errors: 0.0444831 0.282038

See Also

CURVEFIT, GAUSSFIT, LINFIT, LMFIT, POLY_FIT, SFIT, SVDFIT
REGRESS IDL Reference Guide

1171
REPEAT...UNTIL

The REPEAT...UNTIL statement repeats its subject statement(s) until an expression
evaluates to true. The condition is checked after the subject statement is executed.
Therefore, the subject statement is always executed at least once, even if the
expression evaluates to true the first time.

Note
For information on using REPEAT_UNTIL and other IDL program control
statements, see Chapter 11, “Program Control” in Building IDL Applications.

Syntax

REPEAT statement UNTIL expression

or

REPEAT BEGIN

statements

ENDREP UNTIL expression

Example

This example shows that because the subject of a REPEAT statement is evaluated
before the expression, it is always executed at least once:

i = 1

REPEAT BEGIN

PRINT, i

ENDREP UNTIL (i EQ 1)
IDL Reference Guide REPEAT...UNTIL

1172
REPLICATE

The REPLICATE function returns an array with the given dimensions, filled with the
scalar value specified as the first parameter.

Syntax

Result = REPLICATE(Value, D1 [, ..., D8])

Arguments

Value

The scalar value with which to fill the resulting array. The type of the result is the
same as that of Value. Value can be any single element expression such as a scalar or
1 element array. This includes structures.

Di

The dimensions of the result.

Example

Create D, a 5-element by 5-element array with every element set to the string “IDL”
by entering:

D = REPLICATE('IDL', 5, 5)

REPLICATE can also be used to create arrays of structures. For example, the
following command creates a structure named “emp” that contains a string name
field and a long integer employee ID field:

employee = {emp, NAME:' ', ID:0L}

To create a 10-element array of this structure, enter:

emps = REPLICATE(employee, 10)

See Also

MAKE_ARRAY
REPLICATE IDL Reference Guide

1173
REPLICATE_INPLACE

The REPLICATE_INPLACE procedure updates an existing array by replacing all or
selected parts of it with a specified value. REPLICATE_INPLACE can be faster and
use less memory than the IDL function REPLICATE or the IDL array notation for
large arrays that already exist.

Note
REPLICATE_INPLACE is much faster when operating on entire arrays and rows,
than when used on columns or higher dimensions.

Syntax

REPLICATE_INPLACE, X, Value [, D1, Loc1 [, D2, Range]]

Arguments

X

The array to be updated. X can be of any numeric type. REPLICATE_INPLACE
does not change the size and type of X.

Value

The value which will fill all or part of X. Value may be any scalar or one-element
array that IDL can convert to the type of X. REPLICATE_INPLACE does not change
Value.

D1

An optional parameter indicating which dimension of X is to be updated.

Loc1

An array with the same number of elements as the number of dimensions of X. The
Loc1 and D1 arguments together determine which one-dimensional subvector (or
subvectors, if D1 and Range are provided) of X is to be updated.

D2

An optional parameter, indicating in which dimension of X a group of one-
dimensional subvectors are to be updated. D2 should be different from D1.
IDL Reference Guide REPLICATE_INPLACE

1174
Range

An array of indices of dimension D2 of X, indicating where to put one-dimensional
updates of X.

Example

; Create a multidimensional zero array:
A = FLTARR(40, 90, 10)

; Populate it with the value 4.5. (i.e., A[*]= 4.5):
REPLICATE_INPLACE, A, 4.5
;Update a single subvector.(i.e., A[*,4,0]= 20.):
REPLICATE_INPLACE, A, 20, 1, [0,4,0]

; Update a group of subvectors.(i.e., A[0, [0, 5,89], *] = -8):
REPLICATE_INPLACE, A, -8, 3, [0,0,0], 2, [0,5,89]

; Update a 2-dimensional slice of A (i.e., A[9,*, *] = 0.):
REPLICATE_INPLACE, A, 0., 3, [9,0,0] , 2, LINDGEN(90)

See Also

REPLICATE, BLAS_AXPY
REPLICATE_INPLACE IDL Reference Guide

1175
RESOLVE_ALL

The RESOLVE_ALL procedure iteratively resolves (by compiling) any uncompiled
user-written or library procedures or functions that are called in any already-compiled
procedure or function. The process ends when there are no unresolved routines left to
compile. If an unresolved procedure or function is not in the IDL search path, this
routine exits with an error, and no additional routines are compiled.

RESOLVE_ALL is useful when preparing SAVE/RESTORE files containing all the
IDL routines required for an application.

Note
RESOLVE_ALL does not resolve procedures or functions that are called via
CALL_PROCEDURE, CALL_FUNCTION, or EXECUTE. Class methods are not
resolved either.

Similarly, RESOLVE_ALL does not resolve widget event handler procedures based
on a call to the widget routine that uses the event handler. In general, it is best to
include the event handling routine in the same program file as the widget creation
routine—building widget programs in this way ensures that RESOLVE_ALL will
“catch” the event handler for a widget application.

Note
RESOLVE_ALL is of special interest when constructing an IDL SAVE file
containing the compiled code for a package of routines. If you are constructing such
a .sav file, that contains calls to built-in IDL system functions that are not present
under all operating systems (e.g., IOCTL, TRNLOG), you must make sure to use
FORWARD_FUNCTION to tell IDL that these names are functions. Otherwise,
IDL may interpret them as arrays and generate unintended results.

This routine is written in the IDL language. Its source code can be found in the file
resolve_all.pro in the lib subdirectory of the IDL distribution.

Syntax

RESOLVE_ALL [, /CONTINUE_ON_ERROR] [, /QUIET]
IDL Reference Guide RESOLVE_ALL

1176
Keywords

CONTINUE_ON_ERROR

Set this keyword to allow continuation upon error.

QUIET

Set this keyword to suppress informational messages.

See Also

.COMPILE, RESOLVE_ROUTINE, ROUTINE_INFO
RESOLVE_ALL IDL Reference Guide

1177
RESOLVE_ROUTINE

The RESOLVE_ROUTINE procedure compiles user-written or library procedures or
functions, given their names. Routines are compiled even if they are already defined.
RESOLVE_ROUTINE looks for the given filename in IDL’s search path. If the file
is not found in the path, then the routine exits with an error.

Syntax

RESOLVE_ROUTINE, Name [, /COMPILE_FULL_FILE]
[, /EITHER | , /IS_FUNCTION] [, /NO_RECOMPILE]

Arguments

Name

A scalar string or string array containing the name or names of the procedures to
compile. If Name contains functions rather than procedures, set the IS_FUNCTION
keyword. The Name argument cannot contain the path to the .pro file—it must
contain only a .pro filename. If you want to specify a path to the .pro file, use the
.COMPILE executive command.

Keywords

COMPILE_FULL_FILE

When compiling a file to find a specified routine, IDL normally stops compiling
when the desired routine (Name) is found. If set, COMPILE_FULL_FILE compiles
the entire file.

EITHER

If set, indicates that the caller does not know whether the supplied routine names are
functions or procedures, and will accept either. This keyword overrides the
IS_FUNCTION keyword.

IS_FUNCTION

Set this keyword to compile functions rather than procedures.
IDL Reference Guide RESOLVE_ROUTINE

1178
NO_RECOMPILE

Normally, RESOLVE_ROUTINE compiles all specified routines even if they have
already been compiled. Setting NO_RECOMPILE indicates that such routines are
not recompiled.

See Also

.COMPILE, RESOLVE_ALL, ROUTINE_INFO
RESOLVE_ROUTINE IDL Reference Guide

1179
RESTORE

The RESTORE procedure restores the IDL variables and routines saved in a file by
the SAVE procedure.

Warning
While files containing IDL variables can be restored by any version of IDL that
supports the data types of the variables (in particular, by any version of IDL later
than the version that created the SAVE file), files containing IDL routines can only
be restored by versions of IDL that share the same internal code representation.
Since the internal code representation changes regularly, you should always archive
the IDL language source files (.pro files) for routines you are placing in IDL
SAVE files so you can recompile the code when a new version of IDL is released.

Note to VMS Users

When reading older VMS format files, IDL knows that all floating-point values are in
VAX format. These floating values are automatically converted to IEEE format.
Only VMS/IDL is able to restore the native VMS format.

Note
If you are restoring a file created with VAX IDL version 1, you must restore on a
machine running VMS.

Syntax

RESTORE [, Filename] [, FILENAME=name]
[, /RELAXED_STRUCTURE_ASSIGNMENT]
[, RESTORED_OBJECTS=variable] [, /VERBOSE]

Arguments

Filename

A scalar string that contains the name of the file from which the IDL objects should
be restored. If not present, the file idlsave.dat is used.
IDL Reference Guide RESTORE

1180
Keywords

FILENAME

The name of the file from which the IDL objects should be restored. If not present,
the file idlsave.dat is used. This keyword serves exactly the same purpose as the
Filename argument—only one of them needs to be provided.

RELAXED_STRUCTURE_ASSIGNMENT

Normally, RESTORE is unable to restore a structure variable if the definition of its
type has changed since the SAVE file was written. A common case where this occurs
is when objects are saved and the class structure of the objects change before they are
restored in another IDL session. In such cases, RESTORE issues an error, skips the
structure, and continues restoring the remainder of the SAVE file.

Setting the RELAXED_STRUCTURE_ASSIGNMENT keyword causes RESTORE
to restore such incompatible values using “relaxed structure assignment,” in which all
possible data are restored using a field-by-field copy. (See the description of the
STRUCT_ASSIGN procedure for additional details.)

RESTORED_OBJECTS

Set this keyword equal to a named variable that will contain an array of object
references for any objects restored. The resulting list of objects is useful for
programmatically calling the objects’ restore methods. If no objects are restored, the
variable will contain a null object reference.

VERBOSE

Set this keyword to have IDL print an informative message for each restored object.

Example

Suppose that you have saved all the variables from a previous IDL session with the
command:

SAVE, /VARIABLES, FILENAME = 'session1.sav'

The variables in the file session1.sav can be restored by entering:

RESTORE, 'session1.sav'

See Also

JOURNAL, SAVE, STRUCT_ASSIGN
RESTORE IDL Reference Guide

1181
RETALL

The RETALL command returns control to the main program level. The effect is the
same as entering the RETURN command at the interactive command prompt until
the main level is reached.

Syntax

RETALL

Arguments

None

See Also

RETURN
IDL Reference Guide RETALL

1182
RETURN

The RETURN command causes the program context to revert to the next-higher
program level. RETURN can be called at the interactive command prompt (see
“.RETURN” on page 56), inside a procedure definition, or inside a function
definition.

Calling RETURN from the main program level has no effect other than to print an
informational message in the command log.

Calling RETURN inside a procedure definition returns control to the calling routine,
or to the main level. Since the END statement in a procedure definition also returns
control to the calling routine, it is only necessary to use RETURN in a procedure
definition if you wish control to revert to the calling routine before the procedure
reaches its END statement.

In a function definition, RETURN serves to define the value passed out of the
function. Only a single value can be returned from a function.

Note
The value can be an array or structure containing multiple data items.

Syntax

RETURN [, Return_value]

Arguments

Return_value

In a function definition, the Return_value is the value passed out of the function when
it completes its processing.

Return values are not allowed in procedure definitions, or when calling RETURN at
the interactive command prompt.

Examples

You can use RETURN within a procedure definition to exit the procedure at some
point other than the end. For example, note the following procedure:

PRO RET_EXAMPLE, value
IF value THEN BEGIN
RETURN IDL Reference Guide

1183
PRINT, value, ' is nonzero'
RETURN
END

PRINT, 'Input argument was zero.'
END

If the input argument is non-zero, the routine prints the value and exits back to the
calling procedure or main level. If the input argument is zero, control proceeds until
the END statement is reached.

When defining functions, use RETURN to specify the value returned from the
function. For example, the following function:

FUNCTION RET_EXAMPLE2, value
RETURN, value * 2

END

multiplies the input value by two and returns the result. If this function is defined at
the main level, calling it from the IDL command prompt produces the following:

PRINT, RET_EXAMPLE2(4)

IDL prints:

8

See Also

RETALL
IDL Reference Guide RETURN

1184
REVERSE

The REVERSE function reverses the order of one dimension of an array.

This routine is written in the IDL language. Its source code can be found in the file
reverse.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = REVERSE(Array [, Subscript_Index] [, /OVERWRITE])

Arguments

Array

The array containing the original data.

Subscript_Index

An integer specifying the dimension index (1, 2, 3, etc.) that will be reversed. This
argument must be less than or equal to the number of dimensions of Array. If this
argument is omitted, the first subscript is reversed.

Keywords

OVERWRITE

Set this keyword to conserve memory by doing the transformation “in-place.” The
result overwrites the previous contents of the array. This keyword is ignored for one-
or two-dimensional arrays.

Example

Reverse the order of an array where each element is set to the value of its subscript:

; Create an array:
A = [[0,1,2],[3,4,5],[6,7,8]]

; Print the array:
PRINT, 'Original Array:'
PRINT, A

; Reverse the columns of A.
PRINT, 'Reversed Columns:'
PRINT, REVERSE(A)
REVERSE IDL Reference Guide

1185
; Reverse the rows of A:
PRINT, 'Reversed Rows:'
PRINT, REVERSE(A, 2)

IDL prints:

Original Array:
 0 1 2
 3 4 5
 6 7 8
Reversed Columns:
 2 1 0
 5 4 3
 8 7 6
Reversed Rows:
 6 7 8
 3 4 5
 0 1 2

See Also

INVERT, REFORM, ROT, ROTATE, SHIFT, TRANSPOSE
IDL Reference Guide REVERSE

1186
REWIND

The REWIND procedure rewinds the tape on the designated IDL tape unit. REWIND
is available only under VMS. See the description of the magnetic tape routines in
“VMS-Specific Information” in Chapter 8 of Building IDL Applications.

Syntax

REWIND, Unit

Arguments

Unit

The magnetic tape unit to rewind. Unit must be a number between 0 and 9, and
should not be confused with standard file Logical Unit Numbers (LUNs).

See Also

SKIPF, TAPRD
REWIND IDL Reference Guide

1187
RK4

The RK4 function uses the fourth-order Runge-Kutta method to advance a solution to
a system of ordinary differential equations one time-step H, given values for the
variables Y and their derivatives Dydx known at X.

RK4 is based on the routine rk4 described in section 16.1 of Numerical Recipes in C:
The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

Result = RK4(Y, Dydx, X, H, Derivs [, /DOUBLE])

Arguments

Y

A vector of values for Y at X

Dydx

A vector of derivatives for Y at X.

X

A scalar value for the initial condition.

H

A scalar value giving interval length or step size.

Derivs

A scalar string specifying the name of a user-supplied IDL function that calculates
the values of the derivatives Dydx at X. This function must accept two arguments: A
scalar floating value X, and one n-element vector Y. It must return an n-element
vector result.

For example, suppose the values of the derivatives are defined by the following
relations:

dy0 / dx = –0.5y0, dy1 / dx = 4.0 – 0.3y1 – 0.1y0

We can write a function DIFFERENTIAL to express these relationships in the IDL
language:
IDL Reference Guide RK4

1188
FUNCTION differential, X, Y
RETURN, [-0.5 * Y[0], 4.0 - 0.3 * Y[1] - 0.1 * Y[0]]

END

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

To integrate the example system of differential equations for one time step, H:

; Define the step size:
H = 0.5

; Define an initial X value:
X = 0.0

; Define initial Y values:
Y = [4.0, 6.0]

; Calculate the initial derivative values:
dydx = DIFFERENTIAL(X,Y)

; Integrate over the interval (0, 0.5):
result = RK4(Y, dydx, X, H, 'differential')

; Print the result:
PRINT, result

IDL prints:

3.11523 6.85767

This is the exact solution vector to five-decimal precision.

See Also

BROYDEN, NEWTON
RK4 IDL Reference Guide

1189
ROBERTS

The ROBERTS function returns an approximation to the Roberts edge enhancement
operator for images:

where (j, k) are the coordinates of each pixel Fjk in the Image. This is equivalent to a
convolution using the masks,

where the underline indicates the current pixel Fjk. The last column and row are set to
zero.

Syntax

Result = ROBERTS(Image)

Return Value

ROBERTS returns a two-dimensional array of the same size as Image. If Image is of
type byte or integer, then the result is of integer type, otherwise the result is of the
same type as Image.

Note
To avoid overflow for integer types, the computation is done using the next larger
signed type and the result is transformed back to the correct type. Values larger than
the maximum for that integer type are truncated. For example, for integers the
function is computed using type long, and on output, values larger than 32767 are
set equal to 32767.

Arguments

Image

The two-dimensional array containing the image to which edge enhancement is
applied.

G jk F jk F j 1 k 1+,+– F j k 1+, F j 1 k,+–+=

0 1–

1 0
and

1 0

0 1–
IDL Reference Guide ROBERTS

1190
Example

If the variable myimage contains a two-dimensional image array, a Roberts
sharpened version of myimage can be displayed with the command:

TVSCL, ROBERTS(myimage)

See Also

SOBEL
ROBERTS IDL Reference Guide

1191
ROT

The ROT function rotates an image by an arbitrary amount. At the same time, it can
magnify, demagnify, and/or translate an image. Note that if you want to rotate an
array by a multiple of 90 degrees, you should use the ROTATE function for faster
results.

This routine is written in the IDL language. Its source code can be found in the file
rot.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = ROT(A, Angle, [Mag, X0, Y0] [, /INTERP] [, CUBIC=value{-1 to 0}]
[, MISSING=value] [, /PIVOT])

Arguments

A

The image array to be rotated. This array can be of any type, but must have two
dimensions. The output image has the same dimensions and data type of the input
image.

ANGLE

Angle of rotation in degrees clockwise.

MAG

An optional magnification factor. A value of 1.0 results in no change. A value greater
than one performs magnification and a value less than one performs demagnification.

X0

X subscript for the center of rotation. If omitted, X0 equals the number of columns in
the image divided by 2.

Y0

Y subscript for the center of rotation. If omitted, Y0 equals the number of rows in the
image divided by 2.
IDL Reference Guide ROT

1192
Keywords

INTERP

Set this keyword to use bilinear interpolation. The default is to use nearest neighbor
sampling.

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Setting
this keyword equal to a value greater than zero specifies a value of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest that a
value of -0.5 significantly improves the reconstruction properties of this algorithm.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal, f, is a band-limited signal, with no frequency
component larger than ω0, and f is sampled with spacing less than or equal to 1/(2ω0),
then f can be reconstructed by convolving with a sinc function: sinc(x) = sin(πx) /
(πx).

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used. Note that cubic convolution interpolation is
significantly slower than bilinear interpolation.

For further details see:

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniques for
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redondo
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubic
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

MISSING

Set this keyword to a value to be substituted for pixels in the output image that map
outside the input image.

PIVOT

Set this keyword to cause the image to pivot around the point (X0, Y0) so that this
point maps into the same point in the output image. By default, the point (X0, Y0) in
the input image is mapped into the center of the output image.
ROT IDL Reference Guide

1193
Example

; Create a byte image:
A = BYTSCL(DIST(256))

; Display it:
TV, A

; Rotate the image 33 degrees, magnify it 15 times, and use
; bilinear interpolation to make the output look nice:
B = ROT(A, 33, 1.5, /INTERP)

; Display the rotated image:
TV, B

See Also

ROTATE
IDL Reference Guide ROT

1194
ROTATE

The ROTATE function returns a rotated and/or transposed copy of Array. ROTATE
can only rotate arrays in multiples of 90 degrees. To rotate by amounts other than
multiples of 90 degrees, use the ROT function. Note, however, that ROTATE is more
efficient.

ROTATE can also be used to reverse the order of elements in vectors. For example,
to reverse the order of elements in the vector X, use the expression ROTATE(X,2). If
X = [0,1,2,3] then ROTATE(X,2)yields the resulting array, [3,2,1,0].

Transposition is performed before rotation. Rotations are viewed with the first row at
the top.

Syntax

Result = ROTATE(Array, Direction)

Arguments

Array

The array to be rotated. Array can have only one or two dimensions. The result has
the same type as Array. The dimensions of the result are the same as those of Array if
Direction is equal to 0 or 2. The dimensions are transposed if the direction is 4 or
greater.

Direction

Direction specifies the operation to be performed as follows:

Direction Transpose
? Rotation Counterclockwise X1 Y1

0 No None X0 Y0

1 No 90° -Y0 X0

2 No 180° -X0 -Y0

3 No 270° Y0 -X0

4 Yes None Y0 X0

Table 82: Rotation Directions
ROTATE IDL Reference Guide

1195
In the table above, (X0, Y0) are the original subscripts, and (X1, Y1) are the
subscripts of the resulting array. The notation -Y0 indicates a reversal of the Y axis,
Y1 = Ny - Y0 - 1. Direction is taken modulo 8, so a rotation of -1 is the same as 7, 9 is
the same as 1, etc.

Note
The assertion that Array is rotating counterclockwise may cause some confusion.
Remember that when arrays are displayed on the screen (using TV or TVSCL, for
example), the image is drawn with the origin (0,0) at the bottom left corner of the
window. When arrays are printed on the console or command log window (using
the PRINT command, for example), the (0,0) element is drawn in the upper left
corner of the array. This means that while an image displayed in a window appears
to rotate counterclockwise, an array printed in the command log appears to rotate
clockwise.

Example

Create and display a wedge image by entering:

F = REPLICATE(1, 256) # FINDGEN(256) & TVSCL, F

To display the image rotated 90 degrees counterclockwise, enter:

TVSCL, ROTATE(F, 1)

See Also

ROT, TRANSPOSE

5 Yes 90° -X0 Y0

6 Yes 180° -Y0 -X0

7 Yes 270° X0 -Y0

Direction Transpose
? Rotation Counterclockwise X1 Y1

Table 82: Rotation Directions
IDL Reference Guide ROTATE

1196
ROUND

The ROUND function rounds the argument to its closest integer.

Syntax

Result = ROUND(X [, /L64])

Return Value

Returns the integer closest to its argument. If the input value X is integer type, Result
has the same value and type as X. Otherwise, Result is returned as a 32-bit longword
integer with the same structure as X.

Arguments

X

The value for which the ROUND function is to be evaluated. This value can be any
numeric type (integer, floating, or complex). Note that only the real part of a complex
argument is rounded and returned.

Keywords

L64

If set, the result type is 64-bit integer no matter what type the input has. This is useful
for situations in which a floating point number contains a value too large to be
represented in a 32-bit integer.

Example

Print the rounded values of a 2-element vector:

PRINT, ROUND([5.1, 5.9])

IDL prints:

5 6

Print the result of rounding 3000000000.1, a value that is too large to represent in a
32-bit integer:

PRINT, ROUND(3000000000.1D, /L64)

IDL prints:
ROUND IDL Reference Guide

1197
3000000000

See Also

CEIL, COMPLEXROUND, FLOOR
IDL Reference Guide ROUND

1198
ROUTINE_INFO

The ROUTINE_INFO function provides information about currently-compiled
procedures and functions. It returns a string array consisting of the names of defined
procedures or functions, or of parameters or variables used by a single procedure or
function.

Syntax

Result = ROUTINE_INFO([Routine [[, /PARAMETERS{must specify Routine}]
[, /SOURCE] [, /UNRESOLVED] [, /VARIABLES] | , /SYSTEM]] [, /DISABLED]
[, /ENABLED] [, /FUNCTIONS])

Arguments

Routine

A scalar string containing the name of routine for which information will be returned.
Routine can be either a procedure or a function. If Routine is not supplied,
ROUTINE_INFO returns a list of all currently-compiled procedures.

Keywords

DISABLED

Set this keyword to get the names of currently disabled system procedures or
functions (in conjunction with the FUNCTIONS keyword). Use of DISABLED
implies use of the SYSTEM keyword, since user routines cannot be disabled.

ENABLED

Set this keyword to get the names of currently enabled system procedures or
functions (in conjunction with the FUNCTIONS keyword). Use of ENABLED
implies use of the SYSTEM keyword, since user routines cannot be disabled.

FUNCTIONS

Set this keyword to return a string array containing currently-compiled functions. By
default, ROUTINE_INFO returns a list of compiled procedures. If the SYSTEM
keyword is also set, ROUTINE_INFO returns a list of all IDL built-in internal
functions.

PARAMETERS

Set this keyword to return an anonymous structure with the following fields:
ROUTINE_INFO IDL Reference Guide

1199
• NUM_ARGS — An integer containing the number of positional parameters
used in Routine.

• NUM_KW_ARGS — An integer containing the number of keyword
parameters used in Routine.

• ARGS — A string array containing the names of the positional parameters
used in Routine.

• KW_ARGS — A string array containing the names of the keyword
parameters used in Routine.

You must supply the Routine argument when using this keyword. Note that
specifying the SYSTEM keyword along with this keyword will generate an error. If
Routine does not take any arguments, the ARGS field is not included in the
anonymous structure. Similarly, if Routine does not take any keywords, the
KW_ARGS field is not included.

SOURCE

Set this keyword to return an array of anonymous structures with the following fields:

• NAME — A string containing the name of the procedure or function.

• PATH — A string containing the full path specification of the file that
contains the definition of the procedure or function.

If Routine is specified, information for that one routine is returned. If Routine is not
specified, information for all compiled routines is returned. If a routine is unresolved
or its path information is unavailable, the PATH field will contain a null string. If a
routine has been SAVEd and then RESTOREd, the PATH field will contain the path
to the SAVE file.

Note
Specifying the SYSTEM keyword along with this keyword will generate an error.

SYSTEM

Set this keyword to return a string array listing all IDL built-in internal procedures.
Built-in internal procedures are part of the IDL executable, and are not written in the
IDL language. If the FUNCTIONS keyword is also set, ROUTINE_INFO returns a
list of all IDL built-in internal functions.
IDL Reference Guide ROUTINE_INFO

1200
UNRESOLVED

Set this keyword to return a string array listing procedures that are referenced in any
currently-compiled procedure or function, but which are themselves not yet
compiled. If the FUNCTIONS keyword is also set, ROUTINE_INFO returns a list of
functions that are referenced but not yet compiled.

Note that specifying the SYSTEM keyword along with this keyword will generate an
error.

VARIABLES

Set this keyword to return a string array listing variables defined in the procedure or
function.

You must supply the Routine argument when using this keyword. Note that
specifying the SYSTEM keyword along with this keyword will generate an error.

See Also

RESOLVE_ALL, RESOLVE_ROUTINE
ROUTINE_INFO IDL Reference Guide

1201
RS_TEST

The RS_TEST function tests the hypothesis that two sample populations X and Y
have the same mean of distribution against the hypothesis that they differ. X and Y
may be of different lengths. The result is a two-element vector containing the nearly-
normal test statistic Z and the one-tailed probability of obtaining a value of Z or
greater. This type of test is often referred to as the “Wilcoxon Rank-Sum Test” or the
“Mann-Whitney U-Test.”

The Mann-Whitney statistics for X and Y are defined as follows:

where Nx and Ny are the number of elements in X and Y, respectively, and Wx and Wy
are the rank sums for X and Y, respectively. The test statistic Z, which closely follows
a normal distribution for sample sizes exceeding 10 elements, is defined as follows:

This routine is written in the IDL language. Its source code can be found in the file
rs_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = RS_TEST(X, Y [, UX=variable] [, UY=variable])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An m-element integer, single-, or double-precision floating-point vector.

Ux NxNy

Nx Nx 1+()
2

---------------------------- Wx–+=

Uy NxNy

Ny Ny 1+()
2

---------------------------- Wy–+=

Z
Ux NxNy() 2⁄–

NxNy Nx Ny 1+ +()() 12⁄
---=
IDL Reference Guide RS_TEST

1202
Keywords

UX

Set this keyword to a named variable that will contain the Mann-Whitney statistic for
X.

UY

Set this keyword to a named variable that will contain the Mann-Whitney statistic for
Y.

Example

; Define two sample populations:
X = [-14, 3, 1, -16, -21, 7, -7, -13, -22, -17, -14, -8, $

7, -18, -13, -9, -22, -25, -24, -18, -13, -13, -18, -5]
Y = [-18, -9, -16, -14, -3, -9, -16, 10, -11, -3, -13, $

-21, -2, -11, -16, -12, -13, -6, -9, -7, -11, -9]

; Test the hypothesis that two sample populations, {xi, yi}, have
; the same mean of distribution against the hypothesis in that they
; differ at the 0.05 significance level:
PRINT, RS_TEST(X, Y, UX = ux, UY = uy)

; Print the Mann-Whitney statistics:
PRINT, 'Mann-Whitney Statistics: Ux = ', ux, ', Uy = ', uy

IDL prints:

[1.45134, 0.0733429]
Mann-Whitney Statistics: Ux = 330.000, Uy = 198.000

The computed probability (0.0733429) is greater than the 0.05 significance level and
therefore we do not reject the hypothesis that X and Y have the same mean of
distribution.

See Also

FV_TEST, KW_TEST, S_TEST, TM_TEST
RS_TEST IDL Reference Guide

1203
S_TEST

The S_TEST function tests the hypothesis that two sample populations X and Y have
the same mean of distribution against the hypothesis that they differ. The result is a
two-element vector containing the maximum number of signed differences between
corresponding pairs of xi and yi and its one-tailed significance. This type of test is
often referred to as the “Sign Test.”

This routine is written in the IDL language. Its source code can be found in the file
s_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = S_TEST(X, Y [, ZDIFF=variable])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An n-element integer, single-, or double-precision floating-point vector.

Keywords

ZDIFF

Set this keyword to a named variable that will contain the number of differences
between corresponding pairs of xi and yi resulting in zero. Paired data resulting in a
difference of zero are excluded from the ranking and the sample size is
correspondingly reduced.

Example

; Define two n-element sample populations:
X = [47, 56, 54, 49, 36, 48, 51, 38, 61, 49, 56, 52]
Y = [71, 63, 45, 64, 50, 55, 42, 46, 53, 57, 75, 60]

; Test the hypothesis that the two sample populations have the same
; mean of distribution against the hypothesis that they differ at
; the 0.05 significance level:
PRINT, S_TEST(X, Y, ZDIFF = zdiff)
IDL Reference Guide S_TEST

1204
IDL prints:

[9.00000, 0.0729981]

The computed probability (0.0729981) is greater than the 0.05 significance level and
therefore we do not reject the hypothesis that X and Y have the same mean of
distribution.

See Also

FV_TEST, KW_TEST, MD_TEST, RS_TEST, TM_TEST
S_TEST IDL Reference Guide

1205
SAVE

The SAVE procedure saves variables, system variables, and IDL routines in a file
using the XDR (eXternal Data Representation) format for later recovery by
RESTORE. Note that variables and routines cannot be saved in the same file. Note
also that save files containing routines may not be compatible between different
versions of IDL, but that files containing data are always backwards-compatible.

Syntax

SAVE [, Var1, ..., Varn] [, /ALL] [, /COMM, /VARIABLES] [, /COMPRESS]
[, FILENAME=string] [, ROUTINES] [, /SYSTEM_VARIABLES] [, /VERBOSE]

Arguments

Varn

Optional named variables that are to be saved.

Keywords

ALL

Set this keyword to save all common blocks, system variables, and local variables
from the current IDL session.

Note
Routines and variables cannot be saved in the same file. Setting the ALL keyword
does not save routines.

COMM

Set this keyword to save all main level common block definitions. Note that setting
this keyword does not cause the contents of the common block to be saved unless the
VARIABLES keyword is also set.

COMPRESS

If COMPRESS is set, IDL writes all data to the SAVE file using the ZLIB
compression library to reduce its size. IDL's save file compression support is based
on the freely available ZLIB library version 1.1.3 by Mark Adler and Jean-loup
Gailly.
IDL Reference Guide SAVE

1206
Compressed save files can be restored by the RESTORE procedure in exactly the
same manner as any other save file. The only visible differences are that the files will
be smaller, and writing and reading them will be somewhat slower under typical
conditions.

FILENAME

A string containing the name of the file into which the IDL objects should be saved.
If this keyword is not specified, the file idlsave.dat is used.

ROUTINES

Set this keyword to save user defined procedures and functions in a machine
independent, binary form. If parameters are present, they must be strings containing
the names of the procedures and/or functions to be saved. If no parameters are
present, all compiled routines are saved. If you are using VMS, see the XDR keyword
below. Routines and variables cannot be saved in the same file.

Warning
Because SAVE stores routines in a binary format, save files containing routines are
not guaranteed to be compatible between successive versions of IDL. You will not
be able to RESTORE save files containing routines if they are made with
incompatible versions of IDL. In this case, you should recompile your original code
with the newer version of IDL. Save files containing data will always be restorable.

SYSTEM_VARIABLES

Set this keyword to save the current state of all system variables.

Warning
Saving system variables is not recommended, as the structure may change between
versions of IDL.

VARIABLES

Set this keyword to save all variables in the current program unit. This option is the
default.

VERBOSE

Set this keyword to print an informative message for each saved object.
SAVE IDL Reference Guide

1207
Example

Save the status of all currently-defined variables in the file variables1.dat by entering:

SAVE, /VARIABLES, FILENAME = 'variables1.dat'

The variables can be restored with the RESTORE procedure. Save the user
procedures MYPROC and MYFUN:

SAVE, /ROUTINES, 'MYPROC', 'MYFUN'

See Also

JOURNAL, RESOLVE_ALL, RESTORE
IDL Reference Guide SAVE

1208
SAVGOL

The SAVGOL function returns the coefficients of a Savitzky-Golay smoothing filter,
which can then be applied using the CONVOL function. The Savitzky-Golay
smoothing filter, also known as least squares or DISPO (digital smoothing
polynomial), can be used to smooth a noisy signal.

The filter is defined as a weighted moving average with weighting given as a
polynomial of a certain degree. The returned coefficients, when applied to a signal,
perform a polynomial least-squares fit within the filter window. This polynomial is
designed to preserve higher moments within the data and reduce the bias introduced
by the filter. The filter can use any number of points for this weighted average.

This filter works especially well when the typical peaks of the signal are narrow. The
heights and widths of the curves are generally preserved.

Tip
You can use this function in conjunction with the CONVOL function for smoothing
and optionally for numeric differentiation.

This routine is written in the IDL language. Its source code can be found in the file
savgol.pro in the lib subdirectory of the IDL distribution.

SAVGOL is based on the Savitzky-Golay Smoothing Filters described in section
14.8 of Numerical Recipes in C: The Art of Scientific Computing (Second Edition),
published by Cambridge University Press, and is used by permission.

Syntax

Result = SAVGOL(Nleft, Nright, Order, Degree [, /DOUBLE])

Return Value

This function returns an array of floating-point numbers that are the coefficients of
the smoothing filter.

Arguments

Nleft

An integer specifying the number of data points to the left of each point to include in
the filter.
SAVGOL IDL Reference Guide

1209
Nright

An integer specifying the number of data points to the right of each point to include
in the filter.

Note
Larger values of Nleft and Nright produce a smoother result at the expense of
flattening sharp peaks.

Order

An integer specifying the order of the derivative desired. For smoothing, use order 0.
To find the smoothed first derivative of the signal, use order 1, for the second
derivative, use order 2, etc.

Note
Order must be less than or equal to the value specified for Degree.

Degree

An integer specifying the degree of smoothing polynomial. Typical values are 2 to 4.
Lower values for Degree will produce smoother results but may introduce bias,
higher values for Degree will reduce the filter bias, but may “over fit” the data and
give a noisier result.

Note
Degree must be less than the filter width (Nleft + Nright + 1).

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Tip
The DOUBLE keyword is recommended for Degree greater than 9.
IDL Reference Guide SAVGOL

1210
Example

The following example creates a noisy 400-point vector with 4 Gaussian peaks of
decreasing width. It then plots the original vector, the vector smoothed with a 33-
point Boxcar smoother (the SMOOTH function), and the vector smoothed with 33-
point wide Savitzky-Golay filter of degree 4. The bottom plot shows the first
derivative of the noisy signal and the first derivative using the Savitzky-Golay filter
of degree 4:

n = 401 ; number of points
np = 4 ; number of peaks
; Form the baseline:
y = REPLICATE(0.5, n)
; Index the array:
x = FINDGEN(n)
; Add each Gaussian peak:
FOR i=0, np-1 DO BEGIN
 c = (i + 0.5) * FLOAT(n)/np ; Center of peak
 peak = -(3 * (x-c) / (75. / 1.5 ^ i))^2
 ; Add Gaussian. Cutoff of -50 avoids underflow errors for
 ; tiny exponentials:
 y = y + EXP(peak>(-50))
ENDFOR
; Add noise:
y1 = y + 0.10 * RANDOMN(-121147, n)

!P.MULTI=[0,1,3]

; Boxcar smoothing width 33:
PLOT, x, y1, TITLE='Signal+Noise; Smooth (width33)'
OPLOT, SMOOTH(y1, 33, /EDGE_TRUNCATE), THICK=3

; Savitzky-Golay with 33, 4th degree polynomial:
savgolFilter = SAVGOL(16, 16, 0, 4)
PLOT, x, y1, TITLE='Savitzky-Golay (width 33, 4th degree)'
OPLOT, x, CONVOL(y1, savgolFilter, /EDGE_TRUNCATE), THICK=3

; Savitzky-Golay width 33, 4th degree, 1st derivative:
savgolFilter = SAVGOL(16, 16, 1, 4)
PLOT, x, DERIV(y1), YRANGE=[-0.2, 0.2], TITLE=$
 'First Derivative: Savitzky-Golay(width 33, 4th degree, order 1)'
OPLOT, x, CONVOL(y1, savgolFilter, /EDGE_TRUNCATE), THICK=3

The following is the resulting plot. Notice how the Savitzky-Golay filter preserves
the high peaks but does not do as much smoothing on the flatter regions. Note also
SAVGOL IDL Reference Guide

1211
that the Savitzky-Golay filter is able to construct a good approximation of the first
derivative.

See Also

CONVOL, DIGITAL_FILTER, SMOOTH

Figure 19: SAVGOL Example
IDL Reference Guide SAVGOL

1212
SCALE3

The SCALE3 procedure sets up transformation and scaling parameters for basic 3D
viewing. This procedure is similar to SURFR and SCALE3D, except that the data
ranges must be specified and the scaling does not vary with rotation. Results are
stored in the system variables !P.T, !X.S, !Y.S, and !Z.S.

This routine is written in the IDL language. Its source code can be found in the file
scale3.pro in the lib subdirectory of the IDL distribution.

Syntax

SCALE3 [, XRANGE=vector] [, YRANGE=vector] [, ZRANGE=vector]
[, AX=degrees] [, AZ=degrees]

Keywords

XRANGE

A two-element vector containing the minimum and maximum X values. If omitted,
the X-axis scaling remains unchanged.

YRANGE

A two-element vector containing the minimum and maximum Y values. If omitted,
the Y-axis scaling remains unchanged.

ZRANGE

A two-element vector containing the minimum and maximum Z values. If omitted,
the Z-axis scaling remains unchanged.

AX

Angle of rotation about the X axis. The default is 30 degrees.

AZ

Angle of rotation about the Z axis. The default is 30 degrees.

Example

Set up a 3D transformation where the data range is 0 to 20 for each of the 3 axes and
the viewing area is rotated 20 degrees about the X axis and 55 degrees about the Z
axis:
SCALE3 IDL Reference Guide

1213
SCALE3, XRANGE=[0, 20], YRANGE=[0, 20], ZRANGE=[0, 20], AX=20,
AZ=55

See Also

SCALE3D, SURFR, T3D
IDL Reference Guide SCALE3

1214
SCALE3D

The SCALE3D procedure scales the 3D unit cube (a cube with the length of each side
equal to 1) into the viewing area. Eight data points are created at the vertices of the
3D unit cube. The vertices are then transformed by the value of the system variable
!P.T. The system is translated to bring the minimum (x,y,z) point to the origin, and
then scaled to make each coordinate’s maximum value equal to 1. The !P.T system
variable is modified as a result.

This routine is written in the IDL language. Its source code can be found in the file
scale3D.pro in the lib subdirectory of the IDL distribution.

Syntax

SCALE3D

See Also

SCALE3, SURFR, T3D
SCALE3D IDL Reference Guide

1215
SEARCH2D

The SEARCH2D function finds “objects” or regions of similar data values within a
two-dimensional array. Given a starting location and a range of values to search for,
SEARCH2D finds all the cells within the array that are within the specified range and
have some path of connectivity through these cells to the starting location. In addition
to searching for cells within a global range of data values, SEARCH2D can also
search for adjacent cells whose values deviate from their neighbors within specified
tolerances.

SEARCH2D returns a longword array that contains a list of the array subscripts that
define the located object or region. The original X and Y indices of the array
subscripts returned by SEARCH2D can be found with the following IDL code:

index_y = Result / (SIZE(Array))(1)
index_x = Result - (index_y * (SIZE(Array))(1))

where Result is the array returned by SEARCH2D and Array is the original input
array. The object within Array can be subscripted as Array(Region) or
Array(index_x, index_y).

This routine is written in the IDL language. Its source code can be found in the file
search2d.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = SEARCH2D(Array, Xpos, Ypos, Min_Val, Max_Val [, /DECREASE,
/INCREASE [, LPF_BAND=integer{≥3}]] [, /DIAGONAL])

Arguments

Array

A two-dimensional array, of any data type, to be searched.

Xpos

The X coordinate (dimension 0 of Array) of the starting location.

Ypos

The Y coordinate (dimension 1 of Array) of the starting location.
IDL Reference Guide SEARCH2D

1216
Min_Val

The minimum data value for which to search. All array subscripts of all cells that are
connected to the starting cell, and have a value between Min_Val and Max_Val
(inclusive) are returned.

Max_Val

The maximum data value for which to search.

Keywords

DECREASE

This keyword and the INCREASE keyword allow you to compensate for changing
intensities of data values within an object. An edge-enhanced copy of Array is made
and compared to the orginal array if this keyword is set. When DECREASE or
INCREASE is set, any adjacent cells are found if their corresponding data values in
the edge enhanced array are greater than DECREASE and less than INCREASE. In
any case, the adjacent cells will never be selected if their data values are not between
Min_Val and Max_Val. The default for this keyword is 0.0 if INCREASE is
specified.

INCREASE

This keyword and the DECREASE keyword allow you to compensate for changing
intensities of data values within an object. An edge-enhanced copy of Array is made
and compared to the orginal array if this keyword is set. When DECREASE or
INCREASE is set, any adjacent cells are found if their corresponding data values in
the edge enhanced array are greater than DECREASE and less than INCREASE. In
any case, the adjacent cells will never be selected if their data values are not between
Min_Val and Max_Val. The default for this keyword is 0.0 if DECREASE is
specified.

LPF_BAND

Set this keyword to an integer value of 3 or greater to perform low-pass filtering on
the edge-enhanced array. The value of LPF_BAND is used as the width of the
smoothing window. This keyword is only effective when the DECREASE or
INCREASE keywords are also specified. The default is no smoothing.

DIAGONAL

Set this keyword to cause SEARCH2D to find cells meeting the search criteria whose
surrounding squares share a common corner. Normally, cells are considered adjacent
SEARCH2D IDL Reference Guide

1217
only when squares surrounding the cells share a common edge. Setting this option
requires more memory and execution time.

Example

Find all the indices corresponding to an object in an image:

; Create an image with different valued regions:
img = FLTARR(512, 512)
img[3:503, 9:488] = 0.7
img[37:455, 18:438] = 0.5
img[144:388, 90:400] = 0.7
img[200:301, 1:255] = 1.0
img[155:193, 333:387] = 0.3
TVSCL, img;Display the image.

; Search for an object starting at (175, 300) whose data values are
; between (0.6) and (0.8):
region = SEARCH2D(img, 175, 300, 0.6, 0.8, /DIAGONAL)

; Scale the background cells into the range 0 to 127:
img = BYTSCL(img, TOP=127B)

; Highlight the object region by setting it to 255:
img[region] = 255B

; Display the array with the highlighted object in it:
TVSCL, img

See Also

SEARCH3D
IDL Reference Guide SEARCH2D

1218
SEARCH3D

The SEARCH3D function finds “objects” or regions of similar data values within a
3D array of data. Given a starting location and a range of values to search for,
SEARCH3D finds all the cells within the volume that are within the specified range
of values and have some path of connectivity through these cells to the starting
location. In addition to searching for cells within a global range of data values,
SEARCH3D can also search for adjacent cells whose values deviate from their
neighbors within specified tolerances.

SEARCH3D returns a longword array that contains a list of the array subscripts that
define the selected object or region. The original X and Y indices of the array
subscripts returned by SEARCH3D can be found with the following IDL code:

S = SIZE(Array)
index_z = Result / (S[1] * S[2])
index_y = (Result - (index_z * S[1] * S[2])) / S[1]
index_x = (Result - (index_z * S[1] * S[2])) - (index_y * S[1])

where Result is the array returned by SEARCH3D and Array is the original input
volume. The object within Array can be subscripted as Array[Region] or
Array[index_x, index_y, index_z].

This routine is written in the IDL language. Its source code can be found in the file
search3d.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = SEARCH3D(Array, Xpos, Ypos, Zpos, Min_Val, Max_Val [, /DECREASE,
/INCREASE [, LPF_BAND=integer{≥3}]] [, /DIAGONAL])

Arguments

Array

The three-dimensional array, of any data type except string, to be searched.

Xpos

The X coordinate (dimension 0 or Array) of the starting location.

Ypos

The Y coordinate (dimension 1 of Array) of the starting location.
SEARCH3D IDL Reference Guide

1219
Zpos

The Z coordinate (dimension 2 of Array) of the starting location.

Min_Val

The minimum data value for which to search. All array subscripts of all the cells that
are connected to the starting cell, and have a value between Min_Val and Max_Val
(inclusive) are returned.

Max_Val

The maximum data value for which to search.

Keywords

DECREASE

This keyword and the INCREASE keyword allow you to compensate for changing
intensities of data values within an object. An edge-enhanced copy of Array is made
and compared to the orginal array if this keyword is set. When DECREASE or
INCREASE is set, any adjacent cells are found if their corresponding data values in
the edge enhanced array are greater than DECREASE and less than INCREASE. In
any case, the adjacent cells will never be selected if their data values are not between
Min_Val and Max_Val. The default for this keyword is 0.0 if INCREASE is
specified.

INCREASE

This keyword and the DECREASE keyword allow you to compensate for changing
intensities of data values within an object. An edge-enhanced copy of Array is made
and compared to the orginal array if this keyword is set. When DECREASE or
INCREASE is set, any adjacent cells are found if their corresponding data values in
the edge enhanced array are greater than DECREASE and less than INCREASE. In
any case, the adjacent cells will never be selected if their data values are not between
Min_Val and Max_Val. The default for this keyword is 0.0 if DECREASE is
specified.

LPF_BAND

Set this keyword to an integer value of 3 or greater to perform low-pass filtering on
the edge-enhanced array. The value of LPF_BAND is used as the width of the
smoothing window. This keyword is only effective when the DECREASE or
INCREASE keywords are also specified. The default is no smoothing.
IDL Reference Guide SEARCH3D

1220
DIAGONAL

Set this keyword to cause SEARCH3D to find cells meeting the search criteria whose
surrounding cubes share a common corner or edge. Normally, cells are considered
adjacent only when cubes surrounding the cells share a common edge. Setting this
option requires more memory and execution time.

Example

Find all the indices corresponding to an object contained in a 3D array:

; Create some data.
vol = RANDOMU(s, 40, 40, 40)
vol[3:13, 1:15, 17:33] = 1.3
vol[15:25, 5:25, 15:25] = 0.2
vol[5:30,17:38,7:28] = 1.3
vol[9:23, 16:27, 7:33] = 1.5

; Search for an object starting at (6, 22, 16) whose data values
; are between (1.2) and (1.4):
region = SEARCH3D(vol, 6, 22, 16, 1.2, 1.4, /DIAGONAL)

; Scale the background cells into the range 0 to 127:
vol = BYTSCL(vol, TOP=127B)

; Highlight the object region by setting it to 255:
vol[Region] = 255B
WINDOW, 0, XSIZE=640, YSIZE=512, RETAIN=2

; Set up a 3-D view:
CREATE_VIEW, XMAX=39, YMAX=39, ZMAX=39, AX=(-30), AZ=30, ZOOM=0.8

; Display the volume with the highlighted object in it:
TVSCL, PROJECT_VOL(vol, 64, 64, 40, DEPTH_Q=0.4)

See Also

SEARCH2D
SEARCH3D IDL Reference Guide

1221
SET_PLOT

The SET_PLOT procedure sets the output device used by the IDL graphics
procedures. Keyword parameters control how the color tables are transferred to the
newly selected graphics device. SET_PLOT performs the following actions:

• It sets the read-only system variable !D to reflect the configuration of the new
device.

• It sets the default color !P.COLOR to the maximum color index minus one or,
in the case of devices with white backgrounds, such as PostScript, to 0 (black).

• If the COPY keyword is set, the device color tables are copied directly from
IDL’s internal color tables. If the new device’s color tables contain more
indices than those of the old device, the new device’s tables are not completely
filled.

• If the INTERPOLATE keyword is set, the internal color tables are interpolated
to fill the range of the new device.

• It sets the clipping rectangle to the entire device surface.

Warning
After calling SET_PLOT to change graphics devices, the scaling contained in the
axis structures !X, !Y, and !Z is invalid. Any routines that rely on data coordinates
should not be called until a new data coordinate system has been established. Be
careful when switching devices as the number of color indices frequently differs
between devices. When in doubt, reload the color table of the new device explicitly.

Syntax

SET_PLOT, Device [, /COPY] [, /INTERPOLATE]

Arguments

Device

A scalar string containing the name of the device to use. The case of Device is
ignored by IDL. See Appendix B, “IDL Graphics Devices” for a list of device names.
IDL Reference Guide SET_PLOT

1222
Keywords

COPY

Set this keyword to copy the device’s color table from the internal color table,
preserving the current color mapping. The default is not to load the color table upon
selection.

Warning
Unless this keyword is set, IDL’s internal color tables will incorrectly reflect the
state of the device’s color tables until they are reloaded by TVLCT or the LOADCT
procedure. Assuming that the previously-selected device’s color table contains M
elements, and the new device’s color table contains N elements, then the minimum
of M and N elements are loaded.

INTERPOLATE

Set this keyword to indicate that the current contents of the internal color table should
be interpolated to cover the range of the newly-selected device. Otherwise, the
internal color tables are not changed.

Example

Change the IDL graphics device to PostScript by entering:

SET_PLOT, 'PS'

After changing the plotting device, all graphics commands are sent to that device
until changed again by another use of the SET_PLOT routine.
SET_PLOT IDL Reference Guide

1223
SET_SHADING

The SET_SHADING procedure modifies the light source shading parameters that
affect the output of SHADE_SURF and POLYSHADE. Parameters can be changed
to control the light-source direction, shading method, and the rejection of hidden
surfaces. SET_SHADING first resets the shading parameters to their default values.
The parameter values specified in the call then overwrite the default values. To reset
all parameters to their default values, simply call this procedure with no parameters.

Syntax

SET_SHADING [, /GOURAUD] [, LIGHT=[x, y, z]] [, /REJECT]
[, VALUES=[darkest, brightest]]

Arguments

None.

Keywords

GOURAUD

This keyword controls the method of shading the surface polygons by the
POLYSHADE procedure. The SHADE_SURF procedure always uses the Gouraud
method. Set this keyword to a nonzero value (the default), to use Gouraud shading.
Set this keyword to zero to shade each polygon with a constant intensity.

Gouraud shading interpolates intensities from each vertex along each edge. Then,
when scan converting the polygons, the shading is interpolated along each scan line
from the edge intensities. Gouraud shading is slower than constant shading but
usually results in a more realistic appearance.

LIGHT

A three-element vector that specifies the direction of the light source. The default
light source vector is [0,0,1], with the light rays parallel to the Z axis.

REJECT

Set this keyword (the default) to reject polygons as being hidden if their vertices are
ordered in a clockwise direction as seen by the viewer. This keyword should always
be set when rendering enclosed solids whose original vertex lists are in
counterclockwise order. When rendering surfaces that are not closed or are not in
IDL Reference Guide SET_SHADING

1224
counterclockwise order this keyword can be set to zero although shading anomalies
at boundaries between visible and hidden surfaces may occur.

VALUES

A two-element array that specifies the range of pixel values (color indices) to use.
The first element is the color index for the darkest pixel. The second element is the
color index for the brightest pixel. For example, to render a shaded surface with the
darkest shade set to pixel value 100 and the brightest value set to 150, use the
commands:

SET_SHADING, VALUES=[100, 150]
SHADE_SURF, dataset

Example

Change the light source so that the light rays are parallel to the X axis:

SET_SHADING, LIGHT = [1, 0, 0]

See Also

POLYSHADE, SHADE_SURF
SET_SHADING IDL Reference Guide

1225
SET_SYMBOL

The SET_SYMBOL procedure defines a DCL (Digital Command Language)
interpreter symbol for the current process. SET_SYMBOL is available only under
VMS.

Syntax

SET_SYMBOL, Name, Value [, TYPE={1 | 2}]

Arguments

Name

A scalar string containing the name of the symbol to be defined.

Value

A scalar string containing the value with which Name is defined.

Keywords

TYPE

Indicates the table into which Name will be defined. Setting TYPE to 1 specifies the
local symbol table, while a value of 2 specifies the global symbol table. The default is
the local table.

See Also

DELLOG, DELETE_SYMBOL, SETLOG
IDL Reference Guide SET_SYMBOL

1226
SETENV

The SETENV procedure adds or changes an environment string in the process
environment.

Note
This procedure is only available for UNIX and Windows platforms.

Syntax

SETENV, Environment_Expression

Arguments

Environment_Expression

A scalar string containing an environment expression to be added to the environment.

Example

Change the current shell variable by entering:

SETENV,'SHELL=/bin/sh'

Make sure to eliminate any whitespace around the equal sign:

; This is an incorrect usage--there are spaces around the equal
; sign:
SETENV, 'VAR = H:\rsi'

; This is correct--VAR is set to H:\rsi:
SETENV, 'VAR=H:\rsi'

See Also

DELLOG, GETENV, SETLOG
SETENV IDL Reference Guide

1227
SETLOG

The SETLOG procedure defines a logical name.

Note
This procedure is only available for the VMS platform.

Syntax

SETLOG, Lognam, Value [, /CONCEALED] [, /CONFINE] [, /NO_ALIAS]
[, TABLE=string] [, /TERMINAL]

Arguments

Lognam

A scalar string containing the name of the logical to be defined.

Value

A string containing the value to which the logical will be set. If Value is a string
array, Lognam is defined as a multi-valued logical where each element of Value
defines one of the equivalence strings.

Keywords

CONCEALED

If this keyword is set, RMS (VMS Record Management Services) interprets the
equivalence name as a device name.

CONFINE

If this keyword is set, the logical name is not copied from the IDL process to its
spawned subprocesses.

NO_ALIAS

If this keyword is set, the logical name cannot be duplicated in the same logical table
at an outer access mode. If another logical name with the same name already exists at
an outer access mode, it is deleted. See the VMS System Services Manual for
additional information on logical names and access modes.
IDL Reference Guide SETLOG

1228
TABLE

A scalar string containing the name of the logical table into which Lognam will be
entered. If TABLE is not specified, LNM$PROCESS_TABLE is used.

TERMINAL

If this keyword is set, when attempting to translate the logical, further iterative
logical name translation on the equivalence name is not to be performed.

See Also

DELETE_SYMBOL, DELLOG, SETENV, SET_SYMBOL
SETLOG IDL Reference Guide

1229
SETUP_KEYS

The SETUP_KEYS procedure sets function keys for use with UNIX versions of IDL
when used with the standard tty command interface.

Under UNIX, the number of function keys, their names, and the escape sequences
they send to the host computer vary enough between various keyboards that IDL
cannot be written to understand all keyboards. Therefore, IDL provides a very
general routine named DEFINE_KEY that allows the user to specify the names and
escape sequences of function keys.

SETUP_KEYS provides a convenient interface to DEFINE_KEY, using user input
(via the keywords described below), the TERM environment variable and the type of
machine the current IDL is running on to determine what kind of keyboard you are
using, and then uses DEFINE_KEY to enter the proper definitions for the function
keys.

The new mappings for the keys can be viewed using the command

HELP, /KEYS.

The need for SETUP_KEYS has diminished in recent years because most UNIX
terminal emulators have adopted the ANSI standard for function keys, as represented
by VT100 terminals and their many derivatives, as well as xterm and the newer CDE
based dtterm.

The current version of IDL already knows the function keys of such terminals, so
SETUP_KEYS is not required. However, SETUP_KEYS is still needed to define
keys on non-ANSI terminals such as the Sun shelltool, SGI Iris-ansi terminal
emulator, or IBM’s aixterm.

IDL does not support the function keys from the hpterm terminal emulator supplied
on HP systems. Hpterm uses non ANSI-standard escape sequences which IDL cannot
parse. Research Systems recommends the use of the xterm or dtterm terminal
emulators instead.

This routine is written in the IDL language. Its source code can be found in the file
setup_keys.pro in the lib subdirectory of the IDL distribution.

Syntax

SETUP_KEYS [, /EIGHTBIT] [, /SUN | , /VT200 | , /HP9000 | , /MIPS | , /PSTERM
| , /SGI] [, /APP_KEYPAD] [, /NUM_KEYPAD]
IDL Reference Guide SETUP_KEYS

1230
Keywords

Note
If no keyword is specified, SETUP_KEYS uses !VERSION to determine the type
of machine running IDL. It assumes that the keyboard involved is of the same type
(this assumption is correct).

ANSI

Set this keyword to establish function key definitions for ANSI keyboards.

EIGHTBIT

Set this keyword to use the 8-bit versions of the escape codes (instead of the default
7-bit) when establishing VT200 function key definitions.

SUN

Set this keyword to establish function key definitions for a Sun3 keyboard.

VT200

Set this keyword to establish function key definitions for a DEC VT200 keyboard.

HP9000

Set this keyword to establish function key definitions for an HP 9000 series 300
keyboard. Although the HP 9000 series 300 supports both xterm and hpterm
windows, IDL supports only user-definable key definitions in xterm windows—
hpterm windows use non-standard escape sequences which IDL does not attempt to
handle.

IBM

Set this keyword to establish function key definitions for IBM keyboards.

MIPS

Set this keyword to establish function key definitions for a Mips RS series keyboard.

SGI

Set this keyword to establish function key definitions for SGI keyboards.
SETUP_KEYS IDL Reference Guide

1231
APP_KEYPAD

Set this keyword to define escape sequences for the group of keys in the numeric
keypad, enabling these keys to be programmed within IDL.

NUM_KEYPAD

Set this keyword to disable programmability of the numeric keypad.

See Also

DEFINE_KEY
IDL Reference Guide SETUP_KEYS

1232
SFIT

The SFIT function determines a polynomial fit to a surface and returns a fitted array.
The function fitted is:

This routine is written in the IDL language. Its source code can be found in the file
sfit.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = SFIT(Data, Degree [, KX=variable])

Arguments

Data

The two-dimensional array of data to fit. The sizes of the dimensions may be
unequal.

Degree

The maximum degree of fit (in one dimension).

Keywords

KX

Set this keyword to a named variable that will contain the array of coefficients for a
polynomial function of x and y to fit data. This parameter is returned as a Degree+1
by Degree+1 array.

Example

; Create a grid from zero to six radians in the X and Y directions:
X = (FINDGEN(61)/10) # REPLICATE(1,61)
Y = TRANSPOSE(X)

; Evaluate a function at each point:
F = -SIN(2*X) + COS(Y/2)

; Compute a sixth-degree polynomial fit to the function data:
result = SFIT(F, 6)

f x y,() kxj i, xi y j⋅ ⋅∑=
SFIT IDL Reference Guide

1233
; Display the original function on the left and the fitted function
; on the right, using identical axis scaling:
WINDOW, XSIZE = 800, YSIZE = 400

; Set up side-by-side plots:
!P.MULTI = [0, 2, 1]

; Set background color to white:
!P.BACKGROUND = 255

; Set plot color to black:
!P.COLOR = 0

SURFACE, F, X, Y, ZRANGE = [-3, 3], ZSTYLE = 1
SURFACE, result, X, Y

The following figure shows the result of this example:

See Also

CURVEFIT, GAUSSFIT, LINFIT, LMFIT, POLY_FIT, REGRESS, SVDFIT

Figure 20: The Original Function (Left) and the Fitted Function (Right)
IDL Reference Guide SFIT

1234
SHADE_SURF

The SHADE_SURF procedure creates a shaded-surface representation of a regular or
nearly-regular gridded surface with shading from either a light source model or from
a user-specified array of intensities. This procedure and its parameters are similar to
SURFACE. Given a regular or near-regular grid of elevations it produces a shaded-
surface representation of the data with hidden surfaces removed.

The SET_SHADING procedure can be used to control the direction of the light
source and other shading parameters.

If the graphics output device has scalable pixels (e.g., PostScript), the output image is
scaled so that its largest dimension is less than or equal to 512 (unless the PIXELS
keyword is set to some other value). This default resolution may not be high enough
for some datasets. If your output looks jagged or “stair-stepped”, try specifying a
larger value with the PIXELS keyword.

When outputting to a device that prints black on a white background, (e.g.,
PostScript), pixels that contain the background color index of 0 are set to white.

Restrictions

If the (X, Y) grid is not regular or nearly regular, errors in hidden line removal will
occur. If the T3D keyword is set, the 3D to 2D transformation matrix contained in
!P.T must project the Z axis to a line parallel to the device Y axis, or errors will occur.
The SHADE_SURF_IRR procedure can be used to render many datasets that do not
meet these requirements. Irregularly-gridded data can also be made interpolated to a
regular grid using the TRIGRID and TRIANGULATE routines.

Syntax

SHADE_SURF, Z [, X, Y] [, AX=degrees] [, AZ=degrees] [, IMAGE=variable]
[, MAX_VALUE=value] [, MIN_VALUE=value] [, PIXELS=pixels] [, /SAVE]
[, SHADES=array] [, /XLOG] [, /YLOG]

Graphics Keywords: [, CHARSIZE=value] [, CHARTHICK=integer]
[, COLOR=value][, /DATA | , /DEVICE | , /NORMAL] [, FONT=integer]
[, /NODATA] [, POSITION=[X0, Y0, X1, Y1]] [, SUBTITLE=string] [, /T3D]
[, THICK=value] [, TICKLEN=value] [, TITLE=string]
[, {X | Y | Z}CHARSIZE=value]
[, {X | Y | Z}GRIDSTYLE=integer{0 to 5}]
[, {X | Y | Z}MARGIN=[left, right]]
[, {X | Y | Z}MINOR=integer]
SHADE_SURF IDL Reference Guide

1235
[, {X | Y | Z}RANGE=[min, max]]
[, {X | Y | Z}STYLE=value]
[, {X | Y | Z}THICK=value]
[, {X | Y | Z}TICKFORMAT=string]
[, {X | Y | Z}TICKINTERVAL= value]
[, {X | Y | Z}TICKLAYOUT=scalar]
[, {X | Y | Z}TICKLEN=value]
[, {X | Y | Z}TICKNAME=string_array]
[, {X | Y | Z}TICKS=integer]
[, {X | Y | Z}TICKUNITS=string]
[, {X | Y | Z}TICKV=array]
[, {X | Y | Z}TICK_GET=variable]
[, {X | Y | Z}TITLE=string]
[, ZVALUE=value{0 to 1}]

Arguments

Z

The two-dimensional array to be displayed. If X and Y are provided, the surface is
plotted as a function of the (X, Y) locations specified by their contents. Otherwise, the
surface is generated as a function of the array index of each element of Z.

This argument is converted to double-precision floating-point before plotting. Plots
created with SHADE_SURF are limited to the range and precision of double-
precision floating-point values.

X

A vector or two-dimensional array specifying the X coordinates of the grid. If this
argument is a vector, each element of X specifies the X coordinate for a column of Z
(e.g., X[0] specifies the X coordinate for Z[0,*]). If X is a two-dimensional array,
each element of X specifies the X coordinate of the corresponding point in Z (Xij
specifies the X coordinate for Zij).

This argument is converted to double-precision floating-point before plotting.

Y

A vector or two-dimensional array specifying the Y coordinates of the grid. If this
argument is a vector, each element of Y specifies the Y coordinate for a row of Z
(e.g., Y[0] specifies the Y coordinate for Z[*,0]). If Y is a two-dimensional array,
each element of Y specifies the Y coordinate of the corresponding point in Z (Yij
specifies the Y coordinate for Zij).
IDL Reference Guide SHADE_SURF

1236
This argument is converted to double-precision floating-point before plotting.

Keywords

AX

This keyword specifies the angle of rotation, about the X axis, in degrees towards the
viewer. This keyword is effective only if !P.T3D and the T3D keyword are not set. If
!P.T3D is set, the three-dimensional to two-dimensional transformation used by
SURFACE is contained in the 4 by 4 array !P.T.

The surface represented by the two-dimensional array is first rotated, AZ (see below)
degrees about the Z axis, then by AX degrees about the X axis, tilting the surface
towards the viewer (AX > 0), or away from the viewer.

The AX and AZ keyword parameters default to +30 degrees if omitted.

The three-dimensional to two-dimensional transformation represented by AX and
AZ, can be saved in !P.T by including the SAVE keyword.

AZ

This keyword specifies the counterclockwise angle of rotation about the Z axis. This
keyword is effective only if !P.T3D is not set. The order of rotation is AZ first, then
AX.

IMAGE

A named variable into which an image containing the shaded surface is stored. If this
keyword is omitted, the image is displayed but not saved.

MAX_VALUE

The maximum value to be plotted. If this keyword is present, data values greater than
the value of MAX_VALUE are treated as missing and are not plotted. Note that the
IEEE floating-point value NaN is also treated as missing data. (See “Special
Floating-Point Values” in Chapter 17 of Building IDL Applications for more
information on IEEE floating-point values.)

MIN_VALUE

The minimum value to be plotted. If this keyword is present, data values less than the
value of MIN_VALUE are treated as missing and are not plotted. Note that the IEEE
floating-point value NaN is also treated as missing data. (See “Special Floating-Point
Values” in Chapter 17 of Building IDL Applications for more information on IEEE
floating-point values.)
SHADE_SURF IDL Reference Guide

1237
PIXELS

Set this keyword to a scalar value that specifies the maximum size of the image
dimensions, in pixels. PIXELS only applies when the output device uses scalable
pixels (e.g., the PostScript device). Use this keyword to increase the resolution of the
output image if the default looks jagged or “stair-stepped”.

SAVE

Set this keyword to save the 3D to 2D transformation matrix established by
SHADE_SURF in the system variable field !P.T. Use this keyword when combining
the output of SHADE_SURF with the output of other routines in the same plot.

SHADES

An array expression, of the same dimensions as Z, that contains the color index at
each point. The shading of each pixel is interpolated from the surrounding SHADE
values. If this parameter is omitted, light-source shading is used. For most displays,
this parameter should be scaled into the range of bytes.

Warning
When using the SHADES keyword on True Color devices, we recommend that
decomposed color support be turned off, by setting DECOMPOSED=0 for
DEVICE.

XLOG

Set this keyword to specify a logarithmic X axis.

YLOG

Set this keyword to specify a logarithmic Y axis.

Graphics Keywords Accepted

See Appendix C, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above. CHARSIZE, CHARTHICK, COLOR, DATA, DEVICE,
FONT, NODATA, NORMAL, POSITION, SUBTITLE, T3D, THICK, TICKLEN,
TITLE, [XYZ]CHARSIZE, [XYZ]GRIDSTYLE, [XYZ]MARGIN, [XYZ]MINOR,
[XYZ]RANGE, [XYZ]STYLE, [XYZ]THICK, [XYZ]TICKFORMAT,
[XYZ]TICKINTERVAL, [XYZ]TICKLAYOUT, [XYZ]TICKLEN,
[XYZ]TICKNAME, [XYZ]TICKS, [XYZ]TICKUNITS, [XYZ]TICKV,
[XYZ]TICK_GET, [XYZ]TITLE, ZVALUE.
IDL Reference Guide SHADE_SURF

1238
Example

; Create a simple dataset:
D = DIST(40)
; Display the dataset as a light-source shaded surface:
SHADE_SURF, D, TITLE = 'Shaded Surface'

Instead of light-source shading, an array of the same size as the elevation dataset can
be used to color the surface. This technique creates four-dimensional displays.

; Create an array of shades to use:
S = SIN(D)

; Now create a new shaded surface that uses the array of shading
; values instead of the light source:
SHADE_SURF, D, SHADES = BYTSCL(S)

Note that the BYTSCL function is used to scale S into the range of bytes.

See Also

POLYSHADE, SET_SHADING, SHADE_VOLUME, SURFACE
SHADE_SURF IDL Reference Guide

1239
SHADE_SURF_IRR

The SHADE_SURF_IRR procedure creates a shaded surface representation of an
irregularly gridded elevation dataset.

The data must be representable as an array of quadrilaterals. This routine should be
used when the (X, Y, Z) arrays are too irregular to be drawn by SHADE_SURF, but
are still semi-regular.

This routine is written in the IDL language. Its source code can be found in the file
shade_surf_irr.pro in the lib subdirectory of the IDL distribution.

Syntax

SHADE_SURF_IRR, Z, X, Y [, AX=degrees] [, AZ=degrees] [, IMAGE=variable]
[, PLIST=variable] [, /T3D]

Arguments

Z

An n x m array of elevations.

X

An n x m array containing the X location of each Z value.

Y

An n x m array containing the Y location of each Z value.

Note
The grid described by X and Y must consist of quadrilaterals, must be semi-regular,
and must be in “clockwise” order. Clockwise ordering means that:

;for all j
x[i,j] <= x[i+1, j]

and

;for all i
y[i,j] <= y[i, j+1]
IDL Reference Guide SHADE_SURF_IRR

1240
Keywords

AX

The angle of rotation about the X axis. The default is 30 degrees.

AZ

The angle of rotation about the Z axis. The default is 30 degrees.

IMAGE

Set this keyword to a named variable that will contain the resulting shaded surface
image. The variable is returned as a byte array of the same size as the currently
selected graphics device.

PLIST

Set this keyword to a named variable that will contain the polygon list on return. This
feature is useful when you want to make a number of images from the same set of
vertices and polygons.

T3D

Set this keyword to indicate that the generalized transformation matrix in !P.T is to be
used (in which case the keyword values for AX and AZ are ignored)

Example

The following example creates a semi-regular data set in the proper format at
displays the resulting irregular surface.

; Create some elevation data:
z = DIST(10,10)*100.0
; Create arrays to hold X and Y data:
x = FLTARR(10,10) & y = FLTARR(10,10)
; Ensure that X and Y arrays are in "clockwise" order:
FOR i = 0,9 do x[0:9,i] = FINDGEN(10)
FOR j = 0,9 DO y[j,0:9] = FINDGEN(10)
; Make X and Y arrays irregular:
x = x + RANDOMU(seed,10,10)*0.49
y = y + RANDOMU(seed,10,10)*0.49
; Display the irregular surface:
SHADE_SURF_IRR, z, x, y

See Also

SHADE_SURF, TRIGRID
SHADE_SURF_IRR IDL Reference Guide

1241
SHADE_VOLUME

Given a 3D volume and a contour value, SHADE_VOLUME produces a list of
vertices and polygons describing the contour surface. This surface can then be
displayed as a shaded surface by the POLYSHADE procedure. Shading is obtained
from either a single light-source model or from user-specified values.

SHADE_VOLUME computes the polygons that describe a three dimensional contour
surface. Each volume element (voxel) is visited to find the polygons formed by the
intersections of the contour surface and the voxel edges. The method used by
SHADE VOLUME is that of Klemp, McIrvin and Boyd, 1990: “PolyPaint—A
Three-Dimensional Rendering Package,” American Meteorology Society
Proceedings, Sixth International Conference on Interactive Information and
Processing Systems. This method is similar to the marching cubes algorithm
described by Lorenson and Cline, 1987: “Marching Cubes: A High Resolution 3D
Surface Construction Algorithm,” Computer Graphics 21, 163-169.

This routine is limited to processing datasets that will fit in memory.

Syntax

SHADE_VOLUME, Volume, Value, Vertex, Poly [, /LOW] [, SHADES=array]
[, /VERBOSE] [, XRANGE=vector] [, YRANGE=vector] [, ZRANGE=vector]

Arguments

Volume

A three-dimensional array that contains the dataset to be contoured. If the Volume
array is dimensioned (D0, D1, D2), the resulting vertex coordinates are as follows:

0 < X < D0 - 1; 0 < Y < D1 - 1; 0 < Z < D2 - 1.

If floating-point NaN values are present in Volume, then SHADE_VOLUME may
generate inconsistent surfaces and may return NaN values in the Vertex argument.
The surfaces generated by SHADE_VOLUME may also vary across platforms if
NaN data is present in the Volume parameter.

Value

The scalar contour value. This value specifies the constant-density surface (also
called an isosurface) to be rendered.
IDL Reference Guide SHADE_VOLUME

1242
Vertex

The name of a variable to receive the vertex array. On output, this variable is set to a
(3, n) floating-point array, suitable for input to POLYSHADE.

Poly

A named variable to receive the polygon list, an m-element, longword array. This list
describes the vertices of each polygon and is suitable for input to POLYSHADE. The
vertices of each polygon are listed in counterclockwise order when observed from
outside the surface. The vertex description of each polygon is a vector of the form: [n,
i0, i1, ..., in-1] and the Poly array is the concatenation of the lists of each polygon. For
example, when rendering a pyramid consisting of four triangles, Poly would contain
16 elements, made by concatenating four, four-element vectors of the form [3, V0, V1,
V2]. V0, V1, and V2 are the indices of the vertices describing each triangle.

Keywords

LOW

Set this keyword to display the low side of the contour surface (i.e., the contour
surfaces enclose high data values). If this keyword is omitted or is 0, the high side of
the contour surface is displayed and the contour encloses low data values. If this
parameter is incorrectly specified, errors in shading will result.

SHADES

An optional array, converted to byte type before use, that contains the user-specified
shading color index for each voxel. This array must have the same dimensions as
Volume. On exit, this array is replaced by another array, that contains the shading
value for each vertex, contained in Vertex.

Warning
When using the SHADES keyword on True Color devices, we recommend that
decomposed color support be turned off, by setting DECOMPOSED=0 for
DEVICE.

VERBOSE

Set this keyword to print a message indicating the number of polygons and vertices
that are produced.
SHADE_VOLUME IDL Reference Guide

1243
XRANGE

An optional two-element vector that contains the limits, over the first dimension, of
the sub-volume to be considered.

YRANGE

An optional two-element vector that contains the limits, over the second dimension,
of the sub-volume to be considered.

ZRANGE

An optional two-element vector containing the limits, over the third dimension, of the
sub-volume to be considered.

Example

The following procedure shades a volume passed as a parameter. It uses the SCALE3
procedure to establish the viewing transformation. It then calls SHADE_VOLUME
to produce the vertex and polygon lists, and POLYSHADE to draw the contour
surface.

PRO SHOWVOLUME, vol, thresh, LOW = low
; Get the dimensions of the volume:
s = SIZE(vol)
; Error, must be a 3D array:
IF s[0] NE 3 THEN MESSAGE, 'Error: vol must be a 3D array'
; Establish the 3D transformation and coordinate ranges:
SCALE3, XRANGE=[0, S[1]], YRANGE=[0, S[2]], ZRANGE=[0, S[3]]
; Default = view high side of contour surface:
IF N_ELEMENTS(low) EQ 0 THEN low = 0
; Produce vertices and polygons:
SHADE_VOLUME, vol, thresh, v, p, LOW = low
; Produce image of surface and display:
TV, POLYSHADE(v, p, /T3D)

END

See Also

POLYSHADE, SHADE_SURF, XVOLUME
IDL Reference Guide SHADE_VOLUME

1244
SHIFT

The SHIFT function shifts elements of vectors or arrays along any dimension by any
number of elements. The result is a vector or array of the same structure and type as
Array. Positive shifts are to the right while left shifts are expressed as a negative
number. All shifts are circular.

Elements shifted off one end wrap around and are shifted onto the other end. In the
case of vectors the action of SHIFT can be expressed:

Result(i + s) modulation = Arrayi for (0 ≤ 1 < n)

where s is the amount of the shift, and n is the number of elements in the array.

Syntax

Result = SHIFT(Array, S1, ..., Sn)

Arguments

Array

The array to be shifted.

Si

The shift parameters. For arrays of more than one dimension, the parameter Sn
specifies the shift applied to the nth dimension. S1 specifies the shift along the first
dimension and so on. If only one shift parameter is present and the parameter is an
array, the array is treated as a vector (i.e., the array is treated as having one-
dimensional subscripts).

A shift specification of 0 means that no shift is to be performed along that dimension.

Example

The following example demonstrates using SHIFT with a vector. by entering:

A = INDGEN(5)

; Print the original vector, the vector shifted one position to the
; right, and the vector shifted one position to the left:
PRINT, A, SHIFT(A, 1), SHIFT(A, -1)

IDL prints:
SHIFT IDL Reference Guide

1245
0 1 2 3 4
4 0 1 2 3
1 2 3 4 0

Notice how elements of the vector that shift off the end wrap around to the other end.
This “wrap around” occurs when shifting arrays of any dimension.

See Also

ISHFT
IDL Reference Guide SHIFT

1246
SHOW3

The SHOW3 procedure combines an image, a surface plot of the image data, and a
contour plot of the images data in a single tri-level display.

This routine is written in the IDL language. Its source code can be found in the file
show3.pro in the lib subdirectory of the IDL distribution.

Syntax

SHOW3, Image [, X, Y] [, /INTERP] [, E_CONTOUR=structure]
[, E_SURFACE=structure] [, SSCALE=scale]

Arguments

Image

The two-dimensional array to display.

X

A vector containing the X values of each column of Image. If the X argument is
omitted, columns have values 0, 1, ..., ncolumns-1.

Y

A vector containing the Y values of each row of Image. If the Y argument is omitted,
rows have values 0, 1, ..., nrows-1.

Keywords

INTERP

Set this keyword to use bilinear interpolation on the pixel display. This technique is
slightly slower, but for small images, it makes a better display.

E_CONTOUR

Set this keyword equal to an anonymous structure containing additional keyword
parameters that are passed to the CONTOUR procedure. Tag names in the structure
should be valid keyword arguments to CONTOUR, and the values associated with
each tag should be valid keyword values.
SHOW3 IDL Reference Guide

1247
E_SURFACE

Set this keyword equal to an anonymous structure containing additional keyword
parameters that are passed to the SURFACE procedure. Tag names in the structure
should be valid keyword arguments to SURFACE, and the values associated with
each tag should be valid keyword values.

SSCALE

Reduction scale for surface. The default is 1. If this keyword is set to a value other
than 1, the array size is reduced by this factor for the surface display. That is, the
number of points used to draw the wire-mesh surface is reduced. If the array
dimensions are not an integral multiple of SSCALE, the image is reduced to the next
smaller multiple.

Example

; Create a dataset:
A = BESELJ(SHIFT(DIST(30,20), 15, 10)/2.,0)

; Show it with default display:
SHOW3, A

; Specify X axis proportional to square root of values:
SHOW3, A, SQRT(FINDGEN(30))

; Label CONTOUR lines with double size characters, and include
;downhill tick marks:
SHOW3, A, E_CONTOUR={C_CHARSIZE:2, DOWN:1}

; Draw a surface with a skirt and scale Z axis from -2 to 2:
SHOW3, A, E_SURFACE={SKIRT:-1, ZRANGE:[-2,2]}

See Also

CONTOUR, SURFACE
IDL Reference Guide SHOW3

1248
SHOWFONT

The SHOWFONT procedure displays a TrueType or vector-drawn font (from the file
hersh1.chr, located in the resource/fonts subdirectory of the IDL distribution)
on the current graphics device.

This routine is written in the IDL language. Its source code can be found in the file
showfont.pro in the lib subdirectory of the IDL distribution.

Syntax

SHOWFONT, Font, Name [, /ENCAPSULATED] [, /TT_FONT]

Arguments

Font

The index number of the font (may range from 3 to 29) or, if the TT_FONT keyword
is set, a string that contains the name of the TrueType font to display.

Name

A string that contains the text of a title to appear at the top of the font display.

Keywords

ENCAPSULATED

Set this keyword, if the current graphics device is “PS”, to make encapsulated
PostScript output.

TT_FONT

If this keyword is set, the specified font will be interpreted as a TrueType font.

Example

To create a display of the Helvetica italic TrueType font on the screen:

SHOWFONT, 'Helvetica Italic', 'Helvetica Italic', /TT_FONT

To create a display of Font 3 for PostScript:

; Set output to PostScript:
SET_PLOT, 'PS'
SHOWFONT IDL Reference Guide

1249
; Specify the output filename. If we didn’t specify this, the file
; would be saved as idl.ps by default:
DEVICE, FILENAME='font3.ps'

;Display font 3:
SHOWFONT, 3, 'Simplex Roman'

; Close the new PS file:
DEVICE, /CLOSE

See Also

EFONT, PS_SHOW_FONTS
IDL Reference Guide SHOWFONT

1250
SIN

The periodic function SIN returns the trigonometric sine of X.

Syntax

Result = SIN(X)

Arguments

X

The angle for which the sine is desired, specified in radians. If X is double-precision
floating or complex, the result is of the same type. All other types are converted to
single-precision floating-point and yield floating-point results. When applied to
complex numbers:

sin x = COMPLEX(sin R cosh I, cos R sinh I)

where R and I are the real and imaginary parts of x.

If input argument X is an array, the result has the same structure, with each element
containing the sine of the corresponding element of X.

Examples

To find the sine of 0.5 radians and print the result, enter:

PRINT, SIN(0.5)

The following example plots the SIN function between 0 and 2π with 100 intervals:

X = 2*!PI/100 * FINDGEN(100)
PLOT, X, SIN(X)

Note
!PI is a read-only system variable that contains the single-precision value for π.

See Also

ASIN, SINH
SIN IDL Reference Guide

1251
SINDGEN

The SINDGEN function returns a string array with the specified dimensions. Each
element of the array is set to the string representation of the value of its one-
dimensional subscript, using IDL’s default formatting rules.

Syntax

Result = SINDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Example

To create S, a six-element string vector with each element set to the string value of its
subscript, enter:

S = SINDGEN(6)

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, L64INDGEN,
LINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide SINDGEN

1252
SINH

The SINH function returns the hyperbolic sine of X.

Syntax

Result = SINH(X)

Arguments

X

The angle for which the hyperbolic sine is desired, specified in radians. If X is
double-precision floating-point, the result is also double-precision. Complex values
are not allowed. All other types are converted to single-precision floating-point and
yield floating-point results. SINH is defined as:

sinh x = (eu - e-u) / 2

If X is an array, the result has the same structure, with each element containing the
hyperbolic sine of the corresponding element of X.

Examples

To find the hyperbolic sine of each element in the array [.5, .2, .4] and print the result,
enter:

PRINT, SINH([.5, .2, .4])

To plot the SINH function between 0 and 2π with 100 intervals, enter:

X = 2*!PI/100 * FINDGEN(100)
PLOT, X, SINH(X)

Note
!PI is a read-only system variable that contains the single-precision value of π.

See Also

ASIN, SIN
SINH IDL Reference Guide

1253
SIZE

The SIZE function returns size and type information for its argument if no keywords
are set. If a keyword is set, SIZE returns the specified quantity.

Syntax

Result = SIZE(Expression [, /L64] [, /DIMENSIONS | , /FILE_LUN | ,
/N_DIMENSIONS | , /N_ELEMENTS | , /STRUCTURE | , /TNAME | , /TYPE])

Return Value

The returned vector is always of integer type. The first element is equal to the number
of dimensions of Expression. This value is zero if Expression is scalar or undefined.
The next elements contain the size of each dimension, one element per dimension
(none if Expression is scalar or undefined). After the dimension sizes, the last two
elements contain the type code (zero if undefined) and the number of elements in
Expression, respectively. The type codes are listed below.

IDL Type Codes

The following table lists the IDL type codes returned by the SIZE function:

Type Code Data Type

0 Undefined

1 Byte

2 Integer

3 Longword integer

4 Floating point

5 Double-precision floating

6 Complex floating

7 String

8 Structure

9 Double-precision complex

Table 83: IDL Type Codes
IDL Reference Guide SIZE

1254
Arguments

Expression

The expression for which size information is requested.

Keywords

With the exception of L64, the following keywords determine the return value of the
SIZE function and are mutually exclusive — specify at most one of the following.

DIMENSIONS

Set this keyword to return the dimensions of Expression. If Expression is scalar, the
result is a scalar containing a 0. For arrays, the result is an array containing the array
dimensions. The result is a 32-bit integer when possible, and 64-bit integer if the
number of elements in Expression requires it. Set L64 to force 64-bit integers to be
returned in all cases.

FILE_LUN

Set this keyword to return the file unit to which Expression is associated, if it is an
IDL file variable, as created with the ASSOC function. If Expression is not a file
variable, 0 is returned (0 is not a valid file unit for ASSOC).

L64

By default, the result of SIZE is 32-bit integer when possible, and 64-bit integer if the
number of elements in Expression requires it. Set L64 to force 64-bit integers to be
returned in all cases. In addition to affecting the default result, L64 also affects the
output from the DIMENSIONS, N_ELEMENTS, and STRUCTURE keywords.

10 Pointer

11 Object reference

12 Unsigned Integer

13 Unsigned Longword Integer

14 64-bit Integer

15 Unsigned 64-bit Integer

Type Code Data Type

Table 83: IDL Type Codes
SIZE IDL Reference Guide

1255
Note
Only 64-bit versions of IDL are capable of creating variables requiring 64-bit SIZE
output. Check the value of !VERSION.MEMORY_BITS to see if your IDL is 64-
bit or not.

N_DIMENSIONS

Set this keyword to return the number of dimension in Expression, if it is an array. If
Expression is scalar, 0 is returned.

N_ELEMENTS

Set this keyword to return the number of data elements in Expression. Setting this
keyword is equivalent to using the N_ELEMENTS function. The result will be 32-bit
integer when possible, and 64-bit integer if the number of elements in Expression
requires it. Set L64 to force 64-bit integers to be returned in all cases.

STRUCTURE

Set this keyword to return all available information about Expression in a structure.

Note
Since the structure is a named structure, the size of its fields is fixed. The result is
an IDL_SIZE (32-bit) structure when possible, and an IDL_SIZE64 structure
otherwise. Set L64 to force an IDL_SIZE64 structure to be returned in all cases.

The following are descriptions of the fields in the returned structure:

Field Description

TYPE_NAME Name of IDL type of Expression.

TYPE Type code of Expression.

FILE_LUN If Expression is an IDL file variable, as created with
the ASSOC function, the file unit to which it is
associated; otherwise, 0.

N_ELEMENTS Number of data elements in Expression.

Table 84: Structure Fields
IDL Reference Guide SIZE

1256
TNAME

Set this keyword to return the IDL type of Expression as a string.

TYPE

Set this keyword to return the IDL type code for Expression. See “IDL Type Codes”
on page 1253 for details. For an example illustrating how to determine the type code
of an expression, see “Determining the Size/Type of an Array” in Chapter 15 of
Building IDL Applications.

Example

Print the size information for a 10 by 20 floating-point array by entering:

PRINT, SIZE(FINDGEN(10, 20))

IDL prints:

2 10 20 4 200

This IDL output indicates the array has 2 dimensions, equal to 10 and 20, a type code
of 4, and 200 elements total.

Similarly, to print only the number of dimensions of the same array:

PRINT, SIZE(FINDGEN(10, 20), /N_DIMENSIONS)

IDL prints:

2

N_DIMENSIONS If Expression is an array, the number of dimensions;
otherwise, Expression is 0.

DIMENSIONS An 8-element array containing the dimensions of
Expression.

Field Description

Table 84: Structure Fields
SIZE IDL Reference Guide

1257
SKEWNESS

The SKEWNESS function computes the statistical skewness of an n-element vector.
If the variance of the vector is zero, the skewness is not defined, and SKEWNESS
returns !VALUES.F_NAN as the result. SKEWNESS calls the IDL function
MOMENT.

Syntax

Result = SKEWNESS(X [, /DOUBLE] [, /NAN])

Arguments

X

A numeric vector.

Keywords

DOUBLE

Set this keyword to force computations to be done in double-precision arithmetic.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See “Special Floating-Point Values” in Chapter 17 of Building IDL
Applications for more information on IEEE floating-point values.)

Example

; Define the n-element vector of sample data:
x = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71, 66, 65, 70]
; Compute the skewness:
result = SKEWNESS(x)
PRINT, 'Skewness = ', result

IDL prints:

Skewness = -0.0942851

See Also

KURTOSIS, MEAN, MEANABSDEV, MOMENT, STDDEV, VARIANCE
IDL Reference Guide SKEWNESS

1258
SKIPF

The SKIPF procedure skips records or files on the designated magnetic tape unit.
SKIPF is available only under VMS. If two parameters are supplied, files are
skipped. If three parameters are present, individual records are skipped.

The number of files or records actually skipped is stored in the system variable !ERR.
Note that when skipping records, the operation terminates immediately when the end
of a file is encountered. See the description of the magnetic tape routines in “VMS-
Specific Information” in Chapter 8 of Building IDL Applications.

Syntax

SKIPF, Unit, Files

or

SKIPF, Unit, Records, R

Arguments

Unit

The magnetic tape unit to rewind. Unit must be a number between 0 and 9, and
should not be confused with the standard file Logical Unit Numbers (LUNs).

Files

The number of files to be skipped. Skipping is in the forward direction if the second
parameter is positive, otherwise files are skipped backwards.

Records

The number of records to be skipped. Skipping is in the forward direction if the
second parameter is positive, otherwise records are skipped backwards.

R

If this argument is present, records are skipped, otherwise files are skipped. The value
of R is never examined. Its presence serves only to indicate that records are to be
skipped.
SKIPF IDL Reference Guide

1259
SLICER3

The IDL SLICER3 is a widget-based application to visualize three-dimensional
datasets. This program supersedes the SLICER program.

This routine is written in the IDL language. Its source code can be found in the file
slicer3.pro in the lib subdirectory of the IDL distribution.

Syntax

SLICER3 [, hData3D] [, DATA_NAMES=string/string_array] [, /DETACH]
[, GROUP=widget_id] [, /MODAL]

Arguments

hData3D

A pointer to a three-dimensional data array, or an array of pointers to multiple three-
dimensional arrays. If multiple arrays are specified, they all must have the same X, Y,
and Z dimensions. If hData3D is not specified, SLICER3 creates a 2 x 2 x 2 array of
byte data using the IDL BYTARR function. You can also load data interactively via
the File menu of the SLICER3 application (see “Examples” on page 1274 for
details).

Note
If data are loaded in this fashion, any data passed to SLICER3 via a pointer (or
pointers) is deleted, and the pointers become invalid.

Keywords

DATA_NAMES

Set this keyword equal to a string array of names for the data. The names appear on
the droplist widget for the current data. If the number of elements of DATA_NAMES
is less than the number of elements in hData3D then default names will be generated
for the unnamed data.

DETACH

Set this keyword to place the drawing area in a window that is detached from the
SLICER3 control panel. The drawing area can only be detached if SLICER3 is not
run as a modal application.
IDL Reference Guide SLICER3

1260
GROUP

Set this keyword equal to the Widget ID of an existing widget that serves as the
“group leader” for the SLICER3 graphical user interface. When a group leader is
destroyed, all widgets in the group are also destroyed. If SLICER3 is started from a
widget application, then GROUP should always be specified.

MODAL

Set this keyword to block user interaction with all other widgets (and block the
command line) until the SLICER3 exits. If SLICER3 is started from some other
widget-based application, then it is usually advisable to run SLICER3 with the
MODAL keyword set.

Note
SLICER3 modifies the current color table, as well as various elements of the
plotting system (i.e., the “!X”, “!Y”, “!Z”, and “!P” system variables). If the
MODAL keyword is set (recommended), then SLICER3 will, upon exit, restore
these system variables (and the color tables) to the values they had when SLICER3
was started.

The SLICER3 Graphical User Interface

The following options are available via SLICER3’s graphical user interface.

Figure 21: SLICER3 Graphical User Interface
SLICER3 IDL Reference Guide

1261
File Menu

Load

Select this menu option to choose a file containing a 3D array (or arrays) to load into
SLICER3. The file must have been written in the format specified in the following
table. For each data array in the file, the following values must be included. Note that
the first six values are returned by the IDL SIZE function; see “Examples” on
page 1274 for an example of how to create a data file suitable for SLICER3 with just
a few IDL commands.

If multiple arrays are present in the file, they must all have the same dimensions.

Note
Files saved by the “Save Subset” operation (see below) are suitable for input via the
“Load” operation.

Data item Data Type Numberof
Bytes

Number of dimension in array. (Note: This is
always 3 for valid SLICER3 data.)

long 4

Size of first dimension. long 4

Size of second dimension. long 4

Size of third dimension. long 4

Data type (Must be type 1 through 5. See
“SIZE” on page 1253 for a list of data types
types.)

long 4

Total number of elements (dimX, dimY,
dimZ).

long 4

Number of characters in data name. (See
“STRLEN” on page 1343 for the easiest way
to determine this number.)

long 4

Data name byte strlen()

3D data array. varies varies

Table 85: SLICER3 Data File Structure
IDL Reference Guide SLICER3

1262
Data files that are moved from one platform to another may not load as expected, due
to byte ordering differences. See the BYTEORDER and SWAP_ENDIAN for details.

Save/Save Subset

SLICER3 must be in BLOCK mode to for this option to be available.

Select this menu option to save a subset of the 3D data enclosed in the current block
to the specified file. Subsets saved in this fashion are suitable for loading via the
“Load” menu option. If multiple 3D arrays are available when this option is selected,
multiple subsets are saved to the file.

Save/Save Tiff Image

Select this menu option to save the contents of the current SLICER3 image window
as a TIFF image in the specified file. When running in 8-bit mode, a “Class P” palette
color TIFF file is created. In 24-bit mode, a “Class R” (interleaved by image) TIFF
file is created.

Quit

Select this menu option to exit SLICER3.

Tools Menu

Erase

Select this menu option to erase the display window and delete all the objects in the
display list.

Delete/...

As graphical objects are created, they are added to the display list. Select this menu
option to delete a specific object from the list. When an object is deleted, the screen is
redrawn with the remaining objects.

Colors/Reset Colors

Select this menu option to restore the original color scheme.

Colors/Differential Shading

Use this menu option to change the percentage of differential shading applied to the
X, Y, and Z slices.
SLICER3 IDL Reference Guide

1263
Colors/Slice/Block

Use this menu option to launch the XLOADCT application to modify the colors used
for slices and blocks

Colors/Surface

Use this menu option to launch the XLOADCT application to modify the colors used
for isosurfaces.

Colors/Projection

Use this menu option to launch the XLOADCT application to modify the colors used
for projections.

Note
On some platforms, the selected colors may not become visible until after you exit
the “XLOADCT” application.

Options

Select this menu option to display a panel that allows you to set:

• The axis visibility.

• The wire-frame cube visibility.

• The display window size.

Main Draw Window

Operations available in the Main Draw Window are dependent on the mode selected
in the Mode Pulldown menu. In general, when coordinate input is required from the
user, it is performed by clicking a mouse button on the “surface” of the wire-frame
cube that surrounds the data. This 3D location is then used as the basis for whatever
input is needed. In most cases, the “front” side of the cube is used. In a few cases, the
coordinate input is on the “back” side of the cube.

Data Pulldown Menu

If multiple datasets are currently available in SLICER3, this menu allows you to
select which data will be displayed in the Main Draw Window. Slices, blocks, iso-
surfaces, etc. are created from the currently selected data. If only one dataset is
loaded, this menu is inactive.
IDL Reference Guide SLICER3

1264
Mode Pulldown Menu

This menu is used to select the current mode of operation.

Slice Mode

To display a slice, click and drag the left mouse button on the wire-frame cube. When
the button is released, a slice through the data will be drawn at that location.

Draw Radio Button

When in Draw mode, new slices will be merged into the current Z-buffer contents.

Expose Radio Button

When in Expose mode, new slices will be drawn in front of everything else.

Orthogonal Radio Button

When in Orthogonal mode, use the left mouse button in the main draw window to
position and draw an orthogonal slicing plane. Clicking the right mouse button in the
main draw window (or any mouse button in the small window) will toggle the slicing
plane orientation.

X/Y/Z Radio Buttons

• X: This sets the orthogonal slicing plane orientation to be perpendicular to the
X axis.

Figure 22: Mode Pulldown Menu
SLICER3 IDL Reference Guide

1265
• Y: This sets the orthogonal slicing plane orientation to be perpendicular to the
Y axis.

• Z: This sets the orthogonal slicing plane orientation to be perpendicular to the
Z axis.

Oblique Radio Button

Clicking any mouse button in the small window will reset the oblique slicing plane to
its default orientation.

Normal Radio Button

When in this mode, click and drag the left mouse button in the big window to set the
surface normal for the oblique slicing plane.

Center Radio Button

When in this mode, click and drag the left mouse button in the big window to set the
center point for the surface normal.

Display Button

Clicking this button will cause an oblique slicing plane to be drawn.

Block Mode

When in Block mode, use the left mouse button in the main draw window to set the
location for the “purple” corner of the block. Use the right mouse button to locate the

Figure 23: Block Mode
IDL Reference Guide SLICER3

1266
opposite “blue” corner of the block. When in Block mode, the “Save Subset”
operation under the main “File” menu is available.

Add

When in this mode, the block will be “added” to the current Z-buffer contents.

Subtract

When in this mode, the block will be “subtracted” from the current Z-buffer contents.
Subtract mode is only effective when the block intersects some other object in the
display (such as an iso-surface).

Display Button

Clicking this button will cause the block to be drawn.

Surface Mode

An iso-surface is like a contour line on a contour map. On one side of the line, the
elevation is higher than the contour level, and on the other side of the line, the
elevation is lower than the contour level. An iso-surface, however, is a 3D surface
that passes through the data such that the data values on one side of the surface are
higher than the threshold value, and on the other side of the surface, the data values
are lower than the threshold value.

Figure 24: Surface Mode
SLICER3 IDL Reference Guide

1267
When in Surface mode, a logarithmic histogram plot of the data is displayed in the
small draw window. Click and drag a mouse button on this plot to set the iso-surface
threshold value. This value is also shown in the text widget below the plot. The
threshold value may also be set by typing a new value in this text widget. The
histogram plot is affected by the current threshold settings. (See Threshold mode,
below).

Low

Selecting this mode will cause the iso-surface polygon facing to face towards the
lower data values. Usually, this is the mode to use when the iso-surface is desired to
surround high data values.

High

Selecting this mode will cause the iso-surface polygon facing to face towards the
higher data values. Usually, this is the mode to use when the iso-surface is desired to
surround low data values.

Shading pulldown menu

Iso-surfaces are normally rendered with light-source shading. If multiple datasets are
currently loaded, then this menu allows the selection of a different 3D array for the
source of the iso-surface shading values. If only one dataset is currently loaded, then
this menu is inactive.

Display Button

Clicking this button will cause the iso-surface to be created and drawn. Iso-surfaces
often consist of tens of thousands of polygons, and can sometimes take considerable
time to create and render.
IDL Reference Guide SLICER3

1268
Projection Mode

A “voxel” projection of a 3D array is the projection of the data values within that
array onto a viewing plane. This is similar to taking an X-ray image of a 3D object.

Max

Select this mode for a Maximum intensity projection.

Avg

Select this mode for an Average intensity projection.

Low

Select this mode for a Low resolution projection.

Med

Select this mode for a Medium resolution projection.

High

Select this mode for a High resolution projection.

Figure 25: Projection Mode
SLICER3 IDL Reference Guide

1269
Depth Queue % Slider

Use the slider to set the depth queue percent. A value of 50, for example, indicates
that the farthest part of the projection will be 50% as bright as the closest part of the
projection.

Display Button

Clicking this button will cause the projection to be calculated and drawn. Projections
can sometimes take considerable time to display. Higher resolution projections take
more computation time.

Threshold Mode

When in Threshold mode, a logarithmic histogram plot of the data is displayed in the
small draw window. Click and drag the left mouse button on this plot to set the
minimum and maximum threshold values. To expand a narrow range of data values
into the full range of available colors, set the threshold range before displaying slices,
blocks, or projections. The threshold settings also affect the histogram plot in
“Surface” mode. The minimum and maximum threshold values are also shown in the
text widgets below the histogram plot.

Click and drag the right mouse button on the histogram plot to set the transparency
threshold. Portions of any slice, block, or projection that are less than the
transparency value are not drawn (clear). Iso-surfaces are not affected by the

Figure 26: Threshold Mode
IDL Reference Guide SLICER3

1270
transparency threshold. The transparency threshold value is also shown in a text
widget below the histogram plot.

Min

In this text widget, a minimum threshold value can be entered.

Max

In this text widget, a maximum threshold value can be entered.

Transp.

In this text widget, a transparency threshold value can be entered.

Profile Mode

In Profile mode, a plot is displayed showing the data values along a line. This line is
also shown superimposed on the data in the main draw window. The bottom of the
plot corresponds to the “purple” end of the line, and the top of the plot corresponds to
the “blue” end of the line.

Orthogonal

Click and drag the left mouse button to position the profile line, based upon a point
on the “front” faces of the wire-frame cube. Click and drag the right mouse button to

Figure 27: Profile Mode
SLICER3 IDL Reference Guide

1271
position the profile line, based upon a point on the “back” faces of the wire-frame
cube. As the profile line is moved, The profile plot is dynamically updated.

Oblique

Click and drag the left mouse button to position the “purple” end of the profile line on
one of the “front” faces of the wire-frame cube. Click and drag the right mouse button
to position the “blue” end of the profile line on one of the “back” faces of the wire-
frame cube. As the profile line is moved, The profile plot is dynamically updated.

Probe Mode

In Probe mode, click and drag a mouse button over an object in the main draw
window. The actual X-Y-Z location within the data volume is displayed in the three
text widgets. Also, the data value at that 3D location is displayed in the status
window, above the main draw window. If the cursor is inside the wire-frame cube,
but not on any object, then the status window displays “No data value”, and the three
text widgets are empty. If the cursor is outside the wire-frame cube, then the status
window and text widgets are empty.

X

Use this text widget to enter the X coordinate for the probe.

Figure 28: Probe Mode
IDL Reference Guide SLICER3

1272
Y

Use this text widget to enter the Y coordinate for the probe.

Z

Use this text widget to enter the Z coordinate for the probe.

View Mode

In view mode, a small window shows the orientation of the data cube in the current
view. As view parameters are changed, this window is dynamically updated. The
main draw window is then updated when the user clicks on “Display”, or exits View
mode.

Display

Clicking on this button will cause the objects in the main view window to be drawn in
the new view. If any view parameters have been changed since the last time the main
view was updated, the main view will be automatically redrawn when the user exits
View mode.

1st Rotation

Use this slider to set the angle of the first view rotation (in degrees). The droplist
widget adjacent to the slider indicates which axis this rotation is about.

Figure 29: View Mode
SLICER3 IDL Reference Guide

1273
2nd Rotation

Use this slider to set the angle of the second view rotation (in degrees). The droplist
widget adjacent to the slider indicates which axis this rotation is about.

Zoom % Slider

Use this slider to set the zoom factor percent. Depending upon the view rotations,
SLICER3 may override this setting to ensure that all eight corners of the data cube
are within the window.

Z % Slider

Use this slider to set a scale factor for the Z axis (to compensate for the data’s aspect
ratio).

Operational Details

The SLICER3 procedure has the following side effects:

• SLICER3 sets the position for the light source and enables back-facing
polygons to be drawn (see the IDL “SET_SHADING” command).

• SLICER3 overwrites the existing contents of the Z-buffer. Upon exiting
SLICER3, the Z-buffer contents are the same as what was last displayed by
SLICER3.

• On 24-bit displays, SLICER3 sets the device to non-decomposed color mode
(DEVICE, DECOMPOSED=0).

• SLICER3 breaks the color table into 6 “bands”, based upon the number of
available colors (where max_color=!D.N_COLORS on 8-bit displays, and
max_color=256 on 24-bit displays and nColor = (max_color - 9) /
5):

Band Start
index

Band End
index Used For

0 nColor-1 X Slices.

nColor (2*nColor)-1 Y Slices.

2*nColor (3*nColor)-1 Z Slices.

Table 86: SLICER3 Band Start/End
IDL Reference Guide SLICER3

1274
Annotation colors are the last “band”, and they are set up as shown in the table:

On 24-bit displays, you can often improve performance by running SLICER3 in 8-bit
mode. This can be accomplished (on some platforms) by entering the following
command at the start of the IDL session (before any windows are created):

Device, Pseudo_Color=8

Examples

The following IDL commands open a data file from the IDL distribution and load it
into SLICER3:

; Choose a data file:
file=FILEPATH('head.dat', SUBDIR=['examples', 'data'])

; Open the data file:
OPENR, UNIT, file, /GET_LUN

3*nColor (4*nColor)-1 Iso-surfaces

4*nColor (5*nColor)-1 Projections

Color index Color

max_color - 1 White

max_color - 2 Yellow

max_color - 3 Cyan

max_color - 4 Purple

max_color - 5 Red

max_color - 6 Green

max_color - 7 Blue

max_color - 8 Black

Table 87: SLICER3 Color Bands

Band Start
index

Band End
index Used For

Table 86: SLICER3 Band Start/End
SLICER3 IDL Reference Guide

1275
; Create an array to hold the data:
data = BYTARR(80, 100, 57, /NOZERO)

; Read the data into the array:
READU, UNIT, data

; Close the data file:
CLOSE, UNIT

; Create a pointer to the data array:
hData = PTR_NEW(data, /NO_COPY)

; Load the data into SLICER3:
SLICER3, hdata, DATA_NAMES='Dave'

Note
If data are loaded via the File menu after SLICER3 is launched with a pointer
argument (as shown above), the pointer becomes invalid. You can use an IDL
statement like the following to “clean up” after calling SLICER3 in this fashion:

if PTR_VALID(hdata) then PTR_FREE, hdata

Because we did not launch SLICER3 with the MODAL keyword, the last contents of
the main draw window still reside in IDL’s Z-buffer. To retrieve this image after
exiting SLICER3, use the following IDL statements:

; Save the current graphics device:
current_device = !D.Name

; Change to the Z-buffer device:
SET_PLOT, 'Z'

; Read the image from the Z-buffer:
image_buffer = TVRD()

; Return to the original graphics device:
SET_PLOT, current_device

; Display the image:
TV, image_buffer

The following IDL commands manually create a data save file suitable for dynamic
loading into SLICER3. Note that if you load data into SLICER3 as shown above, you
can also create save files by switching to BLOCK mode and using the Save Subset
menu option.

; Store some 3D data in a variable called data_1:
IDL Reference Guide SLICER3

1276
data_1 = INDGEN(20,30,40)

; Store some 3D data in a variable called data_2:
data_2 = FINDGEN(20,30,40)

; Define the names for the datasets. Their names will appear in the
; "Data" pulldown menu in SLICER3:
data_1_name ='Test Data 1'
data_2_name ='Data 2'

; Select a data file name:
dataFile = PICKFILE()

; Write the file:
GET_LUN, lun
OPENW, lun, dataFile
WRITEU, lun, SIZE(data_1)
WRITEU, lun, STRLEN(data_1_name)
WRITEU, lun, BYTE(data_1_name)
WRITEU, lun, data_1
WRITEU, lun, SIZE(data_2)
WRITEU, lun, STRLEN(data_2_name)
WRITEU, lun, BYTE(data_2_name)
WRITEU, lun, data_2
CLOSE, lun
FREE_LUN, lun

See Also

GRID3, EXTRACT_SLICE, SHADE_VOLUME, XVOLUME
SLICER3 IDL Reference Guide

1277
SLIDE_IMAGE

The SLIDE_IMAGE procedure creates a scrolling graphics window for examining
large images. By default, 2 draw widgets are used. The draw widget on the left shows
a reduced version of the complete image, while the draw widget on the right displays
the actual image with scrollbars that allow sliding the visible window.

This routine is written in the IDL language. Its source code can be found in the file
slide_image.pro in the lib subdirectory of the IDL distribution.

Syntax

SLIDE_IMAGE [, Image] [, /BLOCK] [, CONGRID=0]
[, FULL_WINDOW=variable] [, GROUP=widget_id] [, /ORDER] [, /REGISTER]
[, RETAIN={0 | 1 | 2}] [, SLIDE_WINDOW=variable] [, SHOW_FULL=0]
[, TITLE=string] [, TOP_ID=variable] [, XSIZE=width] [, XVISIBLE=width]
[, YSIZE=height] [, YVISIBLE=height]

Arguments

Image

A 2D image array to be displayed. If this argument is not specified, no image is
displayed. The FULL_WINDOW and SCROLL_WINDOW keywords can be used to
obtain the window numbers of the two draw widgets so they can be drawn into at a
later time.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have
SLIDE_IMAGE block, any earlier calls to XMANAGER must have been called
with the NO_BLOCK keyword. See the documentation for the NO_BLOCK
keyword to XMANAGER for an example.
IDL Reference Guide SLIDE_IMAGE

1278
CONGRID

Normally, the image is processed with the CONGRID procedure before it is written
to the fully visible window on the left. Specifying CONGIRD=0 will force the image
to be drawn as is.

FULL_WINDOW

Set this keyword to a named variable that will contain the IDL window number of the
fully visible window. This window number can be used with the WSET procedure to
draw to the scrolling window at a later point.

GROUP

Set this keyword to the widget ID of the widget that calls SLIDE_IMAGE. If set, the
death of the caller results in the death of SLIDE_IMAGE.

ORDER

This keyword is passed directly to the TV procedure to control the order in which the
images are drawn. Usually, images are drawn from the bottom up. Set this keyword
to a non-zero value to draw images from the top down.

REGISTER

Set this keyword to create a “Done” button for SLIDE_IMAGE and register the
widgets with the XMANAGER procedure.

The basic widgets used in this procedure do not generate widget events, so it is not
necessary to process events in an event loop. The default is therefore to simply create
the widgets and return. Hence, when REGISTER is not set, SLIDE_IMAGE can be
displayed and the user can still type commands at the IDL command prompt.

RETAIN

This keyword is passed directly to the WIDGET_DRAW function. Set RETAIN to
zero, one, or two to specify how backing store should be handled for the window.
RETAIN=0 specifies no backing store. RETAIN=1 requests that the server or
window system provide backing store. RETAIN=2 specifies that IDL provide
backing store directly. See “Backing Store” on page 2351 for details.

SLIDE_WINDOW

Set this keyword to a named variable that will contain the IDL window number of the
sliding window. This window number can be used with the WSET procedure to draw
to the scrolling window at a later time.
SLIDE_IMAGE IDL Reference Guide

1279
SHOW_FULL

Set this keyword to zero to show the entire image at full resolution in one scrolling
graphics window. By default, SHOW_FULL is set, displaying two draw widgets.

Note
On Windows platforms only, using TVRD to return the array size of the displayed
image will cause the returned array to be off by the size of the frame (one pixel per
side). To return the dimensions of the original image, you must modify the
slide_image.pro library routine so that the FRAME keyword is not used with
SHOW_FULL.

TITLE

Set this keyword to the title to be used for the SLIDE_IMAGE widget. If this
keyword is not specified, “Slide Image” is used.

TOP_ID

Set this keyword to a named variable that will contain the top widget ID of the
SLIDE_IMAGE hierarchy. This ID can be used to kill the hierarchy as shown below:

SLIDE_IMAGE, TOP_ID=base, ...
WIDGET_CONTROL, /DESTROY, base

XSIZE

Set this keyword to the maximum width of the image that can be displayed by the
scrolling window. This keyword should not be confused with the visible size of the
image, controlled by the XVISIBLE keyword. If XSIZE is not specified, the width of
Image is used. If Image is not specified, 256 is used.

XVISIBLE

Set this keyword to the width of the viewport on the scrolling window. If this
keyword is not specified, 256 is used.

YSIZE

Set this keyword to the maximum height of the image that can be displayed by the
scrolling window. This keyword should not be confused with the visible size of the
image, controlled by the YVISIBLE keyword. If YSIZE is not present the height of
Image is used. If Image is not specified, 256 is used.
IDL Reference Guide SLIDE_IMAGE

1280
YVISIBLE

Set this keyword to the height of the viewport on the scrolling window. If this
keyword is not present, 256 is used.

Example

Open an image from the IDL distribution and load it into SLIDE_IMAGE:

; Create a variable to hold the image:
image = BYTARR(768,512)

OPENR, unit, FILEPATH('nyny.dat', SUBDIR=['examples','data']),
/GET_LUN
READU, unit, image
CLOSE, unit

; Scale the image into byte range of the display:
image = BYTSCL(image)

; Display the image:
SLIDE_IMAGE, image

See Also

TV, TVSCL, WIDGET_DRAW, WINDOW
SLIDE_IMAGE IDL Reference Guide

1281
SMOOTH

The SMOOTH function returns a copy of Array smoothed with a boxcar average of
the specified width. The result has the same type and dimensions as Array. The
algorithm used by SMOOTH is:

where N is the number of elements in A.

Syntax

Result = SMOOTH(Array, Width [, /EDGE_TRUNCATE] [, /NAN])

Arguments

Array

The array to be smoothed. Array can have any number of dimensions.

Width

The width of the smoothing window, in each dimension. Width should be an odd
number, smaller than the smallest dimension of Array. If Width is an even number,
one plus the given value of Width is used. For example, if you use a Width of 3 to
smooth a two-dimensional array, the smoothing window will contain nine elements
(including the element being smoothed). The value of Width does not affect the
running time of SMOOTH to a great extent.

Keywords

EDGE_TRUNCATE

Set this keyword to apply the smoothing function to all points. If the neighborhood
around a point includes a point outside the array, the nearest edge point is used to
compute the smoothed result. If EDGE_TRUNCATE is not set, the end points are
copied from the original array to the result with no smoothing.

Ri

1
w
---- Ai j w 2⁄–+ i,

j 0=

w 1–

∑ w 2⁄ ... N w–, ,=

Ai otherwise,

=

IDL Reference Guide SMOOTH

1282
For example, when smoothing an n-element vector with a three point wide smoothing
window, the first point of the result R0 is equal to A0 if EDGE_TRUNCATE is not
set, but is equal to (A0+A0+A1)/3 if the keyword is set. In the same manner, point Rn-

1 is set to An-1 if EDGE_TRUNCATE is not set, or to (An-2+An-1+An-1)/3 if it is.

Points not within a distance of Width/2 from an edge are not affected by this
keyword.

Note
Normally, two-dimensional floating-point arrays are smoothed in one pass. If both
the EDGE_TRUNCATE and NAN keywords are specified for a two-dimensional
array, the result is obtained in two passes, one for each dimension. Therefore, the
results may differ slightly when both the EDGE_TRUNCATE and NAN keywords
are set.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See “Special Floating-Point Values” in Chapter 17 of Building IDL
Applications for more information on IEEE floating-point values.)

Note
SMOOTH should never be called without the NAN keyword if the input array may
possibly contain NaN values.

Example

Create and display a simple image by entering:

D = SIN(DIST(256)/3) & TVSCL, D

Now display the same dataset smoothed with a width of 9 by entering:

TVSCL, SMOOTH(D, 9), 256, 256

See Also

DIGITAL_FILTER, LEEFILT, MEDIAN, TS_DIFF, TS_FCAST, TS_SMOOTH
SMOOTH IDL Reference Guide

1283
SOBEL

The SOBEL function returns an approximation to the Sobel edge enhancement
operator for images,

where (j, k) are the coordinates of each pixel Fjk in the Image. This is equivalent to a
convolution using the masks,

All of the edge points in the result are set to zero.

Syntax

Result = SOBEL(Image)

Return Value

SOBEL returns a two-dimensional array of the same size as Image. If Image is of
type byte or integer then the result is of integer type, otherwise the result is of the
same type as Image.

Note
To avoid overflow for integer types, the computation is done using the next larger
signed type and the result is transformed back to the correct type. Values larger than
the maximum for that integer type are truncated. For example, for integers the
function is computed using type long, and on output, values larger than 32767 are
set equal to 32767.

G jk Gx Gy+=

GX F j 1 k 1+,+ 2F j 1+ k, F j 1 k 1–,+ F j 1– k 1+, 2F j 1– k, F j 1– k 1–,+ +(–++=

GY F j 1– k 1–, 2F j k 1–, F j 1 k 1–,+ F j 1– k 1+, 2F j k 1+, F j 1 k 1+,++ +()–++=

1– 0 1

2– 0 2

1– 0 1
X mask =

1– 2– 1–

0 0 0

1 2 1
Y mask =
IDL Reference Guide SOBEL

1284
Arguments

Image

The two-dimensional array containing the image to which edge enhancement is
applied.

Example

If the variable myimage contains a two-dimensional image array, a Sobel sharpened
version of myimage can be displayed with the command:

TVSCL, SOBEL(myimage)

See Also

ROBERTS
SOBEL IDL Reference Guide

1285
SOCKET

The SOCKET procedure, supported on UNIX and Microsoft Windows platforms,
opens a client-side TCP/IP Internet socket as an IDL file unit. Such files can be used
in the standard manner with any of IDL’s Input/Output routines.

Tip
RSI recommends that you don’t use the EOF procedure as a way to check to see if a
socket is empty. It is recommended that you structure your communication across
the socket so that using EOF is not necessary to know when the communication is
complete.

Syntax

SOCKET, Unit, Host, Port [, CONNECT_TIMEOUT=value] [, ERROR=variable]
[, /GET_LUN] [, /RAWIO] [, READ_TIMEOUT=value] [, /SWAP_ENDIAN]
[, /SWAP_IF_BIG_ENDIAN] [, /SWAP_IF_LITTLE_ENDIAN] [, WIDTH=value]
[, WRITE_TIMEOUT=value]

UNIX-Only Keywords: [, /STDIO]

Arguments

Unit

The unit number to associate with the opened socket.

Host

The name of the host to which the socket is connected. This can be either a standard
Internet host name (e.g. ftp.ResearchSystems.com) or a dot-separated numeric
address (e.g. 192.5.156.21).

Port

The port to which the socket is connected on the remote machine. If this is a well-
known port (as contained in the /etc/services file on a UNIX host), then you can
specify its name (e.g. daytime); otherwise, specify a number.
IDL Reference Guide SOCKET

1286
Keywords

CONNECT_TIMEOUT

Set this keyword to the number of seconds to wait before giving up and issuing an
error to shorten the connect timeout from the system-supplied default. Most experts
recommend that you not specify an explicit timeout, and instead use your operating
system defaults.

Note
Although you can use CONNECT_TIMEOUT to shorten the timeout, you cannot
increase it past the system-supplied default.

ERROR

A named variable in which to place the error status. If an error occurs in the attempt
to open File, IDL normally takes the error handling action defined by the
ON_ERROR and/or ON_IOERROR procedures. SOCKET always returns to the
caller without generating an error message when ERROR is present. A nonzero error
status indicates that an error occurred. The error message can then be found in the
system variable !ERR_STRING.

GET_LUN

Set this keyword to use the GET_LUN procedure to set the value of Unit before the
file is opened. Instead of using the two statements:

GET_LUN, Unit
OPENR, Unit, 'data.dat'

you can use the single statement:

OPENR, Unit, 'data.dat', /GET LUN

RAWIO

Set this keyword to disable all use of the standard operating system I/O for the file, in
favor of direct calls to the operating system. This allows direct access to devices,
such as tape drives, that are difficult or impossible to use effectively through the
standard I/O. Using this keyword has the following implications:

• No formatted or associated (ASSOC) I/O is allowed on the file. Only READU
and WRITEU are allowed.

• Normally, attempting to read more data than is available from a file causes the
unfilled space to be set to zero and an error to be issued. This does not happen
SOCKET IDL Reference Guide

1287
with files opened with RAWIO. When using RAWIO, the programmer must
check the transfer count, either via the TRANSFER_COUNT keywords to
READU and WRITEU, or the FSTAT function.

• The EOF and POINT_LUN functions cannot be used with a file opened with
RAWIO.

• Each call to READU or WRITEU maps directly to UNIX read(2) and write(2)
system calls. The programmer must read the UNIX system documentation for
these calls and documentation on the target device to determine if there are any
special rules for I/O to that device. For example, the size of data that can be
transferred to many cartridge tape drives is often forced to be a multiple of 512
bytes.

READ_TIMEOUT

Set this keyword to the number of seconds to wait for data to arrive before giving up
and issuing an error. By default, IDL blocks indefinitely until the data arrives.
Typically, this option is unnecessary on a local network, but it is useful with
networks that are slow or unreliable.

SWAP_ENDIAN

Set this keyword to swap byte ordering for multi-byte data when performing binary
I/O on the specified file. This is useful when accessing files also used by another
system with byte ordering different than that of the current host.

SWAP_IF_BIG_ENDIAN

Setting this keyword is equivalent to setting SWAP_ENDIAN; it only takes effect if
the current system has big endian byte ordering. This keyword does not refer to the
byte ordering of the input data, but to the computer hardware.

SWAP_IF_LITTLE_ENDIAN

Setting this keyword is equivalent to setting SWAP_ENDIAN; it only takes effect if
the current system has little endian byte ordering. This keyword does not refer to the
byte ordering of the input data, but to the computer hardware.

WIDTH

The desired output width. When using the defaults for formatted output, IDL uses the
following rules to determine where to break lines:

• If the output file is a terminal, the terminal width is used. Under VMS, if the
file has fixed-length records or a maximum record length, the record length is
used.
IDL Reference Guide SOCKET

1288
• Otherwise, a default of 80 columns is used.

The WIDTH keyword allows the user to override this default.

WRITE_TIMEOUT

Set this keyword to the number of seconds to wait to send data before giving up and
issuing an error. By default, IDL blocks indefinitely until it is possible to send the
data. Typically, this option is unnecessary on a local network, but it is useful with
networks that are slow or unreliable.

UNIX-Only Keywords

STDIO

Under UNIX, forces the file to be opened via the standard C I/O library (stdio) rather
than any other more native OS API that might usually be used. This is primarily of
interest to those who intend to access the file from external code, and is not necessary
for most uses.

Note
Under Windows, the STDIO feature is not possible. Requesting it causes IDL to
throw an error.

Example

Most UNIX systems maintain a daytime server on the daytime port (port 13). There
servers send a 1 line response when connected to, containing the current time of day.

; To obtain the current time from the host bullwinkle:
SOCKET, 1, 'bullwinkle','daytime'
date=''
READF, 1, date
CLOSE, 1
PRINT, date

IDL prints:

Wed Sep 15 17:20:27 1999
SOCKET IDL Reference Guide

1289
SORT

The SORT function returns a vector of subscripts that allow access to the elements of
Array in ascending order.

Syntax

Result = SORT(Array [, /L64])

Return Value

The result is always a vector of integer type with the same number of elements as
Array.

Arguments

Array

The array to be sorted. Array can be any basic type of vector or array. String arrays
are sorted using the ASCII collating sequence. Complex arrays are sorted by their
magnitude. Array values which are Not A Number (NaN) are moved to the end of the
resulting array.

Keywords

L64

By default, the result of SORT is 32-bit integer when possible, and 64-bit integer if
the number of elements being sorted requires it. Set L64 to force 64-bit integers to be
returned in all cases.

Note
Only 64-bit versions of IDL are capable of creating variables requiring a 64-bit sort.
Check the value of !VERSION.MEMORY_BITS to see if your IDL is 64-bit or not.

Example 1

A = [4, 3, 7, 1, 2]
PRINT, 'SORT(A) = ', SORT(A)

; Display the elements of A in sorted order:
PRINT, 'Elements of A in sorted order: ', A[SORT(A)]
IDL Reference Guide SORT

1290
; Display the elements of A in descending order:
PRINT, 'Elements of A in descending order: ', A[REVERSE(SORT(A))]

IDL prints:

SORT(A) = 3 4 1 0 2
Elements of A in sorted order: 1 2 3 4 7
Elements of A in descending order: 7 4 3 2 1

SORT(A) returns “3 4 1 0 2” because:

A[3] < A[4] < A[1] < A[0] < A[2]

Example 2

Sorting NaN Values

When sorting data including Not A Number (NaN) values, the NaN entries are
moved to the end of the resulting array. For example:

values = [500, !VALUES.F_NAN, -500]
PRINT, SORT(values)

IDL prints:

2 0 1

See Also

REVERSE, UNIQ, WHERE
SORT IDL Reference Guide

1291
SPAWN

The SPAWN procedure spawns a child process to execute a command or series of
commands. The result of calling SPAWN depends on the platform on which it is
being used:

• Under UNIX, the shell used (if any) is obtained from the SHELL environment
variable. The NOSHELL keyword can be used to execute a command directly
as a child process without starting a shell process.

• Under VMS, the DCL command language interpreter is used.

• Under Windows 95/98, a DOS window is opened. Under Windows NT, a
Command Shell is opened. The NOSHELL keyword can be used to execute
the specified command directly without starting an intermediate command
interpreter shell.

• On the Macintosh, SPAWN opens specified files or applications.

On all platforms, IDL execution suspends until the spawned process terminates.

If SPAWN is called without arguments, an interactive command interpreter process
is started, in which you can enter one or more operating system commands. While
you use the command interpreter process, IDL is suspended.

Note
For more information on using SPAWN, see the External Development Guide.

Syntax

SPAWN [, Command [, Result] [, ErrResult]]

Keywords (all platforms): [, COUNT=variable] [, EXIT_STATUS=variable]
[, /FORCE] [, PID=variable]

Macintosh-Only Keywords: [, MACCREATOR=string] [, /NOWAIT]

UNIX-Only Keywords: [, /NOSHELL] [, /NOTTYRESET] [, /NULL_STDIN]
[, /SH] [, /STDERR] [, /UNIT{Command required, Result not allowed}]

VMS-Only Keywords: [, /NOCLISYM] [, /NOLOGNAM]
[[, /NOTIFY] , /NOWAIT]

Windows-Only Keywords: [, /HIDE] [, /LOG_OUTPUT] [, /NOSHELL]
[, /NOWAIT] [, /NULL_STDIN] [, /STDERR]
IDL Reference Guide SPAWN

1292
Arguments

Command

A string containing the commands to be executed.

If Command is present, it must be specified as follows:

• On UNIX, Command is expected to be scalar unless used in conjunction with
the NOSHELL keyword, in which case Command is expected to be a string
array where each element is passed to the child process as a separate argument.

• On Windows, Command can be a scalar string or string array. If it is a string
array, SPAWN glues together each element of the string array, with each
element separated by whitespace.

• On the Macintosh, Command must consist of a comma-separated list of strings
containing the names of files to be opened. Each filename must be a separate
scalar string. If the first filename is an application, it is used to open the
remaining files specified. Otherwise, each file is opened by the application that
owns it. IDL suspends execution until all spawned applications have
terminated. The user can regain control of IDL before a spawned application
terminates by issuing the Command Period escape sequence.

• On VMS, Command must be a scalar.

If Command is not present, SPAWN starts an interactive command interpreter
process, which you can use to enter one or more operating system commands. While
you use the command interpreter process, IDL is suspended. Under Windows, an
interactive MS-DOS window or NT command shell window is created for this
purpose. UNIX and VMS spawn do not create a separate window, but simply run on
the user’s current tty. Under UNIX, the default shell is used (as specified by the
SHELL environment variable). The SH keyword can be used to force use of the
Bourne shell (/bin/sh). When you exit the child process, control returns to IDL,
which resumes at the point where it left off. The IDL session remains exactly as you
left it. It should be noted that using SPAWN in this manner is equivalent to using the
IDL $ command. The difference between these two is that $ can only be used
interactively while SPAWN can be used interactively or in IDL programs

Result

Under Macintosh, Result has no effect.

A named variable in which to place the output from the child process. Each line of
output becomes a single array element. If Result is not present, the output from the
child shell process goes to the standard output (usually the terminal).
SPAWN IDL Reference Guide

1293
ErrResult

ErrResult is allowed under UNIX and Windows. It is not allowed under VMS, and it
has no effect under the Macintosh OS.

A named variable in which to place the error output (stderr) from the child process.
Each line of output becomes a single array element. If ErrResult is not present, the
error output from the child shell process goes to the standard error file.

See the STDERR keyword for another error stream option.

Keywords

COUNT

If Result is present and this keyword is also specified, COUNT specifies a named
variable into which the number of lines of output is placed. This value gives the
number of elements placed into Result.

EXIT_STATUS

Set this keyword to a named variable in which the exit status for the child process is
returned. The meaning of this value is operating system dependent:

• Under UNIX, it is the value passed by the child to exit(2), and is analogous to
the value returned by $? under most UNIX shells. If the UNIT keyword is
used, this keyword always returns 0. In this case, use the EXIT_STATUS
keyword to FREE_LUN or CLOSE to determine the final exit status of the
process.

• Under VMS, it is the process status returned by LIB$SPAWN. If the
NOWAIT keyword is set, EXIT_STATUS returns 1 (SS$_NORMAL).

• Under Windows, it is the value returned by the Win32 GetExitCodeProcess()
system function. If the NOWAIT keyword is set, EXIT_STATUS returns 0.

FORCE

Set this keyword to override buffered file output in IDL and force the file to be closed
no matter what errors occur in the process. If it is not possible to properly flush this
data when a file close is requested, an error is normally issued and the file remains
open. An example of this might be that your disk does not have room to write the
remaining data. This default behavior prevents data from being lost, but the FORCE
keyword overrides this behavior.
IDL Reference Guide SPAWN

1294
NOWAIT

If this keyword is set, the IDL process continues executing in parallel with the
subprocess. Normally, the IDL process suspends execution until the subprocess
completes.

Note
Because the & character is commonly used in Unix to execute a command in the
background, the NO_WAIT keyword is not necessary, and is therefore not accepted
under Unix. To spawn a separate shell process under Unix, include the & character
at the end of the command. For example:

SPAWN, 'xterm &'

PID

A named variable into which the Process Identification number of the child process is
stored.

Macintosh-Only Keywords

MACCREATOR

Use this keyword to specify a four-character scalar string containing the Macintosh
file creator code of the application to be used to open the specified files. In no files
were specified, the application is launched without any files.

UNIX-Only Keywords

NOSHELL

Set this keyword to specify that Command should execute directly as a child process
without an intervening shell process. In this case, Command should be specified as a
string array in which the first element is the name of the command to execute and the
following arguments are the arguments to be passed to the command (C programmers
will recognize this as the elements of the argv argument that UNIX passes to the child
process main function). Since no shell is present, wildcard characters are not
expanded, and other tasks normally performed by the shell do not occur. NOSHELL
is useful when performing many SPAWNed operations from a program and speed is
a primary concern.

NOTTYRESET

Some UNIX systems drop characters when the tty mode is switched between normal
and raw modes. IDL switches between these modes when reading command input
SPAWN IDL Reference Guide

1295
and when using the GET_KBRD function. On such systems, IDL avoids losing
characters by delaying the switch back to normal mode until it is truly needed. This
method has the benefit of avoiding the large number of mode changes that would
otherwise be necessary. Routines that cause output to be sent to the standard output
(e.g., I/O operations, user interaction and SPAWN) ensure that the tty is in its normal
mode before performing their operations.

If the NOTTYRESET keyword is set, SPAWN does not switch the tty back to normal
mode before launching the child process assuming instead that the child will not send
output to the tty. Use this keyword to avoid characters being dropped in a loop of the
form:

WHILE (GET_KBRD(0) NE 'q') SPAWN, command

This keyword has no effect on systems that don’t suffer from dropped characters.

NULL_STDIN

If set, the null device /dev/null is connected to the standard input of the child
process.

SH

Set this keyword to force the use of the /bin/sh shell. Usually, the shell used is
determined by the SHELL environment variable.

STDERR

If set, the child’s error output (stderr) is combined with the standard output and
returned in Result. STDERR and the ErrResult argument are mutually exclusive. You
should use one or the other, but not both.

UNIT

If UNIT is present, SPAWN creates a child process in the usual manner, but instead
of waiting for the specified command to finish, it attaches a bidirectional pipe
between the child process and IDL. From the IDL session, the pipe appears as a
logical file unit. The other end of the pipe is attached to the child process standard
input and output. The UNIT keyword specifies a named variable into which the
number of the file unit is stored.

Once the child process is started, the IDL session can communicate with it through
the usual input/output facilities. After the child process has done its task, the CLOSE
procedure can be used to kill the process and close the pipe. Since SPAWN uses
GET_LUN to allocate the file unit, FREE_LUN should be used to free the unit.

If UNIT is present, Command must be present, and Result is not allowed.
IDL Reference Guide SPAWN

1296
Windows-Only Keywords

HIDE

If HIDE is set, the command interpreter shell window is minimized to prevent the
user from seeing it.

LOG_OUTPUT

Normally, IDL starts a command interpreter shell, and output from the child process
is displayed in the command interpreter’s window. If LOG_OUTPUT is set, the
command interpreter window is minimized (as with HIDE) and all output is diverted
to the IDLDE log window. If the Result or ErrResult arguments are present, they take
precedence over LOG_OUTPUT.

NOSHELL

If set, IDL starts the specified command directly without starting an intermediate
command interpreter shell. This is useful for Windows programs that do not require a
console, such as Notepad.

Note
Many common DOS commands (e.g. DIR) are not distinct programs, and are
instead implemented as part of the command interpreter. Specifying NOSHELL
with such commands results in the command not being found. In such cases, the
HIDE keyword might be useful.

NULL_STDIN

If set, the null device NUL is connected to the standard input of the child process.

STDERR

If set, the child’s error output (stderr) is combined with the standard output and
returned in Result. STDERR and the ErrResult argument are mutually exclusive. You
should use one or the other, but not both.

VMS-Only Keywords

NOCLISYM

If this keyword is set, the spawned subprocess does not inherit command language
interpreter symbols from its parent process. You can specify this keyword to prevent
commands redefined by symbol assignments from affecting the spawned commands,
or to speed process startup.
SPAWN IDL Reference Guide

1297
NOLOGNAM

If this keyword is set, the spawned subprocess does not inherit process logical names
from its parent process. You can specify this keyword to prevent commands
redefined by logical name assignments from affecting the spawned commands, or to
speed process startup.

NOTIFY

If this keyword is set, a message is broadcast to SYS$OUTPUT when the child
process completes or aborts. NOTIFY has no effect unless NOWAIT is set.

Examples

Example 1

To simply spawn a process from within IDL, enter the command:

SPAWN

To execute the UNIX ls command and return to the IDL prompt, enter:

SPAWN, 'ls'

To execute the UNIX ls command and store the result in the IDL string variable
listing, enter:

SPAWN, 'ls', listing

Example 2

The UNIX grep(1) command is documented as providing an exit value of 0 if one or
matches are found, 1 if no matches are found, and 2 if some other error prevents it
from functioning. We can use this to determine if the word “Bullwinkle” appears in
the text files in the current working directory:

PRO test_for_moose
SPAWN, 'grep Bullwinkle *.txt > /dev/null', EXIT_STATUS=e
CASE e OF

0: PRINT, 'Bullwinkle exists'
1: PRINT, 'Bullwinkle does not exist'
2: PRINT, 'Grep encountered syntax or other errors'
ELSE : PRINT, 'Unknown error in grep'

ENDCASE
END

See Also

“Dollar Sign ($)” on page 2465, Chapter 2, “Using SPAWN” in the External
Development Guide
IDL Reference Guide SPAWN

1298
SPH_4PNT

Given four 3-dimensional points, the SPH_4PNT procedure returns the center and
radius necessary to define the unique sphere passing through those points.

This routine is written in the IDL language. Its source code can be found in the file
sph_4pnt.pro in the lib subdirectory of the IDL distribution.

Syntax

SPH_4PNT, X, Y, Z, Xc, Yc, Zc, R [, /DOUBLE]

Arguments

X, Y, Z

4-element floating-point or double-precision vectors containing the X, Y, and Z
coordinates of the points.

Xc, Yc, Zc

Named variables that will contain the sphere’s center X, Y, and Z coordinates.

R

A named variable that will contain the sphere’s radius.

Keywords

DOUBLE

Set this keyword to force computations to be done in double-precision arithmetic.

Example

Find the center and radius of the unique sphere passing through the points: (1, 1, 0),
(2, 1, 2), (1, 0, 3), (1, 0, 1):

; Define the floating-point vectors containing the x, y and z
; coordinates of the points:
X = [1, 2, 1, 1] + 0.0
Y = [1, 1, 0, 0] + 0.0
Z = [0, 2, 3, 1] + 0.0

; Compute sphere’s center and radius:
SPH_4PNT, X, Y, Z, Xc, Yc, Zc, R
SPH_4PNT IDL Reference Guide

1299
; Print the results:
PRINT, Xc, Yc, Zc, R

IDL prints:

-0.500000 2.00000 2.00000 2.69258

See Also

CIR_3PNT, PNT_LINE
IDL Reference Guide SPH_4PNT

1300
SPH_SCAT

The SPH_SCAT function performs spherical gridding. Scattered samples on the
surface of a sphere are interpolated to a regular grid. This routine is a convenient
interface to the spherical gridding and interpolation provided by TRIANGULATE
and TRIGRID. The returned value of the function is a regularly-interpolated grid.
This routine is written in the IDL language. Its source code can be found in the file
sph_scat.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = SPH_SCAT(Lon, Lat, F [, BOUNDS=[lonmin, latmin, lonmax, latmax]]
[, BOUT=variable] [, GOUT=variable] [, GS=[lonspacing, latspacing]]
[, NLON=value] [, NLAT=value])

Arguments

Lon

A vector of sample longitudes, in degrees. Note that Lon, Lat, and F must all have the
same number of points.

Lat

A vector of sample latitudes, in degrees.

F

A vector of data values which are functions of Lon and Lat. Fi represents a value at
(Loni, Lati).

Keywords

BOUNDS

Set this keyword to a four-element vector containing the grid limits in longitude and
latitude of the output grid. The four elements are: [Lonmin, Latmin, Lonmax, Latmax]. If
this keyword is not set, the grid limits are set to the extent of Lon and Lat. Note that,
to cover all longitudes, you must explicitly specify the values for the BOUNDS
keyword.
SPH_SCAT IDL Reference Guide

1301
BOUT

Set this keyword to a named variable that, on return, contains a four-element vector
(similar to BOUNDS) that describes the actual extent of the regular grid.

GOUT

Set this keyword to a named variable that, on return, contains a two-element vector
(similar to GS) that describes the actual grid spacing.

GS

Set this keyword to a two-element vector that specifies the spacing between grid
points in longitude (the first element) and latitude (the second element).

If this keyword is not set, the default value is based on the extents of Lon and Lat.
The default longitude spacing is (Lonmax - Lonmin)/(NX-1). The default latitude
spacing is (Latmax - Latmin)/(NY-1). If NX and NY are not set, the default grid size of
26 by 26 is used for NX and NY.

NLON

The output grid size in the longitude direction. The default value is 26. Note that
NLON need not be specified if the size can be inferred from GS and BOUNDS.

NLAT

The output grid size in the latitude direction. The default value is 26. Note that NLAT
need not be specified if the size can be inferred from GS and BOUNDS.

Example

; Create some random longitude points:
lon = RANDOMU(seed, 50) * 360. -180.

; Create some random latitude points:
lat = RANDOMU(seed, 50) * 180. -90.

; Make a function to fit:
z = SIN(lat*!DTOR)
c = COS(lat*!DTOR)
x = COS(lon*!DTOR) * c
y = SIN(lon*!DTOR) * c

; The finished dependent variable:
f = SIN(x+y) * SIN(x*z)
; Interpolate the data and return the result in variable r:
r = SPH_SCAT(lon, lat, f, BOUNDS=[0, -90, 350, 85], GS=[10,5])
IDL Reference Guide SPH_SCAT

1302
See Also

TRIANGULATE, TRIGRID
SPH_SCAT IDL Reference Guide

1303
SPHER_HARM

The SPHER_HARM function returns the value of the spherical harmonic Ylm(θ,φ),
–l ≤ m ≤ l, l ≥ 0, which is a function of two coordinates on a spherical surface.

The spherical harmonics are related to the associated Legendre polynomial by:

For negative m the following relation is used:

where * represents the complex conjugate.

This routine is written in the IDL language. Its source code can be found in the file
spher_harm.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = SPHER_HARM(Theta, Phi, L, M, [, /DOUBLE])

Return Value

SPHER_HARM returns a complex scalar or array containing the value of the
spherical harmonic function. The return value has the same dimensions as the input
arguments Theta and Phi. If one argument (Theta or Phi) is a scalar and the other
argument is an array, the function uses the scalar value with each element of the
array, and returns an array with the same dimensions as the input array.

If either Theta or Phi are double-precision or if the DOUBLE keyword is set, the
result is double-precision complex, otherwise the result is single-precision complex.

Arguments

Theta

The value of the polar (colatitudinal) coordinate θ at which Ylm(θ,φ) is evaluated.
Theta can be either a scalar or an array.

Y lm θ φ(,)
2l 1+

4π
-------------- l m–()!

l m+()!
-------------------Pm

l
θcos()e

imφ
=

Y 1 m–, θ φ(,) 1–()m
Y *

lm
θ φ(,)=
IDL Reference Guide SPHER_HARM

1304
Phi

The value of the azimuthal (longitudinal) coordinate φat which Ylm(θ,φ) is evaluated.
Phi can be either a scalar or an array.

L

A scalar integer, L ≥ 0, specifying the order l of Ylm(θ,φ). If L is of type float, it will
be truncated.

M

A scalar integer, –L ≤ M ≤ L, specifying the azimuthal order m of Ylm(θ,φ). If M is of
type float, it will be truncated.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

This example visualizes the electron probability density for the hydrogen atom in
state 3d0. (Feynman, Leighton, and Sands, 1965: The Feynman Lectures on Physics,
Calif. Inst. Tech, Ch. 19):

; Define a data cube (N x N x N)
n = 41L
a = 60*FINDGEN(n)/(n-1) - 29.999 ; [-1,+1]
x = REBIN(a, n, n, n) ; X-coordinates of cube
y = REBIN(REFORM(a,1,n), n, n, n) ; Y-coordinates
z = REBIN(REFORM(a,1,1,n), n, n, n); Z-coordinates

; Convert from rectangular (x,y,z) to spherical (phi, theta, r)
spherCoord = CV_COORD(FROM_RECT= $
 TRANSPOSE([[x[*]],[y[*]],[z[*]]]), /TO_SPHERE)
phi = REFORM(spherCoord[0,*], n, n, n)
theta = REFORM(!PI/2 - spherCoord[1,*], n, n, n)
r = REFORM(spherCoord[2,*], n, n, n)

; Find electron probability density for hydrogen atom in state 3d0
; Angular component
L = 2 ; state "d" is electron spin L=2
M = 0 ; Z-component of spin is zero
angularState = SPHER_HARM(theta, phi, L, M)
; Radial component for state n=3, L=2
radialFunction = EXP(-r/2)*(r^2)
SPHER_HARM IDL Reference Guide

1305
waveFunction = angularState*radialFunction
probabilityDensity = ABS(waveFunction)^2

SHADE_VOLUME, probabilityDensity, $
 0.1*MEAN(probabilityDensity), vertex, poly
oPolygon = OBJ_NEW('IDLgrPolygon', vertex, $
 POLYGON=poly, COLOR=[180,180,180])
XOBJVIEW, oPolygon

The results are shown in the following figure (rotated in XOBJVIEW for clarity):

See Also

LEGENDRE, LAGUERRE

Figure 30: SPHER_HARM Example of Hydrogen Atom
(object rotated in XOBJVIEW for clarity)
IDL Reference Guide SPHER_HARM

1306
SPL_INIT

The SPL_INIT function is called to establish the type of interpolating spline for a
tabulated set of functional values Xi, Yi = F(Xi). SPL_INIT returns the values of the
2nd derivative of the interpolating function at the points Xi.

It is important to realize that SPL_INIT should be called only once to process an
entire tabulated function in arrays X and Y. Once this has been done, values of the
interpolated function for any value of X can be obtained by calls (as many as desired)
to the separate function SPL_INTERP.

SPL_INIT is based on the routine spline described in section 3.3 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SPL_INIT(X, Y [, /DOUBLE] [, YP0=value] [, YPN_1=value])

Arguments

X

An n-element input vector that specifies the tabulate points in ascending order.

Y

An n-element input vector that specifies the values of the tabulated function F(Xi)
corresponding to Xi.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

YP0

The first derivative of the interpolating function at the point X0. If YP0 is omitted, the
second derivative at the boundary is set to zero, resulting in a “natural spline.”
SPL_INIT IDL Reference Guide

1307
YPN_1

The first derivative of the interpolating function at the point Xn-1. If YPN_1 is
omitted, the second derivative at the boundary is set to zero, resulting in a “natural
spline.”

Example

Example 1

X = (FINDGEN(21)/20.) * 2.0*!PI
Y = SIN(X)
PRINT, SPL_INIT(X, Y, YP0 = -1.1, YPN_1 = 0.0)

IDL Prints:

23.1552 -6.51599 1.06983 -1.26115 -0.839544 -1.04023
-0.950336 -0.817987 -0.592022 -0.311726 2.31192e-05 0.311634
0.592347 0.816783 0.954825 1.02348 0.902068 1.02781
-0.198994 3.26597 -11.0260

Example 2

PRINT, SPL_INIT(X, Y, YP0 = -1.1)

IDL prints:

23.1552 -6.51599 1.06983 -1.26115 -0.839544 -1.04023
-0.950336 -0.817988 -0.592020 -0.311732 4.41521e-05 0.311555
0.592640 0.815690 0.958905 1.00825 0.958905 0.815692
0.592635 0.311567 0.00000

See Also

SPL_INTERP, SPLINE, SPLINE_P
IDL Reference Guide SPL_INIT

1308
SPL_INTERP

Given the arrays X and Y, which tabulate a function (with the Xi in ascending order),
and given the array Y2, which is the output from SPL_INIT, and given an input value
of X2, the SPL_INTERP function returns a cubic-spline interpolated value for the
given value of XI. The result has the same structure as X2, and is either single- or
double-precision floating, based on the input type.

SPL_INTERP is based on the routine splint described in section 3.3 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SPL_INTERP(X, Y, Y2, X2 [, /DOUBLE])

Arguments

X

An input array that specifies the tabulated points in ascending order.

Y

An input array that specifies the values of the tabulate function corresponding to Xi.

Y2

The output from SPL_INIT for the specified X and Y.

X2

The input value for which an interpolated value is desired. X can be scalar or an array
of values. The result of SPL_INIT will have the same structure.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
SPL_INTERP IDL Reference Guide

1309
Example

To create a spline interpolation over a tabulated set of data, [Xi, Yi], first create the
tabulated data. In this example, Xi will be in the range [0.0, 2π] and Yi in the range
[sin(0.0), sin(2π)].

X = (FINDGEN(21)/20.0) * 2.0 * !PI
Y = SIN(X)

; Calculate interpolating cubic spline:
Y2 = SPL_INIT(X, Y)

; Define the X values P at which we desire interpolated Y values:
X2= FINDGEN(11)/11.0 * !PI

; Calculate the interpolated Y values corresponding to X2[i]:
result = SPL_INTERP(X, Y, Y2, X2)

PRINT, result

IDL prints:

0.00000 0.281733 0.540638 0.755739 0.909613 0.989796
0.989796 0.909613 0.755739 0.540638 0.281733

The exact solution vector is sin(X2).

To interpolate a line in the XY plane, see SPLINE_P.

See Also

SPL_INIT, SPLINE, SPLINE_P
IDL Reference Guide SPL_INTERP

1310
SPLINE

The SPLINE function performs cubic spline interpolation.

This routine is written in the IDL language. Its source code can be found in the file
spline.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = SPLINE(X, Y, T [, Sigma])

Arguments

X

The abscissa vector. Values must be monotonically increasing.

Y

The vector of ordinate values corresponding to X.

T

The vector of abscissa values for which the ordinate is desired. The values of T must
be monotonically increasing.

Sigma

The amount of “tension” that is applied to the curve. The default value is 1.0. If sigma
is close to 0, (e.g., .01), then effectively there is a cubic spline fit. If sigma is large,
(e.g., greater than 10), then the fit will be like a polynomial interpolation.

Example

The commands below show a typical use of SPLINE:

; X values of original function:
X = [2.,3.,4.]

; Make a quadratic
Y = (X-3)^2
;Values for interpolated points:
T = FINDGEN(20)/10.+2

; Do the interpolation:
Z = SPLINE(X,Y,T)
SPLINE IDL Reference Guide

1311
See Also

SPL_INIT, SPLINE_P
IDL Reference Guide SPLINE

1312
SPLINE_P

The SPLINE_P procedure performs parametric cubic spline interpolation with
relaxed or clamped end conditions.

This routine is both more general and faster than the SPLINE function. One call to
SPLINE_P is equivalent to two calls to SPLINE, as both the X and Y are interpolated
with splines. It is suited for interpolating between randomly placed points, and the
abscissa values need not be monotonic. In addition, the end conditions may be
optionally specified via tangents.

This routine is written in the IDL language. Its source code can be found in the file
spline_p.pro in the lib subdirectory of the IDL distribution.

Syntax

SPLINE_P, X, Y, Xr, Yr [, INTERVAL=value] [, TAN0=[X0, Y0]]
[, TAN1=[Xn-1, Yn-1]]

Arguments

X

The abscissa vector. X should be floating-point or double-precision.

Y

The vector of ordinate values corresponding to X. Y should be floating-point or
double-precision.

Neither X or Y need be monotonic.

Xr

A named variable that will contain the abscissa values of the interpolated function.

Yr

A named variable that will contain the ordinate values of the interpolated function.

Keywords

INTERVAL

Set this keyword equal to the desired interval in XY space between interpolants. If
omitted, approximately 8 interpolants per XY segment will result.
SPLINE_P IDL Reference Guide

1313
TAN0

The tangent to the spline curve at X[0], Y[0]. If omitted, the tangent is calculated to
make the curvature of the result zero at the beginning. TAN0 is a two element vector,
containing the X and Y components of the tangent.

TAN1

The tangent to the spline curve at X[n-1], Y[n-1]. If omitted, the tangent is calculated
to make the curvature of the result zero at the end. TAN1 is a two element vector,
containing the X and Y components of the tangent.

Example

The commands below show a typical use of SPLINE_P:

; Abscissas for square with a vertical diagonal:
X = [0.,1,0,-1,0]

; Ordinates:
Y = [0.,1,2,1,0]

; Interpolate with relaxed end conditions:
SPLINE_P, X, Y, XR, YR

; Show it:
PLOT, XR, YR

As above, but with setting both the beginning and end tangents:

SPLINE_P, X, Y, XR, YR, TAN0=[1,0], TAN1=[1,0]

This yields approximately 32 interpolants.

As above, but with setting the interval to 0.05, making more interpolants, closer
together:

SPLINE_P, X, Y, XR, YR, TAN0=[1,0], TAN1=[1,0], INTERVAL=0.05

This yields 116 interpolants and looks close to a circle.

See Also

SPL_INIT, SPLINE
IDL Reference Guide SPLINE_P

1314
SPRSAB

The SPRSAB function performs matrix multiplication on two row-indexed sparse
arrays created by SPRSIN. The routine computes all components of the matrix
products, but only stores those values whose absolute magnitude exceeds the
threshold value. The result is a row-indexed sparse array.

SPRSAB is based on the routine sprstm described in section 2.7 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission. The difference between the
two routines is that SPRSAB performs the matrix multiplication A.B rather than
A.BT.

Syntax

Result = SPRSAB(A, B [, /DOUBLE] [, THRESHOLD=value])

Arguments

A, B

Row-indexed sparse arrays created by the SPRSIN function.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

THRESHOLD

Use this keyword to set the criterion for deciding the absolute magnitude of the
elements to be retained in sparse storage mode. For single-precision calculations, the
default value is 1.0 × 10-7. For double-precision calculations, the default is 1.0 × 10-

14.

Example

; Begin by creating two arrays:
A = [[5.0, 0.0, 0.0, 1.0], $

[3.0, -2.0, 0.0, 1.0], $
[4.0, -1.0, 0.0, 2.0], $
[0.0, 3.0, 3.0, 1.0]]

B = [[1.0, 2.0, 3.0, 1.0], $
[3.0, -3.0, 0.0, 1.0], $
SPRSAB IDL Reference Guide

1315
[-1.0, 3.0, 1.0, 2.0], $
[0.0, 3.0, 3.0, 1.0]]

; Convert the arrays to sparse array format before multiplying. The
; variable SPARSE holds the result in sparse array form:
sparse = SPRSAB(SPRSIN(A), SPRSIN(B))

; Restore the sparse array structure to full storage mode:
result = FULSTR(sparse)

; Print the result:
PRINT, 'result:'
PRINT, result

; Check this result by multiplying the original arrays:
exact = B # A
PRINT, 'exact:'
PRINT, exact

IDL prints:

result:
5.00000 13.0000 18.0000 6.00000
-3.00000 15.0000 12.0000 2.00000
1.00000 17.0000 18.0000 5.00000
6.00000 3.00000 6.00000 10.0000
exact:
5.00000 13.0000 18.0000 6.00000
-3.00000 15.0000 12.0000 2.00000
1.00000 17.0000 18.0000 5.00000
6.00000 3.00000 6.00000 10.0000

See Also

FULSTR, LINBCG, SPRSAX, SPRSIN, SPRSTP, READ_SPR, WRITE_SPR
IDL Reference Guide SPRSAB

1316
SPRSAX

The SPRSAX function takes a row-indexed sparse array created by the SPRSIN
function and multiplies it by an n-element vector to its right. The result is a n-element
vector.

SPRSAX is based on the routine sprsax described in section 2.7 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SPRSAX(A, X [, /DOUBLE])

Arguments

A

A row-indexed sparse array created by the SPRSIN function.

X

An n-element right hand vector.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

; Begin by creating an array A:
A = [[5.0, 0.0, 0.0], $

[3.0, -2.0, 0.0], $
[4.0, -1.0, 0.0]]

; Define the right-hand vector:
X = [1.0, 2.0, -1.0]

; Convert to sparse format, then multiply by X:
result = SPRSAX(SPRSIN(A),X)

; Print the result:
PRINT, result
SPRSAX IDL Reference Guide

1317
IDL prints:

5.00000 -1.00000 2.00000

See Also

FULSTR, LINBCG, SPRSAB, SPRSIN, SPRSTP, READ_SPR, WRITE_SPR
IDL Reference Guide SPRSAX

1318
SPRSIN

The SPRSIN function converts an array, or list of subscripts and values, into a row-
index sparse storage mode, retaining only elements with an absolute magnitude
greater than or equal to the specified threshold. The list form is much more efficient
than the array form if the density of the matrix is low.

The result is a row-indexed sparse array contained in structure form. The structure
consists of two linear sparse storage vectors: SA, a vector of array values, and IJA, a
vector of subscripts to the SA vector. The length of these vectors is equal to 1 plus the
number of diagonal elements of the array, plus the number of off-diagonal elements
with an absolute magnitude greater that or equal to the threshold value. Diagonal
elements of the array are always retained even if their absolute magnitude is less than
the specified threshold.

SPRSIN is based on the routine sprsin described in section 2.7 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SPRSIN(A [, /COLUMN] [, /DOUBLE] [, THRESHOLD=value])

or

Result = SPRSIN(Columns, Rows, Values, N [, /DOUBLE] [, THRESHOLD=value])

Arguments

A

An n by n array of any type except string or complex.

Columns

A vector containing the column subscripts of the non-zero elements. Values must be
in the range of 0 to (N-1).

Rows

A vector, of the same length as Column, containing the row subscripts of the non-
zero elements. Values must be in the range of 0 to (N-1).
SPRSIN IDL Reference Guide

1319
Values

A vector, of the same length as Column, containing the values of the non-zero
elements.

N

The size of the resulting sparse matrix.

Keywords

COLUMN

Set this keyword if the input array A is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors). This keyword is
not allowed in the list form of the call.

DOUBLE

Set this keyword to convert the sparse array to double-precision.

THRESHOLD

Use this keyword to set the criterion for deciding the absolute magnitude of the
elements to be retained in sparse storage mode. For single-precision calculations, the
default value is 1.0 × 10-7. For double-precision values, the default is 1.0 × 10-14.

Examples

Example1

Suppose we wish to convert the following array to sparse storage format:

A = [[5.0, -0.2, 0.1], $
[3.0, -2.0, 0.3], $
[4.0, -1.0, 0.0]]

; Convert to sparse storage mode. All elements of the array A that
; have absolute values less than THRESH are set to zero.
sparse = SPRSIN(A, THRESH = 0.5)

The variable SPARSE now contains a representation of A in structure form. See the
description of FULSTR for an example that restores such a structure to full storage
mode.
IDL Reference Guide SPRSIN

1320
Example2

This example demonstrates how to use the list form of the call to SPRSIN. The
following line of code creates a sparse matrix, equivalent to a 100 by 100 identity
matrix, i.e. all diagonal elements are set to 1, all other elements are zero:

I100 = SPRSIN(LINDGEN(100), LINDGEN(100), REPLICATE(1.0,100), 100)

See Also

FULSTR, LINBCG, SPRSAB, SPRSAX, SPRSTP, READ_SPR, WRITE_SPR
SPRSIN IDL Reference Guide

1321
SPRSTP

The SPRSTP function constructs the transpose of a sparse matrix.

Syntax

Result = SPRSTP(A)

Arguments

A

A row-indexed sparse array created by the SPRSIN function.

Keywords

None

Example

This example creates a 100 by 100 pseudo-random sparse matrix, with 1000 non-zero
elements, and then computes the product of the matrix and its transpose:

n = 100 ;Dimensions of matrix
m = 1000 ;Number of non-zero elements
a = SPRSIN(RANDOMU(seed, m)*n, RANDOMU(seed, m)*n, $

RANDOMU(seed, m),n)
b = SPRSAB(a, SPRSTP(a)) ;Transpose and create the product

See Also

FULSTR, LINBCG, SPRSAB, SPRSAX, SPRSIN, READ_SPR, WRITE_SPR
IDL Reference Guide SPRSTP

1322
SQRT

The SQRT function returns the square root of X.

Syntax

Result = SQRT(X)

Arguments

X

The value for which the square root is desired. If X is double-precision floating-point
or complex, the result is of the same type. All other types are converted to single-
precision floating-point and yield floating-point results. When applied to complex
numbers, z = x+iy:

The ambiguous sign is taken to be the same as the sign of y. The result has the same
structure as X.

Example

To find the square root of 145 and store the result in variable S, enter:

S = SQRT(145)

See Also

“Exponentiation” in Chapter 2 of Building IDL Applications.

z1 2/ 1
2
--- r x+()

1 2/
i

1
2
--- r x–()

1 2/
±=

r x2 y2+=
SQRT IDL Reference Guide

1323
STANDARDIZE

The STANDARDIZE function computes standardized variables from an array of m
variables (columns) and n observations (rows). The result is an m-column, n-row
array where all columns have a mean of zero and a variance of one.

This routine is written in the IDL language. Its source code can be found in the file
standardize.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = STANDARDIZE(A [, /DOUBLE])

Arguments

A

An m-column, n-row single- or double-precision floating-point array.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

; Define an array with 4 variables and 20 observations:
array = $
 [[19.5, 43.1, 29.1, 11.9], $
 [24.7, 49.8, 28.2, 22.8], $
 [30.7, 51.9, 37.0, 18.7], $
 [29.8, 54.3, 31.1, 20.1], $
 [19.1, 42.2, 30.9, 12.9], $
 [25.6, 53.9, 23.7, 21.7], $
 [31.4, 58.5, 27.6, 27.1], $
 [27.9, 52.1, 30.6, 25.4], $
 [22.1, 49.9, 23.2, 21.3], $
 [25.5, 53.5, 24.8, 19.3], $
 [31.1, 56.6, 30.0, 25.4], $
 [30.4, 56.7, 28.3, 27.2], $
 [18.7, 46.5, 23.0, 11.7], $
 [19.7, 44.2, 28.6, 17.8], $
 [14.6, 42.7, 21.3, 12.8], $
 [29.5, 54.4, 30.1, 23.9], $
 [27.7, 55.3, 25.7, 22.6], $
IDL Reference Guide STANDARDIZE

1324
 [30.2, 58.6, 24.6, 25.4], $
 [22.7, 48.2, 27.1, 14.8], $
 [25.2, 51.0, 27.5, 21.1]]

; Compute the mean and variance of each variable using the MOMENT
; function. The skewness and kurtosis are also computed:
FOR K = 0, 3 DO PRINT, MOMENT(array[K,*])

; Compute the standardized variables:
result = STANDARDIZE(array)

; Compute the mean and variance of each standardized variable using
; the MOMENT function. The skewness and kurtosis are also computed:
FOR K = 0, 3 DO PRINT, MOMENT(result[K,*])

IDL prints:

25.3050 25.2331 -0.454763 -1.10028
51.1700 27.4012 -0.356958 -1.19516
27.6200 13.3017 0.420289 0.104912
20.1950 26.0731 -0.363277 -1.24886

-7.67130e-07 1.00000 -0.454761 -1.10028
-3.65451e-07 1.00000 -0.356958 -1.19516
-1.66707e-07 1.00000 0.420290 0.104913
4.21703e-07 1.00000 -0.363278 -1.24886

See Also

MOMENT
STANDARDIZE IDL Reference Guide

1325
STDDEV

The STDDEV function computes the standard deviation of an n-element vector.

Syntax

Result = STDDEV(X [, /DOUBLE] [, /NAN])

Arguments

X

A numeric vector.

Keywords

DOUBLE

If this keyword is set, computations are performed in double precision arithmetic.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See “Special Floating-Point Values” in Chapter 17 of Building IDL
Applications for more information on IEEE floating-point values.)

Example

; Define the n-element vector of sample data:
x = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71, 66, 65, 70]

; Compute the standard deviation:
result = STDDEV(x)

PRINT, result

IDL prints:

2.65832

See Also

KURTOSIS, MEAN, MEANABSDEV, MOMENT, SKEWNESS, VARIANCE
IDL Reference Guide STDDEV

1326
STOP

The STOP procedure stops the execution of a running program or batch file. Control
reverts to the interactive mode.

Syntax

STOP [, Expr1, ..., Exprn]

Arguments

Expri

One or more expressions whose value is printed. If no parameters are present, a brief
message describing where the STOP was encountered is printed.

Example

Suppose that you want to stop the execution of a procedure and print the values of the
variables A, B, C and NUM. At the appropriate location in your procedure include
the command:

STOP, A, B, C, NUM

To continue execution of the procedure (if possible) enter the IDL executive
command:

.CONT

See Also

BREAKPOINT, EXIT, WAIT
STOP IDL Reference Guide

1327
STRARR

The STRARR function returns a string array containing zero-length strings.

Syntax

Result = STRARR(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Example

To create S, a 20-element string vector, enter:

S = STRARR(20)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, LONARR, MAKE_ARRAY, UINTARR, ULON64ARR, ULONARR
IDL Reference Guide STRARR

1328
STRCMP

The STRCMP function performs string comparisons between its two String
arguments, returning True (1) for those that match and False (0) for those that do not.
Normally, the IDL equality operator (EQ) is used for such comparisons, but
STRCMP can optionally perform case-insensitive comparisons and can be limited to
compare only the first N characters of the two strings, both of which require extra
steps using the EQ operator.

Syntax

Result = STRCMP(String1, String2 [, N] [, /FOLD_CASE])

Return Value

If all of the arguments are scalar, the result is scalar. If one of the arguments is an
array, the result is an integer with the same structure. If more than one argument is an
array, the result has the structure of the smallest array. Each element of the result
contains True (1) if the corresponding elements of String1 and String2 are the same,
and False (0) otherwise.

Arguments

String1, String2

The strings to be compared.

N

Normally String1 and String2 are compared in their entirety. If N is specified, the
comparison is made on at most the first N characters of each string.

Keywords

FOLD_CASE

String comparison is normally a case sensitive operation. Set FOLD_CASE to
perform case insensitive comparisons instead.

Example

Compare two strings in a case-insensitive manner, considering only the first 3
characters:
STRCMP IDL Reference Guide

1329
Result = STRCMP('Moose', 'moo', 3, /FOLD_CASE)
PRINT, Result

IDL prints:

 1

See Also

STREGEX, STRJOIN, STRMATCH, STRMID, STRPOS, STRSPLIT
IDL Reference Guide STRCMP

1330
STRCOMPRESS

The STRCOMPRESS function returns a copy of String with all whitespace (blanks
and tabs) compressed to a single space or completely removed.

Syntax

Result = STRCOMPRESS(String [, /REMOVE_ALL])

Arguments

String

The string to be compressed. If not of type string, it is converted using IDL’s default
formatting rules. If String is an array, the result is an array with the same structure—
each element contains a compressed copy of the corresponding element of String.

Keywords

REMOVE_ALL

Set this keyword to remove all whitespace. Normally, all whitespace is compressed
to a single space.

Example

; Create a string variable S:
S = 'This is a string with spaces in it.'

; Print S with all of the whitespace removed:
PRINT, STRCOMPRESS(S, /REMOVE_ALL)

IDL Output

Thisisastringwithspacesinit.

See Also

STRTRIM
STRCOMPRESS IDL Reference Guide

1331
STREAMLINE

The STREAMLINE procedure generates the visualization graphics from a path. The
output is a polygonal ribbon which is tangent to a vector field along its length. The
ribbon is generated by placing a line at each vertex in the direction specified by each
normal value multiplied by the anisotropy factor. The input normal array is not
normalized before use, making it possible to vary the ribbon width as well.

Syntax

STREAMLINE, Verts, Conn, Normals, Outverts, Outconn [, ANISOTROPY=array]
[, SIZE=vector] [, PROFILE=array]

Arguments

Verts

Input array of path vertices ([3, n] array).

Conn

Input path connectivity array in IDLgrPolyline POLYLINES keyword format. There
is one set of line segments in this array for each streamline.

Normals

Normal estimate at each input vertex ([3, n] array).

Outverts

Output vertices ([3xM] float array). Useful if the routine is to be used with Direct
Graphics or the user wants to manipulate the data directly.

Outconn

Output polygonal connectivity array to match the output vertices.

Keywords

ANISOTROPY

Set this input keyword to a three-element array describing the distance between grid
points in each dimension. The default value is [1.0, 1.0, 1.0]
IDL Reference Guide STREAMLINE

1332
STREAMLINE IDL Reference Guide

SIZE

Set this keyword to a vector of values (one for each path point). These values are used
to specify the width of the ribbon or the size of profile at each point along its path.
This keyword is generally used to convey additional data parameters along the
streamline.

PROFILE

Set this keyword an array of two-dimensional points which are treated as the cross
section of the ribbon instead of a line segment. If the first and last points in the array
are the same, a closed profile is generated. The profile is placed at each path vertex in
the plane perpendicular to the line connecting each path vertex with the vertex
normal defining the up direction. This allows for the generation of streamtubes and
other geometries.

1333
STREGEX

The STREGEX function performs regular expression matching against the strings
contained in StringExpression. STREGEX can perform either a simple boolean
True/False evaluation of whether a match occurred, or it can return the position and
offset within the strings for each match. The regular expressions accepted by this
routine, which correspond to “Posix Extended Regular Expressions”, are similar to
those used by such UNIX tools as egrep, lex, awk, and Perl.

For more information about regular expressions, see “Learning About Regular
Expressions” in Chapter 4 of Building IDL Applications.

STREGEX is based on the regex package written by Henry Spencer, modified by RSI
only to the extent required to integrate it into IDL. This package is freely available at
ftp://zoo.toronto.edu/pub/regex.shar.

Syntax

Result = STREGEX(StringExpression, RegularExpression [, /BOOLEAN |
, /EXTRACT | , LENGTH=variable [, /SUBEXPR]] [, /FOLD_CASE])

Return Value

By default, STREGEX returns the position and length of the matched string within
StringExpression. If no match is found, -1 is returned for both of these. Optionally, it
can return a boolean True/False result of the match, or the matched strings.

Arguments

StringExpression

String to be matched.

RegularExpression

A scalar string containing the regular expression to match. See “Learning About
Regular Expressions” in Chapter 4 of Building IDL Applications for a description of
the meta characters that can be used in a regular expression.
IDL Reference Guide STREGEX

ftp://zoo.toronto.edu/pub/regex.shar

1334
Keywords

BOOLEAN

Normally, STREGEX returns the position of the first character in StringExpression
that matches RegularExpression. Setting BOOLEAN modifies this behavior to
simply return a True/False value indicating if a match occurred or not.

EXTRACT

Normally, STREGEX returns the position of the first character in StringExpression
that matches RegularExpression. Setting EXTRACT modifies this behavior to simply
return the matched substrings. The EXTRACT keyword cannot be used with either
BOOLEAN or LENGTH.

FOLD_CASE

Regular expression matching is normally a case-sensitive operation. Set
FOLD_CASE to perform case-insensitive matching instead.

LENGTH

If present, specifies a variable to receive the lengths of the matches. Together with
this result of this function, which contains the starting points of the matches in
StringExpression, LENGTH can be used with the STRMID function to extract the
matched substrings. The LENGTH keyword cannot be used with either BOOLEAN
or EXTRACT.

SUBEXPR

By default, STREGEX only reports the overall match. Setting SUBEXPR causes it to
report the overall match as well as any subexpression matches. A subexpression is
any part of a regular expression written within parentheses. For example, the regular
expression ‘(a)(b)(c+)’ has 3 subexpressions, whereas the functionally equivalent
'abc+' has none. The SUBEXPR keyword cannot be used with BOOLEAN.

If a subexpression participated in the match several times, the reported substring is
the last one it matched. Note, as an example in particular, that when the regular
expression ‘(b*)+’ matches ‘bbb’, the parenthesized subexpression matches the three
'b's and then an infinite number of empty strings following the last ‘b’, so the reported
substring is one of the empties. This occurs because the ‘*’ matches zero or more
instances of the character that precedes it.

In order to return multiple positions and lengths for each input, the result from
SUBEXPR has a new first dimension added compared to StringExpression.
STREGEX IDL Reference Guide

1335
Examples

Example 1

To match a string starting with an “a”, followed by a “b”, followed by 1 or more “c”:

pos = STREGEX('aaabccc', 'abc+', length=len)
PRINT, STRMID('aaabccc', pos, len)

IDL Prints:

abccc

To perform the same match, and also find the locations of the three parts:

pos = STREGEX('aaabccc', '(a)(b)(c+)', length=len, /SUBEXPR)
print, STRMID('aaabccc', pos, len)

IDL Prints:

abccc a b ccc

Or more simply:

print,STREGEX('aaabccc','(a)(b)(c+)',/SUBEXPR,/EXTRACT)

IDL Prints:

abccc a b ccc

Example 2

This example searches a string array for words of any length beginning with “f” and
ending with “t” without the letter “o” in between:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'affluent']
PRINT, STREGEX(str, '^f[^o]*t$', /EXTRACT, /FOLD_CASE)

This statement results in:

Feet FAST ferret

Note the following about this example:

• Unlike the * wildcard character used by STRMATCH, the * meta character
used by STREGEX applies to the item directly on its left, which in this case is
[^o], meaning “any character except the letter ‘o’ ”. Therefore, [^o]* means
“zero or more characters that are not ‘o’ ”, whereas the following statement
would find only words whose second character is not “o”:

PRINT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD_CASE) EQ 1)]
IDL Reference Guide STREGEX

1336
• The anchors (^ and $) tell STREGEX to find only words that begin with “f”
and end with “t”. If we left out the ^ anchor in the above example, STREGEX
would also return “ffluent” (a substring of “affluent”). Similarly, if we left out
the $ anchor, STREGEX would also return “fat” (a substring of “fate”).

See Also

STRCMP, STRJOIN, STRMATCH, STRMID, STRPOS, STRSPLIT
STREGEX IDL Reference Guide

1337
STRETCH

The STRETCH procedure stretches the image display color tables so the full range
runs from one color index to another. The modified colortable is loaded, but the
COLORS common block is not changed. The original colortable can be restored by
calling STRETCH with no arguments. A colortable must be loaded before
STRETCH can be called.

This routine is written in the IDL language. Its source code can be found in the file
stretch.pro in the lib subdirectory of the IDL distribution.

Syntax

STRETCH [, Low, High [, Gamma]] [, /CHOP]

Arguments

Low

The lowest pixel value to use. If this parameter is omitted, 0 is assumed. Appropriate
values range from 0 to the number of available colors-1. If no parameters are
supplied, the original color tables are restored.

High

The highest pixel value to use. If this parameter is omitted, the number of colors-1 is
assumed. Appropriate values range from 0 to the number of available colors-1.

Gamma

An optional Gamma correction factor. If this value is omitted, 1.0 is assumed.
Gamma correction works by raising the color indices to the Gamma power, assuming
they are scaled into the range 0 to 1.

Keywords

CHOP

Set this keyword to set color indices above the upper threshold to color index 0.
Normally, values above the upper threshold are set to the maximum color index.

Example

Load the STD GAMMA-II color table by entering:
IDL Reference Guide STRETCH

1338
LOADCT, 5

Create and display and image by entering:

TVSCL, DIST(300)

Now adjust the color table with STRETCH. Make the entire color table fit in the
range 0 to 70 by entering:

STRETCH, 0, 70

Notice that pixel values above 70 are now colored white. Restore the original color
table by entering:

STRETCH

See Also

GAMMA_CT, H_EQ_CT, MULTI, XLOADCT
STRETCH IDL Reference Guide

1339
STRING

The STRING function returns its arguments converted to string type. It is similar to
the PRINT procedure, except that its output is placed in a string rather than being
output to the terminal. The case in which a single expression of type byte is specified
without the FORMAT keyword is special—see the discussion below for details.

Note
Applying the STRING function to a byte array containing a null (zero) value will
result in the resulting string being truncated at that position.

Syntax

Result = STRING(Expression1, ..., Expressionn [, AM_PM=[string, string]]
[, DAYS_OF_WEEK=string_array{7 names}] [, FORMAT=value]
[, MONTHS=string_array{12 names}] [, /PRINT])

Arguments

Expressionn

The expressions to be converted to string type.

Note
If you supply a comma-separated list of expressions without specifying a
FORMAT, and the combined length of the expressions is greater than the current
width of your tty or command log window, STRING will create a string array with
one element for each expression, rather than concatenating all expressions into a
single string. In this case, you can either specify a FORMAT, or use the string
concatenation operator, “+”.

Keywords

AM_PM

Supplies a string array of 2 names to be used for the names of the AM and PM string
when processing explicitly formatted dates (CAPA, CApA, and CapA format codes)
with the FORMAT keyword.
IDL Reference Guide STRING

1340
DAYS_OF_WEEK

Supplies a string array of 7 names to be used for the names of the days of the week
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

FORMAT

A format string to be used in formatting the expressions. See “Using Explicitly
Formatted Input/Output” in Chapter 8 of Building IDL Applications.

MONTHS

Supplies a string array of 12 names to be used for the names of the months when
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) with
the FORMAT keyword.

PRINT

Set this keyword to specify that any special case processing should be ignored and
that STRING should behave exactly as the PRINT procedure would.

Differences Between STRING and PRINT

The behavior of STRING differs from the behavior of the PRINT procedure in the
following ways (unless the PRINT keyword is set):

• When called with a single non-byte argument and no format specification,
STRING returns a result that has the same dimensions as the original
argument. For example, the statement:

HELP, STRING(INDGEN(5))

gives the result:

<Expression> STRING = Array[5]

while:

HELP, STRING(INDGEN(5), /PRINT)

results in:

<Expression> STRING =' 0 1 2 3 4'

• If called with a single argument of byte type and the FORMAT keyword is not
used, STRING simply stores the unmodified values of each byte element in the
result. This result is a string containing the byte values from the original
argument. Thus, the result has one less dimension than the original argument.
STRING IDL Reference Guide

1341
For example, a 2-dimensional byte array becomes a vector of strings, a byte
vector becomes a scalar string. However, a byte scalar also becomes a string
scalar. For example, the statement:

PRINT, STRING([72B, 101B, 108B, 108B, 111B])

produces the output:

Hello

because the argument to STRING, is a byte vector. Its first element is a 72B
which is the ASCII code for “H”, the second is 101B which is an ASCII “e”,
and so forth.

• If both the FORMAT and PRINT keywords are not present and STRING is
called with more than one argument, and the last argument is a scalar string
starting with the characters “$(” or “(”, this final argument is taken to be the
format specification, just as if it had been specified via the FORMAT
keyword. This feature is maintained for compatibility with version 1 of VMS
IDL.

Example

To convert the contents of variable A to string type and store the result in the variable
B, enter:

B = STRING(A)

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64,
UINT, ULONG, ULONG64
IDL Reference Guide STRING

1342
STRJOIN

The STRJOIN function collapses a string scalar or array into merged strings. This
function reduces the rank of its input array by one dimension. The strings in the
removed first dimension are concatenated into a single string using the string in
Delimiter to separate them.

Syntax

Result = STRJOIN(String [, Delimiter] [, /SINGLE])

Arguments

String

A string scalar or array to be collapsed into merged strings.

Delimiter

The separator string to use between the joined strings. If Delimiter is not specified, an
empty string is used.

Keywords

SINGLE

If SINGLE is set, the entire String is joined into a single scalar string result.

Example

Replace all the blanks in a sentence with colons:

str = 'Out, damned spot! Out I say!'
print, (STRJOIN(STRSPLIT(str, /EXTRACT), ':'))

IDL prints:

Out,:damned:spot!:Out:I:say!

See Also

STRCMP, STREGEX, STRMATCH, STRMID, STRPOS, STRSPLIT
STRJOIN IDL Reference Guide

1343
STRLEN

The STRLEN function returns the length of its string-type argument. If the argument
is not a string, it is first converted to string type.

Syntax

Result = STRLEN(Expression)

Arguments

Expression

The expression for which the string length is desired. If this parameter is not a string,
it is converted using IDL’s default formatting rules in order to determine the length.
The result is a long integer. If Expression is an array, the result is a long integer array
with the same structure, where each element contains the length of the corresponding
Expression element.

Example

To find the length of the string “IDL is fun” and print the result, enter:

PRINT, STRLEN('IDL is fun')

IDL prints:

 10
IDL Reference Guide STRLEN

1344
STRLOWCASE

The STRLOWCASE function returns a copy of String converted to lowercase
characters. Only uppercase characters are modified—lowercase and non-alphabetic
characters are copied without change.

Syntax

Result = STRLOWCASE(String)

Arguments

String

The string to be converted. If this argument is not a string, it is converted using IDL’s
default formatting rules. If String is an array, the result is an array with the same
structure—each element contains a lower case copy of the corresponding element of
String.

Example

To convert the string “IDL is fun” to all lowercase characters and print the result,
enter:

PRINT, STRLOWCASE('IDL is fun')

IDL prints:

idl is fun

See Also

STRUPCASE
STRLOWCASE IDL Reference Guide

1345
STRMATCH

The STRMATCH function compares its search string, which can contain wildcard
characters, against the input string expression. The result is an array with the same
structure as the input string expression. Those elements that match the corresponding
input string are set to True (1), and those that do not match are set to False (0).

The wildcards understood by STRMATCH are similar to those used by the standard
UNIX shell:

Syntax

Result = STRMATCH(String, SearchString [, /FOLD_CASE])

Arguments

String

The String to be matched.

SearchString

The search string, which can contain wildcard characters as discussed above.

Wildcard
Character Description

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of
characters separated by "-" matches any character lexically
between the pair, inclusive. If the first character following the
opening [is a !, any character not enclosed is matched. To
prevent one of these characters from acting as a wildcard, it
can be quoted by preceding it with a backslash character (e.g.
"*" matches the asterisk character). Quoting any other
character (including \ itself) is equivalent to the character (e.g.
"\a" is the same as "a").

Table 88: Wilcard Characters used by STRMATCH
IDL Reference Guide STRMATCH

1346
Keywords

FOLD_CASE

The comparison is usually case sensitive. Setting the FOLD_CASE keyword causes a
case insensitive match to be done instead.

Examples

Example 1

Find all 4-letter words in a string array that begin with “f” or “F” and end with “t” or
“T”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f??t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet FAST fort

Example 2

Find words of any length that begin with “f” and end with “t”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f*t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet FAST ferret fort

Example 3

Find 4-letter words beginning with “f” and ending with “t”, with any combination of
“o” and “e” in between:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f[eo][eo]t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet

Example 4

Find all words beginning with “f” and ending with “t” whose second character is not
the letter “o”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD_CASE) EQ 1)]
STRMATCH IDL Reference Guide

1347
This results in:

Feet FAST ferret

See Also

STRCMP, STRJOIN, STREGEX, STRMID, STRPOS, STRSPLIT
IDL Reference Guide STRMATCH

1348
STRMESSAGE

The STRMESSAGE function returns the text of the error message specified by Err.
This function is especially useful in conjunction with the CODE field of the
!ERROR_STATE system variable which always contains the error number of the last
error. The MSG field of the !ERROR_STATE system variable contains the text of
the last error message.

Syntax

Result = STRMESSAGE(Err [, /BLOCK | , /CODE | , /NAME])

Arguments

Err

The error number or text. Programs must not make the assumption that certain error
numbers are always related to certain error messages—the actual correspondence
changes over time as IDL is modified.

Keywords

BLOCK

Set this keyword to return the name of the message block that defines Err. If this
keyword is specified, Err must be an error code.

CODE

Set this keyword to return the error code for the error message specified in Err. If this
keyword is specified, Err must be an error name.

NAME

Set this keyword to return a string containing the error message that goes with Err. If
this keyword is specified, Err must be an error code.

Example

Print the error message associated with error number 4 by entering:

PRINT, STRMESSAGE(4)

See Also

MESSAGE
STRMESSAGE IDL Reference Guide

1349
STRMID

The STRMID function extracts one or more substring from a string expression. Each
extracted string is the result of removing characters. The result of the function is a
string of Length characters taken from Expression, starting at character position
First_Character.

The form of First_Character and Length control how they are applied to Expression.
Either argument can be a scalar or an array:

• If a scalar value is supplied for First_Character and Length, then those values
are applied to all elements of Expression. The result has the same structure and
number of elements as Expression.

• If First_Character or Length is an array, the size of their first dimension
determines how many substrings are extracted from each element of
Expression. We call this the “stride”. If both are arrays, they must have the
same stride. If First_Character or Length do not contain enough elements to
process Expression, STRMID automatically loops back to the beginning as
necessary. Excess values are ignored. If the stride is 1, the result will have the
same structure and number of elements as Expression. If it is greater than 1,
the result will have an additional dimension, with the new first dimension
having the same size as the stride.

Syntax

Result = STRMID(Expression, First_Character [, Length] [, /REVERSE_OFFSET])

Arguments

Expression

The expression from which the substrings are to be extracted. If this argument is not a
string, it is converted using IDL's default formatting rules.

First_Character

The starting position within Expression at which the substring starts. The first
character position is 0.

Length

The length of the substring. If there are not enough characters left in the main string
to obtain Length characters, the substring is truncated. If Length is not supplied,
IDL Reference Guide STRMID

1350
STRMID extracts all characters from the specified start position to the end of the
string.

Keywords

REVERSE_OFFSET

Specifies that First_Character should be counted from the end of the string
backwards. This allows simple extraction of strings from the end.

Example

If the variable B contains the string “IDL is fun”, the substring “is” can be extracted
and stored in the variable C with the command:

C = STRMID(B, 4, 2)

See Also

STRPOS, STRPUT, STRTRIM
STRMID IDL Reference Guide

1351
STRPOS

The STRPOS function finds the first occurrence of a substring within an object
string. If Search_String occurs in Expression, STRPOS returns the character position
of the match, otherwise it returns -1.

Syntax

Result = STRPOS(Expression, Search String [, Pos] [, /REVERSE_OFFSET]
[, /REVERSE_SEARCH])

Arguments

Expression

The expression in which to search for the substring. If this argument is not a string, it
is converted using IDL’s default formatting rules. If Expression is an array, the result
is an array with the same structure, where each element contains the position of the
substring within the corresponding element Expression. If Expression is the null
string, STRPOS returns the value -1.

Search_String

The substring to be searched for within Expression. If this argument is not a string, it
is converted using IDL’s default formatting rules. If Search_String is the null string,
STRPOS returns the smaller of Pos or one less than the length of Expression.

Pos

The character position at which the search is begun. If Pos is omitted and the
REVERSE_SEARCH keyword is not set, the search begins at the first character
(character position 0). If REVERSE_SEARCH is set, the default is to start at the last
character in the string. If Pos is less than zero, zero is used for the starting position.

Keywords

REVERSE_OFFSET

Normally, the value of Pos is used as an offset from the beginning of the expression
towards the end. Set REVERSE_OFFSET to use it as an offset from the last character
of the string moving towards the beginning. This keyword makes it easy to position
the starting point of the search at a fixed offset from the end of the string.
IDL Reference Guide STRPOS

1352
REVERSE_SEARCH

STRPOS usually starts at Pos and moves toward the end of the string looking for a
match. If REVERSE_SEARCH is set, the search instead moves towards the
beginning of the string.

Examples

Example 1

Find the position of the string “fun” within the string “IDL is fun” and print the result
by entering:

PRINT, STRPOS('IDL is fun', 'fun')

IDL prints:

 7

Example 2

The REVERSE_SEARCH keyword to the STRPOS function makes it easy to find
the last occurrence of a substring within a string. In the following example, we search
for the last occurrence of the letter “I” (or “i”) in a sentence:

sentence = 'IDL is fun.'
sentence = STRUPCASE(sentence)
lasti = STRPOS(sentence, 'I', /REVERSE_SEARCH)
PRINT, lasti

This results in:

4

Note that although REVERSE_SEARCH tells STRPOS to begin searching from the
end of the string, the STRPOS function still returns the position of the search string
from the beginning of the string (where 0 is the position of the first character).

See Also

STRMID, STRPUT, STRTRIM
STRPOS IDL Reference Guide

1353
STRPUT

The STRPUT procedure inserts the contents of one string into another. The source
string, Source, is inserted into the destination string, Destination, starting at the given
position, Position. Characters in Destination before the starting position and after the
starting position plus the length of Source remain unchanged. The length of the
destination string is not changed. If the insertion extends past the end of the
destination, it is clipped at the end.

Syntax

STRPUT, Destination, Source [, Position]

Arguments

Destination

The named string variable into which Source is inserted. Destination must be a
named variable of type string. If it is an array, Source is inserted into every element
of the array.

Source

A scalar string to be inserted into Destination. If this argument is not a string, it is
converted using IDL’s default formatting rules.

Position

The character position at which the insertion is begun. If Position is omitted, the
insertion begins at the first character (character position 0). If Position is less than
zero, zero is used for the initial position.

Examples

If the variable A contains the string “IBM is fun”, the substring “IBM” can be
overwritten with the string “IDL” by entering:

STRPUT, A, 'IDL', 0

The following commands demonstrate the clipping of output that extends past the
end of the destination string:

STRPUT, A, 'FUNNY', 7
PRINT, A
IDL Reference Guide STRPUT

1354
IDL prints:

IDL is FUN

See Also

STRMID, STRPOS, STRTRIM
STRPUT IDL Reference Guide

1355
STRSPLIT

The STRSPLIT function splits its input String argument into separate substrings,
according to the specified delimiter or regular expression. By default, the position of
the substrings is returned. The EXTRACT keyword can be used to cause STRSPLIT
to return an array containing the substrings.

Syntax

Result = STRSPLIT(String [, Pattern] [, ESCAPE=string | , /REGEX
[, /FOLD_CASE]] [, /EXTRACT | , LENGTH=variable] [, /PRESERVE_NULL])

Arguments

String

A scalar string to be split into substrings.

Pattern

Pattern can contain one of two types of information:

• A string containing the character codes that are considered to be separators. In
this case, IDL performs a simple string search for those characters. This
method is simple and fast.

• A regular expression, as implemented by the STREGEX function, which is
used by IDL to match the separators. This method is slower and more
complex, but can handle extremely complicated input strings.

Pattern is an optional argument. If it is not specified, STRSPLIT defaults to splitting
on spans of whitespace (space or tab characters) in String.

Keywords

ESCAPE

When doing simple pattern matching, the ESCAPE keyword can be used to specify
any characters that should be considered to be “escape” characters. Preceding any
character with an escape character prevents STRSPLIT from treating it as a separator
character even if it is found in Pattern.

Note that if the EXTRACT keyword is set, STRSPLIT will automatically remove the
escape characters from the resulting substrings. If EXTRACT is not specified,
IDL Reference Guide STRSPLIT

1356
STRSPLIT cannot perform this editing, and the returned position and offsets will
include the escape characters.

For example:

print, STRSPLIT('a\,b', ',', ESCAPE='\', /EXTRACT)

IDL prints:

a,b

ESCAPE cannot be specified with the FOLD_CASE or REGEX keywords.

EXTRACT

By default, STRSPLIT returns an array of character offsets into String that indicate
where the substrings are located. These offsets, along with the lengths available from
the LENGTH keyword can be used later with STRMID to extract the substrings. Set
EXTRACT to bypass this step, and cause STRSPLIT to return the substrings.
EXTRACT cannot be specified with the LENGTH keyword.

FOLD_CASE

Indicates that the regular expression matching should be done in a case-insensitive
fashion. FOLD_CASE can only be specified if the REGEX keyword is set, and
cannot be used with the ESCAPE keyword.

LENGTH

Set this keyword to a named variable to receive the lengths of the substrings.
Together with this result of this function, LENGTH can be used with the STRMID
function to extract the matched substrings. The LENGTH keyword cannot be used
with the EXTRACT keyword.

PRESERVE_NULL

Normally, STRSPLIT will not return null length substrings unless there are no non-
null values to report, in which case STRSPLIT will return a single null string. Set
PRESERVE_NULL to cause all null substrings to be returned.

REGEX

For complex splitting tasks, the REGEX keyword can be specified. In this case,
Pattern is taken to be a regular expression to be matched against String to locate the
separators. If REGEX is specified and Pattern is not, the default Pattern is the
regular expression:

'[' + STRING(9B) + ']+'
STRSPLIT IDL Reference Guide

1357
which means “any series of one or more space or tab characters” (9B is the byte value
of the ASCII TAB character).

Note that the default Pattern contains a space after the [character.

The REGEX keyword cannot be used with the ESCAPE keyword.

Examples

Example 1

To split a string on spans of whitespace and replace them with hyphens:

Str = 'STRSPLIT chops up strings.'
print, STRJOIN(STRSPLIT(Str, /EXTRACT), '-')

IDL prints:

STRSPLIT-chops-up-strings.

Example 2

As an example of a more complex splitting task that can be handled with the simple
character-matching mode of STRSPLIT, consider a sentence describing different
colored ampersand characters. For unknown reasons, the author used commas to
separate all the words, and used ampersands or backslashes to escape the commas
that actually appear in the sentence (which therefore should not be treated as
separators). The unprocessed string looks like:

Str = 'There,was,a,red,&&&,,a,yellow,&&\,,and,a,blue,\&.'

We use STRSPLIT to break this line apart, and STRJOIN to reassemble it as a
standard blank-separated sentence:

S = STRSPLIT(Str, ',', ESCAPE='&\', /EXTRACT)
PRINT, STRJOIN(S, ' ')

IDL prints:

There was a red &, a yellow &, and a blue &.

Example 3

Finally, suppose you had a complicated string, in which every token was preceded by
the count of characters in that token, with the count enclosed in angle brackets:

str = '<4>What<1>a<7>tangled<3>web<2>we<6>weave.'

This is too complex to handle with simple character matching, but can be easily
handled using the regular expression '<[0-9]+>' to match the separators. This regular
IDL Reference Guide STRSPLIT

1358
expression can be read as “an opening angle bracket, followed by one or more
numeric characters between 0 and 9, followed by a closing angle bracket.” The
STRJOIN function is used to glue the resulting substrings back together:

S = STRSPLIT(str,'<[0-9]+>',/EXTRACT,/REGEX)
PRINT, STRJOIN(S, ' ')

IDL prints:

What a tangled web we weave.

See Also

STRCMP, STRJOIN, STRMATCH, STREGEX, STRMID, STRPOS
STRSPLIT IDL Reference Guide

1359
STRTRIM

The STRTRIM function returns a copy of String with leading and/or trailing blanks
removed.

Syntax

Result = STRTRIM(String [, Flag])

Arguments

String

The string to have leading and/or trailing blanks removed. If this argument is not a
string, it is converted using IDL’s default formatting rules. If it is an array, the result
is an array with the same structure where each element contains a trimmed copy of
the corresponding element of String.

Flag

A value that controls the action of STRTRIM. If Flag is zero or not present, trailing
blanks are removed. Leading blanks are removed if it is equal to 1. Both are removed
if it is equal to 2.

Example

Converting variables to string type often results in undesirable leading blanks. For
example, the following command converts the integer 56 to string type:

C = STRING(56)

Entering the command:

HELP, C

IDL prints:

C STRING = ' 56'

which shows that there are six leading spaces before the characters 5 and 6. To
remove these leading blanks, enter the command:

C = STRTRIM(C, 1)

To confirm that the blanks were removed, enter:

HELP, C
IDL Reference Guide STRTRIM

1360
IDL prints:

C STRING = '56'

See Also

STRMID, STRPOS, STRPUT, STRSPLIT
STRTRIM IDL Reference Guide

1361
STRUCT_ASSIGN

The IDL “=” operator is unable to assign a structure value to a structure of a different
type. The STRUCT_ASSIGN procedure performs “relaxed structure assignment,”
which is a field-by-field copy of a structure to another structure. Fields are copied
according to the following rules:

1. Any fields found in the destination structure that are not found in the source
structure are “zeroed” (set to zero, the empty string, or a null pointer or object
reference depending on the type of field).

2. Any fields in the source structure that are not found in the destination structure
are quietly ignored.

3. Any fields that are found in both the source and destination structures are
copied one at a time. If necessary, type conversion is done to make their types
agree. If a field in the source structure has fewer data elements than the
corresponding field in the destination structure, then the “extra” elements in
the field in the destination structure are zeroed. If a field in the source structure
has more elements than the corresponding field in the destination structure, the
extra elements are quietly ignored.

Relaxed structure assignment is especially useful when restoring structures from disk
files into an environment where the structure definition has changed. See the
description o f the RELAXED_STRUCTURE_ASSIGNMENT keyword to the
RESTORE procedure for additional details. “Relaxed Structure Assignment” in
Chapter 6 of Building IDL Applications provides a more in-depth discussion of the
structure-definition process.

Syntax

STRUCT_ASSIGN, Source, Destination [, /NOZERO] [, /VERBOSE]

Arguments

Source

A named variable or element of an array containing a structure, the contents of which
will be assigned to the structure specified by the Destination argument. Source can be
an object reference if STRUCT_ASSIGN is called inside an object method.
IDL Reference Guide STRUCT_ASSIGN

1362
Destination

A named variable containing a structure into which the contents of the structure
specified by the Source argument will be inserted. Destination can be an object
reference if STRUCT_ASSIGN is called inside an object method.

Keywords

NOZERO

Normally, any fields found in the destination structure that are not found in the source
structure are zeroed. Set NOZERO to prevent this action and leave the original
contents of such fields unchanged.

VERBOSE

Set this keyword to cause STRUCT_ASSIGN to issue informational messages about
any incompatibilities that prevent data from being copied.

Examples

The following example creates two anonymous structures, then uses
STRUCT_ASSIGN to insert the contents of the first into the second:

source = { a:FINDGEN(4), b:12 }
dest = { a:INDGEN(2), c:20 }
STRUCT_ASSIGN, /VERBOSE, source, dest

IDL prints:

% STRUCT_ASSIGN: <Anonymous> tag A is longer than destination.
The end will be clipped.

% STRUCT_ASSIGN: Destination lacks <Anonymous> tag B. Not copied.

After assignment, dest contains a two-element integer array [0, 1] in its field A and
the integer 0 in its field C. Since dest does not have a field B, field B from source
is not copied.
STRUCT_ASSIGN IDL Reference Guide

1363
STRUCT_HIDE

The IDL HELP procedure displays information on all known structures or object
classes when used with the STRUCTURES or OBJECTS keywords. Although this is
usually the desired behavior, authors of large vertical applications or library routines
may wish to prevent IDL from displaying information on structures or objects that
are not part of their public interface, but which exist solely in support of the internal
implementation. The STRUCT_HIDE procedure is used to mark such structures or
objects as hidden. Items so marked are not displayed by HELP, /STRUCTURE unless
the user sets the FULL keyword, but are otherwise unaltered.

Note
STRUCT_HIDE is primarily intended for use with named structures or objects.
Although it can be safely used with anonymous structures, there is no visible
benefit to doing so as anonymous structures are hidden by default.

Tip
Authors of objects will often place a call to STRUCT_HIDE in the _ _DEFINE
procedure that defines the structure.

Syntax

STRUCT_HIDE, Arg1 [, Arg2, ..., Argn]

Arguments

Arg1, ..., Argn

If an argument is a variable of one of the following types, its underlying structure
and/or object definition is marked as being hidden from the HELP procedure’s
default output:

• Structure

• Pointer that refers to a heap variable of structure type

• Object Reference

Any arguments that are not one of these types are quietly ignored. No change is made
to the value of any argument.
IDL Reference Guide STRUCT_HIDE

1364
Keywords

None

Example

This example shows how a structure can be hidden if an application designer doesn’t
want end-users to be able to see it, but variables are not hidden. To create a named
structure called bullwinkle and prevent it from appearing in the HELP procedure’s
default output, do the following.

; Define a variable containing the named structure:
tmp = { bullwinkle, moose:1, squirrel:0 }
; IDL returns BULLWINKLE in addition to the other system variables.
HELP, /STRUCTURE, /BRIEF
; Next, specifically hide the structure using
; the STRUCT_HIDE procedure.
STRUCT_HIDE, tmp
; This time IDL returns the system variables but
; not the BULLWINKLE structure.
HELP, /STRUCTURE, /BRIEF
; IDL returns the variable tmp showing that it is
; a named structure called BULLWINKLE.
HELP, tmp

See Also

COMPILE_OPT
STRUCT_HIDE IDL Reference Guide

1365
STRUPCASE

The STRUPCASE function returns a copy of String converted to upper case. Only
lowercase characters are modified—uppercase and non-alphabetic characters are
copied without change.

Syntax

Result = STRUPCASE(String)

Arguments

String

The string to be converted. If this argument is not a string, it is converted using IDL’s
default formatting rules. If it is an array, the result is an array with the same structure
where each element contains an uppercase copy of the corresponding element of
String.

Example

To print an uppercase version of the string “IDL is fun”, enter:

PRINT, STRUPCASE('IDL is fun')

IDL prints:

IDL IS FUN

See Also

STRLOWCASE
IDL Reference Guide STRUPCASE

1366
SURFACE

The SURFACE procedure draws a wire-mesh representation of a two-dimensional
array projected into two dimensions, with hidden lines removed.

Restrictions

If the (X, Y) grid is not regular or nearly regular, errors in hidden line removal occur.
The TRIGRID and TRIANGULATE routines can be used to interpolate irregularly-
gridded data points to a regular grid before plotting.

If the T3D keyword is set, the 3D to 2D transformation matrix contained in !P.T must
project the Z axis to a line parallel to the device Y axis, or errors will occur.

The surface lines may blend together when drawing large arrays, especially on low or
medium resolution displays. Use the REBIN or CONGRID procedure to resample the
array to a lower resolution before plotting.

Syntax

SURFACE, Z [, X, Y] [, AX=degrees] [, AZ=degrees] [, BOTTOM=index]
[, /HORIZONTAL] [, /LEGO] [, /LOWER_ONLY | , /UPPER_ONLY]
[, MAX_VALUE=value] [, MIN_VALUE=value] [, /SAVE] [, SHADES=array]
[, SKIRT=value] [, /XLOG] [, /YLOG] [, ZAXIS={1 | 2 | 3 | 4}] [, /ZLOG]

Graphics Keywords: Accepts all graphics keywords accepted by PLOT except for:
PSYM, SYMSIZE. See “Graphics Keywords Accepted” on page 1370.

Arguments

Z

The two-dimensional array to be displayed. If X and Y are provided, the surface is
plotted as a function of the (X, Y) locations specified by their contents. Otherwise, the
surface is generated as a function of the array index of each element of Z.

This argument is converted to double-precision floating-point before plotting. Plots
created with SURFACE are limited to the range and precision of double-precision
floating-point values.

X

A vector or two-dimensional array specifying the X coordinates of the grid. If this
argument is a vector, each element of X specifies the X coordinate for a column of Z
SURFACE IDL Reference Guide

1367
(e.g., X[0] specifies the X coordinate for Z[0,*]). If X is a two-dimensional array,
each element of X specifies the X coordinate of the corresponding point in Z (Xij
specifies the X coordinate for Zij).

This argument is converted to double-precision floating-point before plotting.

Y

A vector or two-dimensional array specifying the Y coordinates of the grid. If this
argument is a vector, each element of Y specifies the Y coordinate for a row of Z
(e.g., Y[0] specifies the Y coordinate for Z[*,0]). If Y is a two-dimensional array,
each element of Y specifies the Y coordinate of the corresponding point in Z (Yij
specifies the Y coordinate for Zij).

This argument is converted to double-precision floating-point before plotting.

Keywords

AX

This keyword specifies the angle of rotation, about the X axis, in degrees towards the
viewer. This keyword is effective only if !P.T3D is not set. If !P.T3D is set, the three-
dimensional to two-dimensional transformation used by SURFACE is taken from the
4 by 4 array !P.T.

The surface represented by the two-dimensional array is first rotated, AZ (see below)
degrees about the Z axis, then by AX degrees about the X axis, tilting the surface
towards the viewer (AX > 0), or away from the viewer.

The AX and AZ keyword parameters default to +30 degrees if omitted and !P.T3D is
0.

The three-dimensional to two-dimensional transformation represented by AX and
AZ, can be saved in !P.T by including the SAVE keyword.

AZ

This keyword specifies the counterclockwise angle of rotation about the Z axis. This
keyword is effective only if !P.T3D is not set. The order of rotation is AZ first, then
AX.

BOTTOM

The color index used to draw the bottom surface. If not specified, the bottom is drawn
with the same color as the top.
IDL Reference Guide SURFACE

1368
HORIZONTAL

A keyword flag which if set causes SURFACE to only draw lines across the plot
perpendicular to the line of sight. The default is for SURFACE to draw both across
the plot and from front to back.

LEGO

Set this keyword to produce stacked histogram-style plots. Each data value is
rendered as a box covering the XY extent of the cell and with a height proportional to
the Z value.

If the X and Y arguments are specified, only Nx-1 columns and Ny-1 rows are drawn.
(This means that the last row and column of array data are not displayed.) The
rectangular area covered by Z[i, j] is given by X[i], X[i+1], Y[j], and Y[j+1].

LOWER_ONLY

Set this keyword to draw only the lower surface of the object. By default, both
surfaces are drawn.

MAX_VALUE

The maximum value to be plotted. If this keyword is present, data values greater than
the value of MAX_VALUE are treated as missing and are not plotted. Note that the
IEEE floating-point value NaN is also treated as missing data. (See “Special
Floating-Point Values” in Chapter 17 of Building IDL Applications for more
information on IEEE floating-point values.)

MIN_VALUE

The minimum value to be plotted. If this keyword is present, data values less than the
value of MIN_VALUE are treated as missing and are not plotted. Note that the IEEE
floating-point value NaN is also treated as missing data. (See “Special Floating-Point
Values” in Chapter 17 of Building IDL Applications for more information on IEEE
floating-point values.)

SAVE

Set this keyword to save the 3D to 2D transformation matrix established by
SURFACE in the system variable field !P.T. Use this keyword when combining the
output of SURFACE with additional output from other routines in the same plot.

When used with AXIS, the SAVE keyword parameter saves the scaling parameters
established by the call in the appropriate axis system variable, !X, !Y, or !Z. This
causes subsequent overplots to be scaled to the new axis.
SURFACE IDL Reference Guide

1369
For example, to display a two-dimensional array using SURFACE, and to then
superimpose contours over the surface (this example assumes that !P.T3D is zero, its
default value.), enter the following commands:

; Make a surface plot and save the transformation:
SURFACE, Z, /SAVE

; Make contours, don’t erase, use the 3D to 2D transform placed
; in !P.T by SURFACE:
CONTOUR, Z, /NOERASE, /T3D

To display a surface and to then display a flat contour plot, registered above the
surface:

; Make the surface, save transform:
SURFACE, Z, /SAVE

; Now display a flat contour plot, at the maximum Z value
; (normalized coordinates):
CONTOUR, Z, /NOERASE, /T3D, ZVALUE=1.0

You can display the contour plot below the surface with by using a ZVALUE of 0.0.

SHADES

This keyword allows user-specified coloring of the mesh surfaces. Set this keyword
to an array that specifies the color index of the lines emanating from each data point
toward the top and right.

Warning
When using the SHADES keyword on True Color devices, we recommend that
decomposed color support be turned off, by setting DEVICE, DECOMPOSED=0.
See “DEVICE” on page 385 and “DECOMPOSED” on page 2322.

SKIRT

This keyword represents a Z-value at which to draw a skirt around the array. The Z
value is expressed in data units. The default is no skirt.

If the skirt is drawn, each point on the four edges of the surface is connected to a
point on the skirt which has the given Z value, and the same X and Y values as the
edge point. In addition, each point on the skirt is connected to its neighbor.

UPPER_ONLY

Set this keyword to draw only the upper surface of the object. By default, both
surfaces are drawn.
IDL Reference Guide SURFACE

1370
XLOG

Set this keyword to specify a logarithmic X axis.

YLOG

Set this keyword to specify a logarithmic Yaxis.

ZAXIS

This keyword specifies the placement of the Z axis for the SURFACE plot.

By default, SURFACE draws the Z axis at the upper left corner of the axis box. To
suppress the Z axis, use ZAXIS=-1 in the call. The position of the Z axis is
determined from the value of ZAXIS as follows: 1 = lower right, 2 = lower left, 3 =
upper left, and 4 = upper right.

ZLOG

Set this keyword to specify a logarithmic Zaxis.

Graphics Keywords Accepted

See Appendix C, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above. BACKGROUND, CHARSIZE, CHARTHICK, CLIP,
COLOR, DATA, DEVICE, FONT, LINESTYLE, NOCLIP, NODATA, NOERASE,
NORMAL, POSITION, SUBTITLE, T3D, THICK, TICKLEN, TITLE,
[XYZ]CHARSIZE, [XYZ]GRIDSTYLE, [XYZ]MARGIN, [XYZ]MINOR,
[XYZ]RANGE, [XYZ]STYLE, [XYZ]THICK, [XYZ]TICKFORMAT,
[XYZ]TICKINTERVAL, [XYZ]TICKLAYOUT, [XYZ]TICKLEN,
[XYZ]TICKNAME, [XYZ]TICKS, [XYZ]TICKUNITS, [XYZ]TICKV,
[XYZ]TICK_GET, [XYZ]TITLE, ZVALUE.

Example

; Create a simple dataset to display:
D = DIST(30)

; Plot a simple wire-mesh surface representation of D:
SURFACE, D

; Create a wire-mesh plot of D with a title and a "skirt" around
; the edges of the dataset at Z=0:
SURFACE, D, SKIRT=0.0, TITLE = 'Surface Plot', CHARSIZE = 2

See Also

CONTOUR, SHADE_SURF
SURFACE IDL Reference Guide

1371
SURFR

The SURFR procedure sets up 3D transformations. This procedure duplicates the
rotation, translation, and scaling features of the SURFACE routine, but does not
display any data. The resulting transformations are stored in the !P.T system variable.

This routine is written in the IDL language. Its source code can be found in the file
surfr.pro in the lib subdirectory of the IDL distribution.

Syntax

SURFR [, AX=degrees] [, AZ=degrees]

Keywords

AX

Angle of rotation about the X axis. The default is 30 degrees.

AZ

Angle of rotation about the Z axis. The default is 30 degrees.

See Also

SCALE3, SCALE3D, T3D
IDL Reference Guide SURFR

1372
SVDC

The SVDC procedure computes the Singular Value Decomposition (SVD) of a
square (n x n) or non-square (n x m) array as the product of orthogonal and diagonal
arrays. SVD is a very powerful tool for the solution of linear systems, and is often
used when a solution cannot be determined by other numerical algorithms.

The SVD of an (m x n) non-square array A is computed as the product of an (m x n)
column orthogonal array U, an (n x n) diagonal array SV, composed of the singular
values, and the transpose of an (n x n) orthogonal array V: A = U SV VT

SVDC is based on the routine svdcmp described in section 2.6 of Numerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

SVDC, A, W, U, V [, /COLUMN] [, /DOUBLE] [, ITMAX=value]

Arguments

A

The square (n x n) or non-square (n x m) single- or double-precision floating-point
array to decompose.

W

On output, W is an n-element output vector containing the “singular values.”

U

On output, U is an n-column, m-row orthogonal array used in the decomposition of A.

V

On output, V is an n-column, n-row orthogonal array used in the decomposition of A.

Keywords

COLUMN

Set this keyword if the input array A is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).
SVDC IDL Reference Guide

1373
DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

ITMAX

Set this keyword to specify the maximum number of iterations. The default value is
30.

Example

To find the singular values of an array A:

; Define the array A:
A = [[1.0, 2.0, -1.0, 2.5], $

[1.5, 3.3, -0.5, 2.0], $
[3.1, 0.7, 2.2, 0.0], $
[0.0, 0.3, -2.0, 5.3], $
[2.1, 1.0, 4.3, 2.2], $
[0.0, 5.5, 3.8, 0.2]]

; Compute the Singular Value Decomposition:
SVDC, A, W, U, V

; Print the singular values:
PRINT, W

IDL prints:

8.81973 2.65502 4.30598 6.84484

To verify the decomposition, use the relationship A = U ## SV ## TRANSPOSE(V),
where SV is a diagonal array created from the output vector W:

sv = FLTARR(4, 4)
FOR K = 0, 3 DO sv[K,K] = W[K]
result = U ## sv ## TRANSPOSE(V)
PRINT, result

IDL prints:

1.00000 2.00000 -1.00000 2.50000
 1.50000 3.30000 -0.500001 2.00000
 3.10000 0.700000 2.20000 0.00000
 2.23517e-08 0.300000 -2.00000 5.30000
 2.10000 0.999999 4.30000 2.20000
 -3.91155e-07 5.50000 3.80000 0.200000

This is the input array, to within machine precision.
IDL Reference Guide SVDC

1374
See Also

CHOLDC, LUDC, SVSOL

“Linear Systems” in Chapter 16 of Using IDL.
SVDC IDL Reference Guide

1375
SVDFIT

The SVDFIT function performs a least squares fit with optional error estimates and
returns a vector of coefficients. Either a user-supplied function written in the IDL
language or a built-in polynomial can be used to fit the data.

SVDFIT is based on the routine svdfit described in section 15.4 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SVDFIT(X, Y [, M] [, A=vector] [, CHISQ=variable] [, COVAR=variable]
[, /DOUBLE] [, FUNCTION_NAME=string] [, /LEGENDRE]
[, MEASURE_ERRORS=vector] [, SIGMA=variable] [, SINGULAR=variable]
[, VARIANCE=variable] [, YFIT=variable])

Arguments

X

An n-element vector of independent variables.

Y

A vector of dependent variables, the same length as X.

M

The number of coefficients in the fitting function. For polynomials, M is equal to the
degree of the polynomial + 1. If the M argument is not specified, you must supply
initial coefficient estimates using the A keyword. In this case, M is set equal to the
number of elements of the array specified by the A keyword.

Keywords

A

This keyword is both an input and output keyword. Set this keyword equal to a
variable containing a vector of initial estimates for the fitted function parameters. On
exit, SVDFIT returns in this variable a vector of coefficients that are improvements
of the initial estimates. If A is supplied, the M argument will be set equal to the
number of elements in the vector specified by A.
IDL Reference Guide SVDFIT

1376
CHISQ

Set this keyword equal to a named variable that will contain the the value of the
chi-sqaure goodness-of-fit.

COVAR

Set this keyword equal to a named variable that will contain the covariance matrix of
the fitted coefficients.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

FUNCTION_NAME

Set this keyword equal to a string containing the name of a user-supplied IDL basis
function with M coefficients. If this keyword is omitted, and the LEGENDRE
keyword is not set, IDL assumes that the IDL procedure SVDFUNCT, found in the
file svdfunct.pro, located in the lib subdirectory of the IDL distribution, is to be
used. SVDFUNCT uses the basis functions for the fitting polynomial

The function to be fit must be written as an IDL function and compiled prior to
calling SVDFIT. The function must accept values of X (a scalar), and M (a scalar). It
must return an M-element vector containing the basis functions.

See the “Example” section below for an example function.

LEGENDRE

Set this keyword to use Legendre polynomials instead of the function specified by the
FUNCTION_NAME keyword. If the LEGENDRE keyword is set, the IDL uses the
function SVDLEG found in the file svdleg.pro, located in the lib subdirectory of
the IDL distribution.

MEASURE_ERRORS

Set this keyword to a vector containing standard measurement errors for each point
Y[i]. This vector must be the same length as X and Y.

y A i()x
i

i 0=

M

∑=
SVDFIT IDL Reference Guide

1377
Note
For Gaussian errors (e.g., instrumental uncertainties), MEASURE_ERRORS
should be set to the standard deviations of each point in Y. For Poisson or statistical
weighting, MEASURE_ERRORS should be set to SQRT(Y).

SIGMA

Set this keyword to a named variable that will contain the 1-sigma uncertainty
estimates for the returned parameters.

Note
If MEASURE_ERRORS is omitted, then you are assuming that the polynomial (or
your user-supplied model) is the correct model for your data, and therefore, no
independent goodness-of-fit test is possible. In this case, the values returned in
SIGMA are multiplied by SQRT(CHISQ/(N–M)), where N is the number of points
in X, and M is the number of coefficients. See section 15.2 of Numerical Recipes in
C (Second Edition) for details.

SINGULAR

Set this keyword equal to a named variable that will contain the number of singular
values returned. This value should be 0. If not, the basis functions do not accurately
characterize the data.

VARIANCE

Set this keyword equal to a named variable that will contain the variance (sigma
squared) of each coefficient M.

WEIGHTS

The WEIGHTS keyword is obsolete and has been replaced by the
MEASURE_ERRORS keyword. Code that uses the WEIGHTS keyword will continue
to work as before, but new code should use the MEASURE_ERRORS keyword. Note
that the definition of the MEASURE_ERRORS keyword is not the same as the
WEIGHTS keyword. Using the WEIGHTS keyword, 1/WEIGHTS[i] represents the
measurement error for each point Y[i]. Using the MEASURE_ERRORS keyword, the
measurement error is represented as simply MEASURE_ERRORS[i].

YFIT

Set this keyword equal to a named variable that will contain the vector of calculated Y
values.
IDL Reference Guide SVDFIT

1378
Example

This example fits a function of the following form:

First, create the function in IDL, then create a procedure to perform the fit. Create the
following file called example_svdfit.pro:

PRO example_svdfit

; Provide an array of coefficients:
C = [7.77, 8.88, -9.99]
X = FINDGEN(100)/15.0 + 0.1
Y = C[0] + C[1] * SIN(2*X)/X + C[2] * COS(4.*X)^2.

; Set uncertainties to 5%:
measure_errors = 0.05 * Y

; Provide an initial guess:
A=[1,1,1]
result_a = SVDFIT(X, Y, A=A, MEASURE_ERRORS=measure_errors, $
 FUNCTION_NAME='myfunct', SIGMA=SIGMA, YFIT=YFIT)

; Plot the results:
PLOT, X, YFIT
FOR I = 0, N_ELEMENTS(A)-1 DO $
 PRINT, I, result_a[I], SIGMA[I], C[I],$
 FORMAT = $
 '(" result_a (",I1,") = ",F7.4," +- ",F7.4," VS. ",F7.4)'
END

FUNCTION myfunct, X ,M
 RETURN,[[1.0], [SIN(2*X)/X], [COS(4.*X)^2.]]
END

F x() A 0() A 1() 2x()
x

----------- A 2() 4x()cos
2

+sin+=
SVDFIT IDL Reference Guide

1379
Place the file example_svdfit.pro in a directory in the IDL search path, and enter
example_svdfit at the command prompt to create the plot.

In addition to creating the above plot, IDL prints:

result_a (0) = 7.7700 +- 0.0390 VS. 7.7700
result_a (1) = 8.8800 +- 0.0468 VS. 8.8800
result_a (2) = -9.9900 +- 0.0506 VS. -9.9900

See Also

CURVEFIT, GAUSSFIT, LINFIT, LMFIT, POLY_FIT, REGRESS, SFIT
IDL Reference Guide SVDFIT

1380
SVSOL

The SVSOL function uses “back-substitution” to solve a set of simultaneous linear
equations Ax = b, given the U, W, and V arrays returned by the SVDC procedure.
None of the input arguments are modified, making it possible to call SVSOL multiple
times with different right hand vectors, B.

SVSOL is based on the routine svbksb described in section 2.6 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SVSOL(U, W, V, B [, /COLUMN] [, /DOUBLE])

Arguments

U

An n-column, m-row orthogonal array used in the decomposition of A. Normally, U
is returned from the SVDC procedure.

W

An n-element vector containing “singular values.” Normally, W is returned from the
SVDC procedure. Small values (close to machine floating-point precision) should be
set to zero prior to calling SVSOL.

V

An n-column, n-row orthogonal array used in the decomposition of A. Normally, V is
returned from the SVDC procedure.

B

An m-element vector containing the right hand side of the linear system Ax = b.

Keywords

COLUMN

Set this keyword if the input arrays U and V are in column-major format (composed
of column vectors) rather than in row-major format (composed of row vectors).
SVSOL IDL Reference Guide

1381
DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

To solve the linear system Ax = b using Singular-value decomposition and back
substitution, begin with an array A which serves as the coefficient array:

; Define the array A:
A = [[1.0, 2.0, -1.0, 2.5], $

[1.5, 3.3, -0.5, 2.0], $
[3.1, 0.7, 2.2, 0.0], $
[0.0, 0.3, -2.0, 5.3], $
[2.1, 1.0, 4.3, 2.2], $
[0.0, 5.5, 3.8, 0.2]]

; Define the right-hand side vector B:
B = [0.0, 1.0, 5.3, -2.0, 6.3, 3.8]

; Decompose A:
SVDC, A, W, U, V

; Compute the solution and print the result:
PRINT, SVSOL(U, W, V, B)

IDL prints:

1.00095 0.00881170 0.984176 -0.0100954

This is the correct solution.

See Also

CRAMER, GS_ITER, LU_COMPLEX, CHOLSOL, LUSOL, SVDC, TRISOL
IDL Reference Guide SVSOL

1382
SWAP_ENDIAN

The SWAP_ENDIAN function reverses the byte ordering of arbitrary scalars, arrays
or structures. It can make “big endian” number “little endian” and vice-versa. Note
that the BYTEORDER procedure can be used to reverse the byte ordering of scalars
and arrays (SWAP_ENDIAN also allows structures).

SWAP_ENDIAN returns values of the same type and structure as the input value,
with the pertinent bytes reversed.

This routine is written in the IDL language. Its source code can be found in the file
swap_endian.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = SWAP_ENDIAN(Variable)

Arguments

Variable

The named variable—scalar, array, or structure—to be swapped.

Example

; Reverse the byte order of A:
A = SWAP_ENDIAN(A)

See Also

BYTEORDER
SWAP_ENDIAN IDL Reference Guide

1383
SWITCH

The SWITCH statement is used to select one statement for execution from multiple
choices, depending upon the value of the expression following the word SWITCH.

Each statement that is part of a SWITCH statement is preceded by an expression that
is compared to the value of the SWITCH expression. SWITCH executes by
comparing the SWITCH expression with each selector expression in the order
written. If a match is found, program execution jumps to that statement and execution
continues from that point. Whereas CASE executes at most one statement within the
CASE block, SWITCH executes the first matching statement and any following
statements in the SWITCH block. Once a match is found in the SWITCH block,
execution falls through to any remaining statements. For this reason, the BREAK
statement is commonly used within SWITCH statements to force an immediate exit
from the SWITCH block.

The ELSE clause of the SWITCH statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usually
written as the last clause in the switch statement. The ELSE statement is executed
only if none of the preceding statement expressions match. If an ELSE clause is not
included and none of the values match the selector, program execution continues
immediately below the SWITCH without executing any of the SWITCH statements.

SWITCH is similar to the CASE statement. For more information on using SWITCH
and other IDL program control statements, as well as the differences between
SWITCH and CASE, see Chapter 11, “Program Control” in Building IDL
Applications.

Syntax

SWITCH expression OF

expression: statement

...

expression: statement

ELSE: statement

ENDSWITCH
IDL Reference Guide SWITCH

1384
Example

This example illustrates how, unlike CASE, SWITCH executes the first matching
statement and any following statements in the SWITCH block:

x=2

SWITCH x OF
1: PRINT, 'one'
2: PRINT, 'two'
3: PRINT, 'three'
4: PRINT, 'four'

ENDSWITCH

IDL Prints:

two
three
four

See Also

CASE
SWITCH IDL Reference Guide

1385
SYSTIME

The SYSTIME function returns the current time as either a date/time string, as the
number of seconds elapsed since 1 January 1970, or as a Julian date/time value.

Syntax

String = SYSTIME([0 [, ElaspedSeconds]] [, /UTC])

or

Seconds = SYSTIME(1 | /SECONDS)

or

Julian = SYSTIME(/JULIAN [, /UTC])

Arguments

SecondsFlag

If SecondsFlag is present and nonzero, the number of seconds elapsed since
1 January 1970 UTC is returned as a double-precision, floating-point value.

Otherwise, if SecondsFlag is not present or zero, a scalar string containing the
date/time is returned in standard 24-character system format as follows:

DOW MON DD HH:MM:SS YEAR

where DOW is the day of the week, MON is the month, DD is the day of the month,
HH is the hour, MM is the minute, SS is the second, and YEAR is the year. By
default, the date/time string is adjusted for the local time zone; use the UTC keyword
to override this default.

Note
If the JULIAN or SECONDS keyword is set, the SecondsFlag argument is ignored.

ElapsedSeconds

If the SecondsFlag argument is zero, the ElapsedSeconds argument may be set to the
number of seconds past 1 January 1970 UTC. In this case, SYSTIME returns the
corresponding date/time string (rather than the string for the current time). The
returned date/time string is adjusted for the local time zone, unless the UTC keyword
is set. If this argument is present, the JULIAN keyword is not allowed.
IDL Reference Guide SYSTIME

1386
Keywords

JULIAN

Set this keyword to specify that the current time is to be returned as a a double
precision floating value containing the current Julian date/time. By default, the
current time is adjusted for the local time zone; use the UTC keyword to override this
default. This keyword is not allowed if the ElapsedSeconds argument is present.

Note
If the JULIAN keyword is set, a small offset is added to the returned Julian date to
eliminate roundoff errors when calculating the day fraction from hours, minutes,
and seconds. This offset is given by the larger of EPS and EPS*Julian, where Julian
is the integer portion of the Julian date, and EPS is the EPS field from MACHAR.
For typical Julian dates, this offset is approximately 6x10–10 (which corresponds to
5x10–5 seconds). This offset ensures that if the Julian date is converted back to
hour, minute, and second, then the hour, minute, and second will have the same
integer values as were originally input.

SECONDS

Set this keyword to specify that the current time is to be returned as the number of
seconds elapsed since 1 January 1970 UTC. This option is equivalent to setting the
SecondsFlag argument to a non-zero value.

UTC

Set this keyword to specify that the value returned by SYSTIME is to be returned in
Universal Time Coordinated (UTC) rather than being adjusted for the current time
zone. UTC time is defined as Greenwich Mean Time updated with leap seconds.

Examples

Print today’s date as a string:

PRINT, SYSTIME()

Print today’s date as a string in UTC (rather than local time zone):

PRINT, SYSTIME(/UTC)

Print today’s date as a Julian date/time value in UTC:

PRINT, SYSTIME(/JULIAN, /UTC), FORMAT='(f12.2)'

Compute the seconds elapsed since 1 January 1970 UTC:
SYSTIME IDL Reference Guide

1387
seconds = SYSTIME(1) ; or seconds = SYSTIME(/SECONDS)

Verify that the seconds from the previous example are correct:

PRINT, SYSTIME(0, seconds)

Print the day of the week:

PRINT, STRMID(SYSTIME(0), 0, 3)

Compute the time required to perform a 16,384 point FFT:

T = SYSTIME(1)
A = FFT(FINDGEN(16384), -1)
PRINT, SYSTIME(1) - T, 'Seconds'

See Also

CALDAT, CALENDAR, JULDAY, TIMEGEN
IDL Reference Guide SYSTIME

1388
T_CVF

The T_CVF function computes the cutoff value V in a Student’s t distribution with Df
degrees of freedom such that the probability that a random variable X is greater than
V is equal to a user-supplied probability P.

This routine is written in the IDL language. Its source code can be found in the file
t_cvf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = T_CVF(P, Df)

Arguments

P

A non-negative single- or double-precision floating-point scalar, in the interval [0.0,
1.0], that specifies the probability of occurrence or success.

Df

A positive integer, single- or double-precision floating-point scalar that specifies the
number of degrees of freedom of the Student’s t distribution.

Example

Use the following command to compute the cutoff value in a Student’s t distribution
with five degrees of freedom such that the probability that a random variable X is
greater than the cutoff value is 0.025.

result = T_CVF(0.025, 5)
PRINT, result

IDL prints:

2.57058

See Also

CHISQR_CVF, F_CVF, GAUSS_CVF, T_PDF
T_CVF IDL Reference Guide

1389
T_PDF

The T_PDF function computes the probability P that, in a Student’s t distribution
with Df degrees of freedom, a random variable X is less than or equal to a user-
specified cutoff value V.

This routine is written in the IDL language. Its source code can be found in the file
t_pdf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = T_PDF(V, Df)

Return Value

If both arguments are scalar, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of V and Df, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the input array.

If any of the arguments are double-precision, the result is double-precision, otherwise
the result is single-precision.

Arguments

V

A scalar or array that specifies the cutoff value(s).

Df

A scalar or array that specifies the number of degrees of freedom of the Student’s t
distribution.

Example

Use the following command to compute the probability that a random variable X,
from the Student’s t distribution with 15 degrees of freedom, is less than or equal to
0.691:

PRINT, T_PDF(0.691, 15)

IDL prints:

0.749940
IDL Reference Guide T_PDF

1390
See Also

BINOMIAL, CHISQR_PDF, F_PDF, GAUSS_PDF, T_CVF
T_PDF IDL Reference Guide

1391
T3D

The T3D procedure implements three-dimensional transforms.

This routine accumulates one or more sequences of translation, scaling, rotation,
perspective, and oblique transformations and stores the result in !P.T, the 3D
transformation system variable. All the IDL graphic routines use this (4,4) matrix for
output. Note that !P.T3D is not set, so for the transformations to have effect you must
set !P.T3D = 1 (or set the T3D keyword in subsequent calls to graphics routines).

This procedure is based on that of Foley & Van Dam, Fundamentals of Interactive
Computer Graphics, Chapter 8, “Viewing in Three Dimensions”. The matrix notation
is reversed from the normal IDL sense, i.e., here, the first subscript is the column, the
second is the row, in order to conform with this reference.

A right-handed system is used. Positive rotations are counterclockwise when looking
from a positive axis position towards the origin.

This routine is written in the IDL language. Its source code can be found in the file
t3d.pro in the lib subdirectory of the IDL distribution.

Syntax

T3D [, Array | , /RESET] [, MATRIX=variable] [, OBLIQUE=vector]
[, PERSPECTIVE=p{eye at (0,0,p)}] [, ROTATE=[x, y, z]] [, SCALE=[x, y, z]]
[, TRANSLATE=[x, y, z]] [, /XYEXCH | , /XZEXCH | , /YZEXCH]

Arguments

Array

An optional 4 x 4 matrix used as the starting transformation. If Array is missing, the
current !P.T transformation is used. Array is ignored if /RESET is set.

Keywords

The transformation specified by each keyword is performed in the order of their
descriptions below (e.g., if both TRANSLATE and SCALE are specified, the
translation is done first).

MATRIX

Set this keyword to a named variable that will contain the result. If this keyword is
specified, !P.T is not modified.
IDL Reference Guide T3D

1392
OBLIQUE

A two-element vector of oblique projection parameters. Points are projected onto the
XY plane at Z=0 as follows:

x' = x + z(d * COS(a))
y' = y + z(d * SIN(a))

where OBLIQUE[0] = d and OBLIQUE[1] = a.

PERSPECTIVE

Perspective transformation. This parameter is a scalar (p) that indicates the Z distance
of the center of the projection. Objects are projected into the XY plane at Z=0, and
the “eye” is at point (0,0,p).

RESET

Set this keyword to reset the transformation to the default identity matrix.

ROTATE

A three-element vector of the rotations, in DEGREES, about the X, Y, and Z axes.
Rotations are performed in the order of X, Y, and then Z.

SCALE

A three-element vector of scale factors for the X, Y, and Z axes.

TRANSLATE

A three-element vector of the translations in the X, Y, and Z directions.

XYEXCH

Set this keyword to exchange the X and Y axes.

XZEXCH

Set this keyword to exchange the X and Z axes.

YZEXCH

Set this keyword to exchange the Y and Z axes.

Examples

To reset the transformation, rotate 30 degs about the X axis and do perspective
transformation with the center of the projection at Z = -1, X=0, and Y=0, enter:

T3D, /RESET, ROT = [30,0,0], PERS = 1.
T3D IDL Reference Guide

1393
Transformations may be cascaded, for example:

T3D, /RESET, TRANS = [-.5,-.5,0], ROT = [0,0,45]
T3D, TRANS = [.5,.5,0]

The first command resets, translates the point (.5,.5,0) to the center of the viewport,
then rotates 45 degrees counterclockwise about the Z axis. The second call to T3D
moves the origin back to the center of the viewport.

See Also

SCALE3, SCALE3D, SURFR
IDL Reference Guide T3D

1394
TAG_NAMES

The TAG_NAMES function returns a string array containing the names of the tags in
a structure expression. It can also be used to determine the expression’s structure
name (if the structure has a name).

Syntax

Result = TAG_NAMES(Expression [, /STRUCTURE_NAME])

Arguments

Expression

The structure expression for which the tag names are returned. This argument must
be of structure type. TAG_NAMES does not search for tags recursively, so if
Expression is a structure containing nested structures, only the names of tags in the
outermost structure are returned.

Keywords

STRUCTURE_NAME

Set this keyword to return a scalar string that contains the name of the structure
instead of the names of the tags in the structure. If the structure is “anonymous”, a
null string is returned.

Example

Print the names of the tags in the system variable !P by entering:

PRINT, TAG_NAMES(!P)

IDL prints:

BACKGROUND CHARSIZE CHARTHICK CLIP COLOR FONT LINESTYLE MULTI
NOCLIP NOERASE NSUM POSITION PSYM REGION SUBTITLE SYMSIZE T
T3D THICK TITLE TICKLEN CHANNEL

Print the name of the structure in the system variable !P:

PRINT, TAG_NAMES(!P, /STRUCTURE_NAME)

IDL prints:

!PLT
TAG_NAMES IDL Reference Guide

1395
See Also

CREATE_STRUCT, N_TAGS
IDL Reference Guide TAG_NAMES

1396
TAN

The TAN function returns the tangent of X.

Syntax

Result = TAN(X)

Arguments

X

The angle for which the tangent is desired, specified in radians. If X is double-
precision floating-point, the result is of the same type. Complex values are not
allowed. All other types are converted to single-precision floating-point and yield
floating-point results. If X is an array, the result has the same structure, with each
element containing the tangent of the corresponding element of X.

Example

; Find the tangent of 0.5 radians and store the result in
; the variable T:
T = TAN(0.5)

See Also

ATAN, TANH
TAN IDL Reference Guide

1397
TANH

The TANH function returns the hyperbolic tangent of X.

Syntax

Result = TANH(X)

Arguments

X

The value for which the hyperbolic tangent is desired, specified in radians. If X is
double-precision floating-point, the result is also double-precision. Complex values
are not allowed. All other types are converted to single-precision floating-point and
yield floating-point results. TANH is defined as:

If X is an array, the result has the same structure, with each element containing the
hyperbolic tangent of the corresponding element of X.

Example

; Find the hyperbolic tangent of 1 radian and print the result:
PRINT, TANH(1)

; Plot the hyperbolic tangent from -5 to +5 with an increment
; of 0.1:
PLOT, TANH(FINDGEN(101)/10. - 5)

See Also

ATAN, TAN

tanh x() ex e x––
ex e x–+
-------------------=
IDL Reference Guide TANH

1398
TAPRD

The TAPRD procedure reads the next record on the selected tape unit into the
specified array. TAPRD is available only under VMS. No data or format conversion,
with the exception of optional byte reversal, is performed. The array must be defined
with the desired type and dimensions. If the read is successful, the system variable
!ERR is set to the number of bytes read. See the description of the magnetic tape
routines in “VMS-Specific Information” in Chapter 8 of Building IDL Applications.

Syntax

TAPRD, Array, Unit [, Byte_Reverse]

Arguments

Unit

The magnetic tape unit to read. This argument must be a number between 0 and 9,
and should not be confused with standard file Logical Unit Numbers (LUN’s).

Array

A named variable into which the data is read. If Array is larger than the tape record,
the extra elements of the array are not changed. If the array is shorter than the tape
record, a data overrun error occurs. The length of Array and the records on the tape
can range from 14 bytes to 65,235 bytes.

Byte_Reverse

If this parameter is present, the even and odd numbered bytes are swapped after
reading, regardless of the type of data or variables. This enables reading tapes
containing short integers that were written on machines with different byte ordering.
You can also use the BYTORDER routine to re-order different data types.

See Also

TAPWRT
TAPRD IDL Reference Guide

1399
TAPWRT

The TAPWRT procedure writes data from the Array parameter to the selected tape
unit. TAPWRT is available only under VMS. One physical record containing the
same number of bytes as the array is written each time TAPWRT is called. The
parameters and usage are identical to those in the TAPRD procedure with the
exception that here the Array parameter can be an expression. Consult the TAPRD
procedure for details. See the description of the magnetic tape routines in “VMS-
Specific Information” in Chapter 8 of Building IDL Applications.

Syntax

TAPWRT, Array, Unit [, Byte_Reverse]

Arguments

Unit

The magnetic tape unit to write. This argument must be a number between 0 and 9,
and should not be confused with standard file Logical Unit Numbers (LUNs).

Array

The expression representing the data to be output. The length of Array and the
records on the tape can range from 14 bytes to 65,235 bytes.

Byte_Reverse

If this parameter is present, the even and odd numbered bytes are swapped on output,
regardless of the type of data or variables. This enables writing tapes that are
compatible with other machines.

See Also

TAPRD
IDL Reference Guide TAPWRT

1400
TEK_COLOR

The TEK_COLOR procedure loads a 32-color colortable similar to the default
Tektronix 4115 colortable. This colortable is useful because of its distinct colors.

By default, this palette consists of 32 colors. The first 9 colors are: Index 0=black,
1=white, 2=red, 3=green, 4=blue, 5=cyan, 6=magenta, 8=orange.

Syntax

TEK_COLOR [, Start_Index, Colors]

Arguments

Start_Index

An optional starting index for the palette. The default is 0. If this argument is
included, the colors are loaded into the current colortable starting at the specified
index.

Colors

The number of colors to load. The default is 32, which is also the maximum.

See Also

LOADCT, XLOADCT
TEK_COLOR IDL Reference Guide

1401
TEMPORARY

The TEMPORARY function returns a temporary copy of a variable, and sets the
original variable to “undefined”. This function can be used to conserve memory when
performing operations on large arrays, as it avoids making a new copy of results that
are only temporary. In general, the TEMPORARY routine can be used to advantage
whenever a variable containing an array on the left hand side of an assignment
statement is also referenced on the right hand side.

Syntax

Result = TEMPORARY(Variable)

Arguments

Variable

The variable to be referenced and deleted.

Example

Assume the variable A is a large array. The statement:

A = A + 1

creates a new array for the result of the addition, places the sum into the new array,
assigns it to a, and then frees the old allocation of a. Total storage required is twice
the size of a. The statement:

A = TEMPORARY(A) + 1

requires no additional space.

See Also

DELVAR
IDL Reference Guide TEMPORARY

1402
TETRA_CLIP

The TETRA_CLIP function clips a tetrahedral mesh to an arbitrary plane in space
and returns a tetrahedral mesh of the remaining portion. An auxiliary array of data
may also be passed and clipped. This array can have multiple values for each vertex
(the trailing array dimension must match the number of vertices in the Vertsin array).

A tetrahedral connectivity array consists of groups of four vertex index values. Each
set of four index values specifies four vertices which define a single tetrahedron.

Syntax

Result = TETRA_CLIP (Plane, Vertsin, Connin, Vertsout, Connout
[, AUXDATA_IN=array, AUXDATA_OUT=variable]
[, CUT_VERTS=variable])

Return Value

The return value is the number of tetrahedra returned.

Arguments

Plane

Input four-element array describing the equation of the plane to be clipped to. The
elements are the coefficients (a,b,c,d) of the equation ax+by+cz+d=0.

Vertsin

Input array of tetrahedral vertices [3, n].

Connin

Input tetrahedral mesh connectivity array.

Vertsout

Output array of tetrahedral vertices [3, n].

Connout

Output tetrahedral mesh connectivity array.
TETRA_CLIP IDL Reference Guide

1403
Keywords

AUXDATA_IN

Input array of auxiliary data. If present, these values are interpolated and returned
through AUXDATA_OUT. The trailing array dimension must match the number of
vertices in the Vertsin array.

AUXDATA_OUT

Set this keyword to a named variable to contain an output array of interpolated
auxiliary data.

CUT_VERTS

Set this keyword to a named variable to contain an output array of vertex indices (into
Vertsout) of the vertices which are considered to be ‘on’ the clipped surface.
IDL Reference Guide TETRA_CLIP

1404
TETRA_SURFACE

The TETRA_SURFACE function extracts a polygonal mesh as the exterior surface
of a tetrahedral mesh. The output of this function is a polygonal mesh connectivity
array that can be used with the input Verts array to display the outer surface of the
tetrahedral mesh.

Syntax

Result = TETRA_SURFACE (Verts, Connin)

Return Value

Returns a polygonal mesh connectivity array. When used with the input vertex array,
this function yields the exposed tetrahedral mesh surface.

Arguments

Verts

Array of vertices [3, n].

Connin

Tetrahedral connectivity array.
TETRA_SURFACE IDL Reference Guide

1405
TETRA_VOLUME

The TETRA_VOLUME function computes properties of a tetrahedral mesh array.
The basic property is the volume. An auxiliary data array may be supplied which
specifies weights at each vertex which are interpolated through the volume during
integration. Higher order moments (with respect to the X, Y, and Z axis) may be
computed as well (with or without weights).

Syntax

Result = TETRA_VOLUME (Verts, Conn [, AUXDATA=array]
[, MOMENT=variable])

Return Value

Returns the cumulative (weighted) volume of the tetrahedrons in the mesh.

Arguments

Verts

Array of vertices [3, n].

Conn

Tetrahedral connectivity array.

Keywords

AUXDATA

Array of input auxiliary data (one value per vertex). If present, these values are used
to weight a vertex. The volume area integral will linearly interpolate these values.
The volume integral will linearly interpolate these values within each tetrahedra. The
default weight is 1.0 which results in a basic volume.
IDL Reference Guide TETRA_VOLUME

1406
MOMENT

Set this keyword to a named variable that will contain a three-element float vector
which corresponds to the first order moments computed with respect to the X, Y and
Z axis. The computation is:

where v is the (weighted) volume of the tetrahedron and c is the centroid of the
tetrahedron, thus

yields the (weighted) centroid of the tetrahedral mesh.

m vici
ntetras
∑=

m volume⁄
TETRA_VOLUME IDL Reference Guide

1407
THIN

The THIN function returns the “skeleton” of a bi-level image. The skeleton of an
object in an image is a set of lines that reflect the shape of the object. The set of
skeletal pixels can be considered to be the medial axis of the object. For a much more
extensive discussion of skeletons and thinning algorithms, see Algorithms for
Graphics and Image Processing, Theo Pavlidis, Computer Science Press, 1982. The
THIN function is adapted from Algorithm 9.1 (the classical thinning algorithm).

On input, the bi-level image is a rectangular array in which pixels that compose the
object have a nonzero value. All other pixels are zero. The result is a byte type image
in which skeletal pixels are set to 2 and all other pixels are zero.

Syntax

Result = THIN(Image [, /NEIGHBOR_COUNT] [, /PRUNE])

Arguments

Image

The two-dimensional image (array) to be thinned.

Keywords

NEIGHBOR_COUNT

Set this keyword to select an alternate form of output. In this form, output pixel
values count the number of neighbors an individual skeletal pixel has (including
itself). For example, a pixel that is part of a line will have the value 3 (two neighbors
and itself). Terminal pixels will have the value 2, while isolated pixels have the value
1.

PRUNE

If the PRUNE keyword is set, pixels with single neighbors are removed iteratively
until only pixels with 2 or more neighbors exist. This effectively removes (or
“prunes”) skeleton branches, leaving only closed paths.

Example

The following commands display the “thinned” edges of a Sobel filtered image:

; Open a file for reading:
IDL Reference Guide THIN

1408
THIN IDL Reference Guide

OPENR, 1, FILEPATH('people.dat', SUBDIR = ['examples','data'])

; Create a byte array in which to store the image:
A = BYTARR(192, 192)

; Read first 192 by 192 image:
READU, 1, A

; Close the file:
CLOSE, 1

; Display the image:
TV, A, 0

; Apply the Sobel filter, threshold the image at value 75, and
; display the thinned edges:
TVSCL, THIN(SOBEL(A) GT 75), 1

See Also

ROBERTS, SOBEL

1409
THREED

The THREED procedure plots a 2D array as a pseudo 3D plot. The orientation of the
data is fixed. This routine is written in the IDL language. Its source code can be found
in the file threed.pro in the lib subdirectory of the IDL distribution.

Syntax

THREED, A [, Sp] [, TITLE=string] [, XTITLE=string] [, YTITLE=string]

Arguments

A

The two-dimensional array to plot.

Sp

The spacing between plot lines. If Sp is omitted, the spacing is set to: (MAX(A)-
MIN(A))/ROWS. If Sp is negative, hidden lines are not removed.

Keywords

TITLE

Set this keyword to the main plot title.

XTITLE

Set this keyword to the X axis title.

YTITLE

Set this keyword to the Y axis title.

Example

; Create a 2D dataset:
A = -SHIFT(DIST(30), 15, 15)
; Make a THREED plot:
THREED, A
; Compare to SURFACE:
SURFACE, A

See Also

SURFACE
IDL Reference Guide THREED

1410
TIME_TEST2

The TIME_TEST2 procedure is a general-purpose IDL benchmark program that
performs approximately 20 common operations and prints the time required.

This routine is written in the IDL language. Its source code can be found in the file
time_test.pro in the lib subdirectory of the IDL distribution. This file also
contains the procedure GRAPHICS_TIMES, used to time graphical operations.

Syntax

TIME_TEST2 [, Filename]

Arguments

Filename

An optional string that contains the name of output file for the results of the time test.

Example

; Run the computational tests:
TIME_TEST2

; Run the graphics tests. Note that TIME_TEST2 must be compiled
; before GRAPHICS_TIMES will run:
GRAPHICS_TIMES

See Also

SYSTIME
TIME_TEST2 IDL Reference Guide

1411
TIMEGEN

The TIMEGEN function returns an array, with specified dimensions, of double-
precision floating-point values that represent times in terms of Julian dates.

The Julian date is the number of days elapsed since Jan. 1, 4713 B.C.E., plus the time
expressed as a day fraction. Following the astronomical convention, the day is
defined to start at 12 PM (noon). Julian date 0.0d is therefore Jan. 1, 4713 B.C.E. at
12:00:00.

The first value of the returned array corresponds to a Julian date start time, and each
subsequent value corresponds to the next Julian date in the sequence. The sequence is
determined by specifying the time unit (such as months or seconds) and the step size,
or spacing, between the units. You can also construct more complicated arrays by
including smaller time units within each major time interval.

A small offset is added to each Julian date to eliminate roundoff errors when
calculating the day fraction from the hour, minute, second. This offset is given by the
larger of EPS and EPS*Julian, where Julian is the integer portion of the Julian date
and EPS is the double-precision floating-point precision parameter from MACHAR.
For typical Julian dates the offset is approximately 6x10-10 (which corresponds to
5x10-5 seconds). This offset ensures that when the Julian date is converted back to the
hour, minute, and second, the hour, minute, and second will have the same integer
values.

Tip
Because of the large magnitude of the Julian date (1 Jan 2000 is Julian day
2451545), the precision of most Julian dates is limited to 1 millisecond (0.001
seconds). If you are not interested in the date itself, you can improve the precision
by subtracting a large offset or setting the START keyword to zero.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

Syntax

Result = TIMEGEN([D1,...,D8 | , FINAL=value] [, DAYS=vector]
[, HOURS=vector] [, MINUTES=vector] [, MONTHS=vector] [, SECONDS=vector]
[, START=value] [, STEP_SIZE=value] [, UNITS=string] [, YEAR=value])
IDL Reference Guide TIMEGEN

1412
Arguments

Di

The dimensions of the result. The dimension parameters may be any scalar
expression. Up to eight dimensions may be specified. If the dimension arguments are
not integer values, IDL will truncate them to integer values before creating the new
array. The dimension arguments are required unless keyword FINAL is set, in which
case they are ignored.

Keywords

DAYS

Set this keyword to a scalar or a vector giving the day values that should be included
within each month. This keyword is ignored if the UNITS keyword is set to “Days”,
“Hours”, “Minutes”, or “Seconds”.

Note
Day values that are beyond the end of the month will be set equal to the last day for
that month. For example, setting DAY=[31] will automatically return the last day in
each month.

FINAL

Set this keyword to a double-precision value representing the Julian date/time to use
as the last value in the returned array. In this case, the dimension arguments are
ignored and Result is a one-dimensional array, with the number of elements
depending upon the step size. The FINAL time may be less than the START time, in
which case STEP_SIZE should be negative.

Note
If the step size is not an integer then the last element may not be equal to the FINAL
time. In this case, TIMEGEN will return enough elements such that the last element
is less than or equal to FINAL.

HOURS

Set this keyword to a scalar or a vector giving the hour values that should be included
within each day. This keyword is ignored if UNITS is set to “Hours”, “Minutes”, or
“Seconds”.
TIMEGEN IDL Reference Guide

1413
MINUTES

Set this keyword to a scalar or a vector giving the minute values that should be
included within each hour. This keyword is ignored if UNITS is set to “Minutes” or
“Seconds”.

MONTHS

Set this keyword to a scalar or a vector giving the month values that should be
included within each year. This keyword is ignored if UNITS is set to “Months”,
“Days”, “Hours”, “Minutes”, or “Seconds”.

SECONDS

Set this keyword to a scalar or a vector giving the second values that should be
included within each minute. This keyword is ignored if UNITS is set to “Seconds”.

START

Set this keyword to a double-precision value representing the Julian date/time to use
as the first value in the returned array. The default is 0.0d [corresponding to January
1, 4713 B.C.E. at 12 pm (noon)].

Note
If subintervals are provided by MONTHS, DAYS, HOURS, MINUTES, or
SECONDS, then the first element may not be equal to the START time. In this case
the first element in the returned array will be greater than or equal to START.

Tip
Other array generation routines in IDL (such as FINDGEN) do not allow you to
specify a starting value because the resulting array can be added to a scalar
representing the start value. For TIMEGEN it is correct to add a scalar to the array
if the units are days, hours, minutes, seconds, or sub-seconds. For example:

MyTimes = TIMEGEN(365, UNITS="Days") + SYSTIME(/JULIAN)

However, if the units are months or years, the start value is necessary because the
number of days in a month or year can vary depending upon the year in which they
fall (for instance, consider leap years). For example:

MyTimes = TIMEGEN(12, UNITS="Months", START=JULDAY(1,1,2000))
IDL Reference Guide TIMEGEN

1414
STEP_SIZE

Set this keyword to a scalar value representing the step size between the major
intervals of the returned array. The step size may be negative. The default step size is
1. When the UNITS keyword is set to “Years” or “Months”, the STEP_SIZE value is
rounded to the nearest integer.

UNITS

Set this keyword to a scalar string indicating the time units to be used for the major
intervals for the generated array. Valid values include:

• “Years” or “Y”

• “Months” or “M”

• “Days” or “D”

• “Hours” or “H”

• “Minutes” or “I”

• “Seconds” or “S”

The case (upper or lower) is ignored. If this keyword is not specified, then the default
for UNITS is the time unit that is larger than the largest keyword present:

If none of the above keywords are present, the default is UNITS=“Days”.

Largest Keyword
Present Default UNITS

SECONDS=vector “Minutes”

MINUTES=vector “Hours”

HOURS=vector “Days”

DAYS=vector “Months”

MONTHS=vector “Years”

YEAR=value “Years”

Table 89: Defaults for the UNITS keyword
TIMEGEN IDL Reference Guide

1415
YEAR

Set this keyword to a scalar giving the starting year. If YEAR is specified then the
starting year from START is ignored.

Examples

• Generate an array of 366 time values that are one day apart starting with
January 1, 2000:

MyDates = TIMEGEN(366, START=JULDAY(1,1,2000))

• Generate an array of 20 time values that are 12 hours apart starting with the
current time:

MyTimes = TIMEGEN(20, UNITS='Hours', STEP_SIZE=12, $
START=SYSTIME(/JULIAN))

• Generate an array of time values that are 1 hour apart from 1 January 2000
until the current time:

MyTimes = TIMEGEN(START=JULDAY(1,1,2000), $
FINAL=SYSTIME(/JULIAN), UNITS='Hours')

• Generate an array of time values composed of seconds, minutes, and hours that
start from the current hour:

MyTimes = TIMEGEN(60, 60, 24, $
START=FLOOR(SYSTIME(/JULIAN)*24)/24d, UNITS='S')

• Generate an array of 24 time values with monthly intervals, but with
subintervals at 5 PM on the first and fifteenth of each month:

MyTimes = TIMEGEN(24, START=FLOOR(SYSTIME(/JULIAN)), $
DAYS=[1,15], HOURS=17)

See Also

“Format Codes” in Chapter 8 of Building IDL Applications, CALDAT, JULDAY,
LABEL_DATE, SYSTIME
IDL Reference Guide TIMEGEN

1416
TM_TEST

The TM_TEST function computes the Student’s T-statistic and the probability that
two sample populations X and Y have significantly different means. X and Y may be
of different lengths. The result is a two-element vector containing the T-statistic and
its significance. The significance is a value in the interval [0.0, 1.0]; a small value
(0.05 or 0.01) indicates that X and Y have significantly different means. The default
assumption is that the data is drawn from populations with the same true variance.
This type of test is often referred to as the t-means test.

The T-statistic for sample populations x and y with means x and y is defined as:

where x = (x0, x1, x2, ..., xN-1) and y = (y0, y1, y2 ..., yM-1)

This routine is written in the IDL language. Its source code can be found in the file
tm_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = TM_TEST(X, Y [, /PAIRED] [, /UNEQUAL])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An m-element integer, single-, or double-precision floating-point vector. If the
PAIRED keyword is set, X and Y must have the same number of elements.

T x y–

xi x–()2 yi y–()2

j 0=

M 1–

∑+
j 0=

N 1–

∑
N M 2–+()

--
1
N
---- 1

M
-----+

--=
TM_TEST IDL Reference Guide

1417
Keywords

PAIRED

If this keyword is set, X and Y are assumed to be paired samples and must have the
same number of elements.

UNEQUAL

If this keyword is set, X and Y are assumed to be from populations with unequal
variances.

Example

; Define two n-element sample populations.
X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, $

305, 270, 260, 251, 275, 288, 242, 304, 267]
Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, $

271, 214, 216, 175, 192, 208, 150, 281, 196]

; Compute the Student’s t-statistic and its significance assuming
; that X and Y belong to populations with the same true variance:
PRINT, TM_TEST(X, Y)

IDL prints:

5.52839 2.52455e-06

The result indicates that X and Y have significantly different means.

See Also

FV_TEST, KW_TEST, RS_TEST, S_TEST
IDL Reference Guide TM_TEST

1418
TOTAL

The TOTAL function returns the sum of the elements of Array. The sum of the array
elements over a given dimension is returned if the Dimension argument is present.

Syntax

Result = TOTAL(Array [, Dimension] [, /CUMULATIVE] [, /DOUBLE] [, /NAN])

Arguments

Array

The array to be summed. This array can be of any basic type except string. If Array is
double-precision floating-point, complex, or double-precision complex, the result is
of the same type. Otherwise, the result is single-precision floating-point.

Dimension

The dimension over which to sum, starting at one. If this argument is not present or
zero, the scalar sum of all the array elements is returned. If this argument is present,
the result is an array with one less dimension than Array. For example, if the
dimensions of Array are N1, N2, N3, and Dimension is 2, the dimensions of the result
are (N1, N3), and element (i,j) of the result contains the sum:

Keywords

CUMULATIVE

If this keyword is set, the result is an array of the same size as the input, with each
element, i, containing the sum of the input array elements 0 to i. This keyword also
works with the Dimension parameter, in which case the sum is performed over the
given dimension.

DOUBLE

Set this keyword to perform the summation in double-precision floating-point.

Ai k j, ,k 0=

N2 1–∑
TOTAL IDL Reference Guide

1419
NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See “Special Floating-Point Values” in Chapter 17 of Building IDL
Applications for more information on IEEE floating-point values.)

Example

Example 1

This example sums the elements of a one-dimensional array:

; Define a one-dimensional array:
A = [20, 10, 5, 5, 3]

; Sum the elements of the array:
SUMA = TOTAL([20, 10, 5, 5, 3])

; Print the results:
PRINT, 'A = ', A
PRINT, 'Sum of A = ', SUMA

IDL prints:

A = 20 10 5 5 3
Sum of A = 43.0000

Example 2

The results are different when a multi-dimensional array is used:

; Define a multi-dimensional array:
A = FINDGEN(5,5)

; Sum each of the rows in A:
SUMROWS = TOTAL(A, 1)

; Sum each of the columns in A:
SUMCOLS = TOTAL(A, 2)

; Print the results:
PRINT, 'A = ', A
PRINT, 'Sum of each row:', SUMROWS
PRINT, 'Sum of each column:', SUMCOLS

IDL prints:

A = 0.000000 1.00000 2.00000 3.00000 4.00000
5.00000 6.00000 7.00000 8.00000 9.00000
IDL Reference Guide TOTAL

1420
10.0000 11.0000 12.0000 13.0000 14.0000
15.0000 16.0000 17.0000 18.0000 19.0000
20.0000 21.0000 22.0000 23.0000 24.0000

Sum of each row: 10.0000 35.0000 60.0000 85.0000 110.000

Sum of each column: 50.0000 55.0000 60.0000 65.0000 70.0000

See Also

FACTORIAL
TOTAL IDL Reference Guide

1421
TRACE

The TRACE function computes the trace of an n by n array.

This routine is written in the IDL language. Its source code can be found in the file
trace.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = TRACE(A [, /DOUBLE])

Arguments

A

An n by n real or complex array.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

; Define an array:
A = [[2.0,1.0, 1.0, 1.5], $

[4.0, -6.0, 0.0, 0.0], $
[-2.0, 7.0, 2.0, 2.5], $
[1.0, 0.5, 0.0, 5.0]]

; Compute the trace of A:
result = TRACE(A)

;Print the result:
PRINT, 'TRACE(A) = ', result

IDL prints:

TRACE(A) = 3.00000

See Also

TOTAL
IDL Reference Guide TRACE

1422
TrackBall Object

See Appendix A, “IDL Object Class & Method Reference”
TrackBall Object IDL Reference Guide

1423
TRANSPOSE

The TRANSPOSE function returns the transpose of Array. If an optional permutation
vector is provided, the dimensions of Array are rearranged as well.

Syntax

Result = TRANSPOSE(Array [, P])

Arguments

Array

The array to be transposed.

P

A vector specifying how the dimensions of Array will be permuted. The elements of
P correspond to the dimensions of Array; the ith dimension of the output array is
dimension P[i] of the input array. Each element of the vector P must be unique.
Dimensions start at zero and can not be repeated.

If P is not present, the order of the indices of Array is reversed.

Example

Example 1

Print a simple array and its transpose by entering:

; Create an array:
A = INDGEN(3,3)
TRANSA = TRANSPOSE(A)

; Print the array and its transpose:
PRINT, 'A:'
PRINT, A
PRINT, 'Transpose of A:'
PRINT, TRANSA

IDL prints:

A:
0 1 2
3 4 5
6 7 8
IDL Reference Guide TRANSPOSE

1424
Transpose of A:
0 3 6
1 4 7
2 5 8

Example 2

This example demonstrates multi-dimensional transposition:

; Create the array:
A = INDGEN(2, 3, 4)

; Take the transpose, reversing the order of the indices:
B = TRANSPOSE(A)

; Re-order the dimensions of A, so that the second dimension
; becomes the first, the third becomes the second, and the first
; becomes the third:
C = TRANSPOSE(A, [1, 2, 0])

; View the sizes of the three arrays:
HELP, A, B, C

IDL prints:

A INT = Array[2, 3, 4]
B INT = Array[4, 3, 2]
C INT = Array[3, 4, 2]

See Also

REFORM, ROT, ROTATE, REVERSE
TRANSPOSE IDL Reference Guide

1425
TRI_SURF

The TRI_SURF function interpolates a regularly- or irregularly-gridded set of points
with a smooth quintic surface. The result is s a two-dimensional floating-point array
containing the interpolated surface, sampled at the grid points.

TRI_SURF is similar to MIN_CURVE_SURF but the surface fitted is a smooth
surface, not a minimum curvature surface. TRI_SURF has the advantage of being
much more efficient for larger numbers of points.

Note
The TRI_SURF function is designed to interpolate low resolution data. Large
arrays may cause TRI_SURF to issue the following error message:
Partial Derivative Approximation Failed to Converge”
In such cases, interpolation is most likely unnecessary.

This routine is written in the IDL language. Its source code can be found in the file
tri_surf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = TRI_SURF(Z [, X, Y] [, /EXTRAPOLATE] [, MISSING=value]
[, /REGULAR] [, XGRID=[xstart, xspacing] | [, XVALUES=array]]
[, YGRID=[yxstart, yspacing] | [, YVALUES=array]] [, GS=[xspacing, yspacing]]
[, BOUNDS=[xmin, ymin, xmax, ymax]] [, NX=value] [, NY=value])

Arguments

X, Y, Z

arrays containing the X, Y, and Z coordinates of the data points on the surface. Points
need not be regularly gridded. For regularly gridded input data, X and Y are not used:
the grid spacing is specified via the XGRID and YGRID (or XVALUES and
YVALUES) keywords, and Z must be a two dimensional array. For irregular grids,
all three parameters must be present and have the same number of elements.
IDL Reference Guide TRI_SURF

1426
Keywords

EXTRAPOLATE

Set this keyword to cause TRI_SURF to extrapolate the surface to points outside the
convex hull of input points. This keyword has no effect if the input points are
regularly gridded.

LINEAR

Set this keyword to use linear interpolation, without gradient estimates, instead of
quintic interpolation. Linear interpolation does not extrapolate, although it is faster
and more numerically stable.

MISSING

Set this keyword equal to the value to which points outside the convex hull of input
points should be set. The default is 0. This keyword has no effect if the input points
are regularly gridded.

Input Grid Description:

REGULAR

If set, the Z parameter is a two-dimensional array of dimensions (n,m), containing
measurements over a regular grid. If any of XGRID, YGRID, XVALUES, or
YVALUES are specified, REGULAR is implied. REGULAR is also implied if there
is only one parameter, Z. If REGULAR is set, and no grid specifications are present,
the grid is set to (0, 1, 2, ...).

XGRID

A two-element array, [xstart, xspacing], defining the input grid in the x direction. Do
not specify both XGRID and XVALUES.

XVALUES

An n-element array defining the x locations of Z[i,j]. Do not specify both XGRID and
XVALUES.

YGRID

A two-element array, [ystart, yspacing], defining the input grid in the y direction. Do
not specify both YGRID and YVALUES.
TRI_SURF IDL Reference Guide

1427
YVALUES

An n-element array defining the y locations of Z[i,j]. Do not specify both YGRID and
YVALUES.

Output Grid Description:

Note
The output grid must enclose the convex hull of the input points.

GS

The output grid spacing. If present, GS must be a two-element vector [xs, ys], where
xs is the horizontal spacing between grid points and ys is the vertical spacing. The
default is based on the extents of x and y. If the grid starts at x value xmin and ends at
xmax, then the default horizontal spacing is (xmax - xmin)/(NX-1). YS is computed in
the same way. The default grid size, if neither NX or NY are specified, is 26 by 26.

BOUNDS

If present, BOUNDS must be a four-element array containing the grid limits in x and
y of the output grid: [xmin, ymin, xmax, ymax]. If not specified, the grid limits are set
to the extent of x and y.

NX

The output grid size in the x direction. NX need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

NY

The output grid size in the y direction. NY need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

Example

Example 1

Regularly gridded case:

; Make some random data
Z = randomu(seed, 5, 6)

; Interpolate to a 26 x 26 grid:
CONTOUR, TRI_SURF(Z, /REGULAR)
IDL Reference Guide TRI_SURF

1428
Example 2

Irregularly gridded case:

; Make a random set of points that lie on a Gaussian:
N = 15
X = RANDOMU(seed, N)
Y = RANDOMU(seed, N)

; The Gaussian:
Z = EXP(-2 * ((X-.5)^2 + (Y-.5)^2))

; Use a 26 by 26 grid over the rectangle bounding x and y.
; Get the surface:
R = TRI_SURF(Z, X, Y)

; Alternatively, get a surface over the unit square, with spacing
; of 0.05:
R = TRI_SURF(z, x, y, GS=[0.05, 0.05], BOUNDS=[0,0,1,1])

; Alternatively, get a 10 by 10 surface over the rectangle bounding
; x and y:
R = TRI_SURF(z, x, y, NX=10, NY=10)

See Also

CONTOUR, MIN_CURVE_SURF
TRI_SURF IDL Reference Guide

1429
TRIANGULATE

The TRIANGULATE procedure constructs a Delaunay triangulation of a planar set
of points. Delaunay triangulations are very useful for the interpolation, analysis, and
visual display of irregularly-gridded data. In most applications, after the irregularly
gridded data points have been triangulated, the function TRIGRID is invoked to
interpolate surface values to a regular grid.

Since Delaunay triangulations have the property that the circumcircle of any triangle
in the triangulation contains no other vertices in its interior, interpolated values are
only computed from nearby points.

TRIANGULATE can, optionally, return the adjacency list that describes, for each
node, the adjacent nodes in the Delaunay triangulation. With this list, the Voronoi
polygon (the polygon described by the set of points which are closer to that node than
to any other node) can be computed for each node. This polygon contains the area
influenced by its associated node. Tiling of the region in this manner is also called
Dirichlet, Wigner-Seithz, or Thiessen tessellation.

The grid returned by the TRIGRID function can be input to various routines such as
SURFACE, TV, and CONTOUR. See the description of TRIGRID for an example.

TRIANGULATE and TRIDGRID can also be used to perform gridding and
interpolation over the surface of a sphere. The interpolation is C1 continuous,
meaning that the result is continuous over both the function value and its first
derivative. This feature is ideal for interpolating an irregularly-sampled dataset over
part or all of the surface of the earth (or other (spherical) celestial bodies).
Extrapolation outside the convex hull of sample points is also supported. To perform
spherical gridding, you must include the FVALUE and SPHERE keywords described
below. The spherical gridding technique used in IDL is based on the paper
“Interpolation of Data on the Surface of a Sphere”, R. Renka, Oak Ridge National
Laboratory Report ORNL/CSD-108, 1982.

Syntax

TRIANGULATE, X, Y, Triangles [, B] [, CONNECTIVITY=variable]
[, /DEGREES] [, FVALUE=variable] [, REPEATS=variable] [, SPHERE=variable]

Arguments

X

An array that contains the X coordinates of the points to be triangulated.
IDL Reference Guide TRIANGULATE

1430
Y

An array that contains the Y coordinates of the points to be triangulated. Parameters
X and Y must have the same number of elements.

Triangles

A named variable that, on exit, contains the list of triangles in the Delaunay
triangulation of the points specified by the X and Y arguments. Triangles is a
longword array dimensioned (3, number of triangles), where Triangles[0, i],
Triangles[1, i], and Triangles[2, i] contain the indices of the vertices of
the i-th triangle (i.e., X[Tr[*, i]] and Y[Triangles[*, i]] are the X and Y
coordinates of the vertices of the i-th triangle).

B

An optional, named variable that, upon return, contains a list of the indices of the
boundary points in counterclockwise order.

Keywords

CONNECTIVITY

Set this keyword to a named variable in which the adjacency list for each of the N
nodes (xy point) is returned. The list has the following form:

Each element i, i ≤ 0 < N, contains the starting index of the connectivity list for node
i within the list array. To obtain the adjacency list for node i, extract the list elements
from LIST[i] to LIST[i+1]-1.

The adjacency list is ordered in the counter-clockwise direction. The first item on the
list of boundary nodes is the subscript of the node itself. For interior nodes, the list
contains the subscripts of the adjacent nodes in counter-clockwise order.

For example, the call:

TRIANGULATE, X, Y, CONNECTIVITY = LIST

returns the adjacency list in the variable LIST. The subscripts of the nodes adjacent to
X[i] and Y[i] are contained in the array:

LIST[LIST[i] : LIST[i+1]-1]

DEGREES

Set this keyword to indicate that the X and Y arguments contain longitude and latitude
coordinates specified in degrees. This keyword is only effective if the SPHERE
TRIANGULATE IDL Reference Guide

1431
keyword is also set. If DEGREES is not set, X and Y are assumed to be specified in
radians when a spherical triangulation is performed.

FVALUE

Set this keyword to a named variable that contains sample values for each
longitude/latitude point in a spherical triangulation. On output, the elements of
FVALUE are rearranged to correspond to the new ordering of X and Y (as described
in the SPHERE keyword, below). This reordered array can be passed to TRIGRID to
complete the interpolation.

REPEATS

Set this keyword to a named variable to return a (2, n) list of the indices of duplicated
points. That is, for each i,

X[REPEATS[0,i]] = X[REPEATS[1,i]]

and

Y[REPEATS[0,i]] = Y[REPEATS[1,i]]

SPHERE

Set this keyword to a named variable in which the results from a spherical
triangulation are returned. This result is a structure that can be passed to TRIGRID to
perform spherical gridding. The structure contains the 3D Cartesian locations sample
points and the adjacency list that describes the triangulation.

When spherical triangulation is performed, X and Y are interpreted as longitude and
latitude, in either degrees or radians (see the DEGREE keyword, above). Also, the
order of the elements within the X and Y parameters is rearranged (see the FVALUE
keyword, above).

Example

For a examples using the TRIANGULATE routine, see the TRIGRID function.

See Also

SPH_SCAT, TRIGRID
IDL Reference Guide TRIANGULATE

1432
TRIGRID

Given data points defined by the parameters X, Y, and Z and a triangulation of the
planar set of points determined by X and Y, the TRIGRID function returns a regular
grid of interpolated Z values. Linear or smooth quintic polynomial interpolation can
be selected. Extrapolation for gridpoints outside of the triangulation area is also an
option. The resulting grid is a two-dimensional array of the same data type as Z, with
user-specified bounds and spacing. An input triangulation can be constructed using
the procedure TRIANGULATE. Together, the TRIANGULATE procedure and the
TRIGRID function constitute IDL’s solution to the problem of irregularly-gridded
data, including spherical gridding.

Syntax

Result = TRIGRID(X, Y, Z, Triangles [, GS, Limits])

For spherical gridding: Result = TRIGRID(F , GS, Limits, SPHERE=S)

Keywords: [, /DEGREES] [, EXTRAPOLATE=array | , /QUINTIC]
[, INPUT=variable] [, MAX_VALUE=value] [, MIN_VALUE=value]
[, MISSING=value] [, NX=value] [, NY=value] [, SPHERE=variable]
[, XGRID=variable] [, YGRID=variable] [, XOUT=vector, YOUT=vector]

Arguments

X, Y, Z

Input arrays of X, Y, and Z coordinates of data points. Integer, long, double-precision
and floating-point values are allowed. In addition, Z can be a complex array. All three
arrays must have the same number of elements.

F

When performing a spherical gridding, this argument should be the named variable
that contains the rearranged sample values that were returned by TRIANGULATE’s
FVALUE keyword.

Triangles

A longword array of the form output by TRIANGULATE. That is, Triangles has the
dimensions (3, number of triangles) and, for each i, Triangles[0,i],
Triangles[1,i], and Triangles[2,i] are the indices of the vertices of the i-th
triangle.
TRIGRID IDL Reference Guide

1433
GS

If present, GS should be a two-element vector [XS, YS], where XS is the horizontal
spacing between grid points and YS is the vertical spacing. The default is based on the
extents of X and Y. If the grid starts at X value x0 and ends at x1,then the horizontal
spacing is

(x1- x0)/50

The default for YS is computed in the same way. Since the default grid spacing
divides each axis into 50 intervals and produces 51 samples, TRIGRID returns a grid
with dimensions (51, 51).

If the NX or NY keywords are set to specify the output grid dimensions, either or
both of the values of GS may be set to 0. In this case, the grid spacing is computed as
the respective range divided by the dimension minus one:

(x1- x0)/(NX-1) and (y1- y0)/(NY-1)

For spherical gridding, GS is assumed to be specified in radians, unless the
DEGREES keyword is set.

Limits

If present, Limits should be a four-element vector [x0, y0, x1, y1] that specifies the data
range to be gridded (x0 and y0 are the lower X and Y data limits, and x1 and y1 are the
upper limits). The default for Limits is:

[MIN(X), MIN(Y), MAX(X), MAX(Y)]

If the NX or NY keywords are not specified, the size of the grid produced is specified
by the value of Limits. If the NX or NY keywords are set to specify the output grid
dimensions, a grid of the specified size will be used regardless of the value of Limits.

Keywords

DEGREES

For a spherical gridding, set this keyword to indicate that the grid spacing (the GS
argument) is specified in degrees rather than radians.

EXTRAPOLATE

Set this keyword equal to an array of boundary node indices (as returned by the
optional parameter B of the TRIANGULATE procedure) to extrapolate to grid points
outside the triangulation. The extrapolation is not smooth, but should give acceptable
results in most cases.
IDL Reference Guide TRIGRID

1434
Setting this keyword sets the quintic interpolation mode, as if the QUINTIC keyword
has been specified.

INPUT

Set this keyword to a named variable (which must be an array of the appropriate size
to hold the output from TRIGRID) in which the results of the gridding are returned.
This keyword is provided to make it easy and memory-efficient to perform multiple
calls to TRIGRID. The interpolates within each triangle overwrite the array and the
array is not initialized.

MAX_VALUE

Set this keyword to a value that represents the maximum Z value to be gridded. Data
larger than this value are treated as missing data and are not gridded.

MIN_VALUE

Set this keyword to a value that represents the minimum Z value to be gridded. Data
smaller than this value are treated as missing data and are not gridded.

MISSING

The Z value to be used for grid points that lie outside the triangles in Triangles. The
default is 0. This keyword also applies to data points outside the range specified by
MIN_VALUE and MAX_VALUE.

Note
Letting MISSING default to 0 does not always produce the same result as explicitly
setting it to 0. For example, if you specify INPUT and not EXTRAPOLATE, letting
MISSING default to 0 will result in the INPUT values being used for data outside
the Triangles; explicitly setting MISSSING to 0 will result in 0 being used for the
data outside the Triangles.

NX

The output grid size in the x direction. The default value is 51.

NY

The output grid size in the y direction. The default value is 51.

QUINTIC

If QUINTIC is set, smooth interpolation is performed using Akima’s quintic
polynomials from “A Method of Bivariate Interpolation and Smooth Surface Fitting
TRIGRID IDL Reference Guide

1435
for Irregularly Distributed Data Points” in ACM Transactions on Mathematical
Software, 4, 148-159. The default method is linear interpolation.

Derivatives are estimated by Renka’s global method in “A Triangle-Based C1
Interpolation Method” in Rocky Mountain Journal of Mathematics, vol. 14, no. 1,
1984.

QUINTIC is not available for complex data values. Setting the EXTRAPOLATE
keyword implies the use of quintic interpolation; it is not necessary to specify both.

SPHERE

For a spherical gridding, set this keyword to the named variable that contains the
results of the spherical triangulation returned by TRIANGULATE’s SPHERE
keyword.

XGRID

Set this keyword to a named variable that will contain a vector of X values for the
output grid.

XOUT

Set this keyword to a vector specifying the output grid X values. If this keyword is
supplied, the GS and Limits arguments are ignored. Use this keyword to specify
irregularly spaced rectangular output grids. If XOUT is specified, YOUT must also
be specified. If keyword NX is also supplied then only the first NX points of XOUT
will be used.

YGRID

Set this keyword to a named variable that will contain a vector of Y values for the
output grid.
IDL Reference Guide TRIGRID

1436
The following table shows the interrelationships between the keywords
EXATRAPOLATE, INPUT, MAX_VALUE, MIN_VALUE, MISSING, and
QUINTIC.

YOUT

Set this keyword to a vector specifying the output grid Y values. If this keyword is
supplied, the GS and Limits arguments are ignored. Use this keyword to specify
irregularly spaced rectangular output grids. If keyword NY is also supplied then only
the first NY points of YOUT will be used.

Examples

Example 1

This example creates and displays a 50 point random normal distribution. The
random points are then triangulated, with the triangulation displayed. Next, the
interpolated surface is computed and displayed using linear and quintic interpolation.
Finally, the smooth extrapolated surface is generated and shown.

; Make 50 normal x, y points:
x = RANDOMN(seed, 50)
y = RANDOMN(seed, 50)

; Make the Gaussian:

INPUT EXTRAPOLATE MISSING Not in
Triangles

Beyond
MIN_VALUE,
MAX_VALUE

no no no uses 0 uses 0

no no yes uses MISSING uses MISSING

no yes no EXTRAPOLATEs uses 0

no yes yes EXTRAPOLATEs uses MISSING

yes no no uses INPUT uses INPUT

yes no yes uses MISSING uses MISSING

yes yes no EXTRAPOLATEs uses INPUT

yes yes yes EXTRAPOLATEs uses MISSING

Table 90: Keyword Interrelationships for the TRIGRID function
TRIGRID IDL Reference Guide

1437
z = EXP(-(x^2 + y^2))

; Show points:
PLOT, x, y, psym=1

; Obtain triangulation:
TRIANGULATE, x, y, tr, b

; Show the triangles:
FOR i=0, N_ELEMENTS(tr)/3-1 DO BEGIN & $

; Subscripts of vertices [0,1,2,0]:
t = [tr[*,i], tr[0,i]] & $
; Connect triangles:
PLOTS, x[t], y[t] & $

ENDFOR

; Show linear surface:
SURFACE, TRIGRID(x, y, z, tr)

; Show smooth quintic surface:
SURFACE, TRIGRID(x, y, z, tr, /QUINTIC)

; Show smooth extrapolated surface:
SURFACE, TRIGRID(x, y, z, tr, EXTRA = b)

; Output grid size is 12 x 24:
SURFACE, TRIGRID(X, Y, Z, Tr, NX=12, NY=24)

; Output grid size is 20 x 11. The X grid is
; [0, .1, .2, ..., 19 * .1 = 1.9]. The Y grid goes from 0 to 1:
SURFACE, TRIGRID(X, Y, Z, Tr, [.1, .1], NX=20)

; Output size is 20 x 40. The range of the grid in X and Y is
; specified by the Limits parameter. Grid spacing in X is
; [5-0]/(20-1) = 0.263. Grid spacing in Y is (4-0)/(40-1) = 0.128:
SURFACE, TRIGRID(X, Y, Z, Tr, [0,0], [0,0,5,4],NX=20, NY=40)

Example 2

This example shows how to perform spherical gridding:

; Create some random longitude points:
lon = RANDOMU(seed, 50) * 360. - 180.

; Create some random latitude points:
lat = RANDOMU(seed, 50) * 180. - 90.

; Make a fake function value to be passed to FVALUE. The system
; variable !DTOR contains the conversion value for degrees to
IDL Reference Guide TRIGRID

1438
; radians.
f = SIN(lon * !DTOR)^2 * COS(lat * !DTOR)

; Perform a spherical triangulation:
TRIANGULATE, lon, lat, tr, $

SPHERE=s, FVALUE=f, /DEGREES

; Perform a spherical triangulation using the values returned from
; TRIANGULATE. The result, r, is a 180 by 91 element array:
r=TRIGRID(f, SPHERE=s, [2.,2.],$

[-180.,-90.,178.,90.], /DEGREES)

Example 3

This example demonstrates the use of the INPUT keyword:

; Make 50 normal x, y points:
x = RANDOMN(seed, 50)
y = RANDOMN(seed, 50)

; Make the Gaussian:
z = EXP(-(x^2 + y^2))

; Show points:
PLOT, x, y, psym=1

; Obtain triangulation:
TRIANGULATE, x, y, tr, b

;Show the triangles.
FOR i=0, N_ELEMENTS(tr)/3-1 DO BEGIN $

; Subscripts of vertices [0,1,2,0]:
t = [tr[*,i], tr[0,i]] & $
; Connect triangles:
PLOTS, x[t], y[t]

ENDFOR

; The default size for the return value of trigrid. xtemp should be
; the same type as Z. xtemp provides temporary space for trigrid:
xtemp=FLTARR(51,51)
xtemp = TRIGRID(x, y, z, INPUT = xtemp, tr)

; Show linear surface:
SURFACE, xtemp
in=' '
READ,"Press enter",in
xtemp = TRIGRID(x, y, z, tr, INPUT = xtemp, /QUINTIC)

; Show smooth quintic surface:
TRIGRID IDL Reference Guide

1439
SURFACE,xtemp
in=' '
READ,"Press enter",in
xtemp = TRIGRID(x, y, z, tr, INPUT = xtemp, EXTRA = b)

; Show smooth extrapolated surface:
SURFACE,xtemp
in=' '
READ,"Press enter",in
END

See Also

SPH_SCAT, TRIANGULATE
IDL Reference Guide TRIGRID

1440
TRIQL IDL Reference Guide

TRIQL

The TRIQL procedure uses the QL algorithm with implicit shifts to determine the
eigenvalues and eigenvectors of a real, symmetric, tridiagonal array. The routine
TRIRED can be used to reduce a real, symmetric array to the tridiagonal form
suitable for input to this procedure.

TRIQL is based on the routine tqli described in section 11.3 of Numerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

TRIQL, D, E, A [, /DOUBLE]

Arguments

D

On input, this argument should be an n-element vector containing the diagonal
elements of the array being analyzed. On output, D contains the eigenvalues.

E

An n-element vector containing the off-diagonal elements of the array. E0 is
arbitrary. On output, this parameter is destroyed.

A

A named variable that returns the n eigenvectors. If the eigenvectors of a tridiagonal
array are desired, A should be input as an identity array. If the eigenvectors of an
array that has been reduced by TRIRED are desired, A is input as the array Q output
by TRIRED.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

To compute eigenvalues and eigenvectors of a real, symmetric, tridiagonal array,
begin with an array A representing a symmetric array:

; Create the array A:

1441
IDL Reference Guide TRIQL

A = [[3.0, 1.0, -4.0], $
[1.0, 3.0, -4.0], $
[-4.0, -4.0, 8.0]]

; Compute the tridiagonal form of A:
TRIRED, A, D, E

; Compute the eigenvalues (returned in vector D) and the
; eigenvectors (returned in the rows of the array A):
TRIQL, D, E, A

; Print eigenvalues:
PRINT, 'Eigenvalues:'
PRINT, D

; Print eigenvectors:
PRINT, 'Eigenvectors:'
PRINT, A

IDL prints:

Eigenvalues:
2.00000 4.76837e-7 12.0000

Eigenvectors:
0.707107 -0.707107 0.00000
-0.577350 -0.577350 -0.577350
-0.408248 -0.408248 0.816497

The exact eigenvalues are:

[2.0, 0.0, 12.0]

The exact eigenvectors are:

[1.0/sqrt(2.0), -1.0/sqrt(2.0), 0.0/sqrt(2.0)],
[-1.0/sqrt(3.0), -1.0/sqrt(3.0), -1.0/sqrt(3.0)],
[-1.0/sqrt(6.0), -1.0/sqrt(6.0), 2.0/sqrt(6.0)]

See Also

EIGENVEC, ELMHES, HQR, TRIRED

1442
TRIRED

The TRIRED procedure uses Householder’s method to reduce a real, symmetric
array to tridiagonal form.

TRIRED is based on the routine tred2 described in section 11.2 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

TRIRED, A, D, E [, /DOUBLE]

Arguments

A

An n by n real, symmetric array that is replaced, on exit, by the orthogonal array Q
effecting the transformation. The routine TRIQL can use this result to find the
eigenvectors of the array A.

D

An n-element output vector containing the diagonal elements of the tridiagonal array.

E

An n-element output vector containing the off-diagonal elements.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

See the description of TRIQL for an example using this function.

See Also

EIGENVEC, ELMHES, HQR, TRIQL
TRIRED IDL Reference Guide

1443
TRISOL

The TRISOL function solves tridiagonal systems of linear equations that have the
form: ATU = R

Note
Because IDL subscripts are in column-row order, the equation above is written
ATU = R rather than AU = R. The result U is a vector of length n whose type is
identical to A.

TRISOL is based on the routine tridag described in section 2.4 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = TRISOL(A, B, C, R [, /DOUBLE])

Arguments

A

A vector of length n containing the n-1 sub-diagonal elements of AT. The first
element of A, A0, is ignored.

B

An n-element vector containing the main diagonal elements of AT.

C

An n-element vector containing the n-1 super-diagonal elements of AT. The last
element of C, Cn-1, is ignored.

R

An n-element vector containing the right hand side of the linear system
ATU = R.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
IDL Reference Guide TRISOL

1444
Example

To solve a tridiagonal linear system, begin with an array representing a real
tridiagonal linear system. (Note that only three vectors need be specified; there is no
need to enter the entire array shown.)

; Define a vector A containing the sub-diagonal elements with a
; leading 0.0 element:
A = [0.0, 2.0, 2.0, 2.0]

; Define B containing the main diagonal elements:
B = [-4.0, -4.0, -4.0, -4.0]

; Define C containing the super-diagonal elements with a trailing
; 0.0 element:
C = [1.0, 1.0, 1.0, 0.0]

; Define the right-hand side vector:
R = [6.0, -8.0, -5.0, 8.0]

; Compute the solution and print:
result = TRISOL(A, B, C, R)
PRINT, result

IDL prints:

-1.00000 2.00000 2.00000 -1.00000

The exact solution vector is [-1.0, 2.0, 2.0, -1.0].

See Also

CRAMER, GS_ITER, LU_COMPLEX, CHOLSOL, LUSOL, SVSOL, TRISOL

4.0– 1.0 0.0 0.0

2.0 4.0– 1.0 0.0

0.0 2.0 4.0– 1.0

0.0 0.0 2.0 4.0–
TRISOL IDL Reference Guide

1445
TRNLOG

The TRNLOG function searches the VMS logical name tables for a specified logical
name and returns the equivalence string(s) in an IDL variable. TRNLOG is available
only under VMS. TRNLOG also returns the VMS status code associated with the
translation as a longword value. As with all VMS status codes, success is indicated
by an odd value (least significant bit is set) and failure by an even value.

Syntax

Result = TRNLOG(Lognam, Value [, ACMODE={0 | 1 | 2 | 3}]
[, /FULL_TRANSLATION] [, /ISSUE_ERROR] [, RESULT_ACMODE=variable]
[, RESULT_TABLE=variable] [, TABLE=string])

Arguments

Lognam

A scalar string containing the name of the logical to be translated.

Value

A named variable into which the equivalence string is placed. If Lognam has more
than one equivalence string, the first one is used. The FULL_TRANSLATION
keyword can be used to obtain all equivalence strings.

Keywords

ACMODE

Set this keyword to a value specifying the access mode to be used in the translation.
Valid values are:

• 0 = Kernal

• 1 = Executive

• 2 = Supervisor

• 3 = User

When you specify the ACMODE keyword, all names at access modes less privileged
than the specified mode are ignored. If you do not specify ACMODE, the translation
proceeds without regard to access mode. However, the search proceeds from the
outermost (User) to the innermost (Kernal) mode. Thus, if two logical names with the
IDL Reference Guide TRNLOG

1446
same name but different access modes exist in the same table, the name with the
outermost access mode is used.

FULL_TRANSLATION

Set this keyword to obtain the full set of equivalence strings for Lognam. By default,
when translating a multivalued logical name, Value only receives the first
equivalence string as a scalar value. When this keyword is set, Value instead returns a
string array. Each element of this array contains one of the equivalence strings. For
example, under recent versions of VMS, the SYS$SYSROOT logical can have
multiple values. To see these values from within IDL, enter:

; Translate the logical:
ret = TRNLOG('SYS$SYSROOT', trans, /FULL, /ISSUE_ERROR)
; View the equivalence strings:
PRINT, trans

ISSUE_ERROR

Set this keyword to issue an error message if the translation fails. Normally, no error
is issued and the user must examine the return value to determine if the operation
failed.

RESULT_ACMODE

If present, this keyword specifies a named variable in which to place the access mode
of the translated logical. The access modes are summarized above.

RESULT_TABLE

If present, this keyword specifies a named variable. The name of the logical table
containing the translated logical is placed in this variable as a scalar string.

TABLE

A scalar string giving the name of the logical table in which to search for Lognam. If
TABLE is not specified, the standard VMS logical tables are searched until a match
is found, starting with LNM$PROCESS_TABLE and ending with
LNM$SYSTEM_TABLE.

See Also

GETENV
TRNLOG IDL Reference Guide

1447
TS_COEF

The TS_COEF function computes the coefficients φ1, φ2, ... , φP used in a Pth order
autoregressive time-series forecasting model. The result is a P-element vector whose
type is identical to X. This routine is written in the IDL language. Its source code can
be found in the file ts_coef.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = TS_COEF(X, P [, /DOUBLE] [, MSE=variable])

Arguments

X

An n-element single- or double-precision floating-point vector containing time-series
samples.

P

An integer or long integer scalar that specifies the number of coefficients to be
computed.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

MSE

Set this keyword to a named variable that will contain the mean square error of the
Pth order autoregressive model.

Example

; Define an n-element vector of time-series samples:
X = [6.63, 6.59, 6.46, 6.49, 6.45, 6.41, 6.38, 6.26, 6.09, 5.99, $

5.92, 5.93, 5.83, 5.82, 5.95, 5.91, 5.81, 5.64, 5.51, 5.31, $
5.36, 5.17, 5.07, 4.97, 5.00, 5.01, 4.85, 4.79, 4.73, 4.76]

; Compute the coefficients of a 5th order autoregressive model:
PRINT, TS_COEF(X, 5)

IDL prints:

1.30168 -0.111783 -0.224527 0.267629 -0.233363
IDL Reference Guide TS_COEF

1448
See Also

TS_FCAST
TS_COEF IDL Reference Guide

1449
TS_DIFF

The TS_DIFF function recursively computes the forward differences of an n-element
time-series k times. The result is an n-element differenced time-series with its last k
elements as zeros. This routine is written in the IDL language. Its source code can be
found in the file ts_diff.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = TS_DIFF(X, K [, /DOUBLE])

Arguments

X

An n-element integer, single- or double-precision floating-point vector containing
time-series samples.

K

A positive integer or long integer scalar that specifies the number of times X is to be
differenced. K must be in the interval [1, N_ELEMENTS(X) - 1].

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

; Define an n-element vector of time-series samples:
X = [389, 345, 303, 362, 412, 356, 325, 375, $

410, 350, 310, 388, 399, 362, 325, 382, $
399, 382, 318, 385, 437, 357, 310, 391]

; Compute the second forward differences of X:
PRINT, TS_DIFF(X, 2)

IDL prints:

2 101 -9 -106 25 81 -15 -95 20
118 -67 -48 0 94 -40 -34 -47 131
-15 -132 33 128 0 0
IDL Reference Guide TS_DIFF

1450
See Also

SMOOTH, TS_FCAST
TS_DIFF IDL Reference Guide

1451
TS_FCAST

The TS_FCAST function computes future or past values of a stationary time-series
using a Pth order autoregressive model. The result is an Nvalues-element vector
whose type is identical to X.

A Pth order autoregressive model relates a forecasted value xt of the time series
X = [x0, x1, x2, ... , xt-1], as a linear combination of P past values.

The coefficients φ1, φ2, ... , φP are calculated such that they minimize the uncorrelated
random error terms, wt.

This routine is written in the IDL language. Its source code can be found in the file
ts_fcast.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = TS_FCAST(X, P, Nvalues [, /BACKCAST] [, /DOUBLE])

Arguments

X

An n-element single- or double-precision floating-point vector containing time-series
samples.

P

An integer or long integer scalar that specifies the number of actual time-series
values to be used in the forecast. In general, a larger number of values results in a
more accurate forecast.

Nvalues

An integer or long integer scalar that specifies the number of future or past values to
be computed.

Keywords

BACKCAST

Set this keyword to produce past values (backward forecasts or “backcasts”)

xt φ1xt 1– φ2xt 2– … φPxt P– wt+ + + +=
IDL Reference Guide TS_FCAST

1452
DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

; Define an n-element vector of time-series samples:
X = [6.63, 6.59, 6.46, 6.49, 6.45, 6.41, 6.38, 6.26, 6.09, 5.99, $

5.92, 5.93, 5.83, 5.82, 5.95, 5.91, 5.81, 5.64, 5.51, 5.31, $
5.36, 5.17, 5.07, 4.97, 5.00, 5.01, 4.85, 4.79, 4.73, 4.76]

; Compute and print five future values of the time-series using ten
; time-series values:
PRINT, TS_FCAST(X, 10, 5)

; Compute five past values of the time-series using ten time-series
;values:
PRINT, TS_FCAST(X, 10, 5, /BACKCAST)

IDL prints:

4.65870 4.58380 4.50030 4.48828 4.46971
6.94862 6.91103 6.86297 6.77826 6.70282

See Also

A_CORRELATE, COMFIT, CURVEFIT, SMOOTH, TS_COEF, TS_DIFF
TS_FCAST IDL Reference Guide

1453
TS_SMOOTH

The TS_SMOOTH function computes central, backward, or forward moving
averages of an n-element time-series. Autoregressive forecasting and backcasting are
used to extrapolate the time-series and compute a moving average for each point. The
result is an n-element vector of the same data type as the input vector.

Note that central moving averages require Nvalues/2 forecasts and Nvalues/2
backcasts. Backward moving averages require Nvalues-1 backcasts. Forward moving
averages require Nvalues-1 forecasts.

This routine is written in the IDL language. Its source code can be found in the file
ts_smooth.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = TS_SMOOTH(X, Nvalues [, /BACKWARD] [, /DOUBLE]
[, /FORWARD] [, ORDER=value])

Arguments

X

An n-element single- or double-precision floating-point vector containing time-series
samples. Note that n must be greater than or equal to 11.

Nvalues

A scalar of type integer or long integer that specifies the number of time-series values
used to compute each moving-average. If central-moving averages are computed (the
default), this parameter must be an odd integer greater than or equal to three.

Keywords

BACKWARD

Set this keyword to compute backward-moving averages. If BACKWARD is set, the
Nvalues argument must be an integer greater than one.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
IDL Reference Guide TS_SMOOTH

1454
FORWARD

Set this keyword to compute forward-moving averages. If FORWARD is set, the
Nvalues argument must be an integer greater than one.

ORDER

An integer or long-integer scalar that specifies the order of the autoregressive model
used to compute the forecasts and backcasts of the time-series. By default, a time-
series with a length between 11 and 219 elements will use an autoregressive model
with an order of 10. A time-series with a length greater than 219 will use an
autoregressive model with an order equal to 5% of its length. The ORDER keyword
is used to override this default.

Example

; Define an n-element vector of time-series samples:
X = [6.63, 6.59, 6.46, 6.49, 6.45, 6.41, 6.38, 6.26, 6.09, 5.99,$

5.92, 5.93, 5.83, 5.82, 5.95, 5.91, 5.81, 5.64, 5.51, 5.31,$
5.36, 5.17, 5.07, 4.97, 5.00, 5.01, 4.85, 4.79, 4.73, 4.76]

; Compute the 11-point central-moving-averages of the time-series:
PRINT, TS_SMOOTH(X, 11)

IDL prints:

6.65761 6.60592 6.54673 6.47646 6.40480 6.33364
6.27000 6.20091 6.14273 6.09364 6.04455 5.99000
5.92273 5.85455 5.78364 5.72636 5.65818 5.58000
5.50182 5.42727 5.34182 5.24545 5.15273 5.07000
5.00182 4.94261 4.87205 4.81116 4.75828 4.71280

See Also

SMOOTH, TS_DIFF, TS_FCAST
TS_SMOOTH IDL Reference Guide

1455
TV

The TV procedure displays images on the image display without scaling the intensity.
To display an image with scaling, use the TVSCL procedure.

Note
To display a TrueColor image (an image with 16, 24, or 32 bits per pixel) you must
specify the TRUE keyword.

While the TV procedure does not scale the intensity of an image, it does convert the
input image data to byte type. Values outside the range [0,255] are “wrapped” during
the conversion. In addition, for displays with less than 256 colors, elements of the
input image with values between !D.TABLE_SIZE and 255 will be displayed using
the color index !D.TABLE_SIZE-1.

Syntax

TV, Image [, Position]

or

TV, Image [, X, Y [, Channel]]

Keywords: [, /CENTIMETERS | , /INCHES] [, CHANNEL=value] [, /ORDER]
[, TRUE={1 | 2 | 3}] [, /WORDS] [, XSIZE=value] [, YSIZE=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, /T3D | Z=value]

Arguments

Image

A vector or two-dimensional array to be displayed as an image. If this argument is not
already of byte type, it is converted prior to use.

X, Y

If X and Y are present, they specify the lower-left coordinate of the displayed image,
relative to the lower-left corner of the screen.

Position

An integer specifying the position for Image within the graphics window. Image
positions run from the top left of the screen to the bottom right. If a position number
IDL Reference Guide TV

1456
is used instead of X and Y, the position of the image is calculated from the dimensions
of the image as follows (integer arithmetic is used).

For example, when displaying 128 by 128 images on a 512 by 512 display, the
position numbers run from 0 to 15 as follows:

Note
When using a device with scalable pixels (e.g., PostScript), the XSIZE and YSIZE
keywords should also be used.

Channel

The memory channel to be written. It is assumed to be zero if not specified. This
parameter is ignored on display systems that have only one memory channel. When
using a “decomposed” display system, the red channel is 1, the green channel is 2,
and the blue channel is 3. Channel 0 indicates all channels.

Keywords

CENTIMETERS

Set this keyword to indicate that the X, Y, Xsize, Ysize, and Z arguments are given in
centimeters from the origin. This system is useful when dealing with devices, such as

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Xsize Ysize, Size of display or window=

Xdim Ydim, Dimensions of image to be displayed=

Nx
Xsize
Ydim
------------- Images across screen= =

X XdimPositionmoduloNx
Starting X= =

Y Ysize Ydim 1 Position
Nx

-------------------+– Starting Y= =
TV IDL Reference Guide

1457
PostScript printers, that do not provide a direct relationship between image pixels and
the size of the resulting image.

CHANNEL

The memory channel to be written to. The CHANNEL keyword is identical to the
optional Channel argument.

INCHES

Set this keyword to indicate that all position and size values are given in inches from
the origin. This system is useful when dealing with devices, such as PostScript
printers, that do not provide a direct relationship between image pixels and the size of
the resulting image.

ORDER

If specified, ORDER overrides the current setting of the !ORDER system variable for
the current image only. If set, the image is drawn from the top down instead of the
normal bottom up.

TRUE

Set this keyword to a nonzero value to indicate that a TrueColor (16-, 24-, or 32-bit)
image is to be displayed. The value assigned to TRUE specifies the index of the
dimension over which color is interleaved. The image parameter must have three
dimensions, one of which must be equal to three. For example, set TRUE to 1 to
display an image that is pixel interleaved and has dimensions of (3, m, n). Specify 2
for row-interleaved images, of size (m, 3, n), and 3 for band-interleaved images of the
form (m, n, 3).

See “TrueColor Images” on page 2373 for an example using this keyword to write
24-bit images to the PostScript device.

WORDS

Set this keyword to indicate that words (short integers) instead of 8-bit bytes are to be
transferred to the device. This keyword is valid only when using devices that can
transfer 16-bit pixels. The normal transfer uses 8-bit pixels. If this keyword is set, the
Image parameter is converted to short integer type, if necessary, and then written to
the display.

XSIZE

The width of the resulting image. On devices with scalable pixel size (such as
PostScript), if XSIZE is specified the image will be scaled to fit the specified width.
If neither XSIZE nor YSIZE is specified, the image will be scaled to fill the plotting
IDL Reference Guide TV

1458
area, while preserving the image’s aspect ratio. This keyword is ignored by pixel-
based devices that are unable to change the size of their pixels.

YSIZE

The height of the resulting image. On devices with scalable pixel size (such as
PostScript), if YSIZE is specified the image will be scaled to fit the specified height.
If neither XSIZE nor YSIZE is specified, the image will be scaled to fill the plotting
area, while preserving the image’s aspect ratio. This keyword is ignored by pixel-
based devices that are unable to change the size of their pixels.

Graphics Keywords Accepted

See Appendix C, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above. CHANNEL, DATA, DEVICE, NORMAL, T3D, Z.

Example

; Create and display a simple image:
D = BYTSCL(DIST(256)) & TV, D

; Erase the screen:
ERASE

; Use the position parameter to display a number of images in the
; same window.
; Display the image in the upper left corner.
TV, D, 0

; Display another copy of the image in the next position:
TV, D, 1

See Also

ERASE, SLIDE_IMAGE, TVRD, TVSCL, WIDGET_DRAW, WINDOW
TV IDL Reference Guide

1459
TVCRS

The TVCRS procedure manipulates the display device cursor. The initial state of the
cursor is device dependent. Call TVCRS with one argument to enable or disable the
cursor. Call TVCRS with two parameters to enable the cursor and place it on pixel
location (X, Y).

Note
Under Macintosh, the cursor cannot be positioned from an IDL program using the
TVCRS procedure. The Macintosh interface does not allow the cursor to be
positioned by any device except the mouse.

Syntax

TVCRS [, ON_OFF]

or

TVCRS [, X, Y]

Keywords: [, /CENTIMETERS | , /INCHES] [, /HIDE_CURSOR] [, /DATA | ,
/DEVICE | , /NORMAL] [, /T3D | Z=value]

Arguments

ON_OFF

This argument specifies whether the cursor should be on or off. If this argument is
present and nonzero, the cursor is enabled. If ON_OFF is zero or no parameters are
specified, the cursor is turned off.

X

The column to which the cursor is set.

Y

The row to which the cursor is set.
IDL Reference Guide TVCRS

1460
Keywords

CENTIMETERS

Set this keyword to cause X and Y to be interpreted as centimeters, based on the
current device resolution.

INCHES

Set this keyword to cause X and Y to be interpreted as inches, based on the current
device resolution.

HIDE_CURSOR

By default, disabling the cursor works differently for window systems than for other
devices. For window systems, the cursor is restored to the standard cursor used for
non-IDL windows (and remains visible), while for other devices it is completely
blanked out. If the HIDE keyword is set, disabling the cursor causes it to always be
blanked out.

Graphics Keywords Accepted

See Appendix C, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above. DATA, DEVICE, NORMAL, T3D, Z.

Example

To enable the graphics cursor and position it at device coordinate (100, 100), enter:

TVCRS, 100, 100

To position the cursor at data coordinate (0.5, 3.2), enter:

TVCRS, 0.5, 3.2, /DATA

See Also

CURSOR, RDPIX
TVCRS IDL Reference Guide

1461
TVLCT

The TVLCT procedure loads the display color translation tables from the specified
variables. Although IDL uses the RGB color system internally, color tables can be
specified to TVLCT using any of the following color systems: RGB (Red, Green,
Blue), HLS (Hue, Lightness, Saturation), and HSV (Hue, Saturation, Value). Alpha
values may also be used when using the second form of the command. The type and
meaning of each argument is dependent upon the color system selected, as described
below. Color arguments can be either scalar or vector expressions. If no color-system
keywords are present, the RGB color system is used. See Using IDL Chapter 14,
“Image Display Routines” for a more complete explanation of color systems.

Syntax

TVLCT, V1, V2, V3 [, Start] [, /GET] [, /HLS | , /HSV]

or

TVLCT, V [, Start] [, /GET] [, /HLS | , /HSV]

Arguments

TVLCT will accept either three n-element vectors (V1, V2, and V3) or a single n-by-3
array (V) as an argument. The vectors (or columns of the array) have different
meanings depending on the color system chosen. If an array V is specified, V[*,0] is
the same as V1, V[*,1] is the same as V2, V[*,2] is the same as V3. In the description
below, we assume that three vectors, V1, V2, and V3 are specified.

The V1, V2, and V3 arguments have different meanings depending upon which color
system they represent.

R, G, B Color System

The parameters V1, V2, and V3 contain the Red, Green, and Blue values, respectively.
Values are interpreted as integers in the range 0 (lowest intensity) to 255 (highest
intensity). The parameters can be scalars or vectors of up to 256 elements. By default,
the three arguments are assumed to be R, G, and B values.

H, L, S Color System

Parameters V1, V2, and V3 contain the Hue, Lightness, and Saturation values
respectively. All parameters are floating-point. Hue is expressed in degrees and is
reduced modulo 360. V2 (lightness) and V3 (saturation) and can range from 0 to 1.0.
Set the HLS keyword to have the arguments interpreted this way.
IDL Reference Guide TVLCT

1462
H, S, V Color System

Parameters V1, V2, and V3 contain values for Hue, Saturation, and Value (similar to
intensity). All parameters are floating-point. Hue is in degrees. The Saturation and
Value can range from 0 to 1.0. Set the HSV keyword to have the arguments
interpreted this way.

Start

An integer value that specifies the starting point in the color translation table into
which the color intensities are loaded. If this argument is not specified, a value of
zero is used, causing the tables to be loaded starting at the first element of the
translation tables.

Keywords

GET

Set this keyword to return the RGB values from the internal color tables into the V1,
V2, and V3 parameters. For example, the statements:

TVLCT, H, S, V, /HSV
TVLCT, R, G, B, /GET

load a color table based in the HSV system, and then read the equivalent RGB values
into the variables R, G, and B.

HLS

Set this keyword to indicate that the parameters specify color using the HLS color
system.

HSV

Set this keyword to indicate that the parameters specify color using the HSV color
system.

Example

; Create a set of R, G, and B colormap vectors:
R = BYTSCL(SIN(FINDGEN(256)))
G = BYTSCL(COS(FINDGEN(256)))
B = BINDGEN(256)

; Load these vectors into the color table:
TVLCT, R, G, B

; Display an image to see the effect of the new color table:
TVLCT IDL Reference Guide

1463
TVSCL, DIST(400)

See Also

LOADCT, XLOADCT, XPALETTE
IDL Reference Guide TVLCT

1464
TVRD

The TVRD function returns the contents of the specified rectangular portion of the
current graphics window or device. (X0, Y0) is the coordinate of the lower left corner
of the area to be read and Nx, Ny is the size of the rectangle in columns and rows. The
result is a byte array of dimensions Nx by Ny. All parameters are optional. If no
arguments are supplied, the entire display device area is read.

Important Note about TVRD and Backing Store

On some systems, when backing store is provided by the window system (the
RETAIN keyword to DEVICE or WINDOW is set to 1), reading data from a window
using TVRD may cause unexpected results. For example, data may be improperly
read from the window even when the image displayed on screen is correct. Having
IDL provide the backing store (set the RETAIN keyword to 2) ensures that the
window contents will be read properly. More detailed notes about TVRD and the X
Window system can be found below in “Unexpected Results Using TVRD with X
Windows” on page 1465.

Syntax

Result = TVRD([X0 [, Y0 [, Nx [, Ny [, Channel]]]]] [, CHANNEL=value]
[, /ORDER] [, TRUE={1 | 2 | 3}] [, /WORDS])

Arguments

X0

The starting column of data to read. The default is 0.

Y0

The starting row of data to read. The default is 0.

Nx

The number of columns to read. The default is the width of the display device or
window less X0.

Ny

The number of rows to read. The default is the height of the display device or window
less Y0.
TVRD IDL Reference Guide

1465
Channel

The memory channel to be read. If not specified, this argument is assumed to be zero.
This parameter is ignored on display systems that have only one memory channel.

Keywords

CHANNEL

The memory channel to be read. The CHANNEL keyword is identical to the optional
Channel argument.

Note: if the display is a 24-bit display, and both the CHANNEL and TRUE
parameters are absent, the maximum RGB value in each pixel is returned.

ORDER

Set this keyword to override the current setting of the !ORDER system variable for
the current image only. If set, it causes the image to be read from the top down
instead of the normal bottom up.

TRUE

If this keyword is present, it indicates that a TrueColor image is to be read, if the
display is capable. The value assigned to TRUE specifies the index of the dimension
over which color is interleaved. The result is an (3, nx, ny) pixel-interleaved array if
TRUE is 1; or an (nx, 3, ny) line-interleaved array if TRUE is 2; or an (nx, ny, 3)
image-interleaved array if TRUE is 3.

WORDS

Set this keyword to indicate that words are to be transferred from the device. This
keyword is valid only when using devices that can transfer 16-bit pixels. The normal
transfer uses 8-bit pixels. If this keyword is set, the function result is an integer array.

Unexpected Results Using TVRD with X Windows

When using TVRD with the X Windows graphics device, there are two unexpected
behaviors that can be confusing to users:

• When reading from a window that is obscured by another window (i.e., the
target window has another window “on top” or “in front” of it), TVRD may
return the contents of the window in front as part of the image contained in the
target window.

• When reading from an iconified window, the X server may return a stream of
“BadMatch” protocol events.
IDL Reference Guide TVRD

1466
IDL uses the Xlib function XGetSubImage() to implement TVRD. The following
quote is from the documentation for XGetSubImage() found in The X Window System
by Robert W. Scheifler and James Gettys, Second Edition, page 174. It explains the
reasons for the behaviors described above:

“If the drawable is a window, the window must be viewable, and it must be the case
that if there were no... overlapping windows, the specified rectangle of the window
would be fully visible on the screen, ... or a BadMatch error results. If the window has
backing-store, then the backing-store contents are returned for regions of the window
that are obscured... If the window does not have backing-store, the returned contents
of such obscured regions are undefined.”

Hence, the first behavior is caused by attempting to use TVRD on an obscured
window that does not have backing store provided by the X server. The result in this
case is undefined, meaning that the different servers can produce entirely different
results. Many servers simply return the image of the obscuring window.

The second behavior is caused by attempting to read from a non-viewable (i.e.,
unmapped) window. Although IDL could refuse to allow TVRD to work with
unmapped windows, some X servers return valid and useful results. Therefore,
TVRD is allowed to attempt to read from unmapped windows.

Both of these behavior problems can be solved by using one of the following
methods:

• Always make sure that your target window is mapped and is not obscured
before using TVRD on it. The following IDL command can be used:

WSHOW, Window_Index, ICONIC=0

• Make IDL provide backing store (rather than the window system) by setting
the RETAIN keyword to DEVICE or WINDOW equal to 2.

For a full description of backing store, see “Backing Store” on page 2351. Note that
under X Windows, backing store is a request that may or may not be honored by the
X server. Many servers will honor backing store for 8-bit visuals but ignore them for
24-bit visuals because they require three times as much memory.

Example

; Read the entire contents of the current display device into the
; variable T:
T = TVRD()

See Also

RDPIX, TV, WINDOW
TVRD IDL Reference Guide

1467
TVSCL

The TVSCL procedure scales the intensity values of Image into the range of the
image display and outputs the data to the image display at the specified location. The
array is scaled so the minimum data value becomes 0 and the maximum value
becomes the maximum number of available colors (held in the system variable
!D.TABLE_SIZE) as follows:

where the maximum and minimum are found by scanning the array. The parameters
and keywords of the TVSCL procedure are identical to those accepted by the TV
procedure. For additional information about each parameter, consult the description
of TV.

Syntax

TVSCL, Image [, Position]

or

TVSCL, Image [, X, Y [, Channel]]

Keywords: [, /CENTIMETERS | , /INCHES] [, CHANNEL=value] [, /NAN]
[, /ORDER] [, TOP=value] [, TRUE={1 | 2 | 3}] [, /WORDS] [, XSIZE=value]
[, YSIZE=value] [, /DATA | , /DEVICE | , /NORMAL] [, /T3D | Z=value]

Arguments

Image

A two-dimensional array to be displayed as an image. If this argument is not already
of byte type, it is converted prior to use.

X, Y

If X and Y are present, they specify the lower left coordinate of the displayed image.

Position

Image position. See the discussion of the TV procedure for a full description.

Output !D.TABLE_SIZE - 1()
Data Datamin–

Datamax Datamin–
---=
IDL Reference Guide TVSCL

1468
Channel

The memory channel to be written. This argument is assumed to be zero if not
specified. This parameter is ignored on display systems that have only one memory
channel.

Keywords

TVSCL accepts all of the keywords accepted by the TV routine. See “TV” on
page 1455. In addition, there are two unique keywords:

NAN

Set this keyword to cause TVSCL to treat elements of Image that are not numbers
(that is, elements that have the special floating-point values Infinity or NaN) as
missing data, and display them using color index 0 (zero). Note that color index 0 is
also used to display elements that have the minimum value in the Image array.

TOP

The maximum value of the scaled result. If TOP is not specified, !D.TABLE_SIZE-1
is used. Note that the minimum value of the scaled result is always 0.

Example

Display a floating-point array as an image using the TV command:

TV, DIST(200)

Note that the image is not easily visible because the values in the array have not been
scaled into the full range of display values. Now display the image with the TVSCL
command by entering:

TVSCL, DIST(200)

Notice how much brighter the image appears.

See Also

ERASE, SLIDE_IMAGE, TV, WIDGET_DRAW, WINDOW
TVSCL IDL Reference Guide

1469
UINDGEN

The UINDGEN function returns an unsigned integer array with the specified
dimensions. Each element of the array is set to the value of its one-dimensional
subscript.

Syntax

Result = UINDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Example

To create UI, a 10-element by 10-element 16-bit array where each element is set to
the value of its one-dimensional subscript, enter:

UI = UINDGEN(10, 10)

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, L64INDGEN,
LINDGEN, SINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide UINDGEN

1470
UINT

The UINT function returns a result equal to Expression converted to unsigned integer
type.

Syntax

Result = UINT(Expression[, Offset [, Dim1, ..., Dim8]])

Arguments

Expression

The expression to be converted to unsigned integer.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as unsigned integer data. See
the description in Chapter 3, “Constants and Variables” of Building IDL Applications
for details.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
The dimension parameters can be any scalar expression. Up to eight dimensions can
be specified. If no dimension arguments are given, the result is taken to be scalar.

When converting from a string argument, it is possible that the string does not contain
a valid integer and no conversion is possible. The default action in such cases is to
print a warning message and return 0. The ON_IOERROR procedure can be used to
establish a statement to be jumped to in case of such errors.

Example

If A contains the floating-point value 32000.0, it can converted to an unsigned integer
and stored in the variable B by entering:

B = UINT(A)

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64,
STRING, ULONG, ULONG64
UINT IDL Reference Guide

1471
UINTARR

The UINTARR function returns an unsigned integer vector or array.

Syntax

Result = UINTARR(D1, ..., D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, UINTARR sets every element of the result to zero. If NOZERO is set, this
zeroing is not performed and UINTARR executes faster.

Example

To create L, a 100-element, unsigned integer vector with each element set to 0, enter:

L = UINTARR(100)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, LONARR, MAKE_ARRAY, STRARR, ULON64ARR, ULONARR
IDL Reference Guide UINTARR

1472
UL64INDGEN

The UL64INDGEN function returns an unsigned 64-bit integer array with the
specified dimensions. Each element of the array is set to the value of its one-
dimensional subscript.

Syntax

Result = UL64INDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Example

To create L, a 10-element by 10-element 64-bit array where each element is set to the
value of its one-dimensional subscript, enter:

L = UL64INDGEN(10, 10)

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, L64INDGEN,
LINDGEN, SINDGEN, UINDGEN, ULINDGEN
UL64INDGEN IDL Reference Guide

1473
ULINDGEN

The ULINDGEN function returns an unsigned longword array with the specified
dimensions. Each element of the array is set to the value of its one-dimensional
subscript.

Syntax

Result = ULINDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Example

To create L, a 10-element by 10-element 32-bit array where each element is set to the
value of its one-dimensional subscript, enter:

L = ULINDGEN(10, 10)

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, L64INDGEN,
LINDGEN, SINDGEN, UINDGEN, UL64INDGEN
IDL Reference Guide ULINDGEN

1474
ULON64ARR

The ULON64ARR function returns an unsigned 64-bit integer vector or array.

Syntax

Result = ULON64ARR(D1, ..., D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, ULON64ARR sets every element of the result to zero. If NOZERO is set,
this zeroing is not performed and ULON64ARR executes faster.

Example

To create L, a 100-element, unsigned 64-bit vector with each element set to 0, enter:

L = ULON64ARR(100)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, LONARR, MAKE_ARRAY, STRARR, UINTARR, ULONARR
ULON64ARR IDL Reference Guide

1475
ULONARR

The ULONARR function returns an unsigned longword integer vector or array.

Syntax

Result = ULONARR(D1, ..., D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, ULONARR sets every element of the result to zero. If NOZERO is set,
this zeroing is not performed and ULONARR executes more quickly.

Example

To create L, a 100-element, unsigned longword vector with each element set to 0,
enter:

L = ULONARR(100)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, LONARR, MAKE_ARRAY, STRARR, UINTARR, ULON64ARR,
IDL Reference Guide ULONARR

1476
ULONG

The ULONG function returns a result equal to Expression converted to the unsigned
longword integer type.

Syntax

Result = ULONG(Expression[, Offset [, Dim1, ..., Dim8]])

Arguments

Expression

The expression to be converted to unsigned longword integer.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as unsigned longword integer
data. See the description in Chapter 3, “Constants and Variables” of Building IDL
Applications for details.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
The dimension parameters can be any scalar expression. Up to eight dimensions can
be specified. If no dimension arguments are given, the result is taken to be scalar.

When converting from a string argument, it is possible that the string does not contain
a valid integer and no conversion is possible. The default action in such cases is to
print a warning message and return 0. The ON_IOERROR procedure can be used to
establish a statement to be jumped to in case of such errors.

Example

If A contains the floating-point value 32000.0, it can converted to an unsigned
longword integer and stored in the variable B by entering:

B = ULONG(A)

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64,
STRING, UINT, ULONG64
ULONG IDL Reference Guide

1477
ULONG64

The ULONG64 function returns a result equal to Expression converted to the
unsigned 64-bit integer type.

Syntax

Result = ULONG64(Expression[, Offset [, Dim1, ..., Dim8]])

Arguments

Expression

The expression to be converted to unsigned 64-bit integer.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as unsigned 64-bit integer data.
See the description in Chapter 3, “Constants and Variables” of Building IDL
Applications for details.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
The dimension parameters can be any scalar expression. Up to eight dimensions can
be specified. If no dimension arguments are given, the result is taken to be scalar.

When converting from a string argument, it is possible that the string does not contain
a valid integer and no conversion is possible. The default action in such cases is to
print a warning message and return 0. The ON_IOERROR procedure can be used to
establish a statement to be jumped to in case of such errors.

Example

If A contains the floating-point value 32000.0, it can converted to an unsigned 64-bit
integer and stored in the variable B by entering:

B = ULONG64(A)

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64,
STRING, UINT, ULONG
IDL Reference Guide ULONG64

1478
UNIQ

The UNIQ function returns the subscripts of the unique elements in an array. Note
that repeated elements must be adjacent in order to be found. This routine is intended
to be used with the SORT function: see the examples below. This function was
inspired by the UNIX uniq(1) command.

UNIQ returns an array of indices into the original array. Note that the index of the last
element in each set of non-unique elements is returned. The following expression is a
copy of the sorted array with duplicate adjacent elements removed:

Array(UNIQ(Array))

UNIQ returns 0 (zero) if the argument supplied is a scalar rather than an array.

This routine is written in the IDL language. Its source code can be found in the file
uniq.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = UNIQ(Array [, Index])

Arguments

Array

The array to be scanned. For UNIQ to work properly, the array must be sorted into
monotonic order unless the optional parameter Idx is supplied.

Index

This optional parameter is an array of indices into Array that order the elements into
monotonic order. That is, the expression:

Array(Index)

yields an array in which the elements of Array are rearranged into monotonic order. If
the array is not already in monotonic order, use the command:

UNIQ(Array, SORT(Array))

Examples

Find the unique elements of an unsorted array:

; Create an array:
array = [1, 2, 1, 2, 3, 4, 5, 6, 6, 5]
UNIQ IDL Reference Guide

1479
; Variable B holds an array containing the sorted, unique values in
; array:
b = array[UNIQ(array, SORT(array))]
PRINT, b

IDL prints

1 2 3 4 5 6

See Also

SORT, WHERE
IDL Reference Guide UNIQ

1480
USERSYM

The USERSYM procedure is used to define the plotting symbol that marks points
when the plotting symbol is set to plus or minus 8. Symbols can be drawn with
vectors or can be filled. Symbols can be of any size and can have up to 50 vertices.
See “Defining Your Own Plotting Symbols” in Chapter 11 of Using IDL.

Syntax

USERSYM, X [, Y] [, COLOR=value] [, /FILL] [, THICK=value]

Arguments

X, Y

The X and/or Y parameters define the vertices of the symbol as offsets from the data
point in units of approximately the size of a character. In the case of a vector drawn
symbol, the symbol is formed by connecting the vertices in order. If only one
argument is specified, it must be a (2, N) array of vertices, with element [0, i]
containing the X coordinate of the vertex, and element [1, i] containing the Y. If both
arguments are provided, X contains only the X coordinates.

Keywords

COLOR

The color used to draw the symbols, or used to fill the polygon. The default color is
the same as the line color.

FILL

Set this keyword to fill the polygon defined by the vertices. If FILL is not set, lines
are drawn connecting the vertices.

THICK

The thickness of the lines used in drawing the symbol. The default thickness is 1.0.

Example

Make a large, diamond-shaped plotting symbol. Define the vectors of X values by
entering:

X = [-6, 0, 6, 0, -6]
USERSYM IDL Reference Guide

1481
Define the vectors of Y values by entering:

Y = [0, 6, 0, -6, 0]

Now call USERSYM to create the new plotting symbol 8. Enter:

USERSYM, X, Y

Generate a simple plot to test the plotting symbol by entering:

PLOT, FINDGEN(20), PSYM = 8

See Also

PLOT
IDL Reference Guide USERSYM

1482
VALUE_LOCATE

The VALUE_LOCATE function finds the intervals within a given monotonic vector
that brackets a given set of one or more search values. This function is useful for
interpolation and table-lookup, and is an adaptation of the locate() routine in
Numerical Recipes. VALUE_LOCATE uses the bisection method to locate the
interval.

Syntax

Result = VALUE_LOCATE (Vector, Value [, /L64])

Return Value

Each return value, Result [i], is an index, j, into Vector, corresponding to the interval
into which the given Value [i] falls. The returned values are in the range –1 ≤ j ≤ N–1,
where N is the number of elements in the input vector.

If Vector is monotonically increasing, the result j is:

if j = –1 Value [i] < Vector [0]

if 0 ≤ j < N–1 Vector [j] ≤ Value [i] < Vector [j+1]

if j = N–1 Vector [N–1] ≤ Value [i]

If Vector is monotonically decreasing

if j = –1 Vector [0] ≤ Value [i]

if 0 ≤ j < N–1 Vector [j+1] ≤ Value [i] < Vector [j]

if j = N–1 Value [i] < Vector [N–1]

Arguments

Vector

A vector of monotonically increasing or decreasing values. Vector may be of type
string, or any numeric type except complex, and may not contain the value NaN (not-
a-number).
VALUE_LOCATE IDL Reference Guide

1483
Value

The value for which the location of the intervals is to be computed. Value may be
either a scalar or an array. The return value will contain the same number of elements
as this parameter.

Keywords

L64

By default, the result of VALUE_LOCATE is 32-bit integer when possible, and 64-
bit integer if the number of elements being processed requires it. Set L64 to force 64-
bit integers to be returned in all cases.

Note
Only 64-bit versions of IDL are capable of creating variables requiring a 64-bit
result. Check the value of !VERSION.MEMORY_BITS to see if your IDL is 64-bit
or not.

Example

; Define a vector of values.
vec = [2,5,8,10]

; Compute location of other values within that vector.
loc = VALUE_LOCATE(vec, [0,3,5,6,12])
PRINT, loc

IDL prints:

-1 0 1 1 3
IDL Reference Guide VALUE_LOCATE

1484
VARIANCE

The VARIANCE function computes the statistical variance of an n-element vector.

Syntax

Result = VARIANCE(X [, /DOUBLE] [, /NAN])

Arguments

X

An n-element, floating-point or double-precision vector.

Keywords

DOUBLE

If this keyword is set, VARIANCE performs its computations in double precision
arithmetic and returns a double precision result. If this keyword is not set, the
computations and result depend upon the type of the input data (integer and float data
return float results, while double data returns double results).

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See “Special Floating-Point Values” in Chapter 17 of Building IDL
Applications for more information on IEEE floating-point values.)

Example

; Define the n-element vector of sample data:
x = [1, 1, 1, 2, 5]
; Compute the variance:
result = VARIANCE(x)
PRINT, result

IDL prints:

3.00000

See Also

KURTOSIS, MEAN, MEANABSDEV, MOMENT, STDDEV, SKEWNESS
VARIANCE IDL Reference Guide

1485
VAX_FLOAT

The VAX_FLOAT function performs one of two possible actions:

1. Determine, and optionally change, the default value for the VAX_FLOAT
keyword to the OPEN procedures and the CALL_EXTERNAL function.

2. Determine if an open file unit has the VAX_FLOAT attribute set.

See the discussion of VAX floating-point conversion in Appendix A, “VMS
Floating-Point Arithmetic in IDL” in Building IDL Applications and the
VAX_FLOAT keyword to “OPEN” on page 959 for more on the VAX floating-point
conversion issue.

Syntax

Result = VAX_FLOAT([Default] [, FILE_UNIT=lun])

Arguments

Default

Default is used to change the default value of the VAX_FLOAT keyword to the
OPEN procedures and the CALL_EXTERNAL function. A value of 0 (zero) makes
the default for those keywords False. A non-zero value makes the default True.
Specifying Default in conjunction with the FILE_UNIT keyword will cause an error.

Note
If the FILE_UNIT keyword is not specified, the value returned from VAX_FLOAT
is the default value before any change is made. This is the case even if Default is
specified. This allows you to get the old setting and change it in a single operation.

Keywords

FILE_UNIT

Set this keyword equal to the logical file unit number (LUN) of an open file.
VAX_FLOAT returns True (1) if the file was opened with the VAX_FLOAT
attribute, or False (0) otherwise. Setting the FILE_UNIT keyword when the Default
argument is specified will cause an error.
IDL Reference Guide VAX_FLOAT

1486
Example

To determine if the default VAX_FLOAT keyword value for OPEN and
CALL_EXTERNAL is True or False:

default_vax_float = VAX_FLOAT()

To determine the current default value of the VAX_FLOAT keyword for OPEN and
CALL_EXTERNAL and change it to True (1) in a single operation:

old_vax_float = VAX_FLOAT(1)

To determine if the file currently open on logical file unit 1 was opened with the
VAX_FLOAT keyword set:

file_is_vax_float = VAX_FLOAT(FILE_UNIT=1)

See Also

CALL_EXTERNAL, OPEN, “Command Line Options” in Chapter 4 of Using IDL,
and Appendix A, “VMS Floating-Point Arithmetic in IDL” in Building IDL
Applications.
VAX_FLOAT IDL Reference Guide

1487
VECTOR_FIELD
The VECTOR_FIELD procedure is used to place colored, oriented vectors of
specified length at each vertex in an input vertex array. The output can be sent
directly to an IDLgrPolyline object. The generated display is generally referred to as
a hedgehog display and is used to convey various aspects of a vector field.

Syntax

VECTOR_FIELD, Field, Outverts, Outconn [, ANISOTROPY=array]
[, SCALE=value] [, VERTICES=array]

Arguments

Field

Input vector field array. This can be a [3, x, y, z] array or a [2, x, y] array. The leading
dimension is the vector quantity to be displayed.

Outverts

Output vertex array ([3, N] or [2, N] array of floats). Useful if the routine is to be used
with Direct Graphics or the user wants to manipulate the data directly.

Outconn

Output polyline connectivity array to be applied to the output vertices.

Keywords

ANISOTROPY

Set this keyword to a two- or three-element array describing the distance between
grid points in each dimension. The default value is [1.0, 1.0, 1.0] for three-
dimensional data and [1.0, 1.0] for two-dimensional data.

SCALE

Set this keyword to a scalar scaling factor. All vector lengths are multiplied by this
value. The default is 1.0.

VERTICES

Set this keyword to a [3, n] or [2, n] array of points. If this keyword is set, the vector
field is interpolated at these points. The resulting interpolated vectors are displayed as
line segments at these locations. If the keyword is not set, each spatial sample point in
the input Field grid is used as the base point for a line segment.
IDL Reference Guide VECTOR_FIELD

1488
VEL

The VEL procedure draws a velocity (flow) field with arrows following the field
proportional in length to the field strength. Arrows are composed of a number of
small segments that follow the streamlines.

This routine is written in the IDL language. Its source code can be found in the file
vel.pro in the lib subdirectory of the IDL distribution.

Syntax

VEL, U, V [, NVECS=value] [, XMAX= value{xsize/ysize}]
[, LENGTH=value{longest/steps}] [, NSTEPS=value] [, TITLE=string]

Arguments

U

The X component at each point of the vector field. U must be a 2D array.

V

The Y component at each point of the vector field. V must have the same dimensions
as U.

Keywords

LENGTH

The length of each arrow line segment expressed as a fraction of the longest vector
divided by the number of steps. The default is 0.1.

NSTEPS

The number of shoots or line segments for each arrow. The default is 10.

NVECS

The number of vectors (arrows) to draw. If this keyword is omitted, 200 vectors are
drawn.

TITLE

A string containing the title for the plot.
VEL IDL Reference Guide

1489
XMAX

X axis size as a fraction of Y axis size. The default is 1.0. This argument is ignored
when !P.MULTI is set.

Example

; Create a vector of X values:
X = DIST(20)

; Create a vector of Y values:
Y = SIN(X)*100

; Plot the vector field:
VEL, X, Y

See Also

FLOW3, PLOT_FIELD, VELOVECT
IDL Reference Guide VEL

1490
VELOVECT

The VELOVECT procedure produces a two-dimensional velocity field plot. A
directed arrow is drawn at each point showing the direction and magnitude of the
field.

This routine is written in the IDL language. Its source code can be found in the file
velovect.pro in the lib subdirectory of the IDL distribution.

Syntax

VELOVECT, U, V [, X, Y] [, COLOR=index] [, MISSING=value [, /DOTS]]
[, LENGTH=value] [, /OVERPLOT] [Also accepts all PLOT keywords]

Arguments

U

The X component of the two-dimensional field. U must be a two-dimensional array.

V

The Y component of the two dimensional field. V must have the same dimensions as
U.

X

Optional abcissae values. X must be a vector with a length equal to the first
dimension of U and V.

Y

Optional ordinate values. Y must be a vector with a length equal to the second
dimension of U and V.

Keywords

Note
Keywords not described here are passed directly to the PLOT procedure and may be
used to set options such as TITLE, POSITION, NOERASE, etc.

COLOR

Set this keyword equal to the color index used for the plot.
VELOVECT IDL Reference Guide

1491
DOTS

Set this keyword to 1 to place a dot at each missing point. Set this keyword to 0 or
omit it to draw nothing for missing points. Has effect only if MISSING is specified.

LENGTH

Set this keyword equal to the length factor. The default of 1.0 makes the longest
(U,V) vector the length of a cell.

MISSING

Set this keyword equal to the missing data value. Vectors with a length greater than
MISSING are ignored.

OVERPLOT

Set this keyword to make VELOVECT “overplot”. That is, the current graphics
screen is not erased, no axes are drawn, and the previously established scaling
remains in effect.

PLOT Keywords

In addition to the keywords described above, all other keywords accepted by the
PLOT procedure are accepted by VELOVECT. See PLOT.

Example

; Create some random data:
U = RANDOMN(S, 20, 20)
V = RANDOMN(S, 20, 20)

; Plot the vector field:
VELOVECT, U, V

; Plot the field, using dots to represent vectors with values
; greater than 18:
VELOVECT, U, V, MISSING=18, /DOTS

; Plot with a title. Note that the XTITLE keyword is passed
; directly to the PLOT procedure:
VELOVECT, U, V, MISSING=18, /DOTS, XTITLE='Random Vectors'

See Also

FLOW3, PLOT, PLOT_FIELD, VEL
IDL Reference Guide VELOVECT

1492
VERT_T3D

The VERT_T3D function transforms a 3D array by a 4x4 transformation matrix and
returns the transformed array. The 3D points are typically an array of polygon
vertices that were generated by SHADE_VOLUME or MESH_OBJ.

This routine is written in the IDL language. Its source code can be found in the file
vert_t3d.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = VERT_T3D(Vertex_List [, MATRIX=4x4_array] [, /NO_COPY]
[, /NO_DIVIDE [, SAVE_DIVIDE=variable]])

Arguments

Vertex_List

A 3 x n array of 3D coordinates to transform.

Keywords

DOUBLE

Set this keyword to a nonzero value to indicate that the returned coordinates should
be double-precision. If this kewyord is not set, the default is to return single-precision
coordinates (unless double-precision argumetns are input, in which case the
DOUBLE keyword is implied to be non-zero).

MATRIX

The 4x4 transformation matrix to use. The default is to use the system viewing matrix
(!P.T).

NO_COPY

Normally, a copy of Vertex_list is transformed and the original Vertex_list is
preserved. If NO_COPY is set, however, then the original Vertex_List will be
undefined after the call to VERT_T3D. Using the NO_COPY requires less memory.

NO_DIVIDE

Normally, when a [x, y, z, 1] vector is transformed by a 4x4 matrix, the final
homogeneous coordinates are obtained by dividing the x, y, and z components of the
result vector by the fourth element in the result vector. Setting the NO_DIVIDE
VERT_T3D IDL Reference Guide

1493
keyword will prevent VERT_T3D from performing this division. In some cases
(usually when a perspective transformation is involved) the fourth element in the
result vector can be very close to (or equal to) zero.

SAVE_DIVIDE

Set this keyword to a named variable that will hold receive the fourth element of the
transformed vector(s). If Vertex_list is a vector then SAVE_DIVIDE is a scalar. If
Vertex_list is an array then SAVE_DIVIDE is an array of n elements. This keyword
only has effect when the NO_DIVIDE keyword is set.

Example

Transform four points representing a square in the x-y plane by first translating +2.0
in the positive X direction, and then rotating 60.0 degrees about the Y axis.

points = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], $
[1.0, 1.0, 0.0], [0.0, 1.0, 0.0]]

T3D, /RESET
T3D, TRANSLATE=[2.0, 0.0, 0.0]
T3D, ROTATE=[0.0, 60.0, 0.0]
points = VERT_T3D(points)

See Also

T3D
IDL Reference Guide VERT_T3D

1494
VOIGT

The VOIGT function returns the intensity of an atomic absorption line profile (also
known as a VOIGT profile) based on the Voigt damping parameter a and the
frequency offset u, in units of the Doppler width. The result is always floating-point
and has the same structure as the arguments. Note that a and u should not both be
vectors.

The returned line profile φ(a, u) is defined as:

where H is the classical Voigt function:

The Doppler width ∆vD (assuming no turbulence), is defined as:

where ν0 is the line center frequency. The dimensionless frequency offset u and the
damping parameter a are determined by:

Here, Γ is the transition rate:

where γ is the spontaneous decay rate, and νcol is the atomic collision rate. See
Radiative Processes in Astrophysics by G. B. Rybicki and A. P. Lightman (1979) p
291 for more information. The algorithm is from Armstrong, JQSRT 7, 85. (1967).

φ a u,() H a u,()
∆vD π
------------------≡

H a u,() a
π
--- e y2– yd

a2 u y–()2+

∞–

∞

∫=

∆vD

ν0

c
-----b

ν0

c
----- 2kT m⁄= =

u
ν ν0–

∆νD
--------------=

a Γ
4π∆νD
-----------------=

Γ γ 2νcol+=
VOIGT IDL Reference Guide

1495
Syntax

Result = VOIGT(A, U)

Arguments

A

The Voigt damping parameter.

U

The dimensionless frequency offset in Doppler widths.

See Also

LEEFILT, ROBERTS, SOBEL
IDL Reference Guide VOIGT

1496
VORONOI

The VORONOI procedure computes the Voronoi polygon of a point within an
irregular grid of points, given the Delaunay triangulation. The Voronoi polygon of a
point contains the region closer to that point than to any other point.

For interior points, the polygon is constructed by connecting the midpoints of the
lines connecting the point with its Delaunay neighbors. Polygons are traversed in a
counterclockwise direction.

For exterior points, the set is described by the midpoints of the connecting lines, plus
the circumcenters of the two triangles that connect the point to the two adjacent
exterior points.

This routine is written in the IDL language. Its source code can be found in the file
voronoi.pro in the lib subdirectory of the IDL distribution.

Syntax

VORONOI, X, Y, I0, C, Xp, Yp, Rect

Arguments

X

An array containing the X locations of the points.

Y

An array containing the Y locations of the points.

I0

An array containing the indices of the points.

C

A connectivity list from the Delaunay triangulation. This list is produced with the
CONNECTIVITY keyword of the TRIANGULATE procedure.

Xp, Yp

Named variables that will contain the X and Y vertices of Voronoi polygon.
VORONOI IDL Reference Guide

1497
Rect

The bounding rectangle: [Xmin, Ymin, Xmax, Ymax]. Because the Voronoi polygon
(VP) for points on the convex hull extends to infinity, a clipping rectangle must be
supplied to close the polygon. This rectangle has no effect on the VP of interior
points. If this rectangle does not enclose all the Voronoi vertices, the results will be
incorrect. If this parameter, which must be a named variable, is undefined or set to a
scalar value, it will be calculated.

Example

To draw the Voronoi polygons of each point of an irregular grid:

N = 20

; Create a random grid of N points:
X = RANDOMU(seed, N)
Y = RANDOMU(seed, N)

; Triangulate it:
TRIANGULATE, X, Y, tr, CONN=C

FOR I=0, N-1 DO BEGIN & $
; Get the ith polygon:
VORONOI, X, Y, I, C, Xp, Yp & $

; Draw it:
POLYFILL, Xp, Yp, COLOR = (I MOD 10) + 2 & $

ENDFOR

See Also

TRIANGULATE
IDL Reference Guide VORONOI

1498
VOXEL_PROJ

The VOXEL_PROJ function generates visualizations of volumetric data by
computing 2D projections of a colored, semi-transparent volume. Parallel rays from
any given direction are cast through the volume, onto the viewing plane. User-
selected colors and opacities can be assigned to arbitrary data ranges, simulating the
appearance of the materials contained within the volume.

The VOXEL_PROJ function can be combined with the Z-buffer to render volume
data over objects. Cutting planes can also be specified to view selected portions of the
volume. Other options include: selectable resolution to allow quick “preview”
renderings, and average and maximum projections.

VOXEL_PROJ renders volumes using an algorithm similar to the one described by
Drebin, Carpenter, and Hanrahan, in “Volume Rendering”, Computer Graphics,
Volume 22, Number 4, August 1988, pp. 125-134, but without the surface extraction
and enhancement step.

Voxel rendering can be quite time consuming. The time required to render a volume
is proportional to the viewing areas size, in pixels, times the thickness of the volume
cube in the viewing direction, divided by the product of the user-specified X, Y, and
Z steps.

Syntax

Result = VOXEL_PROJ(V [, RGBO] [, BACKGROUND=array]
[, CUTTING_PLANE=array] [, /INTERPOLATE] [, /MAXIMUM_INTENSITY]
[, STEP=[Sx, Sy, Sz]] [, XSIZE=pixels] [, YSIZE=pixels] [, ZBUFFER=int_array]
[, ZPIXELS=byte_array])

Arguments

V

A three-dimensional array containing the volume to be rendered. This array is
converted to byte type if necessary.

RGBO

This optional parameter is used to specify the look-up tables that indicate the color
and opacity of each voxel value. This argument can be one of the following types:

• A (256, 4) byte array for TrueColor rendering. This array represents 256 sets
of red, green, blue, and opacity (RGBO) components for each voxel value,
VOXEL_PROJ IDL Reference Guide

1499
scaled into the range of bytes (0 to 255). The R, G, and B components should
already be scaled by the opacity. For example, if a voxel value of 100 contains
a material that is red, and 35% opaque, the RGBO values should be,
respectively: [89, 0, 0, 89] because 255 * 0.35 = 89. If more than one material
is present, the RGBO arrays contain the sum of the individual RGBO arrays.
The content and shape of the RGBO curves is highly dependent upon the
volume data and experimentation is often required to obtain the best display.

• A (256, 2) byte array for volumes with only one material or monochrome
rendering. This array represents 256 sets of pixel values and their
corresponding opacities for each voxel value.

• If this argument is omitted, the average projection method, or maximum
intensity method (if the MAXIMUM_INTENSITY keyword is set) is used.

Keywords

BACKGROUND

A one- or three-element array containing the background color indices. The default is
(0,0,0), yielding a black background with most color tables.

CUTTING_PLANE

A floating-point array specifying the coefficients of additional cutting planes. The
array has dimensions of (4, N), where N is the number of additional cutting planes
from 1 to 6. Cutting planes are constraints in the form of:

C[0] * X + C[1] * Y + C[2] * Z + D > 0

The X, Y, and Z coordinates are specified in voxel coordinates. For example, to
specify a cutting plane that excludes all voxels with an X value greater than 10:

CUTTING_PLANE = [-1.0, 0, 0, 10.], for the constraint: -X + 10 > 0.

INTERPOLATE

Set this keyword to use tri-linear interpolation to determine the data value for each
step on a ray. Otherwise, the nearest-neighbor method is used. Setting this keyword
improves the quality of images produced, especially when the volume has low
resolution in relation to the size of the viewing plane, at the cost of more computing
time.

MAXIMUM_INTENSITY

Set this keyword to make the value of each pixel in the viewing plane the maximum
data value along the corresponding ray. The RGBO argument is ignored if present.
IDL Reference Guide VOXEL_PROJ

1500
STEP

Set this keyword to a three-element vector, [Sx, Sy, Sz], that controls the resolution of
the resulting projection. The first two elements contain the step size in the X and Y
view plane, in pixels. The third element is the sampling step size in the Z direction,
given in voxels. Sx and Sy must be integers equal to or greater than one, while Sz can
contain a fractional part. If Sx or Sy are greater than one, the values of intermediate
pixels in the output image are linearly interpolated. Higher step sizes require less time
because fewer rays are cast, at the expense of lower resolution in the output image.

XSIZE

The width, in pixels, of the output image. If this keyword is omitted, the output image
is as wide as the currently-selected output device.

YSIZE

The height, in pixels, of the output image. If this keyword is omitted, the output
image is as tall as the currently selected output device.

ZBUFFER

An integer array, with the same width and height as the output image, that contains
the depth portion of the Z-buffer. Include this parameter to combine the previously-
read contents of a Z-buffer with a voxel rendering. See the third example, below, for
details.

ZPIXELS

A byte array, with the same width and height as the output image, that contains the
image portion of the Z-buffer. Include this parameter to combine the contents of a Z-
buffer with a voxel rendering. See the third example, below, for details.

Examples

Example 1

In the following example, assume that variable V contains a volume of data, with
dimensions Vx by Vy by Vz. The volume contains two materials, muscle tissue
represented by a voxel range of 50 to 70, that we want to render with red color, and
an opacity of 20; and bone tissue represented by a voxel range of 220-255, that we
want to render with white color, and an opacity of 50:

; Create the opacity vector:
rgbo = BYTARR(256,4)

; Red and opacity for muscle:
VOXEL_PROJ IDL Reference Guide

1501
rgbo[50:70, [0,3]] = 20

; White and opacity for bone:
rgbo[220:255, *] = 50

Example 2

Although it is common to use trapezoidal or Gaussian functions when forming the
RGBO arrays, this example uses rectangular functions for simplicity.

; Set up the axis scaling and default rotation:
SCALE3, XRANGE=[0, Vx-1], YRANGE=[0, Vy-1], ZRANGE=[0, Vz-1]

; Compute projected image:
C = VOXEL_PROJ(V, rgbo)

; Convert from 24-bit to 8-bit image and display:
TV, COLOR_QUAN(C, 3, R, G, B)

; Load quantized color tables:
TVLCT, R, G, B

This example required approximately 27 seconds on a typical workstation to compute
the view in a 640- by 512-pixel viewing window. Adding the keyword
STEP=[2,2,1] in the call to VOXEL_PROJ decreased the computing time to about
8 seconds, at the expense of slightly poorer resolution.

When viewing a volume with only one constituent, the RGBO array should contain
only an intensity/opacity value pair. To illustrate, if in the above example, only
muscle was of interest we create the RGBO argument as follows:

; Create an empty 256 x 2 array:
rgbo = BYTARR(256,2)

; Intensity and opacity for muscle:
rgbo[50:70, *] = 20
SCALE3, XRANGE=[0, Vx-1], YRANGE=[0, Vy-1], ZRANGE=[0, Vz-1]

; Compute and display the projected image:
TV, VOXEL_PROJ(V, rgbo)

; Create color table array for red:
C = (FINDGEN(256)/255.) # [255., 0., 0]

; Load colors:
TVLCT, C[*,0], C[*,1], C[*,2]
IDL Reference Guide VOXEL_PROJ

1502
Example 3

This example demonstrates combining a volume with the contents of the Z-buffer:

; Set plotting to Z-buffer:
SET_PLOT, 'Z'

; Turn on Z buffering:
DEVICE, /Z_BUFFER

; Set scaling:
SCALE3, XRANGE=[0, Vx-1], YRANGE=[0, Vy-1], ZRANGE=[0, Vz-1]

; Draw a polygon at z equal to half the depth:
POLYFILL, [0, Vx-1, Vx-1, 0], [0, 0, Vy-1, Vy-1], Vz/2., /T3D

; Read pixel values from the Z-buffer:
zpix = TVRD()

; Read depth values from the Z-buffer:
zbuff = TVRD(/WORDS,/CHAN)

; Back to display window:
SET_PLOT, 'X'

; Compute the voxel projection and use the ZPIXELS and ZBUFFER
; keywords to combine the volume with the previously-read contents
; of the Z-buffer:
C = VOXEL_PROJ(V, rgbo, ZPIX=zpix, ZBUFF=zbuff)

;Convert from 24-bit to 8-bit image and display.
TV, COLOR_QUAN(C, 3, R, G, B)

; Load the quantized color tables:
TVLCT, R, G, B

See Also

POLYSHADE, PROJECT_VOL, RECON3, SHADE_VOLUME
VOXEL_PROJ IDL Reference Guide

1503
WAIT

The WAIT procedure suspends execution of an IDL program for a specified period.
Note that because of other activity on the system, the duration of program suspension
may be longer than requested.

Syntax

WAIT, Seconds

Arguments

Seconds

The duration of the wait, specified in seconds. This parameter can be a floating-point
value to specify a fractional number of seconds.

Example

To make an IDL program suspend execution for about five and one half seconds, use
the command:

WAIT, 5.5

See Also

EXIT, STOP
IDL Reference Guide WAIT

1504
WARP_TRI

The WARP_TRI function returns an image array with a specified geometric
correction applied. Images are warped using control (tie) points such that locations
(Xi, Yi) are shifted to (Xo, Yo).

The irregular grid defined by (Xo, Yo) is triangulated using TRIANGULATE. Then
the surfaces defined by (Xo, Yo, Xi) and (Xo, Yo, Yi) are interpolated using TRIGRID
to get the locations in the input image of each pixel in the output image. Finally,
INTERPOLATE is called to obtain the result. Linear interpolation is used by default.
Smooth quintic interpolation is used if the QUINTIC keyword is set.

This routine is written in the IDL language. Its source code can be found in the file
warp_tri.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = WARP_TRI(Xo, Yo, Xi, Yi, Image [, OUTPUT_SIZE=vector]
[, /QUINTIC] [, /EXTRAPOLATE])

Arguments

Xo, Yo

Vectors containing the locations of the control (tie) points in the output image.

Xi, Yi

Vectors containing the location of the control (tie) points in the input image. Xi and Yi
must be the same length as Xo and Yo.

Image

The image to be warped. May be any type of data.

Keywords

OUTPUT_SIZE

Set this keyword equal to a 2-element vector containing the size of the output image.
If omitted, the output image is the same size as Image.
WARP_TRI IDL Reference Guide

1505
QUINTIC

Set this keyword to use smooth quintic interpolation. Quintic interpolation is slower
but the derivatives are continuous across triangles, giving a more pleasing result than
the default linear interpolation.

EXTRAPOLATE

Set this keyword to extrapolate outside the convex hull of the tie points. Setting this
keyword implies the use of QUINTIC interpolation.

See Also

INTERPOLATE, TRIANGULATE, TRIGRID
IDL Reference Guide WARP_TRI

1506
WATERSHED

The WATERSHED function applies the morphological watershed operator to a
grayscale image. This operator segments images into watershed regions and their
boundaries. Considering the gray scale image as a surface, each local minimum can
be thought of as the point to which water falling on the surrounding region drains.
The boundaries of the watersheds lie on the tops of the ridges. This operator labels
each watershed region with a unique index, and sets the boundaries to zero.

Typically, morphological gradients, or images containing extracted edges are used
for input to the watershed operator. Noise and small unimportant fluctuations in the
original image can produce spurious minima in the gradients, which leads to
oversegmentation. Smoothing, or manually marking the seed points are two
approaches to overcoming this problem. For further reading, see Dougherty, “An
Introduction to Morphological Image Processing”, SPIE Optical Engineering Press,
1992

Syntax

Result = WATERSHED (Image [, CONNECTIVITY={4 | 8}])

Return Value

Returns an image of the same dimensions as the input image. Each pixel of the result
will be either zero if the pixel falls along the segmentation between basins, or the
identifier of the basin in which that pixel falls.

Arguments

Image

The two-dimensional image to be segmented. Image is converted to byte type if
necessary.

Keywords

CONNECTIVITY

Set this keyword to either 4 (to select 4-neighbor connectivity) or 8 (to select 8-
neighbor connectivity). Connectivity indicates which pixels in the neighborhood of a
given pixel are sampled during the segmentation process. 4-neighbor connectivity
samples only the pixels that are immediately adjacent horizontally and vertically. 8-
WATERSHED IDL Reference Guide

1507
neighbor connectivity samples the diagonally adjacent neighbors in addition to the
immediate horizontal and vertical neighbors. The default is 4-neighbor connectivity.

Example

The following code crudely segments the grains in the data file in the IDL Demo data
directory containing an magnified image of grains of pollen. Note that the IDL
Demos must be installed in order to read the image used in this example.

It inverts the image, because the watershed operator finds holes, and the grains of
pollen are bright. Next, the morphological closing operator is applied with a disc of
radius 9, contained within a 19 by 19 kernel, to eliminate holes in the image smaller
than the disc. The watershed operator is then applied to segment this image. The
borders of the watershed images, which have pixel values of zero, are then merged
with the original image and displayed as white.

;Radius of disc...
r = 9

;Create a disc of radius r
disc = SHIFT(DIST(2*r+1), r, r) LE r

;Read the image
READ_JPEG, FILEPATH('pollens.jpg', $

SUBDIR=['examples','demo','demodata']), a

;Invert the image
b = MAX(a) - a

TVSCL, b, 0

;Remove holes of radii less than r
c = MORPH_CLOSE(b, disc, /GRAY)

TVSCL, c, 1

;Create watershed image
d = WATERSHED(c)

;Display it, showing the watershed regions
TVSCL, d, 2

;Merge original image with boundaries of watershed regions
e = a > (MAX(a) * (d EQ 0b))

TVSCL, e, 3
IDL Reference Guide WATERSHED

1508
WDELETE

The WDELETE procedure deletes IDL windows.

Syntax

WDELETE [, Window_Index [, ...]]

Arguments

Window_Index

A list of one or more window indices to delete. If this argument is not specified, the
current window (as specified by the system variable !D.WINDOW) is deleted. If the
window being deleted is not the active window, the value of !D.WINDOW remains
unchanged. If the window being deleted is the active window, !D.WINDOW is set to
the highest numbered window index or to -1 if no windows remain open.

If this window index is the widget ID of a draw widget, that widget is deleted.

Example

Create IDL graphics window number 5 by entering:

WINDOW, 5

Delete window 5 by entering:

WDELETE, 5

See Also

WINDOW, WSET, WSHOW
WDELETE IDL Reference Guide

1509
WEOF

The WEOF procedure writes an end of file mark, sometimes called a tape mark, on
the designated tape unit at the current position. WEOF is available only under VMS.
The tape must be mounted as a foreign volume. See “VMS-Specific Information” in
Chapter 8 of Building IDL Applications.

Syntax

WEOF, Unit

Arguments

Unit

The magnetic tape unit on which the end of file mark is written. This argument must
be a number between 0 and 9, and should not be confused with standard file Logical
Unit Numbers (LUNs).

See Also

TAPWRT
IDL Reference Guide WEOF

1510
WF_DRAW

The WF_DRAW procedure draws weather fronts of various types using parametric
spline interpolation to smooth the lines. WF_DRAW uses the POLYFILL routine to
make the annotations on the front lines.

This routine is written in the IDL language. Its source code can be found in the file
wf_draw.pro in the lib subdirectory of the IDL distribution.

Syntax

WF_DRAW, X, Y [[, /COLD | , FRONT_TYPE=1] | [, /WARM | ,
FRONT_TYPE=2] | [, /OCCLUDED | , FRONT_TYPE=3] | [, /STATIONARY | ,
FRONT_TYPE=4] | [, /CONVERGENCE | , FRONT_TYPE=5]] [, COLOR=value]
[, /DATA | , /DEVICE | , /NORMAL] [, INTERVAL=value] [, PSYM=value]
[, SYM_HT=value] [, SYM_LEN=value] [, THICK=value]

Arguments

X, Y

Vectors of abcissae and ordinates defining the front to be drawn.

Keywords

COLD

Set this keyword to draw a cold front. The default is a plain line with no annotations.
A cold front can also be specified by setting the keyword FRONT_TYPE = 1.

COLOR

Use this keyword to specify the color to use. The default = !P.COLOR.

CONVERGENCE

Set this keyword to draw a convergence line. A convergence line can also be
specified by setting the keyword FRONT_TYPE = 5.

DATA

Set this keyword if X and Y are specified in data coordinates.

DEVICE

Set this keyword if X and Y are specified in device coordinates.
WF_DRAW IDL Reference Guide

1511
FRONT_TYPE

Set this keyword equal to the numeric index of type of front to draw. Front type
indices are as follows: COLD=1, WARM=2, OCCLUDED=3, STATIONARY=4,
CONVERGENCE = 5. Not required if plain line is desired or if an explicit front type
keyword is specified.

INTERVAL

Use this keyword to specify the spline interpolation interval, in normalized units. The
default = 0.01. Larger values give coarser approximations to curves, smaller values
make more interpolated points.

NORMAL

Set this keyword if X and Y are specified in normalized coordinates. This is the
default.

OCCLUDED

Set this keyword to draw an occluded front. An occluded front can also be specified
by setting the keyword FRONT_TYPE = 3.

PSYM

Set this keyword a standard PSYM value to draw a marker on each actual (X, Y) data
point. See “PSYM” on page 2408 for a list of the symbol types.

STATIONARY

Set this keyword to draw a stationary front. A stationary front can also be specified
by setting the keyword FRONT_TYPE = 4.

SYM_HT

Use this keyword to specify the height of front symbols, in normalized units. The
default = 0.02.

SYM_LEN

Use this keyword to specify the length and spacing factor for front symbols, in
normalized units. The default = 0.15.

THICK

Use this keyword to specify the line thickness. The default = 1.0.
IDL Reference Guide WF_DRAW

1512
WARM

Set this keyword to draw a warm front. A warm front can also be specified by setting
the keyword FRONT_TYPE = 2.

Example

This example draws various fronts on a map of the United States. Note that this
example code is in the file wf_draw.pro, and can be run by entering
test_wf_draw at the IDL command line.

PRO test_wf_draw

MAP_SET, LIMIT = [25, -125, 50, -70], /GRID, /USA
WF_DRAW, [-120, -110, -100], [30, 50, 45], /COLD, /DATA, THICK=2
WF_DRAW, [-80, -80, -75], [50, 40, 35], /WARM, /DATA, THICK=2
WF_DRAW, [-80, -80, -75]-10., [50, 40, 35], /OCCLUDED, /DATA,$

THICK=2
WF_DRAW, [-120, -105], [40,35], /STATION, /DATA, THICK=2
WF_DRAW, [-100, -90, -90], [30,35,40], /CONVERG, /DATA, THICK=2

names=['None','Cold','Warm','Occluded','Stationary','Convergent']
x = [.015, .30]
y = 0.04
dy = 0.05
ty = N_ELEMENTS(names) * dy + y
POLYFILL, x[[0,1,1,0]],[0, 0, ty, ty],/NORM, COLOR=!P.BACKGROUND
FOR i=0, N_ELEMENTS(names)-1 DO BEGIN

WF_DRAW, x, y, /NORM, FRONT_TYPE=i, THICK=2
XYOUTS, x[1]+0.015, y[0], names[i], /NORM, CHARS=1.5
y = y + dy

ENDFOR

END

See Also

ANNOTATE, XYOUTS
WF_DRAW IDL Reference Guide

1513
WHERE

The WHERE function returns a longword vector that contains the one-dimensional
subscripts of the nonzero elements of Array_Expression. The length of the resulting
vector is equal to the number of nonzero elements in the parameter. Frequently the
result of WHERE is used as a vector subscript to select elements of an array using
given criteria. If all elements of Array_Expression are zero the result of WHERE is a
scalar integer with the value –1.

Syntax

Result = WHERE(Array_Expression [, Count] [, COMPLEMENT=variable]
[, /L64] [, NCOMPLEMENT=variable])

Result

When WHERE Returns –1

If all the elements of Array_Expression are zero, WHERE returns a scalar integer
with a value of –1. Attempting to use this result as an index into another array results
in a “subscripts out of bounds” error. In situations where this is possible, code similar
to the following can be used to avoid errors:

; Use Count to get the number of nonzero elements:
index = WHERE(array, count)

; Only subscript the array if it’s safe:
IF count NE 0 THEN result = array[index]

Arguments

Array_Expression

The array to be searched. Both the real and imaginary parts of a complex number
must be zero for the number to be considered zero.

Count

A named variable that will receive the number of nonzero elements found in
Array_Expression. This value is returned as a longword integer.
IDL Reference Guide WHERE

1514
Note
The system variable !ERR is set to the number of nonzero elements. This effect is
for compatibility with previous versions of IDL and should not be used in new
code. Use the COUNT argument to return this value instead.

Keywords

COMPLEMENT

Set this keyword to a named variable that receives the subscripts of the zero elements
of Array_Expression. These are the subscripts that are not returned in Result.
Together, Result and COMPLEMENT specify every subscript in Array_Expression.
If there are no zero elements in Array_Expression, COMPLEMENT returns a scalar
integer with the value -1.

L64

By default, the result of WHERE is 32-bit integer when possible, and 64-bit integer if
the number of elements being processed requires it. Set L64 to force 64-bit integers to
be returned in all cases.

Note
Only 64-bit versions of IDL are capable of creating variables requiring a 64-bit
result. Check the value of !VERSION.MEMORY_BITS to see if your IDL is 64-bit
or not.

NCOMPLEMENT

Set this keyword to a named variable that receives the number of zero elements found
in Array_Expression. This value is the number of subscripts that will be returned via
the COMPLEMENT keyword if it is specified.

Examples

Example 1

; Create a 10-element integer array where each element is
; set to the value of its subscript:
array = INDGEN(10)
PRINT, 'array = ', array

; Find the subscripts of all the elements in the array that have
; a value greater than 5:
WHERE IDL Reference Guide

1515
B = WHERE(array GT 5, count, COMPLEMENT=B_C, NCOMPLEMENT=count_c)

; Print how many and which elements met the search criteria:
PRINT, 'Number of elements > 5: ', count
PRINT, 'Subscripts of elements > 5: ', B
PRINT, 'Number of elements <= 5: ', count_c
PRINT, 'Subscripts of elements <= 5: ', B_C

IDL prints:

array = 0 1 2 3 4 5 6 7 8 9
Number of elements > 5: 4
Subscripts of elements > 5: 6 7 8 9
Number of elements <= 5: 6
Subscripts of elements <= 5: 0 1 2 3 4 5

Example 2

The WHERE function behaves differently with different kinds of array expressions.
For instance, if a relational operator is used to compare an array, A, with a scalar, B,
then every element of A is searched for B. However, if a relational operator is used to
compare two arrays, C and D, then a comparison is made between each
corresponding element (i.e. Ci & Di, Ci+1 & Di+1, etc) of the two arrays. If the two
arrays have different lengths then a comparison is only made up to the number of
elements for the shorter array. The following example illustrates this behavior:

; Compare array, a, and scalar, b:
a = [1,2,3,4,5,5,4,3,2,1]
b = 5
PRINT, 'a = ', a
PRINT, 'b = ', b

result=WHERE(a EQ b)
PRINT,'Subscripts of a that equal b: ', result

; Now compare two arrays of different lengths:
c = [1,2,3,4,5,5,4,3,2,1]
d = [0,2,4]
PRINT, 'c = ', c
PRINT, 'd = ', d

result=WHERE(c EQ d)
PRINT, 'Subscripts of c that equal d: ', result

IDL prints:

a = 1 2 3 4 5 5 4 3 2 1
b = 5
Subscripts of a that equal b: 4 5
IDL Reference Guide WHERE

1516
c = 1 2 3 4 5 5 4 3 2 1
d = 0 2 4
Subscripts of c that equal d: 1

Note that WHERE found only one element in the array d that equals an element in
array c. This is because only the first three elements of c were searched, since d has
only three elements.

See Also

UNIQ
WHERE IDL Reference Guide

1517
WHILE...DO

The WHILE...DO statement performs its subject statement(s) as long as the
expression evaluates to true. The subject is never executed if the condition is initially
false.

Note
For information on using WHILE...DO and other IDL program control statements,
see Chapter 11, “Program Control” in Building IDL Applications.

Syntax

WHILE expression DO statement

or

WHILE expression DO BEGIN

statements

ENDWHILE

Example

i = 0
WHILE (i EQ 1) DO PRINT, i

Because the expression (which is false in this case) is evaluated before the subject
statement is executed, this code yields no output.
IDL Reference Guide WHILE...DO

1518
WIDGET_BASE

The WIDGET_BASE function is used to create base widgets. Base widgets serve as
containers for other widgets.

Note
In most cases, you will want let IDL determine the placement of widgets within the
base widget. Do this by specifying either the COLUMN keyword or the ROW
keyword. See “Positioning Child Widgets Within a Base” on page 1536 for details.

The returned value of this function is the widget ID of the newly-created base.

Syntax

Result = WIDGET_BASE([Parent] [, /ALIGN_BOTTOM | , /ALIGN_CENTER | ,
/ALIGN_LEFT | , /ALIGN_RIGHT | , /ALIGN_TOP]
[, APP_MBAR=variable{same as mbar on Windows and Motif} | , /MBAR | ,
/MODAL] [, /BASE_ALIGN_BOTTOM | , /BASE_ALIGN_CENTER | ,
/BASE_ALIGN_LEFT | , /BASE_ALIGN_RIGHT | , /BASE_ALIGN_TOP]
[, /COLUMN | , /ROW] [, EVENT_FUNC=string] [, EVENT_PRO=string]
[, /EXCLUSIVE | , /NONEXCLUSIVE] [, /FLOATING] [, FRAME=width]
[, FUNC_GET_VALUE=string] [, /GRID_LAYOUT]
[, GROUP_LEADER=widget_id{must specify for modal dialogs}]
[, /KBRD_FOCUS_EVENTS] [, KILL_NOTIFY=string] [, /MAP{not for modal
bases}] [, /NO_COPY] [, NOTIFY_REALIZE=string]
[, PRO_SET_VALUE=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, /SCROLL{not for modal bases}] [, /SENSITIVE] [, SPACE=value{ignored if
exclusive or nonexclusive}] [, TITLE=string] [, TLB_FRAME_ATTR=value{top-
level bases only}] [, /TLB_KILL_REQUEST_EVENTS{top-level bases only}]
[, /TLB_SIZE_EVENTS{top-level bases only}] [, /TRACKING_EVENTS]
[, UNAME=string] [, UNITS={0 | 1 | 2}] [, UVALUE=value] [, XOFFSET=value]
[, XPAD=value{ignored if exclusive or nonexclusive}] [, XSIZE=value]
[, X_SCROLL_SIZE=value] [, YOFFSET=value] [, YPAD=value{ignored if
exclusive or nonexclusive}] [, YSIZE=value] [, Y_SCROLL_SIZE=value])

X Windows Keywords: [, DISPLAY_NAME=string]
[, RESOURCE_NAME=string] [, RNAME_MBAR=string]
WIDGET_BASE IDL Reference Guide

1519
Arguments

Parent

The widget ID of the parent widget. To create a top-level base, omit the Parent
argument.

Keywords

ALIGN_BOTTOM

Set this keyword to align the new widget with the bottom of its parent base. To take
effect, the parent must be a ROW base.

ALIGN_CENTER

Set this keyword to align the new widget with the center of its parent base. To take
effect, the parent must be a ROW or COLUMN base. In ROW bases, the new widget
will be vertically centered. In COLUMN bases, the new widget will be horizontally
centered.

ALIGN_LEFT

Set this keyword to align the new widget with the left side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_RIGHT

Set this keyword to align the new widget with the right side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_TOP

Set this keyword to align the new widget with the top of its parent base. To take
effect, the parent must be a ROW base.

APP_MBAR

Set this keyword to a named variable that defines a widget application’s menubar. On
the Macintosh, the menubar defined by APP_MBAR becomes the system menubar
(the menubar at the top of the Macintosh screen). On Motif platforms and under
Microsoft Windows, the APP_MBAR is treated in exactly the same fashion as the
menubar created with the MBAR keyword. See “MBAR” on page 1524 for details on
creating menubars.
IDL Reference Guide WIDGET_BASE

1520
Warning
You cannot specify both an APP_MBAR and an MBAR for the same top-level base
widget. Doing so will cause an error.

To apply actions triggered by menu items to widgets other than the base that includes
the menubar, use the KBRD_FOCUS_EVENTS keyword to keep track of which
widget has (or last had) the keyboard focus.

BASE_ALIGN_BOTTOM

Set this keyword to make all children of the new base align themselves with the
bottom of the base by default. To take effect, you must also set the ROW keyword for
the new base. The default can be overridden for individual child widgets by setting a
different ALIGN_XXX keyword when the child widget is created.

BASE_ALIGN_CENTER

Set this keyword to make all children of the new base align themselves with the
center of the base by default. To take effect, you must also set the COLUMN or
ROW keyword for the new base. The default can be overridden for individual child
widgets by setting a different ALIGN_XXX keyword when the child widget is
created. In ROW bases, child widgets will be vertically centered. In COLUMN bases,
child widgets will be horizontally centered.

BASE_ALIGN_LEFT

Set this keyword to make all children of the new base align themselves with the left
side of the base by default. To take effect, you must also set the COLUMN keyword
for the new base. The default can be overridden for individual child widgets by
setting a different ALIGN_XXX keyword when the child widget is created.

BASE_ALIGN_RIGHT

Set this keyword to make all children of the new base align themselves with the right
side of the base by default. To take effect, you must also set the COLUMN keyword
for the new base. The default can be overridden for individual child widgets by
setting a different ALIGN_XXX keyword when the child widget is created.

BASE_ALIGN_TOP

Set this keyword to make all children of the new base align themselves with the top
of the base by default. To take effect, you must also set the ROW keyword for the
new base. The default can be overridden for individual child widgets by setting a
different ALIGN_XXX keyword when the child widget is created.
WIDGET_BASE IDL Reference Guide

1521
COLUMN

If this keyword is included, the base lays out its children in columns. The value of
this keyword specifies the number of columns to be used. The number of child
widgets in each column is calculated by dividing the number of child widgets created
by the number of columns specified. When one column is filled, a new one is started.

Specifying both the COLUMN and ROW keywords causes an error.

Column Width

The width of each column is determined by the width of the widest widget in that
column. If the GRID_LAYOUT keyword is set, all columns are as wide as the widest
widget in the base.

Horizontal Size of Widgets

If any of the BASE_ALIGN_* keywords to WIDGET_BASE is set, each widget has
its “natural” width, determined either by the value of the widget or by the XSIZE
keyword. Similarly, if any of the child widgets specifies one of the ALIGN_*
keywords, that widget will have its “natural” width. If none of the BASE_ALIGN_*
or (ALIGN_*) keywords are set, all widgets in the base are as wide as their column.

Vertical Placement

Child widgets are placed vertically one below the other, with no extra space. If the
GRID_LAYOUT keyword is set, each row is as high as its tallest member.

DISPLAY_NAME

Set this keyword equal to a string that specifies the name of the X Windows display
on which the base should be displayed. This keyword has no effect on Microsoft
Windows and Macintosh platforms.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.
IDL Reference Guide WIDGET_BASE

1522
Note
If the base is a top-level base widget that is managed by the XMANAGER
procedure, any value specified via the EVENT_PRO keyword is overridden by the
value of the EVENT_HANDLER keyword to XMANAGER. Note also that in this
situation, if EVENT_HANDLER is not specified in the call to XMANAGER, an
event-handler name will be created by appending the string “_event” to the
application name specified to XMANAGER. This means that there is no reason to
specify this keyword for a top-level base that will be managed by the XMANAGER
procedure.

EXCLUSIVE

Set this keyword to specify that the base can have only button-widget children and
that only one button can be set at a time. These buttons, unlike normal button
widgets, have two states—set and unset.

When one exclusive button is pressed, any other exclusive buttons (in the same base)
that are currently set are automatically released. Hence, only one button can ever be
set at one time.

This keyword can be used to create exclusive button menus. See the CW_BGROUP
and CW_PDMENU functions for high-level menu-creation utilities.

Note
If this keyword is set, the XOFFSET and YOFFSET keywords are ignored for any
widgets in this base. Exclusive bases are always laid out in columns or rows. If
neither the COLUMN nor ROW keyword is specified for an exclusive base, the
base defaults to COLUMN layout.

FLOATING

Set this keyword—along with the GROUP_LEADER keyword—to create a
“floating” top-level base widget. If the windowing system provides Z-order control,
floating base widgets appear above the base specified as their group leader. If the
windowing system does not provide Z-order control, the FLOATING keyword has
no effect.

The iconizing, layering, and destruction behavior of floating bases and their group
leaders is discussed in “Iconizing, Layering, and Destroying Groups of Top-Level
Bases” on page 1536.
WIDGET_BASE IDL Reference Guide

1523
FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget. Note that this keyword is only a hint to the toolkit, and may be ignored in
some instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GRID_LAYOUT

Set this keyword to force the base to have a grid layout, in which all rows have the
same height, and all columns have the same width. The row heights and column
widths are taken from the largest child widget.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. Widget application hierarchies are defined by group membership
relationships between top-level widget bases. When a group leader is killed, for any
reason, all widgets in the group are also destroyed. Iconizing and layering behavior is
discussed in “Iconizing, Layering, and Destroying Groups of Top-Level Bases” on
page 1536. (This is not available on the Mac.)

Note
If you specify a floating base (created with the FLOATING keyword) as a group
leader, all member bases must also have either the FLOATING or MODAL
keywords set. If you specify a modal base (created with the MODAL keyword) as a
group leader, all member bases must have the MODAL keyword set as well.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

KBRD_FOCUS_EVENTS

Set this keyword to make the base return keyboard focus events whenever the
keyboard focus of the base changes. See the “Events” section below for more
information.
IDL Reference Guide WIDGET_BASE

1524
KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
Note that the procedure specified is used only if you are not using the XMANAGER
procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

MAP

Once a widget hierarchy has been realized, it can be mapped (visible) or unmapped
(invisible). This keyword specifies the initial map state for the given base and its
descendants. Specifying a non-zero value indicates that the base should be mapped
when realized (the default). A zero value indicates that the base should be unmapped
initially.

After the base is realized, its map state can be altered using the MAP keyword to the
WIDGET_CONTROL procedure.

Note
Modal bases cannot be mapped and unmapped.

Warning
Under Microsoft Windows, when a hidden base is realized, then mapped, a
Windows resize message is sent by the windowing system. This “extra” resize
event is generated before any manipulation of the base widget by the user.

MBAR

Set this keyword to a named variable to cause a menubar to be placed at the top of the
base (the base must be a top-level base). The menubar is itself a special kind of base
widget that can only have buttons as children. Upon return, the named variable
contains the widget ID of the new menubar base. This widget ID can then be used to
WIDGET_BASE IDL Reference Guide

1525
fill the menubar with pulldown menus. For example, the following widget creation
commands first create a base with a menubar, then populate the menubar with a
simple pulldown menu (CW_PDMENU could also have been used to construct the
pulldown menu):

base = WIDGET_BASE(TITLE = 'Example', MBAR=bar)
file_menu = WIDGET_BUTTON(bar, VALUE='File', /MENU)
file_bttn1=WIDGET_BUTTON(file_menu, VALUE='Item 1',$

UVALUE='FILE1')
file_bttn2=WIDGET_BUTTON(file_menu, VALUE='Item 2',$

UVALUE='FILE2')

Note that to set X Window System resources for menubars created with this keyword,
you must use the RNAME_MBAR keyword rather than the RESOURCE_NAME
keyword.

If you use CW_PDMENU to create a menu for the menubar, be sure to set the MBAR
keyword to that function as well.

Note also that the size returned by the GEOMETRY keyword to WIDGET_INFO
does not include the size of the menubar.

Note
To control the system menubar on the Macintosh, use the APP_MBAR keyword.
On Windows and Motif platforms the MBAR and APP_MBAR keywords are
equivalent.

Warning
You cannot specify both the MBAR and MODAL keywords for the same widget.
Doing so will cause an error.

To apply actions triggered by menu items to widgets other than the base that includes
the menubar, use the KBRD_FOCUS_EVENTS keyword to keep track of which
widget has (or last had) the keyboard focus.

MODAL

Set this keyword to create a modal dialog. Modal dialogs can have default and cancel
buttons associated with them. Default buttons are highlighted by the window system
and respond to a press on the “Return” or “Enter” keys as if they had been clicked on.
Cancel buttons respond to a press on the “Escape” key as if they had been clicked on.
See the DEFAULT_BUTTON and CANCEL_BUTTON keywords to
WIDGET_CONTROL for details.
IDL Reference Guide WIDGET_BASE

1526
Note
Modal dialogs must have a group leader. Specify the group leader for a modal top-
level base via the GROUP_LEADER keyword.

Modal dialogs cannot be scrollable, nor can they support menubars. Setting the
SCROLL, MBAR, or APP_MBAR keywords in conjunction with the MODAL
keyword will cause an error. Modal dialogs cannot be mapped or unmapped. Setting
the MAP keyword on a modal base will cause an error.

Note
On Windows platforms, the group leader of a modal base must be realized before
the modal base itself can be realized. If the group leader has not been realized, it
will be realized automatically.

The iconizing, layering, and destruction behavior of modal bases and their group
leaders is discussed in “Iconizing, Layering, and Destroying Groups of Top-Level
Bases” on page 1536.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_BASE or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NONEXCLUSIVE

Set this keyword to specify that the base can only have button widget children. These
buttons, unlike normal button widgets, have two states—set and unset. Non-exclusive
bases allow any number of the toggle buttons to be set at one time.
WIDGET_BASE IDL Reference Guide

1527
Note
If this keyword is set, the XOFFSET and YOFFSET keywords are ignored for any
widgets in this base. Non-exclusive bases are always laid out in columns or rows. If
neither the COLUMN nor ROW keyword is specified for a non-exclusive base, the
base defaults to COLUMN layout.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
Once defined, this name can be used in the user’s .Xdefaults file to customize
widget resources not directly supported via the IDL widget routines. This keyword is
accepted by all widget creation routines. This keyword only works with the “X”
device and is ignored on platforms that do not use the X Window System (i.e., IDL
for Windows, IDL for Macintosh).

RESOURCE_NAME allows unrestricted access to the underlying Motif widgets
within the following limitations:

• Users must have the appropriate resources defined in their .Xdefaults or
application default resource file, or IDL will not see the definitions and they
will not take effect.

• Motif resources are documented in the OSF/Motif Programmer’s Reference
Manual. To use them with RESOURCE_NAME, the IDL programmer must
determine the type of widget being used by IDL, and then look up the
resources that apply to them. Hence, RESOURCE_NAME requires some
programmer-level familiarity with Motif.
IDL Reference Guide WIDGET_BASE

1528
• Only resources that are not set within IDL can be modified using this
mechanism. Although it is not an error to set resources also set by IDL, the
IDL settings will silently override user settings. Research Systems does not
document the resources used by IDL since the actual resources used may differ
from release to release as the IDL widgets evolve. Therefore, you should set
only those resources that are obviously not being set by IDL. Among the
resources that are not being set by IDL are those that control colors, menu
mnemonics, and accelerator keys.

Example

The sample code below produces a pulldown menu named “Menu” with 2 entries
named “Item 1” and “Item 2”.

Using the RESOURCE_NAME keyword in conjunction with X resource definitions,
we can alter “Item 1” in several ways not possible through the standard IDL widgets
interface. We’ll give Item 1 a red background color. We’ll also assign “I” as the
keyboard mnemonic. Note that Motif automatically underlines the “I” in the title to
indicate this. We’ll also select Meta-F4 as the keyboard accelerator for selecting
“Item 1”. If Meta-F4 is pressed while the pointer is anywhere over this application,
the effect will be as if the menu was pulled down and “Item 1” was selected with the
mouse.

; Simple event handler:
PRO test_event, ev

HELP, /STRUCTURE, ev
END

; Simple widget creation routine:
PRO test

; The base gets the resource name "test":
a = WIDGET_BASE(RESOURCE_NAME = 'test')
b = WIDGET_BUTTON(a, VALUE='Menu', /MENU)

; Assign the Item 1 button the resource name "item1":
c = WIDGET_BUTTON(b, VALUE='Item 1', $

RESOURCE_NAME='item1')
c = WIDGET_BUTTON(b, VALUE='Item 2')
WIDGET_CONTROL, /REALIZE, a
XMANAGER, 'test', a

END

Note that we gave the overall application the resource name “test”, and the “Item 1”
button the resource name “item1”. Now we can use these names in the following
.Xdefaults file entries:
WIDGET_BASE IDL Reference Guide

1529
Idl*test*item1*mnemonic: I
Idl*test*item1*accelerator: Meta<Key>F4
Idl*test*item1*acceleratorText: Meta-F4
Idl*test*item1*background: red

Note on Specifying Color Resources

If you wish to specify unique colors for your widgets, it is generally a good idea to
use a color name (“red” or “lightblue”, for example) rather than specifying an exact
color match with a color string (such as “#b1b122222020”). If IDL is not able to
allocate an exact color, the entire operation may fail. Specifying a named color
implies “closest color match,” an operation that rarely fails.

If you need an exact color match and IDL fails to allocate the color, try modifying the
Idl.colors resource in the $IDL_DIR/resource/X11/lib/app-
defaults/Idl file.

RNAME_MBAR

A string containing an X Window System resource name to be applied to the
menubar created by the MBAR keyword. This keyword is identical to the
RESOURCE_NAME keyword except that the resource it specifies applies only to the
menubar.

ROW

If this keyword is included, the base lays out its children in rows. The value of this
keyword specifies the number of rows to be used. The number of child widgets in
each row is calculated by dividing the number of child widgets created by the number
of rows specified. When one row is filled, a new one is started.

Specifying both the COLUMN and ROW keywords causes an error.

Row Height

The height of each row is determined by the height of the tallest widget in that row. If
the GRID_LAYOUT keyword is set, all rows are as tall as the tallest widget in the
base.

Vertical Size of Widgets

If any of the BASE_ALIGN_* keywords to WIDGET_BASE is set, each widget has
its “natural” height, determined either by the value of the widget or by the YSIZE
keyword. Similarly, if any of the child widgets specifies one of the ALIGN_*
keywords, that widget will have its “natural” height. If none of the BASE_ALIGN_*
or (ALIGN_*) keywords are set, all widgets in the base are as tall as their row.
IDL Reference Guide WIDGET_BASE

1530
Horizontal Placement

Child widgets are placed horizontally one next to the other, with no extra space. If the
GRID_LAYOUT keyword is set, each column is as wide as its widest member.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SCROLL

Set this keyword to give the widget scroll bars that allow viewing portions of the
widget contents that are not currently on the screen.

Note
For the Macintosh, if you set XSIZE or YSIZE to a value less than 48, the base
created with the SCROLL keyword will be a minimum of 48x48. If you have not
specified values for XSIZE or YSIZE, the base will be set to a minimum of 66x66.
If the base is resized, it will jump to the minimum size of 128x64.

Warning
You cannot specify both the SCROLL and MODAL keywords for the same widget.
Doing so will cause an error.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.
WIDGET_BASE IDL Reference Guide

1531
Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

SPACE

The space, in units specified by the UNITS keyword (pixels are the default), between
children of a row or column major base. This keyword is ignored if either the
EXCLUSIVE or NONEXCLUSIVE keyword is present.

TITLE

A string containing the title to be used for the widget. Base widgets use the title only
if they are top-level widgets.

Note that if the widget base is not wide enough to contain the specified title, the title
may appear truncated. If you must be able to see the full title, you have several
alternatives:

• Rearrange the widgets in the base so that the base becomes naturally wide
enough. This is the best solution.

• Don’t worry about this issue. If the user needs to see the entire label, they can
resize the window using the mouse.

• Create the base without using the COLUMN or ROW keywords. Instead, use
the XSIZE keyword to explicitly set a usable width. This is an undesirable
solution that can lead to strange-looking widget layouts.

TLB_FRAME_ATTR

Set this keyword to one of the values shown in the table below to suppress certain
aspects of a top-level base’s window frame. This keyword applies only to top-level
bases. The settings are merely hints to the window system and may be ignored by
some window managers. Valid settings are:

Value Meaning

1 Base cannot be resized, minimized, or maximized.

2 Suppress display of system menu.

Table 91: Valid Values for TLB_FRAME_ATTR Keyword
IDL Reference Guide WIDGET_BASE

1532
This keyword is set bitwise, so multiple effects can be set by adding values together.
For example, to make a base that has no title bar (setting 4) and cannot be moved
(setting 16), set the TLB_FRAME_ATTR keyword to 4+16, or 20.

Note
For the Macintosh, you can not suppress the title bar; only modal dialogs use a
window without a title bar. Any other use of a suppressed title bar would be
contrary to Macintosh Human Interface Guidelines and would create an immovable
window.

TLB_KILL_REQUEST_EVENTS

Set this keyword, usable only with top-level bases, to send the top-level base a
WIDGET_KILL_REQUEST event if a user tries to destroy the widget using the
window manager (by default, widgets are simply destroyed). See the “Events”
section below for more information.

Use this keyword to perform complex actions before allowing a widget application to
exit. Note that widgets that have this keyword set are responsible for killing
themselves after receiving a WIDGET_KILL_REQUEST event—they cannot be
destroyed using the usual window system controls.

Use a call to TAG_NAMES with the STRUCTURE_NAME keyword set to
differentiate a WIDGET_KILL_REQUEST event from other types of widget events.
For example:

IF TAG_NAMES(event, /STRUCTURE_NAME) EQ $
'WIDGET_KILL_REQUEST' THEN ...

TLB_SIZE_EVENTS

Set this keyword, when creating a top-level base, to make that base return an event
when the base is resized by the user. See the “Events” section below for more
information.

4 Suppress title bar.

8 Base cannot be closed.

16 Base cannot be moved.

Value Meaning

Table 91: Valid Values for TLB_FRAME_ATTR Keyword
WIDGET_BASE IDL Reference Guide

1533
TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget
whenever the mouse pointer enters or leaves the region covered by that widget.
Widget tracking events are returned as structures with the following definition:

{ WIDGET_TRACKING, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ID, TOP, and HANDLER are the standard fields found in every widget event.
ENTER is 1 if the tracking event is an entry event, and 0 if it is an exit event.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

The user value for a widget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.
IDL Reference Guide WIDGET_BASE

1534
Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget layout.

XPAD

The horizontal space, in units specified by the UNITS keyword (pixels are the
default), between child widgets and the edges of a row or column major base. The
default value of XPAD is platform dependent. This keyword is ignored if either the
EXCLUSIVE or NONEXCLUSIVE keyword is present.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.

X_SCROLL_SIZE

The XSIZE keyword always specifies the width of a widget. When the SCROLL
keyword is specified, this size is not necessarily the same as the width of the visible
area. The X_SCROLL_SIZE keyword allows you to set the width of the scrolling
viewport independently of the actual width of the widget.

Use of the X_SCROLL_SIZE keyword implies SCROLL. This means that scroll bars
will be added in both the horizontal and vertical directions when X_SCROLL_SIZE
is specified. Because the default size of the scrolling viewport may differ between
platforms, it is best to specify Y_SCROLL_SIZE when specifying
X_SCROLL_SIZE.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget layout.
WIDGET_BASE IDL Reference Guide

1535
YPAD

The vertical space, in units specified by the UNITS keyword (pixels are the default),
between child widgets and the edges of a row or column major base. The default
value of YPAD is platform-dependent. This keyword is ignored if either the
EXCLUSIVE or NONEXCLUSIVE keyword is present.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.

Y_SCROLL_SIZE

The YSIZE keyword always specifies the height of a widget. When the SCROLL
keyword is specified, this size is not necessarily the same as the height of the visible
area. The Y_SCROLL_SIZE keyword allows you to set the height of the scrolling
viewport independently of the actual height of the widget.

Use of the Y_SCROLL_SIZE keyword implies SCROLL. This means that scroll bars
will be added in both the horizontal and vertical directions when Y_SCROLL_SIZE
is specified. Because the default size of the scrolling viewport may differ between
platforms, it is best to specify X_SCROLL_SIZE when specifying
Y_SCROLL_SIZE.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
base widgets. In addition to those keywords that affect all widgets, the following are
particularly useful: CANCEL_BUTTON, DEFAULT_BUTTON,
KBRD_FOCUS_EVENTS.

Keywords to WIDGET_INFO

A number of keywords to the WIDGET_INFO function return information that
applies specifically to base widgets. In addition to those keywords that apply to all
widgets, the following are particularly useful: KBRD_FOCUS_EVENTS, MODAL,
TLB_KILL_REQUEST_EVENTS.

Exclusive And Non-Exclusive Bases

If the EXCLUSIVE or NONEXCLUSIVE keywords are specified, the base only
allows button widget children.
IDL Reference Guide WIDGET_BASE

1536
Positioning Child Widgets Within a Base

The standard base widget does not impose any placement constraints on its child
widgets. Children of a “bulletin board” base (a base that was created without setting
the COLUMN or ROW keywords) have an offset of (0,0) unless an offset is
explicitly specified via the XOFFSET or YOFFSET keywords. This means that if
you do not specify any of COLUMN, ROW, XOFFSET, or YOFFSET keywords,
child widgets will be placed one on top of the other in the upper left corner of the
base.

However, laying out widgets using the XSIZE, YSIZE, XOFFSET, and YOFFSET
keywords can be both tedious and error-prone. Also, if you want your widget
application to display properly on different platforms, you should use the COLUMN
and ROW keywords to influence child widget layouts instead of explicitly formatting
your interfaces.

When the ROW or COLUMN keywords are specified, the base decides how to lay
out its children, and any XOFFSET and YOFFSET keywords specified for such
children are ignored.

Positioning Top-Level Bases

When locating a new top level window, some window managers ignore the
program’s positioning requests and either choose a position or allow the user to
choose. In such cases, the XOFFSET and YOFFSET keywords to WIDGET_BASE
will not have an effect. The window manager may provide a way to disable this
positioning style. The Motif window manager (mwm) can be told to honor
positioning requests by placing the following lines in your .Xdefaults file:

Mwm*clientAutoPlace: False
Mwm*interactivePlacement: False

Iconizing, Layering, and Destroying Groups of Top-Level
Bases

Group membership (defined via the GROUP_LEADER keyword) controls the way
top-level base widgets are iconized, layered, and destroyed.

Note
A group can contain sub-groups. Group behavior affects all members of a group
and its sub-groups. For example, suppose we create three top-level base widgets
with the following group hierarchy:
WIDGET_BASE IDL Reference Guide

1537
base1 = WIDGET_BASE()
base2 = WIDGET_BASE(GROUP_LEADER=base1)
base3 = WIDGET_BASE(GROUP_LEADER=base2)

Effectively, two groups are created. One group has base2 as its leader and base3 as
its member. The other group has base1 as its leader and both base2 and base3 as
members. If base1 is iconized, both base2 and base3 are iconized as well. If
base2 is iconized, base3 is iconized but base1 is not.

Widgets behave slightly differently when displayed on different platforms, and
depending on whether they are floating or modal bases. The following rules apply to
groups of widgets within a group leader/member hierarchy. Widgets that do not
belong to the same group hierarchy cannot influence each other.

Iconization and Mapping

On Motif and Windows platforms, bases and groups of bases can be iconized (or
minimized) by clicking the system minimize control. Minimization has no meaning
on the Macintosh. On all platforms, bases and groups of bases can be mapped (made
visible) and unmapped (made invisible).

Motif

When a group leader is iconized or unmapped, all members of the group are iconized
or unmapped as well. Similarly, when a group leader is restored, all members of the
group are restored.

Floating and modal bases cannot be iconized or unmapped independently. When the
group leader of a floating or modal base is iconized, a single icon is created for both
the group leader and the floating or modal base. When the group leader of a floating
or modal base is unmapped, both the group leader and floating or modal base are
made invisible.

Windows

When a group leader is iconized or unmapped, all members of the group are iconized
or unmapped as well. Similarly, when a group leader is restored, all members of the
group are restored.

When a floating base is iconized, its group leader is iconized as well and a single icon
is created. When a floating base is unmapped, its group leader is unmapped as well.

Modal bases cannot be iconized or unmapped. Other bases cannot be iconized or
unmapped until the modal base is dismissed.
IDL Reference Guide WIDGET_BASE

1538
Macintosh

On the Macintosh, iconization has no meaning.

When a floating base is unmapped, its group leader is unmapped as well.

Modal bases cannot be unmapped. Other bases cannot be unmapped until the modal
base is dismissed.

Layering

Layering is the process by which groups of widgets seem to share the same plane on
the display screen. Within a layer on the screen, widgets have a Z-order, or front-to-
back order, that defines which widgets appear to be on top of other widgets.

Motif

All elements on the screen—widgets, the IDLDE, other Motif applications—share a
single layer and have an arbitrary Z-order. There is no special layering of IDL
widgets.

Windows and Macintosh

All non-floating and non-modal widgets within a group hierarchy share the same
layer—that is, when one group member has the input focus, all members of the group
hierarchy are displayed in a layer that appears in front of all other groups or
applications. Within the layer, the widgets can have an arbitrary Z-order.

Widgets that are floating or modal always float above their group leaders.

Destruction

When a group leader widget is destroyed, either programmatically or by clicking on
the system “close” button, all members of the group and all sub-groups are destroyed
as well.

If a modal base is on the display, it must be dismissed before any widget can be
destroyed.

Events

Resize Events

Top-level widget bases return the following event structure only when they are
resized by the user and the base was created with the TLB_SIZE_EVENTS keyword
set:

{ WIDGET_BASE, ID:0L, TOP:0L, HANDLER:0L, X:0L, Y:0L }
WIDGET_BASE IDL Reference Guide

1539
ID is the widget ID of the base generating the event. TOP is the widget ID of the top
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. The X and Y fields return the new width of the
base, not including any frame provided by the window manager.

Keyboard Focus Events

Widget bases return the following event structure when the keyboard focus changes
and the base was created with the KBRD_FOCUS_EVENTS keyword set:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ID is the widget ID of the base generating the event. TOP is the widget ID of the top
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. The ENTER field returns 1 (one) if the base is
gaining the keyboard focus, or 0 (zero) if the base is losing the keyboard focus.

Kill Request Events

Top-level widget bases return the following event structure only when a user tries to
destroy the widget using the window manager and the base was created with the
TLB_KILL_REQUEST_EVENTS keyword set:

{ WIDGET_KILL_REQUEST, ID:0L, TOP:0L, HANDLER:0L }

ID is the widget ID of the base generating the event. TOP is the widget ID of the top
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine.

See Also

Building IDL Applications Chapter 22, “Widgets”.
IDL Reference Guide WIDGET_BASE

1540
WIDGET_BUTTON

The WIDGET_BUTTON function creates button widgets.

The returned value of this function is the widget ID of the newly-created button.

Syntax

Result = WIDGET_BUTTON(Parent [, /ALIGN_CENTER | , /ALIGN_LEFT | ,
/ALIGN_RIGHT] [, /BITMAP] [, /DYNAMIC_RESIZE] [, EVENT_FUNC=string]
[, EVENT_PRO=string] [, FONT=string] [, FRAME=width]
[, FUNC_GET_VALUE=string] [, GROUP_LEADER=widget_id] [, /HELP]
[, KILL_NOTIFY=string] [, /MENU] [, /NO_COPY] [, /NO_RELEASE]
[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, SCR_XSIZE=width] [, SCR_YSIZE=height] [, /SENSITIVE] [, /SEPARATOR]
[, /TRACKING_EVENTS] [, UNAME=string] [, UNITS={0 | 1 | 2}]
[, UVALUE=value] [, VALUE=value] [, X_BITMAP_EXTRA=bits]
[, XOFFSET=value] [, XSIZE=value] [, YOFFSET=value] [, YSIZE=value])

X Windows Keywords: [, RESOURCE_NAME=string]

Arguments

Parent

The widget ID of the parent for the new button widget.

Keywords

ALIGN_CENTER

Set this keyword to center justify the button’s text label.

ALIGN_LEFT

Set this keyword to left justify the button’s text label.

ALIGN_RIGHT

Set this keyword to right justify the button’s text label.

BITMAP

Set this keyword to specify that the bitmap specified with the VALUE keyword is a
color bitmap. The value of a widget button can be a bitmap as described below under
WIDGET_BUTTON IDL Reference Guide

1541
“Bitmap Button Labels”. If you specify a color bitmap with the VALUE keyword,
you must also set the /BITMAP keyword.

DYNAMIC_RESIZE

Set this keyword to create a widget that resizes itself to fit its new value whenever its
value is changed. Note that this keyword does not take effect when used with the
SCR_XSIZE, SCR_YSIZE, XSIZE, or YSIZE keywords. If one of these keywords is
also set, the widget will be sized as specified by the sizing keyword and will never
resize itself dynamically.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a “device font”
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows or
Macintosh systems). See “About Device Fonts” on page 2482 for details on
specifying names for device fonts. If this keyword is omitted, the default font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; in
general, the system default font is the font appropriate for the version of Windows
in question.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget. Note that this keyword is only a “hint” to the toolkit, and may be ignored in
some instances.
IDL Reference Guide WIDGET_BUTTON

1542
FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

HELP

Set this keyword to tell the widget toolkit that this button is a “help” button for a
menubar and should be given that appearance. For example, Motif specifies that the
help menubar item is displayed on the far right of the menubar. This keyword is
ignored in all other contexts and may be ignored by window managers (including that
for the Macintosh) that have no such special appearance defined.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
Note that the procedure specified is used only if you are not using the XMANAGER
procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.
WIDGET_BUTTON IDL Reference Guide

1543
MENU

The presence of this keyword indicates that the button will be used to activate a pull-
down menu. Such buttons can have button children that are then placed into a pull-
down menu.

Under Motif, if the value specified for MENU is greater than 1, the button label is
enclosed in a box to indicate that this button is a pull-down menu. See the
CW_PDMENU function for a high-level pull-down menu creation utility.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_BUTTON or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NO_RELEASE

Set this keyword to make exclusive and non-exclusive buttons generate only select
events. This keyword has no effect on regular buttons.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
IDL Reference Guide WIDGET_BUTTON

1544
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 1527 for a complete discussion of this keyword.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

SEPARATOR

Set this keyword to tell the widget toolkit that this button is part of a pulldown menu
pane and that a separator line should be added directly above this entry. This keyword
is ignored in all other contexts.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget
whenever the mouse pointer enters or leaves the region covered by that widget. For
WIDGET_BUTTON IDL Reference Guide

1545
the structure of tracking events, see “TRACKING_EVENTS” on page 1533 in the
documentation for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a widget button is the label for
that button. This label can be a string or a bitmap as described below under “Bitmap
Button Labels”. If you specify the filename for a color bitmap, you must also set the
/BITMAP keyword.

Note
Under Microsoft Windows, including the ampersand character (&) in the value of a
button widget causes the window manager to place an underline under the character
following the ampersand. (This is a feature of Microsoft Windows, and is generally
used to indicate which character is used as a keyboard accelerator for the button.) If
you are designing an application that will run on different platforms, you should
avoid the use of the ampersand in button value strings.
IDL Reference Guide WIDGET_BUTTON

1546
X_BITMAP_EXTRA

When creating a bitmap button that is not of a “byte-aligned” size (i.e., a dimension is
not a multiple of 8), this keyword specifies how many bits of the supplied bitmap
must be ignored (within the end byte). For example, to create a 10 by 8 bitmap, you
need to supply a 2 by 8 array of bytes and ignore the bottom 6 bits. Therefore, you
would specify X_BITMAP_EXTRA = 6.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.
WIDGET_BUTTON IDL Reference Guide

1547
Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
button widgets. In addition to those keywords that affect all widgets, the following
are particularly useful: DYNAMIC_RESIZE, GET_VALUE, INPUT_FOCUS,
SET_BUTTON, SET_VALUE, X_BITMAP_EXTRA.

Keywords to WIDGET_INFO

Some keywords to the WIDGET_INFO function return information that applies
specifically to button widgets. In addition to those keywords that apply to all widgets,
the following are particularly useful: DYNAMIC_RESIZE.

Exclusive And Non-Exclusive Bases

Buttons placed into exclusive or non-exclusive bases (created via the EXCLUSIVE
or NONEXCLUSIVE keywords to WIDGET_BASE procedure) are created as two-
state “toggle” buttons, which are controlled by such bases.

Events Returned by Button Widgets

Pressing the mouse button while the mouse cursor is over a button widget causes the
widget to generate an event. The event structure returned by the WIDGET_EVENT
function is defined by the following statement:

{WIDGET_BUTTON, ID:0L, TOP:0L, HANDLER:0L, SELECT:0}

ID is the widget id of the button generating the event. TOP is the widget ID of the top
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. SELECT is set to 1 if the button was set, and 0 if
released. Normal buttons do not generate events when released, so SELECT will
always be 1. However, toggle buttons (created by parenting a button to an exclusive
or non-exclusive base) return separate events for the set and release actions.

Bitmap Button Labels

In addition to using a text string as the label of a button (set via the VALUE
keyword), a button can have a bitmap label. This allows buttons to contain a graphic
symbol. The bitmap is specified via the VALUE keyword. If you specify a color
bitmap, you must also specify the /BITMAP keyword, like this:

button=WIDGET_BUTTON (base, VALUE='mybitmap.bmp', /BITMAP)

To modify the color bitmap after creation, use the /BITMAP keyword with
WIDGET_CONTROL, like this:
IDL Reference Guide WIDGET_BUTTON

1548
WIDGET_CONTROL, button. SET_VALUE='mybitmap2.bmp', /BITMAP

You can produce appropriate bitmaps in the following ways:

• On Windows, create a color bitmap using the IDL GUIBuilder Bitmap Editor,
which creates 16 color bitmaps for buttons. The Bitmap Editor can read and
write bitmap files (*.bmp). Using the editor, you can create your own bitmaps,
or you can open existing bitmap files and modify them. Open the Bitmap
Editor from the Properties dialog for a created button. For more information,
see “Using the Bitmap Editor” in Chapter 21 of Building IDL Applications.

• Use any color bitmap editor available on your operating system.

• Create a black and white bitmap using an external bitmap editor, and read it
into an IDL byte array using the appropriate procedure (READ_BMP,
READ_PICT, etc.) and convert the byte array to a bitmap byte array using the
CVTTOBM function.

• On an X-Window system, use the X11 bitmap utility to create a black and
white bitmap byte array and read it in to IDL using the READ_X11_BITMAP
routine.

• Create a black and white bitmap using the XBM_EDIT procedure. This
procedure offers several alternatives for the form of the final bitmap.

Although IDL places no restriction on the size of bitmap allowed, the various toolkits
may prefer certain sizes.

Transparent Bitmaps

For 16- and 256-color bitmaps, IDL uses the color of the pixel in the lower left corner
as the transparent color. All pixels of this color become transparent, allowing the
button color to show through. This allows you to use bitmaps that are not rectangular.
If you have a rectangular bitmap that you want to use as a button label, you must
either draw a border of a different color around the bitmap or save the bitmap as 24-
bit (TrueColor). If your bitmap also contains text, make sure the border you draw is a
different color than the text, otherwise the text color will become transparent.

See Also

CW_BGROUP, CW_PDMENU
WIDGET_BUTTON IDL Reference Guide

1549
WIDGET_CONTROL

The WIDGET_CONTROL procedure is used to realize, manage, and destroy widget
hierarchies. It is often used to change the default behavior or appearance of
previously-realized widgets.

Syntax

WIDGET_CONTROL [, Widget_ID]

Keywords that apply to all widgets: [, BAD_ID=variable] [, /CLEAR_EVENTS]
[, DEFAULT_FONT=string{do not specify Widget_ID}]
[, /DELAY_DESTROY{do not specify Widget_ID}] [, /DESTROY]
[, EVENT_FUNC=string] [, EVENT_PRO=string] [, FUNC_GET_VALUE=string]
[, GET_UVALUE=variable] [, GROUP_LEADER=widget_id]
[, /HOURGLASS{do not specify Widget_ID}] [, KILL_NOTIFY=string] [, /MAP]
[, /NO_COPY] [, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, /REALIZE] [, /RESET{do not specify Widget_ID}]

[, SCR_XSIZE=width] [, SCR_YSIZE=height] [, SEND_EVENT=structure]
[, /SENSITIVE] [, SET_UNAME=string] [, SET_UVALUE=value] [, /SHOW]
[, TIMER=value] [, TLB_GET_OFFSET=variable] [, TLB_GET_SIZE=variable]
[, /TLB_KILL_REQUEST_EVENTS] [, TLB_SET_TITLE=string]
[, TLB_SET_XOFFSET=value] [, TLB_SET_YOFFSET=value]
[, /TRACKING_EVENTS] [, UNITS={0 | 1 | 2}] [, /UPDATE] [, XOFFSET=value]
[, XSIZE=value] [, YOFFSET=value] [, YSIZE=value]

Keywords that apply to widgets created with widget_base:
[, CANCEL_BUTTON=widget_id{for modal bases}]
[, DEFAULT_BUTTON=widget_id{for modal bases}] [, /ICONIFY]
[, /KBRD_FOCUS_EVENTS] [, /TLB_KILL_REQUEST_EVENTS]

Keywords that apply to widgets created with widget_button: [, /BITMAP]
[, /DYNAMIC_RESIZE] [, GET_VALUE=value] [, /INPUT_FOCUS]
[, /SET_BUTTON] [, SET_VALUE=value] [, X_BITMAP_EXTRA=bits]

Keywords that apply to widgets created with widget_draw:
[, /DRAW_BUTTON_EVENTS] [, /DRAW_EXPOSE_EVENTS]
[, /DRAW_MOTION_EVENTS] [, /DRAW_VIEWPORT_EVENTS]
[, DRAW_XSIZE=integer] [, DRAW_YSIZE=integer]
[, GET_DRAW_VIEW=variable] [, GET_UVALUE=variable]
[, GET_VALUE=variable] [, /INPUT_FOCUS] [, SET_DRAW_VIEW=[x, y]]
IDL Reference Guide WIDGET_CONTROL

1550
Keywords that apply to widgets created with widget_droplist:
[, /DYNAMIC_RESIZE] [, SET_DROPLIST_SELECT=integer]
[, SET_VALUE=value]

Keywords that apply to widgets created with widget_label:
[, /DYNAMIC_RESIZE] [, GET_VALUE=value] [, SET_VALUE=value]

Keywords that apply to widgets created with widget_list:
[, SET_LIST_SELECT=value] [, SET_LIST_TOP=integer] [, SET_VALUE=value]

Keywords that apply to widgets created with widget_slider:
[, GET_VALUE=value] [, SET_SLIDER_MAX=value]
[, SET_SLIDER_MIN=value] [, SET_VALUE=value]

Keywords that apply to widgets created with widget_table: [, ALIGNMENT={0 |
1 | 2}] [, /ALL_TABLE_EVENTS] [, AM_PM=[string, string]]
[, COLUMN_LABELS=string_array] [, COLUMN_WIDTHS=array]
[, DAYS_OF_WEEK=string_array{7 names}] [, /DELETE_COLUMNS{not for
row_major mode}] [, /DELETE_ROWS{not for column_major mode}]
[, /EDITABLE] [, EDIT_CELL=[integer, integer]] [, FORMAT=value]
[, GET_VALUE=variable] [, INSERT_COLUMNS=value]
[, INSERT_ROWS=value] [, /KBRD_FOCUS_EVENTS]
[, MONTHS=string_array{12 names}] [, ROW_LABELS=string_array]
[, ROW_HEIGHTS=array] [, SET_TABLE_SELECT=[left, top, right, bottom]]
[, SET_TABLE_VIEW=[integer, integer]] [, SET_TEXT_SELECT=[integer,
integer]] [, SET_VALUE=value] [, TABLE_XSIZE=columns]
[, TABLE_YSIZE=rows] [, /USE_TABLE_SELECT | ,
USE_TABLE_SELECT=[left, top, right, bottom]] [, /USE_TEXT_SELECT]

Keywords that apply to widgets created with widget_text:
[, /ALL_TEXT_EVENTS] [, /APPEND] [, /EDITABLE] [, GET_VALUE=variable]
[, /INPUT_FOCUS] [, /KBRD_FOCUS_EVENTS] [, /NO_NEWLINE]
[, SET_TEXT_SELECT=[integer, integer]]
[, SET_TEXT_TOP_LINE=line_number] [, SET_VALUE=value]
[, /USE_TEXT_SELECT]

Arguments

Widget_ID

The widget ID of the widget to be manipulated. This argument is required by all
operations, unless the description of the specific keyword states otherwise. Note that
if Widget_ID is not provided for a keyword that needs it, that keyword is quietly
ignored.
WIDGET_CONTROL IDL Reference Guide

1551
Keywords

Not all keywords to WIDGET_CONTROL apply to all combinations of widgets. In
the following list, descriptions of keywords that affect only certain types of widgets
include a list of the widgets for which the keyword is useful.

ALIGNMENT

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword equal to a scalar or 2-D array specifying the alignment of the text
within each cell. An alignment of 0 (the default) aligns the left edge of the text with
the left edge of the cell. An alignment of 2 right-justifies the text, while 1 results in
text centered within the cell. If ALIGNMENT is set equal to a scalar, all table cells
are aligned as specified. If ALIGNMENT is set equal to a 2-D array, the alignment of
each table cell is governed by the corresponding element of the array. If the
USE_TABLE_SELECT keyword is set, then the alignment is changed only for the
selected cells.

ALL_TABLE_EVENTS

This keyword applies to widgets created with the WIDGET_TABLE function.

Along with the EDITABLE keyword, ALL_TABLE_EVENTS controls the type of
events generated by the table widget. Set the ALL_TABLE_EVENTS keyword to
cause the full set of events to be generated. If ALL_TABLE_EVENTS is not set,
setting EDITABLE causes only end-of-line events to be generated (which could be
used by the programmer as an indication to check the cell value or to set the currently
selected cell to the next cell). If EDITABLE is not set, all events are suppressed. See
the table below for additional details. Note that the equivalent keyword in the
WIDGET_TABLE creation routine is called ALL_EVENTS.

Keywords Effects

ALL_TABLE_EVENTS EDITABLE Input changes
widget contents?

Type of events
generated

Not set Not set No None

Not set Set Yes End-of-line
insertion

Set Not set No All events

Set Set Yes All events

Table 92: Effects of using the ALL_TABLE_EVENTS and EDITABLE keywords
IDL Reference Guide WIDGET_CONTROL

1552
ALL_TEXT_EVENTS

This keyword applies to widgets created with the WIDGET_TEXT function.

Along with the EDITABLE keyword, ALL_TEXT_EVENTS controls the type of
events generated by the text widget. Set the ALL_TEXT_EVENTS keyword to cause
the full set of events to be generated. If ALL_TEXT_EVENTS is not set, setting
EDITABLE causes only end-of-line events to be generated. If EDITABLE is not set,
all events are suppressed. See the table below for additional details. Note that the
equivalent keyword in the WIDGET_TEXT creation routine is called
ALL_EVENTS.

AM_PM

This keyword applies to widgets created with the WIDGET_TABLE function.

Supplies a string array of 2 names to be used for the names of the AM and PM string
when processing explicitly formatted dates (CAPA, CApA, and CapA format codes)
with the FORMAT keyword.

APPEND

This keyword applies to widgets created with the WIDGET_TEXT function.

When using the SET_VALUE keyword to set the contents of a text widget (as
created with the WIDGET_TEXT procedure), setting this keyword indicates that the
supplied text should be appended to the existing contents of the text widget rather
than replace it.

Keywords Effects

ALL_TEXT_EVENTS EDITABLE Input changes
widget contents?

Type of events
generated

Not set Not set No None

Not set Set Yes End-of-line
insertion

Set Not set No All events

Set Set Yes All events

Table 93: Effects of using the ALL_TEXT_EVENTS and EDITABLE keywords
WIDGET_CONTROL IDL Reference Guide

1553
BAD_ID

This keyword applies to all widgets.

If Widget_ID is not a valid widget identifier, this WIDGET_CONTROL normally
issues an error and causes program execution to stop. However, if BAD_ID is present
and specifies a named variable, the invalid ID is stored into the variable, and this
routine quietly returns. If no error occurs, a zero is stored.

CANCEL_BUTTON

This keyword applies to widgets created with the WIDGET_BASE function using
the MODAL keyword.

Set this keyword equal to the widget ID of a button widget that will be the cancel
button on a modal base widget. Pressing the Esc key on the keyboard when a modal
widget is on the screen is the same as clicking the button. On Motif and Windows
platforms, selecting Close from the system menu (generally located at the upper left
of the base widget) generates a button event for the Cancel button.

CLEAR_EVENTS

This keyword applies to all widgets.

If set, any events generated by the widget hierarchy rooted at Widget_ID which have
arrived but have not been processed (via the WIDGET_EVENT procedure) are
discarded.

COLUMN_LABELS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword equal to an array of strings to be used as labels for the columns of
the table. If no label is specified for a column, it receives the default label “n” where
n is the column number. If this keyword is set to the empty string (''), all column
labels are set to be empty.

COLUMN_WIDTHS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword equal to an array of widths for the columns of the table widget. The
widths are given in the units specified with the UNITS keyword. If no width is
specified for a column, that column is set to the default size, which varies by
platform. If COLUMN_WIDTHS is set to a scalar value, all of the column widths are
set to that value.
IDL Reference Guide WIDGET_CONTROL

1554
DAYS_OF_WEEK

This keyword applies to widgets created with the WIDGET_TABLE function.

Supplies a string array of 7 names to be used for the names of the days of the week
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

DEFAULT_BUTTON

This keyword applies to widgets created with the WIDGET_BASE function using
the MODAL keyword.

Set this keyword equal to the widget ID of a button widget that will be the default
button on a modal base widget. The default button is highlighted by the window
system. Pressing the Enter or Return key on the keyboard when a modal widget is
on the screen is the same as clicking the button.

DEFAULT_FONT

This keyword applies to all widgets. Do not specify a Widget ID when using this
keyword.

A string containing the name of the default font to be used.

If the font to be used for a given widget is not explicitly specified (via the FONT
keyword to the widget creation function), a default supplied by the window system or
server is used. Use this keyword to change the default. See “About Device Fonts” on
page 2482 for details on specifying names for device fonts. If this keyword is
omitted, the default font is used.

Note
On Microsoft Windows platforms, IDL uses the system default font. Different
versions of Windows use different system default fonts; in general, the system
default font is the font appropriate for the version of Windows in question.

DELAY_DESTROY

This keyword applies to all widgets. Do not specify a Widget ID when using this
keyword.

Normally, when the user destroys a widget hierarchy using the window manager, it is
immediately removed. This can cause problems for applications that use the
background task facility provided by the XMANAGER procedure if the hierarchy is
destroyed while a background task is using it.
WIDGET_CONTROL IDL Reference Guide

1555
If DELAY_DESTROY is set, attempts to destroy the hierarchy are delayed until the
next attempt to obtain an event for it. Setting DELAY_DESTROY to zero restores
the default behavior.

XMANAGER uses this keyword automatically when managing background tasks. It
is not expected that applications will need to use it directly.

DELETE_COLUMNS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to delete the currently-selected columns. If the
USE_TABLE_SELECT keyword is given as a four element array, the columns
specified are deleted.

Warning
You cannot delete columns from a table which displays structure data in
/ROW_MAJOR (default) mode because it would change the structure.

DELETE_ROWS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to delete the currently-selected rows. If the USE_TABLE_SELECT
keyword is given as a four element array, the rows specified are deleted.

Warning
You cannot delete rows from a table which displays structure data in
/COLUMN_MAJOR mode because it would change the structure.

DESTROY

This keyword applies to all widgets.

Set this keyword to destroy the widget and any child widgets in its hierarchy. Any
further attempts to use the IDs for these widgets will cause an error.

DRAW_BUTTON_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to enable button press events for draw widgets. Setting a zero value
disables such events.
IDL Reference Guide WIDGET_CONTROL

1556
DRAW_EXPOSE_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to enable viewport expose events for draw widgets. Setting a zero
value disables such events.

Note
You must explicitly disable backing store (by setting the RETAIN keyword to
WIDGET_DRAW equal to zero) in order to generate expose events.

DRAW_MOTION_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to enable motion events for draw widgets. Setting a zero value
disables such events.

DRAW_VIEWPORT_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to enable viewport motion events for draw widgets. Setting a zero
value disables such events.

DRAW_XSIZE

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to an integer that specifies the new horizontal size for the graphics
region (the virtual size) of a draw widget in units specified by the UNITS keyword
(pixels are the default). For non-scrollable draw widgets, setting this keyword is the
same as setting SCR_XSIZE or XSIZE. However, for scrolling draw widgets
DRAW_XSIZE is the only way to change the width of the drawable area (XSIZE sets
the viewport size).

DRAW_YSIZE

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to an integer that specifies the new vertical size for the graphics
region (the virtual size) of a draw widget in units specified by the UNITS keyword
(pixels are the default). For non-scrollable draw widgets, setting this keyword is the
same as setting SCR_YSIZE or YSIZE. However, for scrolling draw widgets
DRAW_YSIZE is the only way to change the height of the drawable area (YSIZE
sets the viewport size).
WIDGET_CONTROL IDL Reference Guide

1557
DYNAMIC_RESIZE

This keyword applies to widgets created with the WIDGET_BUTTON,
WIDGET_DROPLIST, and WIDGET_LABEL functions.

Set this keyword to activate (if set to 1) or deactivate (if set to 0) dynamic resizing of
the specified WIDGET_BUTTON, WIDGET_LABEL, or WIDGET_DROPLIST
widget (see the documentation for the DYNAMIC_RESIZE keyword to those
procedures for more information about dynamic widget resizing).

EDITABLE

This keyword applies to widgets created with the WIDGET_TABLE and
WIDGET_TEXT functions.

Set this keyword to allow direct user editing of the contents of a text or table widget.
Normally, the text in text and table widgets is read-only. See the descriptions of the
ALL_TABLE_EVENTS and ALL_TEXT_EVENTS keywords for additional details.

EDIT_CELL

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword equal to a two-element integer array containing the x (row) and
y (column) coordinates of a table cell to put that cell into edit mode. For example, to
put the top left cell of a table widget into edit mode, use the following command:

WIDGET_CONTROL, table, EDIT_CELL=[0, 0]

where table is the Widget ID of the table widget.

EVENT_FUNC

This keyword applies to all widgets.

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy given by
Widget_ID.

This keyword overwrites any event routine supplied by previous uses of the
EVENT_FUNC or EVENT_PRO keywords. To specify no event routine, set this
keyword to a null string ('').

EVENT_PRO

This keyword applies to all widgets.
IDL Reference Guide WIDGET_CONTROL

1558
A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy given by
Widget_ID.

This keyword overwrites any event routine supplied by previous uses of the
EVENT_FUNC or EVENT_PRO keywords. To specify no event routine, set this
keyword to a null string ('').

FORMAT

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword equal to a single string or an array of strings that specify the format
of data displayed within table cells. The string(s) are of the same form as used by the
FORMAT keyword to the PRINT procedure, and the default format is the same as
that used by the PRINT/PRINTF procedure. If the USE_TABLE_SELECT keyword
is set, then the format is changed only for the selected cells.

FUNC_GET_VALUE

This keyword applies to all widgets.

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. The
function specified by FUNC_GET_VALUE is called with the widget ID as an
argument. The function specified by FUNC_GET_VALUE should return a value for
a widget. Using this technique allows you to change the value that should be returned
for a widget. Compound widgets use this ability to define their values transparently to
the user.

GET_DRAW_VIEW

This keyword applies to widgets created with the WIDGET_DRAW function.

Specifies a named variable which will be assigned the current position of a draw
widget viewport. The position is returned as a 2-element integer array giving the X
and Y position relative to the lower left corner of the graphics area.

GET_UVALUE

This keyword applies to all widgets.

Set this keyword to a named variable to contain the current user value of the widget.

Each widget can contain a user set value of any data type and organization. This
value is not used by the widget in any way, and exists entirely for the convenience of
the IDL programmer. This keyword allows you to obtain the current user value.
WIDGET_CONTROL IDL Reference Guide

1559
The user value of a widget can be set with the SET_UVALUE keyword to this
routine, or with the UVALUE keyword to the routine that created it.

To improve the efficiency of the data transfer, consider using the NO_COPY
keyword (described below) with GET_UVALUE.

GET_VALUE

This keyword applies to widgets created with the WIDGET_BUTTON,
WIDGET_DRAW, WIDGET_LABEL, WIDGET_SLIDER, WIDGET_TABLE,
and WIDGET_TEXT functions.

Note
If you would like information about the values returned for a specific compound
widget—beginning with the prefix “CW_”—please refer to the description of the
compound widget, which may also include a section titled, “Keywords to
WIDGET_CONTROL and WIDGET_INFO”. Compound widgets are described in
the Reference Guide.

Set this keyword to a named variable to contain the current value of the widget. The
type of value returned depends on the widget type:

• Button: If the button label is text, it is returned as a string. Attempts to obtain
the value of a button with a bitmap label is an error.

• Draw: The value of a draw widget depends on whether the draw widget uses
IDL Direct Graphics or IDL Object Graphics. (The type of graphics used is
specified by the GRAPHICS_LEVEL keyword to WIDGET_DRAW.) The
two possibilities are:

A. By default, draw widgets use IDL Direct Graphics. In this case, the value
of a draw widget is the IDL window ID for the drawing area. This ID is
used with procedures such as WSET, WSHOW, etc., to direct graphics to
the widget. The window ID is assigned to drawing area widgets at the time
they are realized. If the widget has not yet been realized, a value of -1 is
returned.

B. If the draw widget uses IDL Object Graphics (that is, if the
GRAPHICS_LEVEL keyword to WIDGET_DRAW is set equal to 2), the
value of the draw widget is the object reference of the window object used
in the draw widget.

• Label: The label text is returned as a string.

• Slider: The current value of the slider is returned as an integer.
IDL Reference Guide WIDGET_CONTROL

1560
• Table: Normally, the data for the whole table are returned as a two dimensional
array or a vector of structures. However, if the USE_TABLE_SELECT
keyword is present, the value returned is a subset of the whole data. This may
either be a two dimensional array or a vector of (possibly anonymous)
structures. If the USE_TEXT_SELECT keyword is set, the value returned is a
string corresponding to the currently-selected text in the currently-selected
cell.

• Text: The current contents of the text widget are returned as a string array. If
the USE_TEXT_SELECT keyword is also specified, only the contents of the
current selection are returned.

• Widget types not listed above do not return a value. Attempting to retrieve the
value of such a widget causes an error.

The value of a widget can be set with the SET_VALUE keyword to this routine, or
with the VALUE keyword to the routine that created it.

GROUP_LEADER

This keyword applies to all widgets.

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

HOURGLASS

This keyword applies to all widgets. Do not specify a Widget ID when using this
keyword.

Set this keyword to turn on an “hourglass-shaped” cursor for all IDL widgets and
graphics windows. The hourglass remains in place until the WIDGET_EVENT
function attempts to process the next event. Then the previous cursor is reinstated. If
an application starts a time-intensive calculation inside an event-handling routine, the
hourglass cursor should be used to indicate that the system is not currently
responding to events.

ICONIFY

This keyword applies to all widgets.
WIDGET_CONTROL IDL Reference Guide

1561
Set this keyword to a non-zero value to cause the specified widget to become
iconified. Set this keyword to zero to open an iconified widget.

INPUT_FOCUS

This keyword applies to widgets created with the WIDGET_BUTTON,
WIDGET_DRAW, and WIDGET_TEXT functions.

If Widget_ID is a text widget, you can set this keyword to cause the widget to receive
the keyboard focus. If Widget_ID is a button widget, set this keyword to position the
mouse pointer over the button (on Motif), or set the focus to the button so that it can
be “pushed” with the spacebar (on Windows). You cannot set the input focus to a
button in IDL for Macintosh. If Widget_ID is a draw widget, set this keyword to give
it the focus in IDL for Macintosh; this allows you to print from the draw widget. This
keyword has no effect for other widget types.

Note
You cannot assign the input focus to an unrealized widget.

INSERT_COLUMNS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to the number of columns to be added to the right of the rightmost
column of the table. If the USE_TABLE_SELECT keyword is set, the columns are
inserted to the left of the current selection.

Warning
You cannot insert columns into a table which displays structure data in
/ROW_MAJOR (default) mode because it would change the structure.

INSERT_ROWS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to the number of rows to be added below the bottommost row of the
table. If the USE_TABLE_SELECT keyword is set, the rows are inserted above the
current selection.

Warning
You cannot insert rows into a table which displays structure data in
/COLUMN_MAJOR mode because it would change the structure.
IDL Reference Guide WIDGET_CONTROL

1562
KBRD_FOCUS_EVENTS

This keyword applies to widgets created with the WIDGET_BASE,
WIDGET_TABLE, and WIDGET_TEXT functions.

Set this keyword to cause widget keyboard focus events to be issued for the widget
whenever the keyboard focus of that widget changes. See the
KBRD_FOCUS_EVENTS keywords to WIDGET_BASE, WIDGET_TABLE, and
WIDGET_TEXT for details.

KILL_NOTIFY

This keyword applies to all widgets.

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').

Use this keyword to change or remove a previously-specified callback procedure for
Widget_ID. A previously-defined callback can be removed by setting this keyword to
the null string ('').

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

The CLEANUP keyword to XMANAGER can also be used to specify a procedure to
be called when a managed widget dies. The last call to either XMANAGER,
CLEANUP or WIDGET_CONTROL, KILL_NOTIFY determines the procedure that
is executed when the specified widget dies. Calling XMANAGER with the
CLEANUP keyword overrides any previous setting of KILL_NOTIFY. Similarly,
calling WIDGET_CONTROL with KILL_NOTIFY overrides any previous setting of
CLEANUP.

MANAGED

This keyword applies to all widgets.

This keyword is used by the XMANAGER procedure to mark those widgets that it is
currently managing. User applications should not use this keyword directly.

MAP

This keyword applies to all widgets.
WIDGET_CONTROL IDL Reference Guide

1563
Set this keyword to zero to unmap the widget hierarchy rooted at the widget specified
by Widget_ID. The hierarchy disappears from the screen, but still exists.

The mapping operation applies only to base widgets. If the specified widget is not a
base, IDL searches upward in the widget hierarchy until it finds the closest base
widget. The map operation is applied to that base.

Set MAP to a nonzero value to re-map the widget hierarchy and make it visible.
Normally, the widget is automatically mapped when it is realized, so use of the MAP
keyword is not required.

MONTHS

This keyword applies to widgets created with the WIDGET_TABLE function.

Supplies a string array of 12 names to be used for the names of the months when
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) with
the FORMAT keyword.

NO_COPY

This keyword applies to all widgets.

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the SET_UVALUE keyword to
WIDGET_CONTROL), the variable passed as value becomes undefined. On a “get”
operation (GET_UVALUE keyword to WIDGET_CONTROL), the user value of the
widget in question becomes undefined.

Note
The NO_COPY keyword increases efficiency when sending event structures using
the SEND_EVENT keyword to WIDGET_CONTROL.

NO_NEWLINE

This keyword applies to widgets created with the WIDGET_TEXT function.
IDL Reference Guide WIDGET_CONTROL

1564
When setting the value of a multi-line text widget, newline characters are
automatically appended to the end of each line of text. The NO_NEWLINE keyword
suppresses this action.

NOTIFY_REALIZE

This keyword applies to all widgets.

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. A previously-set callback routine can be removed by setting
this keyword to the null string (''). The callback routine is called with the widget ID
as its only argument.

PRO_SET_VALUE

This keyword applies to all widgets.

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. The
procedure specified by PRO_SET_VALUE is called with 2 arguments— a widget ID
and a value. Using this technique allows you to designate a routine that sets the value
for a widget. Compound widgets use this ability to define their values transparently to
the user.

REALIZE

This keyword applies to all widgets.

If set, the widget hierarchy is realized. Until the realization step, the widget hierarchy
exists only within IDL. Realization is the step of actually creating the widgets on the
screen (and mapping them if necessary).

When a previously-realized widget gets a new child widget, the new child is
automatically realized.

Tip
Under Microsoft Windows, when a hidden base is realized, then mapped, a
Windows resize message is sent by the windowing system. This “extra” resize
event is generated before any manipulation of the base widget by the user.
WIDGET_CONTROL IDL Reference Guide

1565
RESET

This keyword applies to all widgets. Do not specify a Widget ID when using this
keyword. Set the RESET keyword to destroy every currently active widget. This
keyword should be used with caution.

ROW_LABELS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword equal to an array of strings to be used as labels for the rows of the
table. If no label is specified for a row, it receives the default label “n” where n is the
row number. If this keyword is set to the empty string (''), all row labels are set to be
empty.

ROW_HEIGHTS

This keyword applies to widgets created with the WIDGET_TABLE function.

Note
This keyword is not supported under Microsoft Windows.

Set this keyword equal to an array of heights for the rows of the table widget. The
heights are given in any of the units as specified with the UNITS keyword. If no
height is specified for a row, that row is set to the default size, which varies by
platform. If ROW_HEIGHTS is set to a scalar value, all of the row heights are set to
that value.

SCR_XSIZE

This keyword applies to all widgets.

Set this keyword to an integer value that represents the widget’s new horizontal size,
in units specified by the UNITS keyword (pixels are the default). Attempting to
change the size of a widget that is part of a menubar or pulldown menu causes an
error. Note that, in many cases, setting this keyword is equivalent to setting the
XSIZE keyword. However, this keyword is useful for resizing table, text, list, and
scrolling widgets.

SCR_YSIZE

This keyword applies to all widgets.

Set this keyword to an integer value that represents the widget’s new vertical size, in
units specified by the UNITS keyword (pixels are the default). Attempting to change
the size of a widget that is part of a menubar or pulldown menu causes an error. Note
IDL Reference Guide WIDGET_CONTROL

1566
that, in many cases, setting this keyword is equivalent to setting the YSIZE keyword.
However, this keyword is useful for resizing table, text, list, and scrolling widgets.

SEND_EVENT

This keyword applies to all widgets.

Set this keyword to a structure containing a valid widget event to be sent to the
specified widget. The value of SEND_EVENT must be a structure and the first three
fields must be ID, TOP, and HANDLER (all of LONG type). Additional fields can be
of any type.

To improve the efficiency of the data transfer, consider using the NO_COPY
keyword with SEND_EVENT.

SENSITIVE

Set this keyword to control the sensitivity state of a widget after creation. This
keyword applies to all widgets. Use the SENSITIVE keyword with the widget
creation function to control the initial sensitivity state.

When a widget is sensitive, it has normal appearance and can receive user input. For
instance, a sensitive button widget can be activated by moving the mouse cursor over
it and pressing a mouse button. When a widget is insensitive, it indicates the fact by
changing its appearance, and ignores any input directed at it. If SENSITIVE is zero,
the widget hierarchy becomes insensitive. If nonzero, it becomes sensitive.

Sensitivity can be used to control when a user is allowed to manipulate a widget. It
should be noted that some widgets do not change their appearance when they are
made insensitive, and simply cease generating events.

SET_BUTTON

This keyword applies to widgets created with the WIDGET_BUTTON function.

This keyword allows changing the current state of toggle buttons. If zero, every
toggle button in the hierarchy specified by Widget_ID is set to the unselected state. If
nonzero, the action depends on the type of base holding the buttons. Normally, all
buttons are selected. However, exclusive bases may or may not allow more than a
single button to be selected in this manner, depending on the toolkit implementation.

SET_DRAW_VIEW

This keyword applies to widgets created with the WIDGET_DRAW function.

A scrollable draw widget provides a large graphics area which is viewed through a
smaller viewport. This keyword allows changing the current position of the viewport.
WIDGET_CONTROL IDL Reference Guide

1567
The desired position is specified as a 2-element integer array giving the X and Y
position in units specified by the UNITS keyword (pixels are the default) relative to
the lower left corner of the graphics area. For example, to position the viewport to the
lower left corner of the image:

WIDGET_CONTROL, widget, SET_DRAW_VIEW=[0, 0]

SET_DROPLIST_SELECT

This keyword applies to widgets created with the WIDGET_DROPLIST function.

Set this keyword to an integer that specifies the droplist element to be current (i.e.,
the element that is displayed on the droplist button). Positions start at zero. If the
specified element is outside the possible range, no new selection is set.

SET_LIST_SELECT

This keyword applies to widgets created with the WIDGET_LIST function.

Set this keyword to an integer scalar or vector that specifies the list element or
elements to be highlighted. The previous selection (if there is a selection) is cleared.
Positions start at zero. If the specified element is outside the possible range, no new
selection in set. Note that the MULTIPLE keyword to WIDGET_LIST must have
been set in more than a single list element is specified.

If the selected position is not currently on the screen, the list widget automatically
move the current scrolling viewport to make it visible. The resulting topmost visible
element is toolkit specific. If you wish to ensure a certain element is at the top of the
list, use the SET_LIST_TOP keyword (described below) to explicitly set the
viewport.

SET_LIST_TOP

This keyword applies to widgets created with the WIDGET_LIST function.

Set this keyword to an integer that specifies the element of the list widget to the
positioned at the top of the scrolling list. If the specified element is outside the range
of list elements, nothing happens.

SET_SLIDER_MAX

This keyword applies to widgets created with the WIDGET_SLIDER function.

Set this keyword to a new maximum value for the specified slider widget.
IDL Reference Guide WIDGET_CONTROL

1568
Note
This keyword does not apply to floating-point sliders created with the
CW_FSLIDER function.

SET_SLIDER_MIN

This keyword applies to widgets created with the WIDGET_SLIDER function.

Set this keyword to a new minimum value for the specified slider widget.

Note
This keyword does not apply to floating-point sliders created with the
CW_FSLIDER function.

SET_TABLE_SELECT

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to an array of zero-based cell indices, of the form

[left, top, right, bottom]

giving the range of cells to select.

If the selected position is not currently on the screen, the table widget automatically
moves the current scrolling viewport to make a portion of it visible. The resulting
top-left visible cell is toolkit specific. If you wish to ensure a certain element is at the
top of the list, use the SET_TABLE_VIEW keyword to explicitly set the viewport.

SET_TABLE_VIEW

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to a two-element array of zero-based cell indices that specifies the
cell of the table widget to the positioned at the top-left of the widget. If the specified
cell is outside the range of valid cells, nothing happens.

SET_TEXT_SELECT

This keyword applies to widgets created with the WIDGET_TABLE and
WIDGET_TEXT functions.

Use this keyword to clear any current selection in the specified table cell or text
widget, and either set a new selection, or simply set the text insertion point. To set a
selection, specify a two-element integer array containing the starting position and the
WIDGET_CONTROL IDL Reference Guide

1569
length of the selection. For example, to set a selection covering characters 3 though
23:

WIDGET_CONTROL, widgetID, SET_TEXT_SELECT=[3, 20]

To move the text insertion point without setting a selection, omit the second element,
or set it to zero.

SET_TEXT_TOP_LINE

This keyword applies to widgets created with the WIDGET_TEXT function.

Set this keyword to the zero-based line number of the line to be positioned on the
topmost visible line in the text widget’s viewport. No horizontal scrolling is
performed. Note that this is a line number, not a character offset.

SET_UNAME

This keyword applies to all widgets.

Set this keyword to a string that can be used to identify the widget. You can associate
a name with each widget in a specific hierarchy, and then use that name to query the
widget hierarchy and get the correct widget ID. You can set the name at creation
time, using the UNAME keyword with the creation function.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

SET_UVALUE

This keyword applies to all widgets.

Each widget can contain a user-set value. This value is not used by IDL in any way,
and exists entirely for the convenience of the IDL programmer. This keyword allows
you to set this value.

To improve the efficiency of the data transfer, consider using the NO_COPY
keyword with SET_UVALUE.

SET_VALUE

This keyword applies to widgets created with the WIDGET_BUTTON,
WIDGET_DROPLIST, WIDGET_LABEL, WIDGET_LIST, WIDGET_SLIDER,
WIDGET_TABLE, and WIDGET_TEXT functions.
IDL Reference Guide WIDGET_CONTROL

1570
Sets the value of the specified widget. The meaning of the value differs between
widget types:

• Button: The label to be used for the button. This value can be either a scalar
string, or a 2D byte array containing a bitmap.

• Droplist: The contents of the droplist widget (string or string array).

• Label: The text to be displayed by the label widget.

• List: The contents of the list widget (string or string array).

• Slider: The current position of the slider (integer).

• Table: Normally, the data for the whole table is changed to the given data
which must be of the form of a two dimensional array or a vector of structures.
In this form, the table is resized to fit the given data (unless the
TABLE_XSIZE or TABLE_YSIZE keywords are given).

If the USE_TABLE_SELECT keyword is present, the value given is treated as
a subset of the whole data, and only the given range of cells are updated. Used
in this form, the type of data stored in the table cannot be changed. The data
passed in is converted, as appropriate, to the type of the selected cells. If less
data is passed in than fits in the current selection, the cells outside the range of
data (but inside the selection) are left unchanged. If more data is passed in than
fits in the current selection, the extra data is ignored.

If the USE_TEXT_SELECT keyword is present, the value must be a string
which replaces the currently-selected text in the currently-selected cell.

• Text: The text to be displayed. If the APPEND keyword is also specified, the
text is appended to the current contents instead of instead of completely
replacing it (string or string array). If the USE_TEXT_SELECT keyword is
specified, the new string replaces only the currently-selected text in the text
widget.

• Widget types not listed above do not allow the setting of a value. Attempting to
set the value of such a widget causes an error.

The value of a widget can also be set with the VALUE keyword to the routine that
created it.

SHOW

This keyword applies to all widgets.
WIDGET_CONTROL IDL Reference Guide

1571
Controls the visibility of a widget hierarchy. If set to zero, the hierarchy containing
Widget_ID is pushed behind any other windows on the screen. If nonzero, the
hierarchy is pulled in front.

TABLE_XSIZE

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword equal to the number of data columns in the table widget. Note that if
the table widget was created with row titles enabled (that is, if the NO_HEADERS
keyword to WIDGET_TABLE was not set), the table will contain one column more
than the number specified by TABLE_XSIZE.

If the table is made smaller as a result of the application of the TABLE_XSIZE
keyword, the data outside the new range persists, but the number of columns and/or
rows changes as expected. If the table is made larger, the data type of the cells in the
new columns is set according to the following rules:

1. If the table was not created with either the ROW_MAJOR or
COLUMN_MAJOR keywords set (if the table is an array rather than a vector of
structures), the new cells have the same type as all the original cells.

2. If the SET_VALUE keyword is given, the types of all columns are set
according to the new structure.

3. If the table was created with the ROW_MAJOR keyword set, and the
SET_VALUE keyword is not specified, the cells in the new columns inherit
their type from the cells to their left.

4. If the table was created with the COLUMN_MAJOR keyword set, and the
SET_VALUE keyword is not specified, any new columns default to type INT.

TABLE_YSIZE

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword equal to the number of data rows in the table widget. Note that if the
table widget was created with column titles enabled (that is, if the NO_HEADERS
keyword to WIDGET_TABLE was not set), the table will contain one row more than
the number specified by TABLE_YSIZE.

If the table is made smaller as a result of the application of the TABLE_YSIZE
keyword, the data outside the new range persists, but the number of columns and/or
rows changes as expected. If the table is made larger, the data type of the cells in the
new rows is set according to the following rules:
IDL Reference Guide WIDGET_CONTROL

1572
1. If the table was not created with either the ROW_MAJOR or
COLUMN_MAJOR keywords set (if the table is an array rather than a vector of
structures), the new cells have the same type as all the original cells.

2. If the SET_VALUE keyword is given, the types of all rows are set according
to the new structure.

3. If the table was created with the COLUMN_MAJOR keyword set, and the
SET_VALUE keyword is not specified, the cells in the new rows inherit their
type from the cells above.

4. If the table was created with the ROW_MAJOR keyword set, and the
SET_VALUE keyword is not specified, any new rows default to type INT.

TIMER

This keyword applies to all widgets.

If this keyword is present, a WIDGET_TIMER event is generated. Set this keyword
to a floating-point value that represents the number of seconds before the timer event
arrives. Note that this event is identical to any other widget event except that it
contains only the 3 standard event tags. These event structures are defined as:

{ WIDGET_TIMER, ID:0L, TOP:0L, HANDLER:0L }

It is left to the caller to tell the difference between standard widget events and timer
events. The standard way to do this is to use a widget that doesn’t normally generate
events (e.g., a base or label). Alternately, the TAG_NAMES function can be called
with the STRUCTURE_NAME keyword to differentiate a WIDGET_TIMER event
from other types of events. For example:

IF TAG_NAMES(event, /STRUCTURE_NAME) EQ $
'WIDGET_TIMER' THEN ...

Using the TIMER keyword is more efficient than the background task functionality
found in the XMANAGER procedure because it doesn’t “poll” like the original
background task code. Research Systems will eventually eliminate the background
task functionality from XMANAGER. We encourage all users to modify their code
to use the TIMER keyword instead.

TLB_GET_OFFSET

This keyword applies to all widgets.

Set this keyword to a named variable in which the offset of the top-level base of the
specified widget is returned, in units specified by the UNITS keyword (pixels are the
default). The offset is measured in device coordinates relative to the upper-left corner
of the screen.
WIDGET_CONTROL IDL Reference Guide

1573
TLB_GET_SIZE

This keyword applies to all widgets.

Set this keyword to a named variable in which the size of the top-level base of the
specified widget is returned, in units specified by the UNITS keyword (pixels are the
default). The size is returned as a two-element vector that contains the horizontal and
vertical size of the base in device coordinates.

TLB_KILL_REQUEST_EVENTS

This keyword applies to widgets created with the WIDGET_BASE function.

Use this keyword to set or clear kill request events for the specified top-level base.
For more information on these events see “TLB_KILL_REQUEST_EVENTS” on
page 1532.

TLB_SET_TITLE

This keyword applies to all widgets.

Set this keyword to a scalar string to change the title of the specified top-level base
after it has been created.

TLB_SET_XOFFSET

This keyword applies to all widgets.

Use this keyword to set the horizontal position of the top level base of the specified
widget. The offset is measured from the upper-left corner of the screen to the upper-
left corner of the base, in units specified by the UNITS keyword (pixels are the
default).

TLB_SET_YOFFSET

This keyword applies to all widgets.

Use this keyword to set the vertical position of the top level base of the specified
widget. The offset is measured from the upper-left corner of the screen to the upper-
left corner of the base, in units specified by the UNITS keyword (pixels are the
default).

TRACKING_EVENTS

This keyword applies to all widgets.

Set this keyword to a non-zero value to enable tracking events for the widget
specified by Widget_ID. Set the keyword to 0 to disable tracking events for the
IDL Reference Guide WIDGET_CONTROL

1574
specified widget. For a description of tracking events, see “TRACKING_EVENTS”
on page 1533.

UNITS

This keyword applies to all widgets.

Use this keyword to specify the unit of measurement used for most widget sizing
operations. Set UNITS equal to 0 to specify that all measurements are in pixels (this
is the default), to 1 to specify that all measurements are in inches, or to 2 to specify
that all measurements are in centimeters.

Note
This keyword does not affect all sizing operations. Specifically, the value of UNITS
is ignored when setting the XSIZE or YSIZE keywords to WIDGET_LIST,
WIDGET_TABLE, or WIDGET_TEXT.

UPDATE

This keyword applies to all widgets.

Use this keyword to enable (if set to 1) or disable (if set to 0) screen updates for the
widget hierarchy to which the specified widget belongs. This keyword is useful for
preventing unwanted intermediate screen updates when changing the values of many
widgets at once or when adding several widgets to a previously-realized widget
hierarchy. When first realized, widget hierarchies are set to update.

Note
Do not attempt to resize a widget on the Windows platform while UPDATE is
turned off. Doing so may prevent IDL from updating the screen properly when
UPDATE is turned back on.

USE_TABLE_SELECT

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to modify the behavior of the ALIGNMENT,COLUMN_WIDTH,
FORMAT, GET_VALUE, ROW_HEIGHT, and SET_VALUE keywords. If
USE_TABLE_SELECT is set, these other keywords only apply to the currently-
selected cells. Normally, these keywords apply to the entire contents of a table
widget.
WIDGET_CONTROL IDL Reference Guide

1575
Note
In order to set the format of the currently-selected cells, the value of the FORMAT
keyword must be an array of the same dimensions as the selected area.

This keyword can also be specified as a four-element array, of the form

[left, top, right, bottom]

giving the group of cells to act on. In this usage, the value -1 is used to refer to the
row or column titles. If row or column titles are selected, this keyword only modifies
the behavior of the COLUMN_WIDTH and ROW_HEIGHTS keywords.

Warning
You should set values to -1 only when you can change the labels. For example, on
the Macintosh, only COLUMN_WIDTH and ROW_HEIGHT should be set to -1.

USE_TEXT_SELECT

This keyword applies to widgets created with the WIDGET_TABLE and
WIDGET_TEXT functions.

Set this keyword to modify the behavior of the GET_VALUE and SET_VALUE
keywords. If USE_TEXT_SELECT is set, GET_VALUE and SET_VALUE apply
only to the current text selection. Normally, these keywords apply to the entire
contents of a text widget.

X_BITMAP_EXTRA

This keyword applies to widgets created with the WIDGET_BUTTON function.

When the value of a button widget is a bitmap, the usual width is taken to be 8 times
the number of columns in the source byte array. This keyword can be used to indicate
the number of bits in the last byte of each row that should be ignored. The value can
range between 0 and 7.

XOFFSET

This keyword applies to all widgets.

Set this keyword to an integer value that specifies the widget’s new horizontal offset,
in units specified by the UNITS keyword (pixels are the default). Attempting to
change the offset of a widget that is the child of a ROW or COLUMN base or a
widget that is part of a menubar or pulldown menu causes an error.
IDL Reference Guide WIDGET_CONTROL

1576
XSIZE

This keyword applies to all widgets.

Set this keyword to an integer or floating-point value that represents the widget’s new
horizontal size.

• Text and List widgets: Size is specified in characters. The UNITS keyword is
ignored.

• Table widgets: Size is specified in columns. The width of the row labels is
automatically added to this value. The UNITS keyword is ignored.

• All other widgets: If the UNITS keyword is present, size is in the units
specified. If the UNITS keyword is not present, the size is specified in pixels.

For most non-scrollable widgets, this size is the same as the “screen size” that can be
set using the SCR_XSIZE keyword. For scrollable widgets (e.g., scrolling bases and
scrolling draw widgets), this keyword adjusts the viewport size. Use the
DRAW_XSIZE keyword to change the width of the drawing area in scrolling draw
widgets. Attempting to resize a widget that is part of a menubar or pulldown menu
causes an error.

YOFFSET

This keyword applies to all widgets.

Set this keyword to an integer value that specifies the widget’s new vertical offset, in
units specified by the UNITS keyword (pixels are the default). Attempting to change
the offset of a widget that is the child of a ROW or COLUMN base or a widget that is
part of a menubar or pulldown menu causes an error.

YSIZE

This keyword applies to all widgets.

Set this keyword to an integer or floating-point value that represents the widget’s new
vertical size

• Text and List widgets: Size is specified in lines. The UNITS keyword is
ignored.

• Table widgets: Size is specified in rows. The height of the column labels is
automatically added to this value. The UNITS keyword is ignored.

• All other widgets: If the UNITS keyword is present, size is in the units
specified. If the UNITS keyword is not present, the size is specified in pixels.
WIDGET_CONTROL IDL Reference Guide

1577
For most non-scrollable widgets, this size is the same as the “screen size” that can be
set using the SCR_YSIZE keyword. For scrollable widgets (e.g., scrolling bases and
scrolling draw and table widgets), this keyword adjusts the viewport size. Use the
DRAW_YSIZE keyword to change the height of the drawing area in scrolling draw
widgets. Attempting to resize a widget that is part of a menubar or pulldown menu
causes an error.

See Also

Building IDL Applications Chapter 22, “Widgets”.
IDL Reference Guide WIDGET_CONTROL

1578
WIDGET_DRAW

The WIDGET_DRAW function is used to create draw widgets. Draw widgets are
rectangular areas that IDL treats as standard graphics windows. Draw widgets can
use either IDL Direct graphics or IDL Object graphics, depending on the value of the
GRAPHICS_LEVEL keyword. Any graphical output that can be produced by IDL
can be directed to a draw widget. Draw widgets can have optional scroll bars to allow
viewing a larger graphics area than could otherwise be displayed in the widget’s
visible area.

The returned value of this function is the widget ID of the newly-created draw
widget.

Note
On some systems, when backing store is provided by the window system
(RETAIN=1), reading data from a window using TVRD() may cause unexpected
results. For example, data may be improperly read from the window even when the
image displayed on screen is correct. Having IDL provide the backing store
(RETAIN=2) ensures that the window contents will be read properly.

Syntax

Result = WIDGET_DRAW(Parent [, /APP_SCROLL] [, /BUTTON_EVENTS]
[, /COLOR_MODEL] [, COLORS=integer] [, EVENT_FUNC=string]
[, EVENT_PRO=string] [, /EXPOSE_EVENTS] [, FRAME=width]
[, FUNC_GET_VALUE=string] [, GRAPHICS_LEVEL=2]
[, GROUP_LEADER=widget_id] [, KILL_NOTIFY=string]
[, /MOTION_EVENTS] [, /NO_COPY] [, NOTIFY_REALIZE=string]
[, PRO_SET_VALUE=string] [, RENDERER={0 | 1}]
[, RESOURCE_NAME=string] [, RETAIN={0 | 1 | 2}] [, SCR_XSIZE=width]
[, SCR_YSIZE=height] [, /SCROLL] [, /SENSITIVE] [, /TRACKING_EVENTS]
[, UNAME=string] [, UNITS={0 | 1 | 2}] [, UVALUE=value] [, VALUE=value]
[, /VIEWPORT_EVENTS] [, XOFFSET=value] [, XSIZE=value]
[, X_SCROLL_SIZE=width] [, YOFFSET=value] [, YSIZE=value]
[, Y_SCROLL_SIZE=height])

Arguments

Parent

The widget ID of the parent widget of the new draw widget.
WIDGET_DRAW IDL Reference Guide

1579
Keywords

APP_SCROLL

Set this keyword to create a scrollable draw widget with horizontal and vertical
scrollbars and a draw area canvas with the same size as the viewport. You can specify
the size of the viewport using the X_SCROLL_SIZE and Y_SCROLL_SIZE
keywords, and the virtual size of the canvas using the XSIZE and YSIZE keywords.
If APP_SCROLL is set, the application generates expose and viewport events such as
would occur with EXPOSE=1, RETAIN=0, and VIEWPORT_EVENTS=1. This
allows you to redraw the appropriate part of the virtual canvas when your application
receives expose or viewport events.

Use the APP_SCROLL keyword when displaying images, or anything drawn in
device units or pixels. This keyword is good when you are displaying large images
because the entire images does not have to be redrawn when change viewport events
are generated.

Use the SCROLL keyword when a draw widget is going to display graphics drawn in
data units (e.g., PLOT, CONTOUR, SURFACE).

BUTTON_EVENTS

Set this keyword to make the draw widget generate events when the mouse buttons
are pressed or released (and the mouse pointer is in the draw widget). Normally, draw
widgets do not generate events.

COLOR_MODEL

Set this keyword equal to 1 (one) to cause the draw widget’s associated
IDLgrWindow object to use indexed color. If the COLOR_MODEL keyword is not
set, or is set to a value other than one, the draw widget will use RGB color.

This keyword is only valid when the draw widget uses IDL Object Graphics. (The graphics
type used by a draw widget is determined by setting the GRAPHICS_LEVEL keyword to
WIDGET_DRAW.) For information on using indexed color in Object Graphics
window objects, see Chapter 20, “Working with Color” in Using IDL.

COLORS

The maximum number of color table indices to be used. This parameter has effect
only if it is supplied when the first IDL graphics window is created.

If COLORS is not specified when the first window is created, all or most of the
available color indices are allocated, depending upon the window system in use.
IDL Reference Guide WIDGET_DRAW

1580
To use monochrome windows on a color display, set COLORS equal to 2 when
creating the first window. One color table is maintained for all IDL windows. A
negative value for COLORS specifies that all but the given number of colors from the
shared color table should be used.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EXPOSE_EVENTS

Set this keyword to make the draw widget generate event when the visibility of the
draw widget changes. This may occur when the widget is hidden behind something
else on the screen, brought to the foreground, or when the scroll bars are moved.
Normally, draw widgets do not generate events.

If this keyword is set, expose events will be generated only when IDL is unable to
restore the contents of the window itself. After the initial draw, expose events are not
issued when GRAPHICS_LEVEL=2 and the software renderer is being used
(RENDERER=1). In such cases, expose events are not issued because IDL can
internally refresh the window itself. On platforms for which OpenGL support is not
offered, the software renderer is always being used, and therefore, expose events are
not issued after the initial draw.

Note
You must explicitly disable backing store (by setting RETAIN=0) in order to
generate expose events. Additional expose events may be generated if both
EXPOSE_EVENTS and RETAIN=1 are turned on.

Warning
Large numbers of events may be generated when EXPOSE_EVENTS is specified.
You may wish to compress the events (perhaps using a timer) and only act on a
subset.
WIDGET_DRAW IDL Reference Guide

1581
FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget. Note that this keyword is only a hint to the toolkit, and may be ignored in
some instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GRAPHICS_LEVEL

Set this keyword equal to 2 (two) to use IDL Object Graphics in the draw widget. If
the GRAPHICS_LEVEL keyword is not set, or is set to a value other than two, the
draw widget will use IDL Direct Graphics.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
Note that the procedure specified is used only if you are not using the XMANAGER
procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.
IDL Reference Guide WIDGET_DRAW

1582
If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

MOTION_EVENTS

Set this keyword to make the draw widget generate events when the mouse cursor
moves across the widget. Normally, draw widgets do not generate events.

Draw widgets that return motion events can generate a large number of events that
can result in poor performance on slower machines.

Note that it is possible to generate motion events with coordinates outside the draw
widget. If you position the mouse cursor inside the draw widget, press the mouse
button, and drag the cursor out of the draw widget, the X and Y fields of the widget
event will specify coordinates outside the draw widget.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_DRAW or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.
WIDGET_DRAW IDL Reference Guide

1583
PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

RENDERER

Set this keyword to an integer value indicating which graphics renderer to use when
drawing objects within the window. Valid values are:

• 0 = Platform native OpenGL

• 1 = IDL’s software implementation

By default, your platform’s native OpenGL implementation is used. If your platform
does not have a native OpenGL implementation, IDL’s software implementation is
used regardless of the value of this property. See “Hardware vs. Software Rendering”
in Chapter 28 of Using IDL for details. Your choice of renderer may also affect the
maximum size of a draw widget. See “IDLgrWindow” on page 2276 for details.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 1527 for a complete discussion of this keyword.

RETAIN

Set this keyword to 0, 1, or 2 to specify how backing store should be handled for the
draw widget. RETAIN=0 specifies no backing store. RETAIN=1 requests that the
server or window system provide backing store. RETAIN=2 specifies that IDL
provide backing store directly. See “Backing Store” on page 1589 for details on the
use of RETAIN with Direct Graphics. For more information on the use of RETAIN
with Object Graphics, see “IDLgrWindow::Init” on page 2289.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.
IDL Reference Guide WIDGET_DRAW

1584
SCROLL

Set this keyword to give the draw widget scroll bars that allow viewing portions of
the widget contents that are not currently on the screen.

Use the SCROLL keyword when a draw widget is going to display graphics drawn in
data units (e.g., PLOT, CONTOUR, SURFACE). Use the APP_SCROLL keyword
when displaying images, or anything drawn in device units or pixels.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget
whenever the mouse pointer enters or leaves the region covered by that widget. For
the structure of tracking events, see “TRACKING_EVENTS” on page 1533 in the
documentation for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.
WIDGET_DRAW IDL Reference Guide

1585
UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a draw widget is the IDL window
number for use with Direct Graphics routines, such as WSET. For Object Graphics
routines, it is the draw window object reference. This value cannot be set or modified
by the user.

To obtain the window number for a newly-created draw widget, use the
GET_VALUE keyword to WIDGET_CONTROL after the draw widget has been
realized. Draw widgets do not have a window number assigned to them until they are
realized. For example, to return the window number of a draw widget in the variable
win_num, use the command:

WIDGET_CONTROL, my_drawwidget, GET_VALUE = win_num

where my_drawwidget is the widget ID of the desired draw widget.

When using Object Graphics for the widget draw, the following command returns an
object reference to the draw window:

WIDGET_CONTROL, my_drawwidget, GET_VALUE = oWindow

where oWindow is a window object.

VIEWPORT_EVENTS

Set this keyword to enable viewport motion events for draw widgets.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.
IDL Reference Guide WIDGET_DRAW

1586
Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget layout.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations. By default, draw widgets
are 100 pixels wide by 100 pixels high.

X_SCROLL_SIZE

The XSIZE keyword always specifies the width of a widget. When the SCROLL
keyword is specified, this size is not necessarily the same as the width of the visible
area. The X_SCROLL_SIZE keyword allows you to set the width of the scrolling
viewport independently of the actual width of the widget.

Use of the X_SCROLL_SIZE keyword implies SCROLL.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget layout.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
hint to the toolkit and may be ignored in some situations. By default, draw widgets
are 100 pixels wide by 100 pixels high.

Y_SCROLL_SIZE

The YSIZE keyword always specifies the height of a widget. When the SCROLL
keyword is specified, this size is not necessarily the same as the height of the visible
WIDGET_DRAW IDL Reference Guide

1587
area. The Y_SCROLL_SIZE keyword allows you to set the height of the scrolling
viewport independently of the actual height of the widget.

Use of the Y_SCROLL_SIZE keyword implies SCROLL.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
draw widgets. In addition to those keywords that affect all widgets, the following are
particularly useful: DRAW_BUTTON_EVENTS, DRAW_EXPOSE_EVENTS,
DRAW_MOTION_EVENTS, DRAW_VIEWPORT_EVENTS, DRAW_XSIZE,
DRAW_YSIZE, GET_DRAW_VIEW, GET_VALUE, INPUT_FOCUS,
SET_DRAW_VIEW.

Keywords to WIDGET_INFO

A number of keywords to the WIDGET_INFO function return information that
applies specifically to draw widgets. In addition to those keywords that apply to all
widgets, the following are particularly useful: DRAW_BUTTON_EVENTS,
DRAW_EXPOSE_EVENTS, DRAW_MOTION_EVENTS,
DRAW_VIEWPORT_EVENTS.

Widget Events Returned by Draw Widgets

By default, draw widgets do not generate events. If the BUTTON_EVENTS keyword
is set when the widget is created, pressing or releasing any mouse button while the
mouse cursor is over the draw widget causes events to be generated. Specifying the
MOTION_EVENTS keyword causes events to be generated continuously as the
mouse cursor moves across the draw widget. Specifying the EXPOSE_EVENTS
keyword causes events to be generated whenever the visibility of any portion of the
draw window (or viewport) changes.

The event structure returned by the WIDGET_EVENT function is defined by the
following statement:

{WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0L, Y:0L,
PRESS:0B, RELEASE:0B, CLICKS:0, MODIFIERS:0L}

Note
If you defined your own {WIDGET_DRAW} structures prior to the IDL 5.3 release
before the structure was defined by an internal call, the MODIFIERS field will
break the existing user code.
IDL Reference Guide WIDGET_DRAW

1588
ID, TOP, and HANDLER are the three standard fields found in every widget event.
TYPE returns a value that describes the type of draw widget interaction that
generated an event. The values for TYPE are shown in the table below.

The X and Y fields give the device coordinates at which the event occurred,
measured from the lower left corner of the drawing area. PRESS and RELEASE are
bitmasks in which the least significant bit represents the leftmost mouse button. The
corresponding bit of PRESS is set when a mouse button is pressed, and in RELEASE
when the button is released. If the event is a motion event, both PRESS and
RELEASE are zero.

The CLICKS field returns either 1 or 2. If the time interval between two button-press
events is less than the time interval for a double-click event for the platform, the
CLICKS field returns 2. If the time interval between button-press events is greater
than the time interval for a double-click event for the platform, the CLICKS field
returns 1. This means that if you are writing a widget application that requires the
user to double-click on a draw widget, you will need to handle two events. The
CLICKS field will return a 1 on the first click and a 2 on the second click.

The MODIFIERS field is valid for button press, button release and motion events. It
is a bitmask which returns the current state of several keyboard modifier keys at the
time the event was generated. If a bit is zero, the key is up. If the bit is set, the key is

Value Meaning

0 Button Press

1 Button Release

2 Motion

3 Viewport Moved (Scrollbars)

4 Visibility Changed (Exposed)

Table 94: Values for the TYPE field
WIDGET_DRAW IDL Reference Guide

1589
depressed. The value is generated by OR-ing the following values together if a key is
depressed.

Note
Under UNIX, the Alt key is the currently mapped MOD1 key. There is no Alt key
on the Macintosh.

Note that the CURSOR procedure is only for use with IDL graphics windows. It
should not be used with draw widgets. To obtain the cursor position and button state
information from a draw widget, examine the X, Y, PRESS, and RELEASE fields in
the structures returned by the draw widget in response to cursor events.

Backing Store

Draw widgets with scroll bars rely on backing store to repaint the visible area of the
window as it is moved. Their performance is best on systems that provide backing
store. However, if your system does not automatically provide backing store, you can
make IDL supply it with the statement:

DEVICE, RETAIN=2

or by using the RETAIN keyword to WIDGET_DRAW.

Note
If you are using graphics acceleration, you may wish to turn off backing store
entirely and enable expose events (via the EXPOSE_EVENTS keyword) and
redraw the draw widget’s contents manually. However, because the number of
events generated may be quite high, you may wish to enable a timer as well and
only redraw the draw widget periodically.

Bitmask Modifier Key

1 Shift

2 Control

4 Caps Lock

8 Alt (See Note following this table.)

Table 31: Bitmask for the MODIFIERS Field
IDL Reference Guide WIDGET_DRAW

1590
See Also

SLIDE_IMAGE, WINDOW
WIDGET_DRAW IDL Reference Guide

1591
WIDGET_DROPLIST

The WIDGET_DROPLIST function creates “droplist” widgets. A droplist widget is a
button with a label that, when selected, reveals a list of options from which to choose.
When the user selects a new option from the list, the list disappears and the button
title displays the currently-selected option. This action generates an event containing
the index of the selected item, which ranges from 0 to the number of elements in the
list minus one, and updates the label on the push-button.

The returned value of this function is the widget ID of the newly-created droplist
widget.

Syntax

Result = WIDGET_DROPLIST(Parent [, /DYNAMIC_RESIZE]
[, EVENT_FUNC=string] [, EVENT_PRO=string] [, FONT=string]
[, FRAME=value] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, KILL_NOTIFY=string] [, /NO_COPY]
[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, RESOURCE_NAME=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, /SENSITIVE] [, TITLE=string] [, /TRACKING_EVENTS] [, UNAME=string]
[, UNITS={0 | 1 | 2}] [, UVALUE=value] [, VALUE=value] [, XOFFSET=value]
[, XSIZE=value] [, YOFFSET=value] [, YSIZE=value])

Arguments

Parent

The widget ID of the parent widget for the new droplist widget.

Keywords

DYNAMIC_RESIZE

Set this keyword to create a widget that resizes itself to fit its new value whenever its
value is changed. Note that this keyword does not take effect when used with the
SCR_XSIZE, SCR_YSIZE, XSIZE, or YSIZE keywords. If one of these keywords is
also set, the widget will be sized as specified by the sizing keyword and will never
resize itself dynamically.
IDL Reference Guide WIDGET_DROPLIST

1592
EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a “device font”
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows or
Macintosh systems). See “About Device Fonts” on page 2482 for details on
specifying names for device fonts. If this keyword is omitted, the default font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; in
general, the system default font is the font appropriate for the version of Windows
in question.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget. Note that this keyword is only a hint to the toolkit, and may be ignored in
some instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.
WIDGET_DROPLIST IDL Reference Guide

1593
A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
Note that the procedure specified is used only if you are not using the XMANAGER
procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_DROPLIST or the SET_UVALUE keyword to WIDGET_CONTROL),
the variable passed as value becomes undefined. On a “get” operation
(GET_UVALUE keyword to WIDGET_CONTROL), the user value of the widget in
question becomes undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
IDL Reference Guide WIDGET_DROPLIST

1594
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 1527 for a complete discussion of this keyword.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

TITLE

Set this keyword to a string to be used as the title for the droplist widget.
WIDGET_DROPLIST IDL Reference Guide

1595
TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget
whenever the mouse pointer enters or leaves the region covered by that widget. For
the structure of tracking events, see “TRACKING_EVENTS” on page 1533 in the
documentation for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a droplist widget is a scalar string
or array of strings that contains the text of the list items—one list item per array
element. List widgets are sized based on the length (in characters) of the longest item
specified in the array of values for the VALUE keyword.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.
IDL Reference Guide WIDGET_DROPLIST

1596
Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

XSIZE

The desired width of the droplist widget area, in units specified by the UNITS
keyword (pixels are the default). Most widgets attempt to size themselves to fit the
situation. However, if the desired effect is not produced, use this keyword to override
it. This keyword does not control the size of the droplist button or of the dropped list.
Instead, it controls the size “around” the droplist button and, as such, is not
particularly useful.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

YSIZE

The desired height of the widget, in units specified by the UNITS keyword (pixels are
the default). Most widgets attempt to size themselves to fit the situation. However, if
the desired effect is not produced, use this keyword to override it. This keyword does
not control the size of the droplist button or of the dropped list. Instead, it controls the
size “around” the droplist button and, as such, is not particularly useful.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
droplist widgets. In addition to those keywords that affect all widgets, the following
are particularly useful: DYNAMIC_RESIZE, SET_DROPLIST_SELECT,
SET_VALUE.

Keywords to WIDGET_INFO

A number of keywords to the WIDGET_INFO function return information that
applies specifically to droplist widgets. In addition to those keywords that apply to all
WIDGET_DROPLIST IDL Reference Guide

1597
widgets, the following are particularly useful: DROPLIST_NUMBER,
DROPLIST_SELECT, DYNAMIC_RESIZE.

Widget Events Returned by Droplist Widgets

Pressing the mouse button while the mouse cursor is over an element of a droplist
widget causes the widget to change the label on the droplist button and to generate an
event. The appearance of any previously selected element is restored to normal at the
same time. The event structure returned by the WIDGET_EVENT function is defined
by the following statement:

{ WIDGET_DROPLIST, ID:0L, TOP:0L, HANDLER:0L, INDEX:0L }

The first three fields are the standard fields found in every widget event. INDEX
returns the index of the selected item. This can be used to index the array of names
originally used to set the widget’s value.

Note
Platform-specific UI toolkits behave differently if a droplist widget has only a
single element. On some platforms, selecting that element again does not generate
an event. Events are always generated if the list contains multiple items.

See Also

CW_PDMENU, WIDGET_BUTTON, WIDGET_LIST
IDL Reference Guide WIDGET_DROPLIST

1598
WIDGET_EVENT

The WIDGET_EVENT function returns events for the widget hierarchy rooted at
Widget_ID. Widgets communicate information by generating events. Events are
generated when a button is pressed, a slider position is changed, and so forth.

Note
Widget applications should use the XMANAGER procedure in preference to
calling WIDGET_EVENT directly. See “Widget Events” in Chapter 22 of Building
IDL Applications.

Syntax

Result = WIDGET_EVENT([Widget_ID]) [, BAD_ID=variable] [, /NOWAIT]
[, /SAVE_HOURGLASS]

UNIX Keywords: [, /YIELD_TO_TTY]

Arguments

Widget_ID

Widget_ID specifies the widget hierarchy for which events are desired. The first
available event for the specified widget or any of its children is returned. If this
argument is not specified, WIDGET_EVENT processes events for all existing
widgets.

Widget_ID can also be an array of widget identifiers, in which case all of the
specified widget hierarchies are searched.

Note
Attempting to obtain events for a widget hierarchy which is not producing events
will hang IDL, unless the NOWAIT keyword is used.

Keywords

BAD_ID

If one of the values supplied via Widget_ID is not a valid widget identifier, this
function normally issues an error and causes program execution to stop. However, if
WIDGET_EVENT IDL Reference Guide

1599
BAD_ID is present and specifies a named variable, the invalid ID is stored into the
variable, and this routine quietly returns. If no error occurs, a zero is stored.

This keyword can be used to handle the situation in which IDL is waiting within
WIDGET_EVENT when the user kills the widget hierarchy.

This keyword has meaning only if Widget_ID is explicitly specified.

NOWAIT

When no events are currently available for the specified widget hierarchy,
WIDGET_EVENT normally waits until one is available and then returns it.
However, if NOWAIT is set and no events are present, it immediately returns. In this
case, the ID field of the returned structure will be zero.

SAVE_HOURGLASS

Set this keyword to prevent the hourglass cursor from being cleared by
WIDGET_EVENT. This keyword can be of use if a program has to poll a widget
periodically during a long computation.

YIELD_TO_TTY

Unless the NOWAIT keyword is specified, WIDGET_EVENT does not return until
the asked for event is available. If the user should enter a line of input from the
keyboard, it cannot be processed until WIDGET_EVENT returns. If the
YIELD_TO_TTY keyword is specified and the user enters a line of input,
WIDGET_EVENT returns immediately. In this case, the ID field of the returned
structure will be zero.

Note
This keyword is supported under UNIX only, and there are no plans to extend it to
other operating systems. Do not use it if you intend to use non-UNIX systems.

Event Processing

All events for a given widget are processed in the order that they are generated. The
event processing performed by WIDGET_EVENT consists of the following steps:

1. Wait for an event from one of the specified widgets to arrive.

2. Starting with the widget that the event belongs to, move up the widget
hierarchy looking for a widget that has an event handling procedure or
function associated with it. Such routines are associated with a widget via the
IDL Reference Guide WIDGET_EVENT

1600
EVENT_PRO and EVENT_FUNC keywords to the widget creation functions
or the WIDGET_CONTROL procedure.

3. If an event handling procedure is found, it is called with the widget ID as its
argument. When the procedure returns, WIDGET_EVENT returns to the first
step. Hence, event procedures are said to “swallow” events.

4. If an event handling function is found, it is called with the widget ID as its
argument. When the function returns, its value is examined. If the value is a
non-structure, it is discarded and WIDGET_EVENT returns to the first step.

This behavior allows event functions to selectively act like event procedures
and swallow events. If the returned value is a structure, it is checked to ensure
that it has the standard first 3 fields: ID, TOP, and HANDLER. If not an error
is issued. Otherwise the value replaces the event found in the first step and
WIDGET_EVENT returns to the second step.

Hence, event functions are said to “rewrite” events. This ability to rewrite
events is the basis of the “compound widget” in which several widgets are
combined to give the appearance of a single, more complicated widget.

5. If an event reaches the top of a widget hierarchy without being swallowed by
an event handler, it is returned as the value of WIDGET_EVENT.

Events

A widget event is returned in a structure. The exact contents of this structure vary
depending upon the type of widget involved. The first three elements of this
structure, however, are always the same. Any other elements vary from widget type
to type. The three fixed elements are:

ID

The widget ID of the widget that generated the event.

TOP

The widget ID of the top level base for the widget hierarchy containing ID.

HANDLER

When an event is passed as the argument to an event handling procedure or function,
as discussed in the previous section, this field contains the identifier of the widget
associated with the handler routine. When an event is returned from
WIDGET_EVENT, this value is always zero to indicate that no handler routine was
found.
WIDGET_EVENT IDL Reference Guide

1601
See Also

XMANAGER
IDL Reference Guide WIDGET_EVENT

1602
WIDGET_INFO

The WIDGET_INFO function is used to obtain information about the widget
subsystem and individual widgets. The specific area for which information is desired
is selected by setting the appropriate keyword.

Syntax

Result = WIDGET_INFO([Widget_ID])

Keywords that apply to all widgets: [, /ACTIVE] [, /CHILD] [, /EVENT_FUNC]
[, /EVENT_PRO] [, FIND_BY_UNAME=string] [, /GEOMETRY]
[, /KBRD_FOCUS_EVENTS] [, /MANAGED] [, /NAME] [, /PARENT]
[, /REALIZED] [, /SIBLING] [, /TRACKING_EVENTS] [, /TYPE] [, UNITS={0 | 1
| 2}] [, /UNAME] [, /UPDATE] [, /VALID_ID] [, /VERSION]

Keywords that apply to widgets created with widget_base: [, /MODAL]
[, /TLB_KILL_REQUEST_EVENTS]

Keywords that apply to widgets created with widget_button:
[, /DYNAMIC_RESIZE]

Keywords that apply to widgets created with widget_draw:
[, /DRAW_BUTTON_EVENTS] [, /DRAW_EXPOSE_EVENTS]
[, /DRAW_MOTION_EVENTS] [, /DRAW_VIEWPORT_EVENTS]

Keywords that apply to widgets created with widget_droplist:
[, /DROPLIST_NUMBER] [, /DROPLIST_SELECT] [, /DYNAMIC_RESIZE]

Keywords that apply to widgets created with widget_label:
[, /DYNAMIC_RESIZE]

Keywords that apply to widgets created with widget_list: [, /LIST_MULTIPLE]
[, /LIST_NUMBER] [, /LIST_NUM_VISIBLE] [, /LIST_SELECT] [, /LIST_TOP]

Keywords that apply to widgets created with widget_slider:
[, /SLIDER_MIN_MAX]

Keywords that apply to widgets created with widget_table:
[, /COLUMN_WIDTHS] [, /ROW_HEIGHTS{not supported in Windows}]
[, /TABLE_ALL_EVENTS] [, /TABLE_EDITABLE] [, /TABLE_EDIT_CELL]
[, /TABLE_SELECT] [, /TABLE_VIEW] [, /USE_TABLE_SELECT]

Keywords that apply to widgets created with widget_text:
[, /TEXT_ALL_EVENTS] [, /TEXT_EDITABLE] [, /TEXT_NUMBER]
WIDGET_INFO IDL Reference Guide

1603
[, TEXT_OFFSET_TO_XY=integer] [, /TEXT_SELECT] [, /TEXT_TOP_LINE]
[, TEXT_XY_TO_OFFSET=[column, line]]

Arguments

Widget_ID

Usually this argument should be the widget ID of the widget for which information is
desired. If the ACTIVE or VERSION keywords are specified, this argument is not
required.

Widget_ID can also be an array of widget identifiers, in which case the result is an
array with the same structure in which information on all the specified widgets is
returned.

Keywords

Not all keywords to WIDGET_INFO apply to all combinations of widgets. In the
following list, descriptions of keywords that affect only certain types of widgets
include a list of the widgets for which the keyword is useful.

ACTIVE

This keyword applies to all widgets.

Set this keyword to return 1 if there is at least one realized, managed, top-level
widget on the screen. Otherwise, 0 is returned.

CHILD

This keyword applies to all widgets.

Set this keyword to return the widget ID of the first child of the widget specified by
Widget_ID. If the widget has no children, 0 is returned.

COLUMN_WIDTHS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to return an array of long integers giving the width of each column
in the table. If USE_TABLE_SELECT is set, only the column widths for the
currently-selected cells are returned.

DRAW_BUTTON_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.
IDL Reference Guide WIDGET_INFO

1604
Set this keyword to return 1 if Widget_ID is a draw widget with the
BUTTON_EVENTS attribute set. Otherwise, 0 is returned.

DRAW_EXPOSE_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to return 1 if Widget_ID is a draw widget with the
EXPOSE_EVENTS attribute set. Otherwise, 0 is returned.

DRAW_MOTION_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to return 1 if Widget_ID is a draw widget with the
MOTION_EVENTS attribute set. Otherwise, 0 is returned.

DRAW_VIEWPORT_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to return 1 if Widget_ID is a draw widget with the
VIEWPORT_EVENTS attribute set. Otherwise, 0 is returned.

DROPLIST_NUMBER

This keyword applies to widgets created with the WIDGET_DROPLIST function.

Set this keyword to return the number of elements currently contained in the
specified droplist widget.

DROPLIST_SELECT

This keyword applies to widgets created with the WIDGET_DROPLIST function.

Set this keyword to return the zero-based number of the currently-selected element
(i.e., the currently-displayed element) in the specified droplist widget.

DYNAMIC_RESIZE

This keyword applies to widgets created with the WIDGET_BUTTON,
WIDGET_DROPLIST, and WIDGET_LABEL functions.

Set this keyword to return a True value (1) if the widget specified by Widget_ID is a
button, droplist, or label widget that has had its DYNAMIC_RESIZE attribute set.
Otherwise, False (0) is returned.

EVENT_FUNC

This keyword applies to all widgets.
WIDGET_INFO IDL Reference Guide

1605
Set this keyword to return a string containing the name of the event handler function
associated with Widget_ID. A null string is returned if no event handler function
exists.

EVENT_PRO

This keyword applies to all widgets.

Set this keyword to return a string containing the name of the event handler
procedure associated with Widget_ID. A null string is returned if no event handler
procedure exists.

FIND_BY_UNAME

This keyword applies to all widgets.

Set this keyword to a UNAME value that will be searched for in the widget hierarchy,
and if a widget with the given UNAME is in the hierarchy, its ID is returned. The
search starts in the hierarchy with the given widget ID and travels down, and this
keyword returns the widget ID of the first widget that has the specified UNAME
value.

If a widget is not found, 0 is returned.

GEOMETRY

This keyword applies to all widgets.

Set this keyword to return a WIDGET_GEOMETRY structure that describes the
offset and size information for the widget specified by Widget_ID. This structure has
the following definition:

{ WIDGET_GEOMETRY,
XOFFSET:0.0,
YOFFSET:0.0,
XSIZE:0.0,
YSIZE:0.0,
SCR_XSIZE:0.0,
SCR_YSIZE:0.0,
DRAW_XSIZE:0.0,
DRAW_YSIZE:0.0,
MARGIN:0.0,
XPAD:0.0,
YPAD:0.0,
SPACE:0.0 }

With the exception of MARGIN, all of the structure’s fields correspond to the
keywords of the same name to the various widget routines. MARGIN is the width of
IDL Reference Guide WIDGET_INFO

1606
any frame added to the widget, in units specified by the UNITS keyword (pixels are
the default). Therefore, the actual width of any widget is:

SCR_XSIZE + (2* MARGIN)

The actual height of any widget is:

SCR_YSIZE + (2 * MARGIN)

Note also that if the top-level base includes a menubar, it is not possible to determine
the actual height of the base widget. Calling WIDGET_INFO with the GEOMETRY
keyword on a top level base that includes a menubar will return a geometry structure
that contains zeroes rather than the actual sizes of the widget.

Note
Menubars are not included in the size of a top-level base, so the actual height of a
widget that includes a menubar is:

SCR_YSIZE + (2 * MARGIN) + menubar height

It is not possible to either determine or change the height of a menubar within IDL.
Retrieving the WIDGET_GEOMETRY structure of a menubar yields a structure
with all the fields set equal to zero.

KBRD_FOCUS_EVENTS

This keyword applies to all widgets.

Set this keyword to return the keyboard focus events status of the widget specified by
Widget ID. WIDGET_INFO returns 1 (one) if keyboard focus events are currently
enabled for the widget, or 0 (zero) if they are not. Only base, table, and text widgets
can generate keyboard focus events.

LIST_MULTIPLE

This keyword applies to widgets created with the WIDGET_LIST function.

Set this keyword equal to a named variable that will contain a non-zero value if the
list widget supports multiple item selections. See the MULTIPLE keyword to
WIDGET_LIST for more on multiple item selections.

LIST_NUMBER

This keyword applies to widgets created with the WIDGET_LIST function.
WIDGET_INFO IDL Reference Guide

1607
Set this keyword to return the number of elements currently contained in the
specified list widget.

LIST_NUM_VISIBLE

This keyword applies to widgets created with the WIDGET_LIST function.

Set this keyword to return the number of elements that can be visible in the scrolling
viewport of the specified list widget. Note that this value can be larger than the total
number of elements actually in the list.

LIST_SELECT

This keyword applies to widgets created with the WIDGET_LIST function.

Set this keyword to return the index or indices of the currently-selected (highlighted)
element or elements in the specified list widget. Note that this offset is zero-based. If
no element is currently selected, -1 is returned.

LIST_TOP

This keyword applies to widgets created with the WIDGET_LIST function.

Set this keyword to return the zero-based offset of the topmost element currently
visible in the specified list widget.

MANAGED

This keyword applies to all widgets.

Set this keyword to return 1 if the specified widget is managed, or 0 otherwise. If no
widget ID is specified in the call to WIDGET_INFO, the return value will be an array
containing the widget IDs of all currently-managed widgets.

MODAL

This keyword applies to widgets created with the WIDGET_BASE function and the
MODAL keyword.

If this keyword is set, WIDGET_INFO will return True (1) if the base widget
specified by Widget_ID is a modal base widget, or False (0) otherwise.

NAME

This keyword applies to all widgets.

Set this keyword to return the widget type name of the widget specified by
Widget_ID. The returned value will be one of the following strings: “BASE”,
IDL Reference Guide WIDGET_INFO

1608
“BUTTON”, “DRAW”, “DROPLIST”, “LABEL”, “LIST”, “SLIDER”, “TABLE”,
or “TEXT”. Set the TYPE keyword to return the widget’s type code.

PARENT

This keyword applies to all widgets.

Set this keyword to return the widget ID of the parent of the widget specified by
Widget_ID. If the widget is a top-level base (i.e., it has no parent), 0 is returned.

REALIZED

This keyword applies to all widgets.

Set this keyword to return 1 if the widget specified by Widget_ID has been realized.
If the widget has not been realized, 0 is returned.

ROW_HEIGHTS

This keyword applies to widgets created with the WIDGET_TABLE function.

Note
This keyword is not supported under Microsoft Windows.

Set this keyword to return an array of long integers giving the height of each row in
the table. If USE_TABLE_SELECT is set, only the row heights for the currently-
selected cells are returned.

SIBLING

This keyword applies to all widgets.

Set this keyword to return the widget ID of the first sibling of the widget specified by
Widget_ID. If the widget is the last sibling in the chain, 0 is returned.

SLIDER_MIN_MAX

This keyword applies to widgets created with the WIDGET_SLIDER function.

Set this keyword to return the current minimum and maximum values of the specified
slider as a two-element integer array. Element 0 is the minimum value and element 1
is the maximum value.

TABLE_ALL_EVENTS

This keyword applies to widgets created with the WIDGET_TABLE function.
WIDGET_INFO IDL Reference Guide

1609
Set this keyword to return 1 (one) if Widget_ID is a table widget with the
ALL_EVENTS attribute set. Otherwise, 0 (zero) is returned.

TABLE_EDITABLE

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to return 1 (one) if Widget_ID is a table widget that allows user
editing of its contents. Otherwise, 0 (zero) is returned.

TABLE_EDIT_CELL

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to return a two-element integer array containing the X and Y
coordinates of the currently editable cell. If none of the cells in the table widget is
currently editable, the array [-1, -1] is returned.

TABLE_SELECT

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to return an array of the form [left, top, right, bottom] containing
the zero-based indices of the currently-selected (highlighted) cells in the specified
table widget.

TABLE_VIEW

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to return a two-element array of the form [left, top] containing the
zero-based offsets of the top-left cell currently visible in the specified table widget.

TEXT_ALL_EVENTS

This keyword applies to widgets created with the WIDGET_TEXT function.

Set this keyword to return 1 if Widget_ID is a text widget with the ALL_EVENTS
attribute set. Otherwise, 0 is returned.

TEXT_EDITABLE

This keyword applies to widgets created with the WIDGET_TEXT function.

Set this keyword to return 1 if Widget_ID is a text widget that allows user editing of
its contents. Otherwise, 0 is returned.

TEXT_NUMBER

This keyword applies to widgets created with the WIDGET_TEXT function.
IDL Reference Guide WIDGET_INFO

1610
Set this keyword to return the number of characters currently contained in the
specified text widget.

TEXT_OFFSET_TO_XY

This keyword applies to widgets created with the WIDGET_TEXT function.

Use this keyword to translate a text widget character offset into column and line
form. The value of this keyword should be set to the character offset (an integer) to be
translated. WIDGET_INFO returns a two-element integer array giving the column
(element 0) and line (element 1) corresponding to the offset. If the offset specified is
out of range, the array [-1,-1] is returned.

TEXT_SELECT

This keyword applies to widgets created with the WIDGET_TEXT function.

Set this keyword to return the starting character offset and length (in characters) of
the selected (highlighted) text in the specified text widget. WIDGET_INFO returns a
two-element integer array containing the starting position of the highlighted text as
an offset from character zero of the text in the widget (element 0), and length of the
current selection (element 1).

TEXT_TOP_LINE

This keyword applies to widgets created with the WIDGET_TEXT function.

Set this keyword to return the zero-based line number of the line currently at the top
of a text widget’s display viewport. Note that this value is different from the zero-
based character offset of the characters in the line. The character offset can be
calculated from the line offset via the TEXT_XY_TO_OFFSET keyword.

TEXT_XY_TO_OFFSET

This keyword applies to widgets created with the WIDGET_TEXT function.

Use this keyword to translate a text widget position given in line and column form
into a character offset. The value of this keyword should be set to a two-element
integer array specifying the column (element 0) and line (element 1) position.
WIDGET_INFO returns the character offset (as a longword integer) corresponding to
the position. If the position specified is out of range, -1 is returned.

TLB_KILL_REQUEST_EVENTS

This keyword applies to widgets created with the WIDGET_BASE function.

Set this keyword to return 1 if the top-level base of the widget specified by
Widget_ID is set to return kill request events. Otherwise, 0 is returned.
WIDGET_INFO IDL Reference Guide

1611
TRACKING_EVENTS

This keyword applies to all widgets.

Set this keyword to return the tracking events status for the widget specified by
Widget_ID. WIDGET_INFO returns 1 if tracking events are currently enabled for the
widget. Otherwise, 0 is returned.

TYPE

This keyword applies to all widgets.

Set this keyword to return the type code of the specified Widget_ID. Possible values
are given the following table. Note that you can set the NAME keyword to return
string names instead.

UNAME

This keyword applies to all widgets.

Set this keyword to have the WIDGET_INFO function return the user name of the
widget.

UNITS

This keyword applies to all widgets.

Value Type

0 Base

1 Button

2 Slider

3 Text

4 Draw

5 Label

6 List

8 Droplist

9 Table

Table 95: Widget Type Codes
IDL Reference Guide WIDGET_INFO

1612
Use this keyword to specify the unit of measurement used when returning dimensions
for most widget types. Set UNITS equal to 0 (zero) to specify that all measurements
are in pixels (this is the default), to 1 (one) to specify that all measurements are in
inches, or to 2 (two) to specify that all measurements are in centimeters.

Note
This keyword does not affect all sizing operations. Specifically, the value of UNITS
is ignored when retrieving the XSIZE or YSIZE of a WIDGET_LIST,
WIDGET_TABLE, or WIDGET_TEXT.

UPDATE

This keyword applies to all widgets.

Set this keyword to return 1 if the widget hierarchy that contains Widget_ID is set to
display updates. Otherwise, 0 is returned. See “UPDATE” on page 1574.

USE_TABLE_SELECT

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to modify the behavior of the COLUMN_WIDTHS and
ROW_HEIGHTS keywords. If USE_TABLE_SELECT is set, the
COLUMN_WIDTHS and ROW_HEIGHTS keywords only apply to the currently-
selected cells. Normally, these keywords apply to the entire contents of a table
widget.

The USE_TABLE_SELECT keyword can also be specified as a four-element array,
of the form [left, top, right, bottom], giving the group of cells to act on. In this usage,
the value -1 is used to refer to the row or column titles.

VALID_ID

This keyword applies to all widgets.

Set this keyword to return 1 if Widget_ID represents a currently-valid widget.
Otherwise, 0 is returned.

VERSION

This keyword applies to all widgets.

Set this keyword to return a structure that gives information about the widget
implementation. This structure has the following definition:

{ WIDGET_VERSION, STYLE:'', TOOLKIT:'', RELEASE:'' }
WIDGET_INFO IDL Reference Guide

1613
STYLE is the style of widget toolkit used. TOOLKIT is the implementation of the
toolkit. RELEASE is the version level of the toolkit. This field can be used to
distinguish between different releases of a given toolkit, such as Motif 1.0 and Motif
1.1.

See Also

Building IDL Applications Chapter 22, “Widgets”.
IDL Reference Guide WIDGET_INFO

1614
WIDGET_LABEL

The WIDGET_LABEL function is used to create label widgets.

The returned value of this function is the widget ID of the newly-created label
widget.

Syntax

Result = WIDGET_LABEL(Parent [, /ALIGN_CENTER | , /ALIGN_LEFT | ,
/ALIGN_RIGHT] [, /DYNAMIC_RESIZE] [, FONT=string] [, FRAME=width]
[, FUNC_GET_VALUE=string] [, GROUP_LEADER=widget_id]
[, KILL_NOTIFY=string] [, /NO_COPY] [, NOTIFY_REALIZE=string]
[, PRO_SET_VALUE=string] [, RESOURCE_NAME=string]
[, SCR_XSIZE=width] [, SCR_YSIZE=height] [, /SENSITIVE]
[, /TRACKING_EVENTS] [, UNAME=string] [, UNITS={0 | 1 | 2}]
[, UVALUE=value] [, VALUE=value] [, XOFFSET=value] [, XSIZE=value]
[, YOFFSET=value] [, YSIZE=value])

Arguments

Parent

The widget ID of the parent widget for the new label widget.

Keywords

ALIGN_CENTER

Set this keyword to center justify the label text.

ALIGN_LEFT

Set this keyword to left justify the label text.

ALIGN_RIGHT

Set this keyword to right justify the label text.

DYNAMIC_RESIZE

Set this keyword to create a widget that resizes itself to fit its new value whenever its
value is changed. Note that this keyword cannot be used with the SCR_XSIZE,
SCR_YSIZE, XSIZE, or YSIZE keywords. If one of these keywords is also set, the
WIDGET_LABEL IDL Reference Guide

1615
widget will be sized as specified by the sizing keyword and will never resize itself
dynamically.

FONT

The name of the font to be used by the widget. The font specified is a “device font”
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows
systems). See “About Device Fonts” on page 2482 for details on specifying names
for device fonts. If this keyword is omitted, the default font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; in
general, the system default font is the font appropriate for the version of Windows
in question. This keyword is not supported on the Macintosh.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget. Note that this keyword is only a “hint” to the toolkit, and may be ignored in
some instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
IDL Reference Guide WIDGET_LABEL

1616
Note that the procedure specified is used only if you are not using the XMANAGER
procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_LABEL or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.
WIDGET_LABEL IDL Reference Guide

1617
RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 1527 for a complete discussion of this keyword.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget
whenever the mouse pointer enters or leaves the region covered by that widget. For
the structure of tracking events, see “TRACKING_EVENTS” on page 1533 in the
documentation for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.
IDL Reference Guide WIDGET_LABEL

1618
To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a widget label is a string
containing the text for the label.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.
WIDGET_LABEL IDL Reference Guide

1619
YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
label widgets. In addition to those keywords that affect all widgets, the following are
particularly useful: DYNAMIC_RESIZE, GET_VALUE, SET_VALUE.

Keywords to WIDGET_INFO

Some keywords to the WIDGET_INFO function return information that applies
specifically to label widgets. In addition to those keywords that apply to all widgets,
the following are particularly useful: DYNAMIC_RESIZE.

Widget Events Returned by Label Widgets

Label widgets do not return an event structure.

See Also

CW_FIELD, WIDGET_TEXT
IDL Reference Guide WIDGET_LABEL

1620
WIDGET_LIST

The WIDGET_LIST function is used to create list widgets. A list widget offers the
user a list of text elements from which to choose. The user can select an item by
pointing at it with the mouse cursor and pressing a button. This action generates an
event containing the index of the selected item, which ranges from 0 to the number of
elements in the list minus one.

The returned value of this function is the widget ID of the newly-created list widget.

Syntax

Result = WIDGET_LIST(Parent [, EVENT_FUNC=string]
[, EVENT_PRO=string] [, FONT=string] [, FRAME=width]
[, FUNC_GET_VALUE=string] [, GROUP_LEADER=widget_id]
[, KILL_NOTIFY=string] [, /MULTIPLE] [, /NO_COPY]
[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, RESOURCE_NAME=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, /SENSITIVE] [, /TRACKING_EVENTS] [, UNAME=string] [, UNITS={0 | 1 |
2}] [, UVALUE=value] [, VALUE=value] [, XOFFSET=value] [, XSIZE=value]
[, YOFFSET=value] [, YSIZE=value])

Arguments

Parent

The widget ID of the parent widget for the new list widget.

Keywords

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.
WIDGET_LIST IDL Reference Guide

1621
FONT

The name of the font to be used by the widget. The font specified is a “device font”
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows or
Macintosh systems). See “About Device Fonts” on page 2482 for details on
specifying names for device fonts. If this keyword is omitted, the default font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; in
general, the system default font is the font appropriate for the version of Windows
in question.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget. Note that this keyword is only a “hint” to the toolkit, and may be ignored in
some instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
Note that the procedure specified is used only if you are not using the XMANAGER
procedure to manage your widgets.
IDL Reference Guide WIDGET_LIST

1622
The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

MULTIPLE

Set this keyword to allow the user to select more than one item from the list in a
single operation. Multiple selections are handled using the platform’s native
mechanism:

Motif

Holding down the Shift key and clicking an item selects the range from the
previously selected item to the new item. Holding down the mouse button when
selecting items also selects a range. Holding down the Control key and clicking an
item toggles that item between the selected and unselected state.

Windows

Holding down the Shift key and clicking an item selects the range from the
previously selected item to the new item. Holding down the Control key and clicking
an item toggles that item between the selected and unselected state.

Macintosh

Holding down the Shift key and clicking an item selects the range from the
previously selected item to the new item. Holding down the Command key and
clicking an item toggles that item between the selected and unselected state.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
WIDGET_LIST IDL Reference Guide

1623
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_LIST or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 1527 for a complete discussion of this keyword.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
IDL Reference Guide WIDGET_LIST

1624
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget
whenever the mouse pointer enters or leaves the region covered by that widget. For
the structure of tracking events, see “TRACKING_EVENTS” on page 1533 in the
documentation for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

Note
This keyword does not affect all sizing operations. Specifically, the value of UNITS
is ignored when setting the XSIZE or YSIZE keywords to WIDGET_LIST.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
WIDGET_LIST IDL Reference Guide

1625
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a list widget is a scalar string or
array of strings that contains the text of the list items—one list item per array
element. List widgets are sized based on the length (in characters) of the longest item
specified in the array of values for the VALUE keyword.

Note that the value of a list widget can only be set. It cannot be retrieved using
WIDGET_CONTROL.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

XSIZE

The desired width of the widget, in characters. Most widgets attempt to size
themselves to fit the situation. However, if the desired effect is not produced, use this
keyword to override it. Note that the final size of the widget may be adjusted to
include space for scrollbars (which are not always visible), so your widget may be
slightly larger than specified.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.
IDL Reference Guide WIDGET_LIST

1626
YSIZE

The desired height of the widget, in number of list items visible. Most widgets
attempt to size themselves to fit the situation. However, if the desired effect is not
produced, use this keyword to override it. Note that the final size of the widget may
be adjusted to include space for scrollbars (which are not always visible), so your
widget may be slightly larger than specified.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
list widgets. In addition to those keywords that affect all widgets, the following are
particularly useful: SET_LIST_SELECT, SET_LIST_TOP, SET_VALUE.

Keywords to WIDGET_INFO

A number of keywords to the WIDGET_INFO function return information that
applies specifically to list widgets. In addition to those keywords that apply to all
widgets, the following are particularly useful: LIST_MULTIPLE, LIST_NUMBER,
LIST_NUM_VISIBLE, LIST_SELECT, LIST_TOP.

Widget Events Returned by List Widgets

Pressing the mouse button while the mouse cursor is over an element of a list widget
causes the widget to highlight the appearance of that element and to generate an
event. The appearance of any previously selected element is restored to normal at the
same time. The event structure returned by the WIDGET_EVENT function is defined
by the following statement:

{WIDGET_LIST, ID:0L, TOP:0L, HANDLER:0L, INDEX:0L, CLICKS:0L}

The first three fields are the standard fields found in every widget event. INDEX
returns the index of the selected item. This index can be used to subscript the array of
names originally used to set the widget’s value. The CLICKS field returns either 1 or
2, depending upon how the list item was selected. If the list item is double-clicked,
CLICKS is set to 2.

Note
If you are writing a widget application that requires the user to double-click on a list
widget, you will need to handle two events. The CLICKS field will return a 1 on the
first click and a 2 on the second click.
WIDGET_LIST IDL Reference Guide

1627
See Also

CW_BGROUP, WIDGET_DROPLIST
IDL Reference Guide WIDGET_LIST

1628
WIDGET_SLIDER

The WIDGET_SLIDER function is used to create slider widgets. Slider widgets are
used to indicate an integer value from a range of possible values. They consist of a
rectangular region which represents the possible range of values. Inside this region is
a sliding pointer that displays the current value. This pointer can be manipulated by
the user via the mouse, or from within IDL via the WIDGET_CONTROL procedure.

To indicated floating-point values, see CW_FSLIDER.

The returned value of this function is the widget ID of the newly-created slider
widget.

Syntax

Result = WIDGET_SLIDER(Parent [, /DRAG] [, EVENT_FUNC=string]
[, EVENT_PRO=string] [, FONT=string] [, FRAME=width]
[, FUNC_GET_VALUE=string] [, GROUP_LEADER=widget_id]
[, KILL_NOTIFY=string] [, MAXIMUM=value] [, MINIMUM=value]
[, /NO_COPY] [, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, RESOURCE_NAME=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, SCROLL=units] [, /SENSITIVE] [, /SUPPRESS_VALUE]
[, /TRACKING_EVENTS] [, TITLE=string] [, UNAME=string] [, UNITS={0 | 1 |
2}] [, UVALUE=value] [, VALUE=value] [, /VERTICAL] [, XOFFSET=value]
[, XSIZE=value] [, YOFFSET=value] [, YSIZE=value])

Arguments

Parent

The widget ID of the parent for the new slider widget.

Keywords

DRAG

Set this keyword to cause events to be generated continuously while the slider is
being dragged by the user. Normally, slider widgets generate position events only
when the slider comes to rest at its final position and the mouse button is released.

When a slider widget is set to return drag events, a large number of events can be
generated. On slower machines, poor performance can result. Therefore, this option
should only be used when detailed or truly interactive control is required.
WIDGET_SLIDER IDL Reference Guide

1629
Warning
Under Microsoft Windows and Macintosh, sliders do not generate DRAG events.
Sliders created with the DRAG keyword behave just like regular sliders.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a “device font”
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows or
Macintosh systems). See “About Device Fonts” on page 2482 for details on
specifying names for device fonts. If this keyword is omitted, the default font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget. Note that this keyword is only a “hint” to the toolkit, and may be ignored in
some instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.
IDL Reference Guide WIDGET_SLIDER

1630
GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
Note that the procedure specified is used only if you are not using the XMANAGER
procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

MAXIMUM

The maximum value of the range encompassed by the slider. If this keyword is not
supplied, a default of 100 is used.

MINIMUM

The minimum value of the range encompassed by the slider. If this keyword is not
supplied, a default of 0 is used.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
WIDGET_SLIDER IDL Reference Guide

1631
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_SLIDER or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 1527 for a complete discussion of this keyword.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SCROLL

Under the Motif window manager, the value provided for SCROLL specifies how
many units the scroll bar should move when the user clicks the left mouse button
IDL Reference Guide WIDGET_SLIDER

1632
inside the slider area, but not on the slider itself. This keyword has no effect under
other window systems.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

SUPPRESS_VALUE

Set this keyword to inhibit the display of the current slider value.

Sliders work only with integer units. This keyword can be used to suppress the actual
value of a slider so that a program can present the user with a slider that seems to
work in other units (such as floating-point) or with a non-linear scale.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget
whenever the mouse pointer enters or leaves the region covered by that widget. For
the structure of tracking events, see “TRACKING_EVENTS” on page 1533 in the
documentation for WIDGET_BASE.

TITLE

A string containing the title to be used for the slider widget.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
WIDGET_SLIDER IDL Reference Guide

1633
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a widget slider is the current
position of the slider.

VERTICAL

Set this keyword to create a vertical slider. If this keyword is omitted, the slider is
horizontal.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.
IDL Reference Guide WIDGET_SLIDER

1634
YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
slider widgets. In addition to those keywords that affect all widgets, the following are
particularly useful: GET_VALUE, SET_SLIDER_MAX, SET_SLIDER_MIN,
SET_VALUE.

Keywords to WIDGET_INFO

Some keywords to the WIDGET_INFO function return information that applies
specifically to slider widgets. In addition to those keywords that apply to all widgets,
the following are particularly useful: SLIDER_MIN_MAX.

Slider Widget Events

Slider widgets generate events when the mouse is used to change their value. The
event structure returned by the WIDGET_EVENT function is defined by the
following statement:

{WIDGET_SLIDER, ID:0L, TOP:0L, HANDLER:0L, VALUE:0L, DRAG:0}

ID is the widget ID of the button generating the event. TOP is the widget ID of the
top level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. VALUE returns the new value of the slider.
DRAG returns integer 1 if the slider event was generated as part of a drag operation,
or zero if the event was generated when the user had finished positioning the slider.
Note that the slider widget only generates events during the drag operation if the
WIDGET_SLIDER IDL Reference Guide

1635
DRAG keyword is set, and if the application is running under Motif. When the
DRAG keyword is set, the DRAG field can be used to avoid computationally
expensive operations until the user releases the slider.

Known Implementation Problems

Under Motif 1.0, vertical sliders with a title organized in row bases get horizontally
truncated and the slider doesn’t show (the title does). Use the XSIZE keyword to
work around this.

See Also

CW_FSLIDER
IDL Reference Guide WIDGET_SLIDER

1636
WIDGET_TABLE

The WIDGET_TABLE function creates table widgets. Table widgets display two-
dimensional data and allow in-place data editing. They can have one or more rows
and columns, and automatically create scroll bars when viewing more data than can
otherwise be displayed on the screen.

Note on Table Sizing

Table widgets are sized according to the value of the following pairs of keywords to
WIDGET_TABLE, in order of precedence: SCR_XSIZE/SCR_YSIZE,
XSIZE/YSIZE, X_SCROLL_SIZE/Y_SCROLL_SIZE, VALUE. If either dimension
remains unspecified by one of the above keywords, the default value of six (columns
or rows) is used when the table is created. If the width or height specified is less than
the size of the table, scroll bars are added automatically.

The returned value of this function is the widget ID of the newly-created table
widget.

Syntax

Result = WIDGET_TABLE(Parent [, ALIGNMENT={0 | 1 | 2}] [, /ALL_EVENTS]
[, AM_PM=[string, string]] [, COLUMN_LABELS=string_array]
[, /COLUMN_MAJOR | , /ROW_MAJOR] [, COLUMN_WIDTHS=array]
[, DAYS_OF_WEEK=string_array{7 names}] [, /EDITABLE]
[, EVENT_FUNC=string] [, EVENT_PRO=string] [, FONT=string]
[, FORMAT=value] [, FRAME=width] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, /KBRD_FOCUS_EVENTS]
[, KILL_NOTIFY=string] [, MONTHS=string_array{12 names}] [, /NO_COPY]
[, /NO_HEADERS] [, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, /RESIZEABLE_COLUMNS] [, /RESIZEABLE_ROWS{not supported in
Windows}] [, RESOURCE_NAME=string] [, ROW_HEIGHTS=array{not
supported in Windows}] [, ROW_LABELS=string_array] [, SCR_XSIZE=width]
[, SCR_YSIZE=height] [, /SCROLL] [, /SENSITIVE] [, /TRACKING_EVENTS]
[, UNAME=string] [, UNITS={0 | 1 | 2}] [, UVALUE=value] [, VALUE=value]
[, XOFFSET=value] [, XSIZE=value] [, X_SCROLL_SIZE=width]
[, YOFFSET=value] [, YSIZE=value] [, Y_SCROLL_SIZE=height])
WIDGET_TABLE IDL Reference Guide

1637
Arguments

Parent

The widget ID of the parent widget for the new table widget.

Keywords

ALIGNMENT

Set this keyword equal to a scalar or 2-D array specifying the alignment of the text
within each cell. An alignment of 0 (the default) aligns the left edge of the text with
the left edge of the cell. An alignment of 2 right-justifies the text, while 1 results in
text centered within the cell. If ALIGNMENT is set equal to a scalar, all table cells
are aligned as specified. If ALIGNMENT is set equal to a 2-D array, the alignment of
each table cell is governed by the corresponding element of the array.

ALL_EVENTS

Along with the EDITABLE keyword, ALL_EVENTS controls the type of events
generated by the table widget. Set the ALL_EVENTS keyword to cause the full set of
events to be generated. If ALL_EVENTS is not set, setting EDITABLE causes only
end-of-line events to be generated. If EDITABLE is not set, all events are suppressed.
See the table below for additional details.

Keywords Effects

ALL_EVENTS EDITABLE Input changes
widget contents?

Type of events
generated.

Not set Not set No None

Not set Set Yes End-of-line
insertion

Set Not set No All events

Set Set Yes All events

Table 96: Effects of using the ALL_EVENTS and EDITABLE keywords
IDL Reference Guide WIDGET_TABLE

1638
AM_PM

Supplies a string array of 2 names to be used for the names of the AM and PM string
when processing explicitly formatted dates (CAPA, CApA, and CapA format codes)
with the FORMAT keyword.

COLUMN_LABELS

Set this keyword equal to an array of strings used as labels for the columns of the
table widget. The default labels are of the form “Column n”, where n is the column
number. If this keyword is set to the empty string (''), all column labels are set to be
empty.

COLUMN_MAJOR

This keyword is only valid if the table data is organized as a vector of structures
rather than a two-dimensional array. See the VALUE keyword for details.

Set this keyword to specify that the data should be read into the table as if each
element of the vector is a structure containing one column’s data. Note that the
structures must all be of the same type, and must have one field for each row in the
table. If this keyword is not set, the table widget behaves as if the ROW_MAJOR
keyword were set.

COLUMN_WIDTHS

Set this keyword equal to an array of widths for the columns of the table widget. The
widths are given in any of the units as specified with the UNITS keyword. If no width
is specified for a column, that column is set to the default size, which varies by
platform. If COLUMN_WIDTHS is set to a scalar value, all columns are set to that
width.

DAYS_OF_WEEK

Supplies a string array of 7 names to be used for the names of the days of the week
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

EDITABLE

Set this keyword to allow direct user editing of the text widget contents. Normally,
the text in text widgets is read-only. See “ALL_EVENTS” on page 1637 for a
description of how EDITABLE interacts with the ALL_EVENTS keyword.
WIDGET_TABLE IDL Reference Guide

1639
Note
The method by which text widgets are placed into edit mode is dependent upon the
windowing system. On Microsoft Windows, for instance, a cell must be double-
clicked to be placed into edit mode.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a “device font”
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows or
Macintosh systems). See “About Device Fonts” on page 2482 for details on
specifying names for device fonts. If this keyword is omitted, the default font is used.

A single font is shared by the row and column labels and by all of the cells in the
widget.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; in
general, the system default font is the font appropriate for the version of Windows
in question.

FORMAT

Set this keyword equal to a single string or array of strings that specify the format of
data displayed within table cells. The string(s) are of the same form as used by the
FORMAT keyword to the PRINT procedure, and the default format is the same as
that used by the PRINT procedure.
IDL Reference Guide WIDGET_TABLE

1640
Warning
If the format specified is incompatible with the data displayed in a table cell, an
error message is generated. Since the error is generated for each cell displayed, the
number of messages printed is potentially large, and can slow execution
significantly. Note also that each time a new cell is displayed (when scroll bars are
repositioned, for example), a new error is generated for each cell displayed.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget. Note that this keyword is only a “hint” to the toolkit, and may be ignored in
some instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

KBRD_FOCUS_EVENTS

Set this keyword to make the base return keyboard focus events whenever the
keyboard focus of the base changes. See “Widget Events Returned by Table
Widgets” on page 1647 for more information.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
Note that the procedure specified is used only if you are not using the XMANAGER
procedure to manage your widgets.
WIDGET_TABLE IDL Reference Guide

1641
The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

MONTHS

Supplies a string array of 12 names to be used for the names of the months when
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) with
the FORMAT keyword.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_TABLE or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NO_HEADERS

Set this keyword to disable the display of the table widget’s header area (where row
and column labels are normally displayed).

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.
IDL Reference Guide WIDGET_TABLE

1642
PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

RESIZEABLE_COLUMNS

Set this keyword to allow the user to change the size of columns using the mouse.
Note that if the NO_HEADERS keyword was set, the columns cannot be resized
interactively.

RESIZEABLE_ROWS

Set this keyword to allow the user to change the size of rows using the mouse. Note
that if the NO_HEADERS keyword was set, the rows cannot be resized interactively.

Under Microsoft Windows, the row size cannot be changed.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 1527 for a complete discussion of this keyword.

ROW_HEIGHTS

Set this keyword equal to an array of heights for the rows of the table widget. The
heights are given in any of the units as specified with the UNITS keyword. If no
height is specified for a row, that row is set to the default size, which varies by
platform. If ROW_HEIGHTS is set to a scalar value, all of the row heights are set to
that value.

Note
This keyword is not supported under Microsoft Windows.

ROW_LABELS

Set this keyword equal to an array of strings to be used as labels for the rows of the
table. If no label is specified for a row, it receives the default label “Row n”, where n
is the row number. If this keyword is set to the empty string (''), all row labels are
set to be empty.
WIDGET_TABLE IDL Reference Guide

1643
ROW_MAJOR

This keyword is only valid if the table data is organized as a vector of structures
rather than a two-dimensional array. See the VALUE keyword for details.

Set this keyword to specify that the data should be read into the table as if each
element of the vector is a structure containing one row’s data. Note that the structures
must all be of the same type, and must have one field for each column in the table.
This is the default behavior if neither the COLUMN_MAJOR or ROW_MAJOR
keyword is set.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). Note that the screen width of the widget
includes the width of scroll bars, if any are present. Setting SCR_XSIZE overrides
values set for the XSIZE or X_SCROLL_SIZE keywords. See “Note on Table
Sizing” on page 1636.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). Note that the screen height of the widget
includes the height of scroll bars, if any are present. Setting SCR_YSIZE overrides
values set for the YSIZE or Y_SCROLL_SIZE keywords. See “Note on Table
Sizing” on page 1636.

SCROLL

Set this keyword to give the widget scroll bars that allow viewing portions of the
widget contents that are not currently on the screen. See “Note on Table Sizing” on
page 1636

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.
IDL Reference Guide WIDGET_TABLE

1644
After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget
whenever the mouse pointer enters or leaves the region covered by that widget. For
the structure of tracking events, see “TRACKING_EVENTS” on page 1533 in the
documentation for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

Note
This keyword does not affect all sizing operations. Specifically, the value of UNITS
is ignored when setting the XSIZE or YSIZE keywords.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget's initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a table widget is either a two-
dimensional array or a vector of structures.
WIDGET_TABLE IDL Reference Guide

1645
If the value is specified as a two-dimensional array, all data must be of the same data
type.

If the value is specified as a vector of structures, it can be displayed either in column-
major or row-major format by setting either the COLUMN_MAJOR keyword or the
ROW_MAJOR keyword. All of the structures must be of the same type, and must
contain one field for each column (if COLUMN_MAJOR is set) or row (if
ROW_MAJOR is set) in the table. If neither keyword is set, the data is displayed in
row major format.

If none of [XY]SIZE, SCR_[XY]SIZE, or [XY]_SCROLL_SIZE is present, the size
of the table is determined by the size of the array or vector of structures specified by
VALUE. See “Note on Table Sizing” on page 1636.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

XSIZE

The width of the widget in columns. If row labels are present, one column is
automatically added to this value. See “Note on Table Sizing” on page 1636.

X_SCROLL_SIZE

The XSIZE keyword always specifies the width of a widget, in columns. When the
SCROLL keyword is specified, this size is not necessarily the same as the width of
the visible area. The X_SCROLL_SIZE keyword allows you to set the width of the
scrolling viewport independently of the actual width of the widget. See “Note on
Table Sizing” on page 1636.

Use of the X_SCROLL_SIZE keyword implies SCROLL. This means that scroll bars
will be added in both the horizontal and vertical directions when X_SCROLL_SIZE
is specified. Because the default size of the scrolling viewport may differ between
platforms, it is best to specify Y_SCROLL_SIZE when specifying
X_SCROLL_SIZE.
IDL Reference Guide WIDGET_TABLE

1646
YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

YSIZE

The height of the widget in rows. If column labels are present, one row is
automatically added to this value. See “Note on Table Sizing” on page 1636.

Y_SCROLL_SIZE

The YSIZE keyword always specifies the height of a widget. in rows. When the
SCROLL keyword is specified, this size is not necessarily the same as the height of
the visible area. The Y_SCROLL_SIZE keyword allows you to set the height of the
scrolling viewport independently of the actual width of the widget. See “Note on
Table Sizing” on page 1636.

Use of the Y_SCROLL_SIZE keyword implies SCROLL. This means that scroll bars
will be added in both the horizontal and vertical directions when Y_SCROLL_SIZE
is specified. Because the default size of the scrolling viewport may differ between
platforms, it is best to specify X_SCROLL_SIZE when specifying
Y_SCROLL_SIZE.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
table widgets. In addition to those keywords that affect all widgets, the following are
particularly useful: ALIGNMENT, ALL_TABLE_EVENTS, COLUMN_LABELS,
COLUMN_WIDTHS, DELETE_COLUMNS, DELETE_ROWS, EDITABLE,
EDIT_CELL, FORMAT, GET_VALUE, INSERT_COLUMNS, INSERT_ROWS,
KBRD_FOCUS_EVENTS, ROW_LABELS, ROW_HEIGHTS,
SET_TABLE_SELECT, SET_TABLE_VIEW, SET_TEXT_SELECT,
SET_VALUE, TABLE_XSIZE, TABLE_YSIZE, USE_TABLE_SELECT,
USE_TEXT_SELECT.
WIDGET_TABLE IDL Reference Guide

1647
Keywords to WIDGET_INFO

A number of keywords to the WIDGET_INFO function return information that
applies specifically to table widgets. In addition to those keywords that apply to all
widgets, the following are particularly useful: COLUMN_WIDTHS,
KBRD_FOCUS_EVENTS, ROW_HEIGHTS, TABLE_ALL_EVENTS,
TABLE_EDITABLE, TABLE_EDIT_CELL, TABLE_SELECT, TABLE_VIEW,
USE_TABLE_SELECT.

Widget Events Returned by Table Widgets

There are several variations of the table widget event structure depending on the
specific event being reported. All of these structures contain the standard three fields
(ID, TOP, and HANDLER) as well as an integer TYPE field that indicates which
type of structure has been returned. Programs should always check the field type
before referencing fields that are not present in all table event structures. The
different table widget event structures are described below.

Insert Single Character (TYPE = 0)

This is the type of structure returned when a single character is typed into a cell of a
table widget by a user.

{WIDGET_TABLE_CH, ID:0L, TOP:0L, HANDLER:0L, TYPE:0, OFFSET:0L,
CH:0B, X:0L, Y:0L }

OFFSET is the (zero-based) insertion position that will result after the character is
inserted. CH is the ASCII value of the character. X and Y give the zero-based address
of the cell within the table.

Insert Multiple Characters (TYPE = 1)

This is the type of structure returned when multiple characters are pasted into a cell
by the window system.

{WIDGET_TABLE_STR, ID:0L, TOP:0L, HANDLER:0L, TYPE:1, OFFSET:0L,
STR:'', X:0L, Y:0L}

OFFSET is the (zero-based) insertion position that will result after the text is inserted.
STR is the string to be inserted. X and Y give the zero-based address of the cell
within the table.

Delete Text (TYPE = 2)

This is the type of structure returned when any amount of text is deleted from a cell of
a table widget.
IDL Reference Guide WIDGET_TABLE

1648
{WIDGET_TABLE_DEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:2, OFFSET:0L,
LENGTH:0L, X:0L, Y:0L}

OFFSET is the (zero-based) character position of the first character deleted. It is also
the insertion position that will result when the next character is inserted. LENGTH
gives the number of characters involved. X and Y give the zero-based address of the
cell within the table.

Text Selection (TYPE = 3)

This is the type of structure returned when an area of text is selected (highlighted) by
the user.

{WIDGET_TABLE_TEXT_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:3,
OFFSET:0L, LENGTH:0L, X:0L, Y:0L}

The event announces a change in the insertion point. OFFSET is the (zero-based)
character position of the first character to be selected. LENGTH gives the number of
characters involved. A LENGTH of zero indicates that the widget has no selection,
and that the insertion position is given by OFFSET. X and Y give the zero-based
address of the cell within the table.

Note
Text insertion, text deletion, or any change in the current insertion point causes any
current selection to be lost. In such cases, the loss of selection is implied by the text
event reporting the insert/delete/movement and a separate zero length selection
event is not sent.

Cell Selection (TYPE = 4)

This is the type of structure returned when range of cells is selected (highlighted) or
deselected by the user.

{WIDGET_TABLE_CELL_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:4,
SEL_LEFT:0L, SEL_TOP:0L, SEL_RIGHT:0L, SEL_BOTTOM:0L}

The event announces a change in the currently selected cells. The range of cells
selected is given by the zero-based indices into the table specified by the SEL_LEFT,
SEL_TOP, SEL_RIGHT, and SEL_BOTTOM fields. When cells are deselected
(either by changing the selection or by clicking in the upper left corner of the table)
an event is generated in which the SEL_LEFT, SEL_TOP, SEL_RIGHT, and
SEL_BOTTOM fields contain the value -1.
WIDGET_TABLE IDL Reference Guide

1649
Note
This means that two WIDGET_TABLE_CELL_SEL events are generated when an
existing selection is changed to a new selection. If your code pays attention to
WIDGET_TABLE_CELL_SEL events, be sure to differentiate between select and
deselect events.

Row Height Changed (TYPE = 6)

This is the type of structure returned when a row height is changed by the user.

{WIDGET_TABLE_ROW_HEIGHT, ID:0L, TOP:0L, HANDLER:0L, TYPE:6,
ROW:0L, HEIGHT:0L}

The event announces that the height of the given row has been changed by the user.
The ROW field contains the zero-based row number, and the HEIGHT field contains
the new height.

Column Width Changed (TYPE = 7)

This is the type of structure returned when a column width is changed by the user.

{WIDGET_TABLE_COLUMN_WIDTH, ID:0L, TOP:0L, HANDLER:0L, TYPE:7,
COLUMN:0L, WIDTH:0L}

The event announces that the width of the given column has been changed by the
user. The COLUMN field contains the zero-based column number, and the WIDTH
field contains the new width.

Invalid Data (TYPE = 8)

This is the type of structure returned when the text entered by the user does not pass
validation, and the user has finished editing the field (by hitting TAB or ENTER).

{WIDGET_TABLE_INVALID_ENTRY, ID:0L, TOP:0L, HANDLER:0L, TYPE:8,
STR:'', X:0L, Y:0L}

When this event is generated, the cell’s data is left unchanged. The invalid contents
entered by the user is given as a text string in the STR field. The cell location is given
by the X and Y fields.

Keyboard Focus Events

Table widgets return the following event structure when the keyboard focus changes
and the base was created with the KBRD_FOCUS_EVENTS keyword set:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }
IDL Reference Guide WIDGET_TABLE

1650
ID is the widget ID of the table widget generating the event. TOP is the widget ID of
the top level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. The ENTER field returns 1 (one) if the table
widget is gaining the keyboard focus, or 0 (zero) if the table widget is losing the
keyboard focus.

See Also

WIDGET_CONTROL
WIDGET_TABLE IDL Reference Guide

1651
WIDGET_TEXT

The WIDGET_TEXT function creates text widgets. Text widgets display text and
optionally get textual input from the user. They can have 1 or more lines, and can
optionally contain scroll bars to allow viewing more text than can otherwise be
displayed on the screen.

The returned value of this function is the widget ID of the newly-created text widget.

Syntax

Result = WIDGET_TEXT(Parent [, /ALL_EVENTS] [, /EDITABLE]
[, EVENT_FUNC=string] [, EVENT_PRO=string] [, FONT=string]
[, FRAME=width] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, /KBRD_FOCUS_EVENTS]
[, KILL_NOTIFY=string] [, /NO_COPY] [, /NO_NEWLINE]
[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, RESOURCE_NAME=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, /SCROLL] [, /SENSITIVE] [, /TRACKING_EVENTS] [, UNAME=string]
[, UNITS={0 | 1 | 2}] [, UVALUE=value] [, VALUE=value] [, /WRAP]
[, XOFFSET=value] [, XSIZE=value] [, YOFFSET=value] [, YSIZE=value])

Arguments

Parent

The widget ID of the parent widget for the new text widget.

Keywords

ALL_EVENTS

Along with the EDITABLE keyword, ALL_EVENTS controls the type of events
generated by the text widget. Set the ALL_EVENTS keyword to cause the full set of
events to be generated. If ALL_EVENTS is not set, setting EDITABLE causes only
IDL Reference Guide WIDGET_TEXT

1652
end-of-line events to be generated. If EDITABLE is not set, all events are suppressed.
See the following table for additional details.

EDITABLE

Set this keyword to allow direct user editing of the text widget contents. Normally,
the text in text widgets is read-only. See “ALL_TEXT_EVENTS” on page 1552 for a
description of how EDITABLE interacts with the ALL_TEXT_EVENTS keyword.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a “device font”
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows or
Macintosh systems). See “About Device Fonts” on page 2482 for details on
specifying names for device fonts. If this keyword is omitted, the default font is used.

Keywords Effects

ALL_EVENT
S EDITABLE Input changes

widget contents?
Type of events

generated.

Not set Not set No None

Not set Set Yes End-of-line insertion

Set Not set No All events

Set Set Yes All events

Table 97: Effects of using the ALL_EVENTS and EDITABLE keywords
WIDGET_TEXT IDL Reference Guide

1653
Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget.

Note
This keyword is only a “hint” to the toolkit, and may be ignored in some instances.
Under Microsoft Windows, text widgets always have frames.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

KBRD_FOCUS_EVENTS

Set this keyword to make the base return keyboard focus events whenever the
keyboard focus of the base changes. See “Text Widget Events” on page 1658 for
more information.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
IDL Reference Guide WIDGET_TEXT

1654
Note that the procedure specified is used only if you are not using the XMANAGER
procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_TEXT or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NO_NEWLINE

Normally, when setting the value of a multi-line text widget, newline characters are
automatically appended to the end of each line of text. Set this keyword to suppress
this action.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.
WIDGET_TEXT IDL Reference Guide

1655
PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 1527 for a complete discussion of this keyword.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SCROLL

Set this keyword to give the widget scroll bars that allow viewing portions of the
widget contents that are not currently on the screen.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.
IDL Reference Guide WIDGET_TEXT

1656
TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget
whenever the mouse pointer enters or leaves the region covered by that widget. For
the structure of tracking events, see “TRACKING_EVENTS” on page 1533 in the
documentation for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

Note
This keyword does not affect all sizing operations. Specifically, the value of UNITS
is ignored when setting the XSIZE or YSIZE keywords to WIDGET_TEXT.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a text widget is the current text
displayed by the widget.
WIDGET_TEXT IDL Reference Guide

1657
VALUE can be either a string or an array of strings. Note that variables returned by
the GET_VALUE keyword to WIDGET_CONTROL are always string arrays, even
if a scalar string is specified in the call to WIDGET_TEXT.

WRAP

Set this keyword to indicate that scrolling or multi-line text widgets should
automatically break lines between words to keep the text from extending past the
right edge of the text display area. Note that carriage returns are not automatically
entered when lines wrap; the value of the text widget will remain a single-element
array unless you explicitly enter a carriage return.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

XSIZE

The width of the widget in characters. Note that the physical width of the text widget
depends on both the value of XSIZE and on the size of the font used. The default
value of XSIZE varies according to your windowing system. On Windows and Mac,
the default size is roughly 20 characters. On Motif, the default size depends on the
width of the text widget.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.
IDL Reference Guide WIDGET_TEXT

1658
YSIZE

The height of the widget in text lines. Note that the physical height of the text widget
depends on both the value of YSIZE and on the size of the font used. The default
value of YSIZE is one line.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
text widgets. In addition to those keywords that affect all widgets, the following are
particularly useful: ALL_TEXT_EVENTS, APPEND, EDITABLE, GET_VALUE,
KBRD_FOCUS_EVENTS, INPUT_FOCUS, NO_NEWLINE,
SET_TEXT_SELECT, SET_TEXT_TOP_LINE, SET_VALUE,
USE_TEXT_SELECT.

Keywords to WIDGET_INFO

A number of keywords to the WIDGET_INFO function return information that
applies specifically to text widgets. In addition to those keywords that apply to all
widgets, the following are particularly useful: KBRD_FOCUS_EVENTS,
TEXT_ALL_EVENTS, TEXT_EDITABLE, TEXT_NUMBER,
TEXT_OFFSET_TO_XY, TEXT_SELECT, TEXT_TOP_LINE,
TEXT_XY_TO_OFFSET.

Text Widget Events

 There are several variations of t1he text widget event structure depending on the
specific event being reported. All of these structures contain the standard three fields
(ID, TOP, and HANDLER) as well as an integer TYPE field that indicates which
type of structure has been returned. Programs should always check the type field
before referencing fields that are not present in all text event structures. The different
text widget event structures are described below.

Insert Single Character (TYPE = 0)

This is the type of structure returned when a single character is typed or pasted into a
text widget by a user.

{ WIDGET_TEXT_CH, ID:0L, TOP:0L, HANDLER:0L, TYPE:0, OFFSET:0L,
CH:0B }

OFFSET is the (zero-based) insertion position that will result after the character is
inserted. CH is the ASCII value of the character.
WIDGET_TEXT IDL Reference Guide

1659
Insert Multiple Characters (TYPE = 1)

This is the type of structure returned when multiple characters are pasted into a text
widget by the window system.

{ WIDGET_TEXT_STR, ID:0L, TOP:0L, HANDLER:0L, TYPE:1, OFFSET:0L,
STR:'' }

OFFSET is the (zero-based) insertion position that will result after the text is inserted.
STR is the string to be inserted.

Delete Text (TYPE = 2)

This is the type of structure returned when any amount of text is deleted from a text
widget.

{ WIDGET_TEXT_DEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:2, OFFSET:0L,
LENGTH:0L }

OFFSET is the (zero-based) character position of the first character to be deleted. It is
also the insertion position that will result when the characters have been deleted.
LENGTH gives the number of characters involved. A LENGTH of zero indicates that
no characters were deleted.

Selection (TYPE = 3)

This is the type of structure returned when an area of text is selected (highlighted) by
the user.

{ WIDGET_TEXT_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:3, OFFSET:0L,
LENGTH:0L }

The event announces a change in the insertion point. OFFSET is the (zero-based)
character position of the first character to be selected. LENGTH gives the number of
characters involved. A LENGTH of zero indicates that no characters are selected, and
the new insertion position is given by OFFSET.

Note that text insertion, text deletion, or any change in the current insertion point
causes any current selection to be lost. In such cases, the loss of selection is implied
by the text event reporting the insert/delete/movement and a separate zero length
selection event is not sent.

Keyboard Focus Events

Text widgets return the following event structure when the keyboard focus changes
and the base was created with the KBRD_FOCUS_EVENTS keyword set:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }
IDL Reference Guide WIDGET_TEXT

1660
ID is the widget ID of the text widget generating the event. TOP is the widget ID of
the top level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. The ENTER field returns 1 (one) if the text
widget is gaining the keyboard focus, or 0 (zero) if the text widget is losing the
keyboard focus.

See Also

CW_FIELD, XDISPLAYFILE
WIDGET_TEXT IDL Reference Guide

1661
WINDOW

The WINDOW procedure creates a window for the display of graphics or text. It is
only necessary to use WINDOW if more than one simultaneous window or a special
size window is desired because a window is created automatically the first time any
display procedure attempts to access the window system. The newly-created window
becomes the current window, and the system variable !D.WINDOW is set to that
window’s window index. (See the description of the WSET procedure for a
discussion of the current IDL window.)

The behavior of WINDOW varies slightly depending on the window system in effect.
See the discussion of IDL graphics devices in Appendix B, “IDL Graphics Devices”
for additional details.

Syntax

WINDOW [, Window_Index] [, COLORS=value] [, /FREE] [, /PIXMAP]
[, RETAIN={0 | 1 | 2}] [, TITLE=string] [, XPOS=value] [, YPOS=value]
[, XSIZE=pixels] [, YSIZE=pixels]

Arguments

Window_Index

The window index for the newly-created window. A window index is an integer
value between 0 and 31 that is used to refer to the window. If this parameter is
omitted, window index 0 is used. If the value of Window_Index specifies an existing
window, the existing window is deleted and a new one is created. If you need to
create more than 32 windows, use the FREE keyword described below.

Keywords

COLORS

Note
This keyword is ignored on Windows and Macintosh.

The maximum number of color table indices to be used when drawing. This keyword
has an effect only if supplied when the first window is created. If COLORS is not
present when the first window is created, all or most of the available color indices are
allocated depending upon the window system in use.
IDL Reference Guide WINDOW

1662
To use monochrome windows on a color display in X Windows, use COLORS = 2
when creating the first window. One color table is maintained for all windows. A
negative value for COLORS specifies that all but the given number of colors from the
shared color table should be allocated.

Although this keyword is ignored on Windows and Macintosh, we could use the
following code to use a monochrome window on all platforms:

WINDOW, COLORS=2 ; ignored on Windows and Mac
white=!D.N_COLORS-1
PLOT, FINDGEN(20), COLOR=white

FREE

Set this keyword to create a window using the smallest unused window index above
32. If this keyword is present, the Window_Index argument can be omitted. The
default position of the new window is opposite that of the current window. Using the
FREE keyword allows the creation of a large number of windows. The system
variable !D.WINDOW is set to the index of the newly-created window.

PIXMAP

Set the PIXMAP keyword to specify that the window being created is actually an
invisible portion of the display memory called a pixmap.

RETAIN

Set this keyword to 0, 1, or 2 to specify how backing store should be handled for the
window:

• 0 = no backing store

• 1 = requests that the server or window system provide backing store

• 2 = specifies that IDL provide backing store directly

See “Backing Store” on page 2351 for details.

TITLE

A scalar string that contains the window’s label. If not specified, the window is given
a label of the form “IDL n”, where n is the index number of the window. For
example, to create a window with the label “IDL Graphics”, enter:

WINDOW, TITLE='IDL Graphics'
WINDOW IDL Reference Guide

1663
XPOS

The X position of the window, specified in device coordinates. On Motif platforms,
XPOS specifies the X position of the lower left corner and is measured from the
lower left corner of the screen. On Windows and Macintosh platforms, XPOS
specifies the X position of the upper left corner and is measured from the upper left
corner of the screen. That is, specifying

WINDOW, XPOS = 0, YPOS = 0

will create a window in the lower left corner on Motif machines and in the upper left
corner on Windows and Macintosh machines.

If no position is specified, the position of the window is determined from the value of
Window Index using the following rules:

• Window 0 is placed in the upper right hand corner.

• Even numbered windows are placed on the top half of the screen and odd
numbered windows are placed on the bottom half.

• Windows 0,1,4,5,8, and 9 are placed on the right side of the screen and
windows 2,3,6, and 7 are placed on the left.

Note
The order of precedence (highest to lowest) for positioning windows is:
XPOS/YPOS keywords to WINDOW, Tile/Cascade IDE graphics (user system)
preferences, optional index argument to WINDOW. Also realize that setting
LOCATION is only a request to the Window manager and may not always be
honored due to system peculiarities.

YPOS

The Y position of the window, specified in device coordinates. See the description of
XPOS for details.

XSIZE

The width of the window in pixels.

YSIZE

The height of the window in pixels.
IDL Reference Guide WINDOW

1664
Example

Create graphics window number 0 with a size of 400 by 400 pixels and a title that
reads “Square Window” by entering:

WINDOW, 0, XSIZE=400, YSIZE=400, TITLE='Square Window'

See Also

WDELETE, WSET, WSHOW
WINDOW IDL Reference Guide

1665
WRITE_BMP

The WRITE_BMP procedure writes an image and its color table vectors to a
Microsoft Windows Version 3 device independent bitmap file (.BMP).

WRITE_BMP does not handle 1-bit-deep images or compressed images, and is not
fast for 4-bit images. The algorithm works best on images where the number of bytes
in each scan-line is evenly divisible by 4.

This routine is written in the IDL language. Its source code can be found in the file
write_bmp.pro in the lib subdirectory of the IDL distribution.

Syntax

WRITE_BMP, Filename, Image[, R, G, B] [, /FOUR_BIT] [, IHDR=structure]
[, HEADER_DEFINE=h{define h before call}] [, /RGB]

Arguments

Filename

A scalar string containing the full pathname of the bitmap file to write.

Image

The array to write into the new bitmap file. The array should be scaled into a range of
bytes for 8- and 24-bit deep images. Scale to 0-15 for 4-bit deep images. If the image
has 3 dimensions and the first dimension is 3, a 24-bit deep bitmap file is created.

Note
For 24-bit images, color interleaving is blue, green, red: Image[0, i, j] = blue,
Image[1, i, j] = green, Image[2, i, j] = red.

R, G, B

Color tables. If omitted, the colors loaded in the COLORS common block are used.

Keywords

FOUR_BIT

Set this keyword to write as a 4-bit device independent bitmap. If omitted or zero, an
8-bit deep bitmap is written.
IDL Reference Guide WRITE_BMP

1666
IHDR

Set this keyword to a BITMAPINFOHEADER structure containing the file header
fields that are not obtained from the image itself. The fields in this structure that can
be set are: bi{XY}PelsPerMeter, biClrUsed, and biClrImportant.

HEADER_DEFINE

If this keyword is set, WRITE_BMP returns an empty BITMAPINFOHEADER
structure, containing zeros. No other actions are performed. This structure may be
then modified with the pertinent fields and passed in via the IHDR keyword
parameter. See the Microsoft Windows Programmers Reference Guide for a
description of each field in the structure.

Note: this parameter must be defined before the call. For example:

H = 0
WRITE_BMP, HEADER_DEFINE = H

RGB

Set this keyword to reverse the color interleaving for 24-bit images to red, green,
blue: Image[0, i, j] = red, Image[1, i, j] = green, Image[2, i, j] = blue. By default, 24-
bit images are written with color interleaving of blue, green, red.

Examples

The following command captures the contents of the current IDL graphics window
and saves it to a Microsoft Windows Bitmap file with the name test.bmp. Note that
this works only on a PseudoColor (8-bit) display:

WRITE_BMP, 'test.bmp', TVRD()

The following commands scale an image to 0-15, and then write a 4-bit BMP file,
using a grayscale color table:

; Create a ramp from 0 to 255:
r = BYTSCL(INDGEN(16))

WRITE_BMP, 'test.bmp', BYTSCL(Image, MAX=15), r, r, r, /FOUR

See Also

READ_BMP, QUERY_* Routines
WRITE_BMP IDL Reference Guide

1667
WRITE_IMAGE

The WRITE_IMAGE procedure writes an image and its color table vectors, if any, to
a file of a specified type. WRITE_IMAGE can write most types of image files
supported by IDL.

Syntax

WRITE_IMAGE, Filename, Format, Data [, Red, Green, Blue] [, /APPEND]

Arguments

Filename

A scalar string containing the name of the file to write.

Format

A scalar string containing the name of the file format to write. The following are the
supported formats:

• BMP

• JPEG

• PNG

• PPM

• SRF

• TIFF

• DICOM

Data

An IDL variable containing the image data to write to the file.

Red

An optional vector containing the red channel of the color table if a colortable exists.

Green

An optional vector containing the green channel of the color table if a colortable
exists.
IDL Reference Guide WRITE_IMAGE

1668
Blue

An optional vector containing the blue channel of the color table if a colortable exists.

Keywords

APPEND

Set this keyword to force the image to be appended to the file instead of overwriting
the file. APPEND may be used with image formats that supports multiple images per
file and is ignored for formats that support only a single image per file.
WRITE_IMAGE IDL Reference Guide

1669
WRITE_JPEG

The WRITE_JPEG procedure writes compressed images to files. JPEG (Joint
Photographic Experts Group) is a standardized compression method for full-color
and gray-scale images. This procedure is based in part on the work of the
Independent JPEG Group.

As the Independent JPEG Group states, JPEG is intended for real-world scenes (such
as digitized photographs). Line art, such as drawings or IDL plots, and other
unrealistic images are not its strong suit. Note also that JPEG is a lossy compression
scheme. That is, the output image is not identical to the input image. Hence you
cannot use JPEG if you must have identical output bits. On typical images of real-
world scenes, however, very good compression levels can be obtained with no visible
change, and amazingly high compression levels are possible if you can tolerate a low-
quality image. You can trade off output image quality against compressed file size by
adjusting a compression parameter. Files are encoded in JFIF, the JPEG File
Interchange Format; however, such files are usually simply called JPEG files.

If you need to store images in a format that uses lossless compression, consider using
the WRITE_PNG procedure. This procedure writes a Portable Network Graphics
(PNG) file using lossless compression with either 8 or 16 data bits per channel. To
store 8-bit or 24-bit images without compression, consider using WRITE_BMP (for
Microsoft Bitmap format files) or WRITE_TIFF (to write Tagged Image Format
Files).

For a short technical introduction to the JPEG compression algorithm, see: Wallace,
Gregory K. “The JPEG Still Picture Compression Standard”, Communications of the
ACM, April 1991 (vol. 34, no. 4), pp. 30-44.

Note
All JPEG files consist of byte data. Input data is converted to bytes before being
written to a JPEG file.

Syntax

WRITE_JPEG [, Filename | , UNIT=lun] , Image [, /ORDER] [, /PROGRESSIVE]
[, QUALITY=value{0 to 100}] [, TRUE={1 | 2 | 3}]
IDL Reference Guide WRITE_JPEG

1670
Arguments

Filename

A string containing the name of file to be written in JFIF (JPEG) format. If this
parameter is not present, the UNIT keyword must be specified.

Image

A byte array of either two or three dimensions, containing the image to be written.
Grayscale images must have two dimensions. TrueColor images must have three
dimensions with the index of the dimension that contains the color specified with the
TRUE keyword.

Keywords

ORDER

JPEG/JFIF images are normally written in top-to-bottom order. If the image array is
in the standard IDL order (i.e., from bottom-to-top) set ORDER to 0, its default
value. If the image array is in top-to-bottom order, ORDER must be set to 1.

PROGRESSIVE

Set this keyword to write the image as a series of scans of increasing quality. When
used with a slow communications link, a decoder can generate a low-quality image
very quickly, and then improve its quality as more scans are received.

Warning
Not all JPEG applications can handle progressive JPEG files, and it is up the JPEG
reader to progressively display the JPEG image. For example, IDL’s READ_JPEG
routine ignores the progressive readout request and reads the entire image in at the
first reading.

QUALITY

This keyword specifies the quality index, in the range of 0 (terrible) to 100 (excellent)
for the JPEG file. The default value is 75, which corresponds to very good quality.
Lower values of QUALITY produce higher compression ratios and smaller files.

TRUE

This keyword specifies the index, starting at 1, of the dimension over which the color
is interleaved. For example, for an image that is pixel interleaved and has dimensions
of (3, m, n), set TRUE to 1. Specify 2 for row-interleaved images (m, 3, n); and 3 for
WRITE_JPEG IDL Reference Guide

1671
band-interleaved images (m, n, 3). If TRUE is not set, the image is assumed to have
no interleaving (it is not a TrueColor image).

UNIT

This keyword designates the logical unit number of an already open file to receive the
output, allowing multiple JFIF images per file or the embedding of JFIF images in
other data files. If this keyword is used, Filename should not be specified.

Note
When using VMS, open the file with the /STREAM keyword.

Note
When opening a file intended for use with the UNIT keyword, if the filename does
not end in .jpg, or .jpeg, you must specify the STDIO keyword to OPEN in order
for the file to be compatible with WRITE_JPEG.

Examples

Write the image contained in the array A, using JPEG compression with a quality
index of 25. The image is stored in bottom-to-top order:

image = DIST(100)
WRITE_JPEG, 'test1.jpg', image, QUALITY=25

Write a TrueColor image to a JPEG file. The image is contained in the band-
interleaved array A with dimensions (m, n, 3). Assume it is stored in top-to-bottom
order:

WRITE_JPEG, 'test2.jpg', image, TRUE=3, /ORDER

See Also

READ_JPEG, QUERY_* Routines
IDL Reference Guide WRITE_JPEG

1672
WRITE_NRIF

The WRITE_NRIF procedure writes an image and its color table vectors to an NCAR
Raster Interchange Format (NRIF) rasterfile.

WRITE_NRIF only writes 8- or 24-bit deep rasterfiles of types “Indexed Color” (8-
bit) and “Direct Color integrated” (24-bit). The color map is included only for 8-bit
files.

See the document “NCAR Raster Interchange Format and TAGS Raster Reference
Manual,” available from the Scientific Computing Division, National Center for
Atmospheric Research, Boulder, CO, 80307-3000, for information on the structure of
NRIF files.

This routine is written in the IDL language. Its source code can be found in the file
write_nrif.pro in the lib subdirectory of the IDL distribution.

Syntax

WRITE_NRIF, File, Image [, R, G, B]

Arguments

File

A scalar string containing the full path name of the NRIF file to write.

Image

The byte array to be written to the NRIF file. If Image has the dimensions (n,m), an 8-
bit NRIF file with color tables is created. If Image has the dimensions (3,n,m), a 24-
bit NRIF file is created, where each byte triple represents the red, green, and blue
intensities at (n,m) on a scale from 0 to 255. The NRIF image will be rendered from
bottom to top, in accordance with IDL standards.

R, G, B

The Red, Green, and Blue color vectors to be used as a color table with 8-bit images.
If color vectors are supplied, they are included in the output (8-bit images only). If R,
G, B values are not provided, the last color table established using LOADCT is
included. If no color table has been established, WRITE_NRIF calls LOADCT to
load the grayscale entry (table 0).
WRITE_NRIF IDL Reference Guide

1673
Note
WRITE_NRIF does not recognize color vectors loaded directly using TVLCT, so if
a custom color table is desired and it is not convenient to use XPALETTE, include
the R, G, and B vectors that were used to create the color table.
IDL Reference Guide WRITE_NRIF

1674
WRITE_PICT

The WRITE_PICT procedure writes an image and its color table vectors to a PICT
(version 2) format image file. The PICT format is used by Apple Macintosh
computers.

Note: WRITE_PICT only works with 8-bit displays

This routine is written in the IDL language. Its source code can be found in the file
write_pict.pro in the lib subdirectory of the IDL distribution.

Syntax

WRITE_PICT, Filename [, Image, R, G, B]

Arguments

Filename

A scalar string containing the full pathname of the PICT file to write.

Image

The byte array to be written to the PICT file. If Image is omitted, the entire current
graphics window is read into an array and written to the PICT file.

R, G, B

The Red, Green, and Blue color vectors to be written to the PICT file. If R, G, B
values are not provided, the last color table established using LOADCT is included.
If no color table has been established, WRITE_PICT calls LOADCT to load the
grayscale entry (table 0).

Example

Create a pseudo screen dump from the current window. Note that this works only on
a PseudoColor (8-bit) display:

WRITE_PICT, 'test.pict', TVRD()

See Also

READ_PICT, QUERY_* Routines
WRITE_PICT IDL Reference Guide

1675
WRITE_PNG

The WRITE_PNG procedure writes a 2D or 3D IDL variable into a Portable Network
Graphics (PNG) file. The data in the file is stored using lossless compression with
either 8 or 16 data bits per channel, based on the input IDL variable type. 3D IDL
variables must have the number of channels as their leading dimension (pixel
interleaved). For BYTE format 2D IDL variables, an optional palette may be stored
in the image file along with a list of pixel values which are to be considered
transparent by a reading program.

Note
IDL supports version 1.0.5 of the PNG Library.

Syntax

WRITE_PNG, Filename, Image[, R, G, B] [, /ORDER] [, /VERBOSE]
[, TRANSPARENT=array]

Arguments

Filename

A scalar string containing the full pathname of the PNG file to write.

Image

The array to write into the new PNG file. If Image is one of the integer data types, it
is converted to type unsigned integer (UINT) and written out at 16 data bits per
channel. All other data types are converted to bytes and written out at 8-bits per
channel.

Note
If Image is two-dimensional (single-channel) and R, G, and B are provided, all input
data types (including integer) are converted to bytes and written out as 8-bit data.

R, G, B

For single-channel images, R, G, and B should contain the red, green, and blue color
vectors, respectively. For multi-channel images, these arguments are ignored.
IDL Reference Guide WRITE_PNG

1676
Keywords

ORDER

Set this keyword to indicate that the rows of the image should be written from bottom
to top. The rows are written from top to bottom by default. ORDER provides
compatibility with PNG files written using versions of IDL prior to IDL 5.4, which
wrote PNG files from bottom to top.

VERBOSE

Produces additional diagnostic output during the write.

TRANSPARENT

Set this keyword to an array of pixel index values which are to be treated as
“transparent” for the purposes of image display. This keyword is valid only if Image
is a single-channel (color indexed) image and the R, G, B palette is provided.

Example

Create an RGBA (16-bits/channel) and a Color Indexed (8-bits/channel) image with a
palette.

rgbdata = UINDGEN(4,320,240)
cidata = BYTSCL(DIST(256))
red = INDGEN(256)
green = INDGEN(256)
blue = INDGEN(256)
WRITE_PNG,'rgb_image.png',rgbdata
WRITE_PNG,'ci_image.png',cidata,red,green,blue

; Query and Read the data:
names = ['rgb_image.png','ci_image.png','unknown.png']
FOR i=0,N_ELEMENTS(names)-1 DO BEGIN

ok = QUERY_PNG(names[i],s)
IF (ok) THEN BEGIN

HELP,s,/STRUCTURE
IF (s.HAS_PALETTE) THEN BEGIN

img = READ_PNG(names[i],rpal,gpal,bpal)
HELP,img,rpal,gpal,bpal

ENDIF ELSE BEGIN
img = READ_PNG(names[i])
HELP,img

ENDELSE
ENDIF ELSE BEGIN

PRINT,names[i],' is not a PNG file'
ENDELSE

ENDFOR
WRITE_PNG IDL Reference Guide

1677
See Also

READ_PNG, QUERY_* Routines
IDL Reference Guide WRITE_PNG

1678
WRITE_PPM

The WRITE_PPM procedure writes an image to a PPM (TrueColor) or PGM (gray
scale) file. This routine is written in the IDL language. Its source code can be found
in the file write_ppm.pro in the lib subdirectory of the IDL distribution.

Note
WRITE_PPM only writes 8-bit deep PGM/PPM files of the standard type. Images
should be ordered so that the first row is the top row.

PPM/PGM format is supported by the PBMPLUS toolkit for converting various
image formats to and from portable formats, and by the Netpbm package.

Syntax

WRITE_PPM, Filename, Image [, /ASCII]

Arguments

Filename

A scalar string specifying the full pathname of the PPM or PGM file to write.

Image

The 2D (gray scale) or 3D (TrueColor) array to be written to a file.

Keywords

ASCII

Set this keyword to force WRITE_PPM to use formatted ASCII input/output to write
the image data. The default is to use the far more efficient binary input/output
(RAWBITS) format.

Example

image = DIST(100)
WRITE_PPM, 'file.ppm', image

See Also

READ_PPM, QUERY_* Routines
WRITE_PPM IDL Reference Guide

1679
WRITE_SPR

The WRITE_SPR procedure writes a row-indexed sparse array structure to a
specified file. Row-indexed sparse arrays are created using the SPRSIN function.

Syntax

WRITE_SPR, AS, Filename

Arguments

AS

A row-indexed sparse array created by SPRSIN.

Filename

The name of the file that will contain AS.

Example

; Create an array:
A = [[3.,0., 1., 0., 0.],$

[0.,4., 0., 0., 0.],$
[0.,7., 5., 9., 0.],$
[0.,0., 0., 0., 2.],$
[0.,0., 0., 6., 5.]]

; Convert it to sparse storage format:
A = SPRSIN(A)

; Store it in the file sprs.as:
WRITE_SPR, A, 'sprs.as'

See Also

FULSTR, LINBCG, SPRSAB, SPRSAX, SPRSIN, READ_SPR
IDL Reference Guide WRITE_SPR

1680
WRITE_SRF

The WRITE_SRF procedure writes an image and its color table vectors to a Sun
Raster File (SRF).

WRITE_SRF only writes 32-, 24-, and 8-bit-deep rasterfiles of type RT_STANDARD.
Use the UNIX command rasfilter8to1 to convert these files to 1-bit deep files.
See the file /usr/include/rasterfile.h for the structure of Sun rasterfiles.

This routine is written in the IDL language. Its source code can be found in the file
write_srf.pro in the lib subdirectory of the IDL distribution.

Syntax

WRITE_SRF, Filename [, Image, R, G, B] [, /ORDER] [, /WRITE_32]

Arguments

Filename

A scalar string containing the full pathname of the SRF to write.

Image

The array to be written to the SRF. If Image has dimensions (3,n,m), a 24-bit SRF is
written. If Image is omitted, the entire current graphics window is read into an array
and written to the SRF file. Image should be of byte type, and in top to bottom scan
line order.

R, G, B

The Red, Green, and Blue color vectors to be written to the file. If R, G, B values are
not provided, the last color table established using LOADCT is included. If no color
table has been established, WRITE_SRF calls LOADCT to load the grayscale entry
(table 0).

Keywords

ORDER

Set this keyword to write the image from the top down instead of from the bottom up.
This setting is only necessary when writing a file from the current IDL graphics
window; it is ignored when writing a file from a data array passed as a parameter.
WRITE_SRF IDL Reference Guide

1681
WRITE_32

Set this keyword to write a 32-bit file. If the input image is a TrueColor image,
dimensioned (3, n, m), it is normally written as a 24-bit raster file.

Example

Create a pseudo screen dump from the current window:

WRITE_SRF, 'test.srf', TVRD()

See Also

READ_SRF, QUERY_* Routines
IDL Reference Guide WRITE_SRF

1682
WRITE_SYLK

The WRITE_SYLK function writes the contents of an IDL variable to a SYLK
(Symbolic Link) format spreadsheet data file. The function returns TRUE if the write
operation was successful.

Note
This routine writes only numeric and string SYLK data. It cannot handle
spreadsheet and cell formatting information (cell width, text justification, font type,
date, time, monetary notations, etc.). A given SYLK data file cannot be appended
with data blocks through subsequent calls.

This routine is written in the IDL language. Its source code can be found in the file
write_sylk.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = WRITE_SYLK(File, Data [, STARTCOL=column] [, STARTROW=row])

Arguments

File

A scalar string specifying the full path name of the SYLK file to write.

Data

A scalar, vector, or 2D array to be written to File.

Keywords

STARTCOL

Set this keyword to the first column of spreadsheet cells to write. If not specified, the
write operation begins with the first column found in the file (column 0).

STARTROW

Set this keyword to the first row of spreadsheet cells to write. If not specified, the
write operation begins with the first row of cells found in the file (row 0).
WRITE_SYLK IDL Reference Guide

1683
Example

Suppose you wish to write the contents of a 2 by 2 floating-point array, data, to a
SYLK data file called “bar.slk” such that the matrix would appear with it’s upper left
data at the cell in the 10th row and the 20th column. Use the following command:

status = WRITE_SYLK('bar.slk', data, STARTROW = 9, STARTCOL = 19)

The IDL variable status will contain the value 1 if the operation was successful.

See Also

READ_SYLK
IDL Reference Guide WRITE_SYLK

1684
WRITE_TIFF

The WRITE_TIFF procedure can write TIFF files with one or more channels, where
each channel can contain 8, 16, 32, or floating point pixels.

Syntax

WRITE_TIFF, Filename [, Image, Order] [, /APPEND] [, RED=value]
[, GREEN=value] [, BLUE=value] [, COMPRESSION={0 | 1 | 2}]
[, GEOTIFF=structure] [, /LONG | , /SHORT | ,/FLOAT] [, PLANARCONFIG={1 |
2}] [, /VERBOSE] [, XRESOL=pixels/inch] [, YRESOL=pixels/inch]

Arguments

Filename

A scalar string containing the full pathname of the TIFF to write.

Image

The array to be written to the TIFF. If Image has dimensions (k,n,m), a k-channel
TIFF is written. Image should be in top to bottom scan line order. By default, this
array is converted to byte format before being written (see the LONG, SHORT and
FLOAT keywords below). Note that many TIFF readers can read only one- or three-
channel images.

Note
The Image argument is optional if PLANARCONFIG is set to 2 and the RED,
GREEN, and BLUE keywords have been set to 2D arrays.

Order

This argument should be 0 if the image is stored from bottom to top (the default). For
images stored from top to bottom, this argument should be 1.

Warning
Not all TIFF readers honor the value of the Order argument. IDL writes the value
into the file, but many known readers ignore this value. In such cases, we
recommend that you convert the image to top to bottom order with the REVERSE
function and then set Order to 1.
WRITE_TIFF IDL Reference Guide

1685
Keywords

APPEND

Set this keyword to specify that the image should be added to the existing file,
creating a multi-image TIFF file.

COMPRESSION

Set this keyword to select the type of compression to be used:

• 0 = none (default)

• 2 = PackBits.

FLOAT

Set this keyword to write the pixel components as floating-point entities (the default
is 8-bit).

GEOTIFF

Set this keyword to an anonymous structure containing one field for each of the
GeoTIFF tags and keys to be written into the file. The GeoTIFF structure is formed
using fields named from the following table.

Anonymous Structure Field Name IDLDatatype

TAGS:

"MODELPIXELSCALETAG" DOUBLE[3]

"MODELTRANSFORMATIONTAG" DOUBLE[4,4]

"MODELTIEPOINTTAG" DOUBLE[6,*]

KEYS:

"GTMODELTYPEGEOKEY" INT

"GTRASTERTYPEGEOKEY" INT

"GTCITATIONGEOKEY" STRING

"GEOGRAPHICTYPEGEOKEY" INT

"GEOGCITATIONGEOKEY" STRING

Table 98: GEOTIFF Structures
IDL Reference Guide WRITE_TIFF

1686
"GEOGGEODETICDATUMGEOKEY" INT

"GEOGPRIMEMERIDIANGEOKEY" INT

"GEOGLINEARUNITSGEOKEY" INT

"GEOGLINEARUNITSIZEGEOKEY" DOUBLE

"GEOGANGULARUNITSGEOKEY" INT

"GEOGANGULARUNITSIZEGEOKEY" DOUBLE

"GEOGELLIPSOIDGEOKEY" INT

"GEOGSEMIMAJORAXISGEOKEY" DOUBLE

"GEOGSEMIMINORAXISGEOKEY" DOUBLE

"GEOGINVFLATTENINGGEOKEY" DOUBLE

"GEOGAZIMUTHUNITSGEOKEY" INT

"GEOGPRIMEMERIDIANLONGGEOKEY" DOUBLE

"PROJECTEDCSTYPEGEOKEY" INT

"PCSCITATIONGEOKEY" STRING

"PROJECTIONGEOKEY" INT

"PROJCOORDTRANSGEOKEY" INT

"PROJLINEARUNITSGEOKEY" INT

"PROJLINEARUNITSIZEGEOKEY" DOUBLE

"PROJSTDPARALLEL1GEOKEY" DOUBLE

"PROJSTDPARALLEL2GEOKEY" DOUBLE

"PROJNATORIGINLONGGEOKEY" DOUBLE

"PROJNATORIGINLATGEOKEY" DOUBLE

"PROJFALSEEASTINGGEOKEY" DOUBLE

"PROJFALSENORTHINGGEOKEY" DOUBLE

"PROJFALSEORIGINLONGGEOKEY" DOUBLE

Anonymous Structure Field Name IDLDatatype

Table 98: GEOTIFF Structures
WRITE_TIFF IDL Reference Guide

1687
Note
If a GeoTIFF key appears multiple times in a file, only the value for the first
instance of the key is returned.

LONG

Set this keyword to write the pixel components as unsigned 32-bit entities (the
default is 8-bit).

PLANARCONFIG

This keyword determines the order in which a multi-channel image is stored and
written. It has no effect with a single-channel image. Set this keyword to 2 to if the
Image parameter is interleaved by “plane”, or band, and its dimensions are (Columns,
Rows, Channels). The default value is 1, indicating that multi-channel images are

"PROJFALSEORIGINLATGEOKEY" DOUBLE

"PROJFALSEORIGINEASTINGGEOKEY" DOUBLE

"PROJFALSEORIGINNORTHINGGEOKEY" DOUBLE

"PROJCENTERLONGGEOKEY" DOUBLE

"PROJCENTERLATGEOKEY" DOUBLE

"PROJCENTEREASTINGGEOKEY" DOUBLE

"PROJCENTERNORTHINGGEOKEY" DOUBLE

"PROJSCALEATNATORIGINGEOKEY" DOUBLE

"PROJSCALEATCENTERGEOKEY" DOUBLE

"PROJAZIMUTHANGLEGEOKEY" DOUBLE

"PROJSTRAIGHTVERTPOLELONGGEOKEY" DOUBLE

"VERTICALCSTYPEGEOKEY" INT

"VERTICALCITATIONGEOKEY" STRING

"VERTICALDATUMGEOKEY" INT

"VERTICALUNITSGEOKEY" INT

Anonymous Structure Field Name IDLDatatype

Table 98: GEOTIFF Structures
IDL Reference Guide WRITE_TIFF

1688
interleaved by color, also called channel, and its dimensions are (Channels, Columns,
Rows).

As a special case, this keyword may be set to 2 to write an RGB image that is
contained in three separate arrays (color planes), stored in the variables specified by
the RED, GREEN, and BLUE keywords. Otherwise, omit this parameter (or set it to
1).

Note
Many TIFF readers can read only one- or three-channel images.

RED, GREEN, BLUE

If you are writing a Palette color image, set these keywords equal to the color table
vectors, scaled from 0 to 255.

If you are writing an RGB interleaved image (i.e., if the PLANARCONFIG keyword
is set to 2), set these keywords to the names of the variables containing the three
image components.

SHORT

Set this keyword to write the pixel components as unsigned 16-bit entities (the
default is 8-bit).

VERBOSE

Set this keyword to produce additional diagnostic output during the write.

XRESOL

Set this keyword to the horizontal resolution, in pixels per inch. The default is 100.

YRESOL

Set this keyword to the vertical resolution, in pixels per inch. The default is 100.

Example

Example 1

Create a pseudo screen dump from the current window. Note that this works only on
a PseudoColor (8-bit) display:

WRITE_TIFF, 'test.tiff', TVRD()
WRITE_TIFF IDL Reference Guide

1689
Example 2

Write a three-channel image from three one-channel (two-dimensional) arrays,
contained in the variables Red, Green, and Blue:

WRITE_TIFF, 'test.tif', Red, Green, Blue, PLANARCONFIG=2

Example 3

Write and read a multi-image TIFF file. The first image is a 16-bit single channel image
stored using compression. The second image is an RGB image stored using 32-
bits/channel uncompressed.

; Write the image data:
data = FIX(DIST(256))
rgbdata = LONARR(3,320,240)
WRITE_TIFF,'multi.tif',data,COMPRESSION=1,/SHORT
WRITE_TIFF,'multi.tif',rgbdata,/LONG,/APPEND
; Read the image data back
ok = QUERY_TIFF('multi.tif',s)
IF (ok) THEN BEGIN

FOR i=0,s.NUM_IMAGES-1 DO BEGIN
imp = QUERY_TIFF('multi.tif',t,IMAGE_INDEX=i)
img = READ_TIFF('multi.tif',IMAGE_INDEX=i)
HELP,t,/STRUCTURE
HELP,img

ENDFOR
ENDIF

See Also

READ_TIFF, QUERY_* Routines
IDL Reference Guide WRITE_TIFF

1690
WRITE_WAV

The WRITE_WAV procedure writes the audio stream to the named .WAV file.

Syntax

WRITE_WAV, Filename, Data, Rate

Arguments

Filename

A scalar string containing the full pathname of the .WAV file to write.

Data

The array to write into the new .WAV file. The array can be a one- or two-
dimensional array. A two-dimensional array is written as a multi-channel audio
stream where the leading dimension of the IDL array is the number of channels. If the
input array is in BYTE format, the data is written as 8-bit samples, otherwise, the data
is written as signed 16-bit samples.

Rate

The sampling rate for the data array in samples per second.

Keywords

None.
WRITE_WAV IDL Reference Guide

1691
WRITE_WAVE

The WRITE_WAVE procedure writes a three dimensional IDL array to a .wave or
.bwave file for use with the Wavefront Advanced Data Visualizer. Note that this
routine only writes one scalar field for each Wavefront file that it creates.

This routine is written in the IDL language. Its source code can be found in the file
write_wave.pro in the lib subdirectory of the IDL distribution.

Syntax

WRITE_WAVE, File, Array [, /BIN] [, DATANAME=string]
[, MESHNAME=string] [, /NOMESHDEF] [, /VECTOR]

Arguments

File

A scalar string containing the full path name of the Wavefront file to write.

Array

A 3D array to be written to the file.

Keywords

BIN

Set this keyword to create a binary file. By default, text files are created.

DATANAME

Set this keyword to the name of the data inside of the Wavefront file. If not specified,
the name used is “idldata”.

MESHNAME

Set this keyword to the name of the mesh used in the Wavefront file. If not specified,
the name used is “idlmesh”.

NOMESHDEF

Set this keyword to omit the mesh definition from the Wavefront file.
IDL Reference Guide WRITE_WAVE

1692
VECTOR

Set this keyword to write the variable as a vector. The data is written as an array of 3-
space vectors. The array may contain any number of dimensions but must have a
leading dimension of 3. If the leading array dimension is not 3, this keyword is
ignored.

See Also

READ_WAVE
WRITE_WAVE IDL Reference Guide

1693
WRITEU

The WRITEU procedure writes unformatted binary data from an expression into a
file. This procedure performs a direct transfer with no processing of any kind being
done to the data.

Syntax

WRITEU, Unit, Expr1 ..., Exprn [, TRANSFER_COUNT=variable]

VMS-Only Keywords: [, /REWRITE]

Arguments

Unit

The IDL file unit to which the output is sent.

Expri

The expressions to be output. For non-string variables, the number of bytes implied
by the data type is output. When WRITEU is used with a variable of type string, IDL
outputs exactly the number of bytes contained in the existing string.

Keywords

TRANSFER_COUNT

Set this keyword to a named variable in which to return the number of elements
transferred by the output operation. Note that the number of elements is not the same
as the number of bytes (except in the case where the data type being transferred is
bytes). For example, transferring 256 floating-point numbers yields a transfer count
of 256, not 1024 (the number of bytes transferred).

This keyword is useful with files opened with the RAWIO keyword to the OPEN
routines. Normally, writing more data than an output device will accept causes an
error. Files opened with the RAWIO keyword will not generate such an error.
Instead, the programmer must keep track of the transfer count to judge the success or
failure of a WRITEU operation.
IDL Reference Guide WRITEU

1694
VMS-Only Keywords

Note
The obsolete FORWRT routine has been replaced by WRITEU.

REWRITE

When writing data to a file with indexed organization, setting the REWRITE
keyword specifies that the data should update the contents of the most recently input
record instead of creating a new record.

Example

; Create some data to store in a file:
D = BYTSCL(DIST(200))
; Open a new file for writing as IDL file unit number 1:
OPENW, 1, 'newfile'
; Write the data in D to the file:
WRITEU, 1, D
; Close file unit 1:
CLOSE, 1

See Also

OPEN, READU, Building IDL Applications Chapter 8, “Files and Input/Output”,
and “Unformatted Input/Output with Structures” in Chapter 6 of Building IDL
Applications
WRITEU IDL Reference Guide

1695
WSET

The WSET procedure selects the current window. Most IDL graphics routines do not
explicitly require the IDL window to be specified. Instead, they use the window
known as the current window. The window index number of the current window is
contained in the read-only system variable !D.WINDOW. WSET only works with
devices that have windowing systems.

Syntax

WSET [, Window_Index]

Arguments

Window_Index

This argument specifies the window index of the window to be made current. If this
argument is not specified, a default of 0 is used.

If you set Window_Index equal to -1, IDL will try to locate an existing window to
make current, ignoring any managed draw widgets that may exist. If there is no
window to make current, WSET changes the value of the WINDOW field of the !D
system variable to -1, indicating that there are no current windows.

If there are no existing IDL windows, and you call WSET without the Window_Index
argument or with a Window_Index of 0, a new window with the index 0 is opened.
Calling WSET with a Window_Index for a window that does not exist, except for
window 0, results in a “Window is closed and unavailable” error message.

Examples

Create IDL windows 1 and 2 by entering:

WINDOW, 1 & WINDOW, 2

Set the current window to window 1 and display an image by entering:

WSET, 1 & TVSCL, DIST(100)

Set the current window to window 2 and display an image by entering:

WSET, 2 & TVSCL, DIST(100)

See Also

WDELETE, WINDOW, WSHOW
IDL Reference Guide WSET

1696
WSHOW

The WSHOW procedure exposes or hides the designated window.

Syntax

WSHOW [, Window_Index [, Show]] [, /ICONIC]

Arguments

Window_Index

The window index of the window to be hidden or exposed. If this argument is not
specified, the current window is assumed. If this index is the window ID of a draw
widget, the widget base associated with that drawable is brought to the front of the
screen.

Show

Set Show to 0 to hide the window. Omit this argument or set it to 1 to expose the
window.

Keywords

ICONIC

Set this keyword to iconify the window. Set ICONIC to 0 to de-iconify the window.

Under windowing systems, iconification is the task of the window manager, and
client applications such as IDL have no direct control over it. The ICONIC keyword
serves as a hint to the window manager, which is free to iconify the window or ignore
the request as it sees fit.

Example

To bring IDL window number 0 to the front, enter:

WSHOW, 0

See Also

WDELETE, WINDOW, WSET
WSHOW IDL Reference Guide

1697
WTN

The WTN function returns a multi-dimensional discrete wavelet transform of the
input array A. The transform is based on a Daubechies wavelet filter.

WTN is based on the routine wtn described in section 13.10 of Numerical Recipes in
C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

Result = WTN(A, Coef [, /COLUMN] [, /DOUBLE] [, /INVERSE]
[, /OVERWRITE])

Arguments

A

The input vector or array. The dimensions of A must all be powers of 2.

Coef

An integer that specifies the number of wavelet filter coefficients. The allowed values
are 4, 12, or 20. When Coef is 4, the daub4() function (see Numerical Recipes,
section 13.10) is used. When Coef is 12 or 20, pwt() is called, preceded by
pwtset() (see Numerical Recipes, section 13.10).

Keywords

COLUMN

Set this keyword if the input array A is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

INVERSE

If the INVERSE keyword is set, the inverse transform is computed. By default, WTN
performs the forward wavelet transform.
IDL Reference Guide WTN

1698
OVERWRITE

Set the OVERWRITE keyword to perform the transform “in place.” The result
overwrites the original contents of the array.

Example

This example demonstrates the use of IDL’s discrete wavelet transform and sparse
array storage format to compress and store an 8-bit gray-scale digital image. First, an
image selected from the people.dat data file is transformed into its wavelet
representation and written to a separate data file using the WRITEU procedure.

Next, the transformed image is converted, using the SPRSIN function, to row-
indexed sparse storage format retaining only elements with an absolute magnitude
greater than or equal to a specified threshold. The sparse image is written to a data
file using the WRITE_SPR procedure.

Finally, the transformed image is reconstructed from the storage file and displayed
alongside the original.

; Begin by choosing the number of wavelet coefficients to use and a
; threshold value:
coeffs = 12 & thres = 10.0

; Open the people.dat data file, read an image using associated
; variables, and close the file:
OPENR, 1, FILEPATH('people.dat', SUBDIR = ['examples','data'])
images = assoc(1, bytarr(192, 192))
image_1 = images[0]
close, 1

; Expand the image to the nearest power of two using cubic
; convolution, and transform the image into its wavelet
; representation using the WTN function:
pwr = 256
image_1 = CONGRID(image_1, pwr, pwr, /CUBIC)
wtn_image = WTN(image_1, coeffs)

; Write the image to a file using the WRITEU procedure and check
; the size of the file (in bytes) using the FSTAT function:
OPENW, 1, 'original.dat'
WRITEU, 1, wtn_image
status = FSTAT(1)
CLOSE, 1
PRINT, 'Size of the file is ', status.size, ' bytes.'

; Now, we convert the wavelet representation of the image to a
; row-indexed sparse storage format using the SPRSIN function,
WTN IDL Reference Guide

1699
; write the data to a file using the WRITE_SPR procedure, and check
; the size of the "compressed" file:
sprs_image = SPRSIN(wtn_image, THRES = thres)
WRITE_SPR, sprs_image, 'sparse.dat'
OPENR, 1, 'sparse.dat'
status = FSTAT(1)
CLOSE, 1
PRINT, 'Size of the compressed file is ', status.size, ' bytes.'

; Determine the number of elements (as a percentage of total
; elements) whose absolute magnitude is less than the specified
; threshold. These elements are not retained in the row-indexed
; sparse storage format:
PRINT, 'Percentage of elements under threshold: ',$

100.*N_ELEMENTS(WHERE(ABS(wtn_image) LT thres, $
count)) / N_ELEMENTS(image_1)

; Next, read the row-indexed sparse data back from the file
; sparse.dat using the READ_SPR function and reconstruct the
; image from the non-zero data using the FULSTR function:
sprs_image = READ_SPR('sparse.dat')
wtn_image = FULSTR(sprs_image)

; Apply the inverse wavelet transform to the image:
image_2 = WTN(wtn_image, COEFFS, /INVERSE)

; Calculate and print the amount of data used in reconstruction of
; the image:
PRINT, 'The image on the right is reconstructed from:', $

100.0 - (100.* count/N_ELEMENTS(image_1)),$
'% of original image data.'

; Finally, display the original and reconstructed images side by
; side:
WINDOW, 1, XSIZE = pwr*2, YSIZE = pwr, $

TITLE = 'Wavelet Image Compression and File I/O'
TV, image_1, 0, 0
TV, image_2, pwr - 1, 0

IDL Output

Size of the file is 262144 bytes.
Size of the compressed file is 69600 bytes.
Percentage of elements under threshold: 87.0331
The image on the right is reconstructed from: 12.9669% of original
image data.

The sparse array contains only 13% of the elements contained in the original array.
The following figure is created from this example. The image on the left is the
IDL Reference Guide WTN

1700
original 256 by 256 image. The image on the right was compressed by the above
process and was reconstructed from 13% of the original data. The size of the
compressed image’s data file is 26.6% of the size of the original image’s data file.
Note that due to limitations in the printing process, differences between the images
may not be as evident as they would be on a high-resolution printer or monitor.

See Also

FFT

Figure 32: Original image (left) and image reconstructed
from 13% of the data (right).
WTN IDL Reference Guide

1701
XBM_EDIT

The XBM_EDIT procedure is a utility for creating and editing icons for use with IDL
widgets as bitmap labels for widget buttons.

The icons created with XBM_EDIT can be saved in two different file formats. IDL
“array definition files” are text files that can be inserted into IDL programs. “Bitmap
array files” are data files that can be read into IDL programs. Bitmap array files
should be used temporarily until the final icon design is determined and then they can
be saved as IDL array definitions for inclusion in the final widget code. This routine
does not check the file types of the files being read and assumes that they are of the
correct size and type for reading. XBM_EDIT maintains its state in a common block
so it is restricted to one working copy at a time.

This routine is written in the IDL language. Its source code can be found in the file
xbm_edit.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XBM_EDIT [, /BLOCK] [, FILENAME=string] [, GROUP=widget_id]
[, XSIZE=pixels] [, YSIZE=pixels]

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have
XBM_EDIT block, any earlier calls to XMANAGER must have been called with
the NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.
IDL Reference Guide XBM_EDIT

1702
FILENAME

Set this keyword to a scalar string that contains the filename to be used for the new
icon. If this argument is not specified, the name “idl.bm” is used. The filename can be
changed in XBM_EDIT by editing the “Filename” field before selecting a file option.

GROUP

The widget ID of the widget that calls XBM_EDIT. When this ID is specified, the
death of the caller results in the death of XBM_EDIT.

XSIZE

The number of pixels across the bitmap is in the horizontal direction. The default
value is 16 pixels.

YSIZE

The number of pixels across the bitmap is in the vertical direction. The default value
is 16 pixels.

See Also

WIDGET_BUTTON
XBM_EDIT IDL Reference Guide

1703
XDISPLAYFILE

The XDISPLAYFILE procedure is a utility for displaying ASCII text files using a
widget interface.

This routine is written in the IDL language. Its source code can be found in the file
xdisplayfile.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XDISPLAYFILE, Filename [, /BLOCK] [, DONE_BUTTON=string]
[, /EDITABLE] [, FONT=string] [, GROUP=widget_id] [, HEIGHT=lines]
[, /MODAL] [, TEXT=string or string array] [, TITLE=string]
[, WIDTH=characters] [, WTEXT=variable]

Arguments

Filename

A scalar string that contains the filename of the file to display. Filename can include
a path to that file.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have
XDISPLAYFILE block, any earlier calls to XMANAGER must have been called
with the NO_BLOCK keyword. See the documentation for the NO_BLOCK
keyword to XMANAGER for an example.

DONE_BUTTON

Set this keyword to a string containing the text to use for the Done button label. If
omitted, the text “Done with <filename>” is used.
IDL Reference Guide XDISPLAYFILE

1704
EDITABLE

Set this keyword to allow modifications to the text displayed in XDISPLAYFILE.
Setting this keyword also adds a “Save” button in addition to the Done button.

FONT

A string containing the name of the font to use. The font specified is a device font (an
X Windows font on Motif systems; a TrueType or PostScript font on Windows or
Macintosh systems). See “About Device Fonts” on page 2482 for details on
specifying names for device fonts. If this keyword is omitted, the default font is used.

GROUP

The widget ID of the widget that calls XDISPLAYFILE. If this keyword is specified,
the death of the group leader results in the death of XDISPLAYFILE.

HEIGHT

The number of text lines that the widget should display at one time. If this keyword is
not specified, 24 lines is the default.

MODAL

Set this keyword to create the XDISPLAYFILE dialog as a modal dialog. Setting the
MODAL keyword allows you to call XDISPLAYFILE from another modal dialog.

TEXT

A string or string array to be displayed in the widget instead of the contents of a file.
If this keyword is present, the Filename input argument is ignored (but is still
required). String arrays are displayed one element per line.

TITLE

A string to use as the widget title rather than the file name or “XDisplayFile”.

WIDTH

The width of the widget display in characters. If this keyword is not specified, 80
characters is the default.

WTEXT

Set this keyword to a named variable that will contain the widget ID of the text
widget. This allows setting text selections and cursor positions programmatically. For
example, the following code opens the XDISPLAYFILE widget and selects the first
10 characters of the file displayed in the text widget:
XDISPLAYFILE IDL Reference Guide

1705
XDISPLAYFILE, 'myfile.txt', /EDITABLE, WTEXT=w
WIDGET_CONTROL, w, SET_TEXT_SELECT=[0, 10]

See Also

PRINT/PRINTF, XYOUTS
IDL Reference Guide XDISPLAYFILE

1706
XDXF

The XDXF procedure is a utility for displaying and interactively manipulating DXF
objects.

Syntax

XDXF [, Filename] [, /BLOCK] [, GROUP=widget_id] [, /MODAL]
[, SCALE=value] [, /TEST] [keywords to XOBJVIEW]

Arguments

Filename

A string specifying the name of the DXF file to display. If this argument is not
specified, a file selection dialog is opened.

Keywords

XDXF accepts the keywords to XOBJVIEW. In addition, XDXF supports the
following keywords:

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting the BLOCK keyword causes
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XDXF
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

GROUP

The widget ID of the widget that calls XDXF. When this ID is specified, the death of
the caller results in the death of XDXF.
XDXF IDL Reference Guide

1707
MODAL

Set this keyword to block processing of events from other widgets until the user quits
XDXF. A group leader must be specified (via the GROUP keyword) for the MODAL
keyword to have any effect. By default, XDXF does not block event processing.

SCALE

Set this keyword to the zoom factor for the initial view. The default is 1/SQRT(3).
This default value provides the largest possible view of the object, while ensuring
that no portion of the object will be clipped by the XDXF window, regardless of the
object’s orientation.

TEST

If this keyword is set, the file heart.dxf in the IDL distribution is automatically
opened in XDXF.

Using XDXF

XDXF displays a resizeable top-level base with a menu and draw widget used to
display and manipulate the orientation of a DXF object.

Figure 33: The XDXF Utility
IDL Reference Guide XDXF

1708
XDXF also displays a dialog that contains block and layer information and allows the
user to turn on and off the display of individual layers.

The XDXF Toolbar

The XDXF toolbar contains the following buttons:

The XDXF Information Dialog

The XDXF Information dialog displays information about the blocks and layers
contained in the currently displayed object, and allows you to turn on and off the
display of each layer.

To show or hide layers in the DXF object, select the layer from the list of layers on
the left of the dialog, and click the Show or Hide button. Alternatively, you can click
in the “Vis” field for the desired layer. To show or hide all layers, click the Show All
or Hide All buttons.

Figure 34: The XDXF Information Dialog

Reset: Resets rotation, scaling, and panning.

Rotate: Click the left mouse button on the object and drag to rotate.

Pan: Click the left mouse button on the object and drag to pan.

Zoom: Click the left mouse button on the object and drag to zoom in or out.

Select:
Click on the object. The name of the selected object is displayed, if
the object has a name, otherwise its class is displayed.
XDXF IDL Reference Guide

1709
Example

Display the file heart.dxf, contained in the IDL distribution:

XDXF, FILEPATH('heart.dxf', $
SUBDIR=['examples', 'data'])

See Also

IDLffDXF
IDL Reference Guide XDXF

1710
XFONT

The XFONT function is a utility that creates a modal widget for selecting and
viewing an X Windows font. The function returns a string containing the name of the
last selected font. If no font is selected, or the “Cancel” button is clicked, a null string
is returned.

Calling XFONT resets the current X Windows font.

This routine is written in the IDL language. Its source code can be found in the file
xfont.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

Result = XFONT([, GROUP=widget_id] [, /PRESERVE_FONT_INFO])

Keywords

GROUP

The widget ID of the widget that calls XFONT. When this ID is specified, the death
of the caller results in the death of XFONT.

PRESERVE_FONT_INFO

Set this keyword to make XFONT save the server font directory in common blocks
so that subsequent calls to XFONT start-up much faster. If this keyword is not set, the
common block is cleaned.

See Also

EFONT, SHOWFONT
XFONT IDL Reference Guide

1711
XINTERANIMATE

The XINTERANIMATE procedure is a utility for displaying an animated sequence
of images using off-screen pixmaps or memory buffers. The speed and direction of
the display can be adjusted using the widget interface.

MPEG animation files can be created either programmatically using keywords to
open and save a file, or interactively using the widget interface. Note that the MPEG
standard does not allow movies with odd numbers of pixels to be created.

Note
MPEG support in IDL requires a special license. For more information, contact
your Research Systems sales representative or technical support.

Note
Only a single copy of XINTERANIMATE can run at a time. If you need to run
multiple instances of the animation widget concurrently, use the CW_ANIMATE
compound widget.

This routine is written in the IDL language. Its source code can be found in the file
xinteranimate.pro in the lib/utilities subdirectory of the IDL distribution.

Using XINTERANIMATE

Displaying an animated series of images using XINTERANIMATE requires at least
three calls to the routine: one to initialize the animation widget, one to load images,
and one to display the images. When initialized using the SET keyword,
XINTERANIMATE creates an approximately square pixmap or memory buffer,
large enough to contain the requested number of frames of the requested size. Images
are loaded using the IMAGE and FRAME keywords. Finally, images are displayed
by copying them from the pixmap or memory buffer to the visible draw widget.

See CW_ANIMATE for a description of the widget interface controls used by
XINTERANIMATE.

Syntax

XINTERANIMATE [, Rate]

Keywords for initialization: [, SET=[sizex, sizey, nframes]] [, /BLOCK]
[, /CYCLE] [, GROUP=widget_id] [, /MODAL] [, MPEG_BITRATE=value]
IDL Reference Guide XINTERANIMATE

1712
[, MPEG_IFRAME_GAP=integer value] [, MPEG_MOTION_VEC_LENGTH={1 |
2 | 3}] [, /MPEG_OPEN, MPEG_FILENAME=string]
[MPEG_QUALITY=value{0 to 100}] [, /SHOWLOAD] [, /TRACK]
[, TITLE=string]

Keywords for loading images: [, FRAME=value{0 to (nframes-
1)}[, IMAGE=value]] [, /ORDER] [, WINDOW=[window_num [, x0, y0, sx, sy]]]

Keywords for running animations: [, /CLOSE] [, /KEEP_PIXMAPS]
[, /MPEG_CLOSE] [, XOFFSET=pixels] [, YOFFSET=pixels]

Arguments

Rate

A value between 0 and 100 that represents the speed of the animation as a percentage
of the maximum display rate. The fastest animation is with a value of 100 and the
slowest is with a value of 0. The default animation rate is 100. The animation must be
initialized using the SET keyword before calling XINTERANIMATE with a rate
value.

Keywords: Initialization

The following keywords are used to initialize the animation display. The SET
keyword must be provided. Other keywords described in this section are optional;
note that they work only when SET is specified.

SET

Set this keyword to a three-element vector [Sizex, Sizey, Nframes] to initialize
XINTERANIMATE. Sizex and Sizey represent the width and height of the images to
be displayed, in pixels. Nframes is the number of frames in the animation sequence.
Note that Nframes must be at least 2 frames.

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have
XINTERANIMATE block, any earlier calls to XMANAGER must have been
XINTERANIMATE IDL Reference Guide

1713
called with the NO_BLOCK keyword. See the documentation for the NO_BLOCK
keyword to XMANAGER for an example.

CYCLE

Normally, frames are displayed going either forward or backwards. If the CYCLE
keyword is set, the animation reverses direction after the last frame in either direction
is displayed.

GROUP

Set this keyword to the widget ID of the widget that calls XINTERANIMATE. When
GROUP is specified, the death of the calling widget results in the death of
XINTERANIMATE.

MODAL

Set this keyword to block processing of events from other widgets until the user quits
XINTERANIMATE. A group leader must be specified (via the GROUP keyword)
for the MODAL keyword to have any effect. By default, XINTERANIMATE does
not block event processing.

MPEG_BITRATE

Set this keyword to a double-precision value to specify the MPEG movie bit rate.
Higher bit rates will create higher quality MPEGs but will increase file size. The
following table describes the valid values:

If you do not set this keyword, IDL computes the MPEG_BITRATE value based
upon the value you have specified for the MPEG_QUALITY keyword.

Note
Only use the MPEG_BITRATE keyword if changing the MPEG_QUALITY
keyword value does not produce the desired results. It is highly recommended to set

MPEG Version Range

MPEG 1 0.1 to 104857200.0

MPEG 2 0.1 to 429496729200.0

Table 99: BITRATE Value Range
IDL Reference Guide XINTERANIMATE

1714
the MPEG_BITRATE to at least several times the frame rate to avoid unusable
MPEG files or file generation errors.

MPEG_FILENAME

Set this keyword equal to a string specifying the name of the MPEG file. If no file
name is specified, the default value (idl.mpg) is used.

MPEG_IFRAME_GAP

Set this keyword to a positive integer value that specifies the number of frames
between I frames to be created in the MPEG file. I frames are full-quality image
frames that may have a number of predicted or interpolated frames between them.

If you do not specify this keyword, IDL computes the MPEG_IFRAME_GAP value
based upon the value you have specified for the MPEG_QUALITY keyword.

Note
Only use the MPEG_IFRAME_GAP keyword if changing the MPEG_QUALITY
keyword value does not produce the desired results.

MPEG_MOTION_VEC_LENGTH

Set this keyword to an integer value specifying the length of the motion vectors to be
used to generate predictive frames. Valid values include:

• 1 = Small motion vectors.

• 2 = Medium motion vectors.

• 3 = Large motion vectors.

If you do not set this keyword, IDL computes the MPEG_MOTION_VEC_LENGTH
value based upon the value you have specified for the MPEG_QUALITY keyword.

Note
Only use the MPEG_MOTION_VEC_LENGTH keyword if changing the
MPEG_QUALITY value does not produce the desired results.

MPEG_OPEN

Set this keyword to open an MPEG file.
XINTERANIMATE IDL Reference Guide

1715
MPEG_QUALITY

Set this keyword to an integer value between 0 (low quality) and 100 (high quality)
inclusive to specify the quality at which the MPEG stream is to be stored. Higher
quality values result in lower rates of time compression and less motion prediction
which provide higher quality MPEGs but with substantially larger file size. Lower
quality factors may result in longer MPEG generation times. The default is 50.

Note
Since MPEG uses JPEG (lossy) compression, the original picture quality can’t be
reproduced even when setting QUALITY to its highest setting.

SHOWLOAD

Set this keyword to display each frame and update the frame slider as frames are
loaded.

TRACK

Set this keyword to cause the frame slider to track the current frame when the
animation is in progress. The default is not to track.

TITLE

Use this keyword to specify a string to be used as the title of the animation widget. If
TITLE is not specified, the title is set to “XInterAnimate.”

Keywords: Loading Images

The following keywords are used to load images into the animation display. They
have no effect when initializing or running animations.

FRAME

Use this keyword to specify the frame number when loading frames. FRAME must
be set to a number in the range 0 to Nframes-1.

IMAGE

Use this keyword to specify a single image to be loaded at the animation position
specified by the FRAME keyword. (FRAME must also be specified.)

ORDER

Set this keyword to display images from the top down instead of the default bottom
up.
IDL Reference Guide XINTERANIMATE

1716
WINDOW

When this keyword is specified, an image is copied from an existing window to the
animation pixmap or memory buffer. (When using some windowing systems, using
this keyword is much faster than reading from the display and then calling
XINTERANIMATE with a 2D array.)

The value of this parameter is either an IDL window number (in which case the entire
window is copied), or a vector containing the window index and the rectangular
bounds of the area to be copied. For example:

WINDOW = [Window_Number, X0, Y0, Sx, Sy]

Keywords: Running Animations

The following keywords are used when running the animation. They have no effect
when initializing the animation or loading images.

CLOSE

Set this keyword to delete the offscreen pixmaps or buffers and the animation widget
itself. This also takes place automatically when the user presses the “Done With
Animation” button or closes the window with the window manager.

KEEP_PIXMAPS

If this keyword is set, XINTERANIMATE will not destroy the animation pixmaps or
buffers when it is killed. Calling XINTERANIMATE again without going through
the SET and LOAD steps will play the same animation without the overhead of
creating the pixmaps.

MPEG_CLOSE

Set this keyword to close and save the MPEG file. This keyword has no effect if
MPEG_OPEN was not used during initialization.

XOFFSET

Use this keyword to specify the horizontal offset, in pixels from the left of the frame,
of the image in the destination window.

YOFFSET

Use this keyword to specify the vertical offset, in pixels from the bottom of the
frame, of the image in the destination window.
XINTERANIMATE IDL Reference Guide

1717
Example

Enter the following commands to open the file ABNORM.DAT (a series of images of a
human heart) and animate the images it contains using XINTERANIMATE. For a
more detailed example of using XINTERANIMATE, see “Animation with
XINTERANIMATE” in Chapter 11 of Getting Started with IDL.

OPENR, unit, FILEPATH('abnorm.dat', SUBDIR=['examples','data']), $
/GET_LUN

H = BYTARR(64, 64, 16)
READU, unit, H
CLOSE, unit

; Read the images into variable H:
H = REBIN(H, 128, 128, 16)

; Initialize XINTERANIMATE:
XINTERANIMATE, SET=[128, 128, 16], /SHOWLOAD

; Load the images into XINTERANIMATE:
FOR I=0,15 DO XINTERANIMATE, FRAME = I, IMAGE = H[*,*,I]

; Play the animation:
XINTERANIMATE, /KEEP_PIXMAPS

Note
Since the KEEP_PIXMAPS keyword was supplied, the same animation can be
replayed (after the animation widget has been destroyed) with the single command
XINTERANIMATE.

See Also

CW_ANIMATE
IDL Reference Guide XINTERANIMATE

1718
XLOADCT

The XLOADCT procedure is a utility that provides a graphical widget interface to
the LOADCT procedure. XLOADCT displays the current colortable and shows a list
of available predefined color tables. Clicking on the name of a color table causes that
color table to be loaded in true color decomposed visual. Many other options, such as
Gamma correction, stretching, and transfer functions can also be applied to the
colortable.

This routine is written in the IDL language. Its source code can be found in the file
xloadct.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XLOADCT [, /BLOCK] [, BOTTOM=value] [, FILE=string] [, GROUP=widget_id]
[, /MODAL] [, NCOLORS=value] [, /SILENT]
[, UPDATECALLBACK=‘procedure_name’ [, UPDATECBDATA=value]]
[, /USE_CURENT]

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XLOADCT
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

BOTTOM

The first color index to use. XLOADCT will use color indices from BOTTOM to
BOTTOM+NCOLORS-1. The default is BOTTOM=0.
XLOADCT IDL Reference Guide

1719
FILE

Set this keyword to a string representing the name of the file to be used instead of the
file colors1.tbl in the IDL directory.

GROUP

The widget ID of the widget that calls XLOADCT. When this ID is specified, a death
of the caller results in a death of XLOADCT.

MODAL

Set this keyword to block processing of events from other widgets until the user quits
XLOADCT. A group leader must be specified (via the GROUP keyword) for the
MODAL keyword to have any effect. By default, XLOADCT does not block event
processing.

NCOLORS

The number of colors to use. Use color indices from 0 to the smaller of
!D.TABLE_SIZE-1 and NCOLORS-1. The default is all available colors
(!D.TABLE_SIZE).

SILENT

Normally, no informational message is printed when a color map is loaded. If this
keyword is set to zero, the message is printed.

UPDATECALLBACK

Set this keyword to a string containing the name of a user-supplied procedure that
will be called when the color table is updated by XLOADCT. The procedure may
optionally accept a keyword called DATA, which will be automatically set to the
value specified by the optional UPDATECBDATA keyword.

UPDATECBDATA

Set this keyword to a value of any type. It will be passed via the DATA keyword to
the user-supplied procedure specified via the UPDATECALLBACK keyword, if any.
If the UPDATECBDATA keyword is not set the value accepted by the DATA
keyword to the procedure specified by UPDATECALLBACK will be undefined.

USE_CURRENT

Set this keyword to use the current color tables, regardless of the contents of the
COLORS common block.
IDL Reference Guide XLOADCT

1720
See Also

LOADCT, XPALETTE, TVLCT
XLOADCT IDL Reference Guide

1721
XMANAGER

The XMANAGER procedure provides the main event loop and management for
widgets created using IDL. Calling XMANAGER “registers” a widget program with
the XMANAGER event handler. XMANAGER takes control of event processing
until all widgets have been destroyed.

Beginning with IDL version 5.0, IDL supports an active command line that allows
the IDL command input line to continue accepting input while properly configured
widget applications are running. See “A Note About Blocking in XMANAGER” on
page 1725 for a more detailed explanation of the active command line.

This routine is written in the IDL language. Its source code can be found in the file
xmanager.pro in the lib subdirectory of the IDL distribution.

Syntax

XMANAGER [, Name, ID] [, /CATCH] [, CLEANUP=string]
[, EVENT_HANDLER=‘procedure_name’] [, GROUP_LEADER=widget_id]
[, /JUST_REG] [, /NO_BLOCK]

Arguments

Name

A string that contains the name of the routine that creates the widget (i.e., the name of
the widget creation routine that is calling XMANAGER).

Note
The Name argument is stored in a COMMON block for use by the XREGISTERED
routine. The stored name is case-sensitive.

ID

The widget ID of the new widget’s top-level base.

Keywords

BACKGROUND

This keyword is obsolete and is included in XMANAGER for compatibility with
existing code only. Its functionality has been replaced by the TIMER keyword to the
WIDGET_CONTROL procedure.
IDL Reference Guide XMANAGER

1722
CATCH

Set this keyword to cause XMANAGER to catch any errors, using the CATCH
procedure, when dispatching widget events. If the CATCH keyword is set equal to
zero, execution halts and IDL provides traceback information when an error is
detected. This keyword is set by default (errors are caught and processing continues).

Do not specify either the Name or ID argument to XMANAGER when specifying the
CATCH keyword (they are ignored). CATCH acts as a switch to turn error catching
on and off for all applications managed by XMANAGER. When CATCH is
specified, XMANAGER changes its error-catching behavior and returns
immediately, without taking any other action.

Note
Beginning with IDL version 5.0, the default behavior of XMANAGER is to catch
errors and continue processing events. In versions of IDL prior to version 5.0,
XMANAGER halted when an error was detected. This change in default behavior
was necessary in order to allow multiple widget applications (all being managed by
XMANAGER) to coexist peacefully. When CATCH is set equal to zero, (the old
behavior), any error halts XMANAGER, and thus halts event processing for all
running widget applications.

Note also that CATCH is only effective if XMANAGER is blocking to dispatch
errors. If event dispatching for an active IDL command line is in use, the CATCH
keyword has no effect.

The CATCH=0 setting (errors are not caught and processing halts in XMANAGER
when an error is detected) is intended as a debugging aid. Finished programs should
not set CATCH=0.

CLEANUP

Set this keyword to a string that contains the name of the routine to be called when
the widget dies. If not specified, no routine is called. The cleanup routine must accept
one parameter which is the widget ID of the dying widget. The routine specified by
CLEANUP becomes the KILL_NOTIFY routine for the application, overriding any
cleanup routines that may have been set previously via the KILL_NOTIFY keyword
to WIDGET_CONTROL.

EVENT_HANDLER

Set this keyword to a string that contains the name of a routine to be called when a
widget event occurs in the widget program being registered. If this keyword is not
XMANAGER IDL Reference Guide

1723
supplied, XMANAGER will construct a default name by adding the “_event” suffix
to the Name argument. See the example below for a more detailed explanation.

GROUP_LEADER

The widget ID of the group leader for the widget being processed. When the leader
dies either by the users actions or some other routine, all widgets that have that leader
will also die.

For example, a widget that views a help file for a demo widget would have that demo
widget as its leader. When the help widget is registered, it sets the keyword
GROUP_LEADER to the widget ID of the demo widget. If the demo widget were
destroyed, the help widget led by it would be killed by the XMANAGER.

JUST_REG

Set this keyword to indicate that XMANAGER should just register the widget and
return immediately. This keyword is useful if you want to register a group of related
top-level widgets before beginning event processing and either:

• your command-processing front-end does not support an active command line,
or

• one or more of the registered widgets requests that XMANAGER block event
processing. (Note that in this case a later call to XMANAGER without the
JUST_REG keyword is necessary to begin blocking.)

(See “A Note About Blocking in XMANAGER” on page 1725 for further discussion
of the active command line.)

Warning
JUST_REG is not the same as NO_BLOCK. See “JUST_REG vs. NO_BLOCK”
on page 1725 for additional details.

NO_BLOCK

Set this keyword to tell XMANAGER that the registering client does not require
XMANAGER to block if active command line event processing is available. If active
command line event processing is available and every current XMANAGER client
specifies NO_BLOCK, then XMANAGER will not block and the user will have
access to the command line while widget applications are running.
IDL Reference Guide XMANAGER

1724
Note
NO_BLOCK is ignored by IDL Runtime. If a main procedure uses XMANAGER
with the NO_BLOCK keyword set, IDL Runtime defers subsequent processing of
the commands following the XMANAGER call until the widget associated with the
call to XMANAGER is destroyed.

It is important to understand the result of making nested calls to XMANAGER.
XMANAGER can only block event processing for one client at a time. In
applications involving multiple calls to XMANAGER (either directly or via calls to
other routines that call XMANAGER, such as XLOADCT), blocking occurs only for
the outermost call to XMANAGER, unless XMANAGER is told not to block in that
call. If an application contains two calls to XMANAGER, the second call cannot
block unless the first call sets the NO_BLOCK keyword. If an application contains a
call to XMANAGER, followed by a call to XLOADCT, XLOADCT will not block
unless the NO_BLOCK keyword was set in the call to XMANAGER (and the
BLOCK keyword to XLOADCT is set). Consider the following example:

PRO blocking_example_event, event
; The following call blocks only if the NO_BLOCK keyword to
; XMANAGER is set:
XLOADCT, /BLOCK

END

PRO blocking_example
base=WIDGET_BASE(/COLUMN)
button1=WIDGET_BUTTON(base,VALUE='Run XLOADCT')
WIDGET_CONTROL,base, /REALIZE
XMANAGER,'blocking_example', base, /NO_BLOCK

END

If the NO_BLOCK keyword to XMANAGER was not set in the above example,
XLOADCT would not block, even though the BLOCK keyword was set. Setting the
NO_BLOCK keyword to XMANAGER prevents XMANAGER from blocking,
thereby allowing the subsequent call to XMANAGER (via XLOADCT) to block.

Warning
NO_BLOCK is not the same as JUST_REG. See “JUST_REG vs. NO_BLOCK”
on page 1725 for additional details.
XMANAGER IDL Reference Guide

1725
Warning

Although this routine is written in the IDL language, it may change in the future in its
internal implementation. For future upgradability, it is best not to modify or even
worry about what this routine does internally.

A Note About Blocking in XMANAGER

Beginning with IDL version 5.0, most versions of IDL’s command-processing front-
end are able to support an active command line while running properly constructed
widget applications. What this means is that—provided the widget application is
properly configured—the IDL command input line is available for input while a
widget application is running and widget events are being processed.

There are currently 5 separate IDL command-processing front-end implementations:

• Apple Macintosh Integrated Development Environment (IDLDE)

• Microsoft Windows IDLDE

• Motif IDLDE (UNIX and VMS)

• UNIX plain tty

• VMS plain tty

All of these front-ends are able to process widget events except for the VMS plain tty.
VMS users can still enjoy an active command line by using the IDLDE interface.

If the command-processing front-end can process widget events (that is, if the front-
end is not the VMS plain tty), it is still necessary for widget applications to be well-
behaved with respect to blocking widget event processing. Since in most cases
XMANAGER is used to handle widget event processing, this means that in order for
the command line to remain active, all widget applications must be run with the
NO_BLOCK keyword to XMANAGER set. (Note that since NO_BLOCK is not the
default, it is quite likely that some application will block.) If a single application runs
in blocking mode, the command line will be inaccessible until the blocking
application exits. When a blocking application exits, the IDL command line will once
again become active.

JUST_REG vs. NO_BLOCK

Although their names imply a similar function, the JUST_REG and NO_BLOCK
keywords perform very different services. It is important to understand what they do
and how they differ.
IDL Reference Guide XMANAGER

1726
The JUST_REG keyword tells XMANAGER that it should simply register a client
and then return immediately. The result is that the client becomes known to
XMANAGER, and that future calls to XMANAGER will take this client into
account. Therefore, JUST_REG only controls how the registering call to
XMANAGER should behave. The client can still be registered as requiring
XMANAGER to block by setting NO_BLOCK=0. In this case, future calls to
XMANAGER will block.

Note
JUST_REG is useful in situations where you suspect blocking might occur—if the
active command line is not supported and you wish to keep it active before
beginning event processing, or if blocking will be requested at a later time. If no
blocking will occur or if the blocking behavior is useful, it is not necessary to use
JUST_REG.

The NO_BLOCK keyword tells XMANAGER that the registered client does not
require XMANAGER to block if the command-processing front-end is able to
support active command line event processing. XMANAGER remembers this
attribute of the client until the client exits, even after the call to XMANAGER that
registered the client returns. NO_BLOCK is just a “vote” on how XMANAGER
should behave—the final decision is made by XMANAGER by considering the
NO_BLOCK attributes of all of its current clients as well as the ability of the
command-processing front-end in use to support the active command line.

Blocking vs. Non-blocking Applications

The issue of blocking in XMANAGER requires some explanation. IDL widget
events are not processed until the WIDGET_EVENT function is called to handle
them. Otherwise, they are queued by IDL indefinitely. Knowing how and when to
call WIDGET_EVENT is the primary service provided by XMANAGER.

There are two ways blocking is typically handled:

1. The first call to XMANAGER processes events by calling WIDGET_EVENT
as necessary until no managed widgets remain on the screen. This is referred to
as “blocking” because XMANAGER does not return to the caller until it is
done, and the IDL command line is not available.

2. XMANAGER does not block, and instead, the part of IDL that reads command
input also watches for widget events and calls WIDGET_EVENT as necessary
while also reading command input. This is referred to as “non-blocking” or
“active command line” mode.
XMANAGER IDL Reference Guide

1727
XMANAGER will block unless all of the following conditions are met:

• The command-processing front-end is able to process widget events (that is,
the front-end is not the VMS plain tty).

• All registered widget applications have the NO_BLOCK keyword to
XMANAGER set.

• No modal dialogs are displayed. (Modal dialogs always block until dismissed.)

In general, we suggest that new widget applications be written with XMANAGER
blocking disabled (that is, with the NO_BLOCK keyword set), unless the widget
application will be run on IDL Runtime.

Note
NO_BLOCK is ignored by IDL Runtime. If a main procedure uses XMANAGER
with the NO_BLOCK keyword set, IDL Runtime defers subsequent processing of
the commands following the XMANAGER call until the widget associated with the
call to XMANAGER is destroyed.

Since a widget application that does block event processing for itself will block event
processing for all other widget applications (and the IDL command line) as well, we
suggest that older widget applications be upgraded to take advantage of the new, non-
blocking behavior by adding the NO_BLOCK keyword to most calls to
XMANAGER.

Example

The following code creates a widget named EXAMPLE that is just a base widget
with a “Done” button and registers it with the XMANAGER. Widgets being
registered with the XMANAGER must provide at least two routines. The first routine
creates the widget and registers it with the manager and the second routine processes
the events that occur within that widget. An example widget is supplied below that
uses only two routines. A number of other “Simple Widget Examples”, can be
viewed by entering WEXMASTER at the IDL prompt. These simple programs
demonstrate many aspects of widget programming.

The following lines of code would be saved in a single file, named example.pro:

; Begin the event handler routine for the EXAMPLE widget:
PRO example_event, ev

; The uservalue is retrieved from a widget when an event occurs:
WIDGET_CONTROL, ev.id, GET_UVALUE = uv
IDL Reference Guide XMANAGER

1728
; If the event occurred in the Done button, kill the widget
; example:
if (uv eq 'DONE') THEN WIDGET_CONTROL, ev.top, /DESTROY

; End of the event handler part:
END

; This is the routine that creates the widget and registers it with
; the XMANAGER:
PRO example

; Create the top-level base for the widget:
base = WIDGET_BASE(TITLE='Example')

; Create the Done button and set its uservalue to "DONE":
done = WIDGET_BUTTON(base, VALUE = 'Done', UVALUE = 'DONE')
; Realize the widget (i.e., display it on screen):
WIDGET_CONTROL, base, /REALIZE

; Register the widget with the XMANAGER, leaving the IDL command
; line active:
XMANAGER, 'example', base, /NO_BLOCK

; End of the widget creation part:
END

First the event handler routine is listed. The handler routine has the same name as the
main routine with the characters “_event” added. If you would like to use another
event handler name, you would need to pass its name to XMANAGER using the
EVENT_HANDLER keyword.

Notice that the event routine is listed before the main routine. This is because the
compiler will not compile the event routine if it was below the main routine. This is
only needed if both routines reside in the same file and the file name is the same as
the main routine name with the .pro extension added.

Notice also the NO_BLOCK keyword to XMANAGER has been included. This
allows IDL to continue processing events and accepting input at the command
prompt while the example widget application is running.

See Also

XMTOOL, XREGISTERED, Building IDL Applications Chapter 22, “Widgets”.
XMANAGER IDL Reference Guide

1729
XMNG_TMPL

The XMNG_TMPL procedure is a template for widgets that use the XMANAGER.
Use this template instead of writing your widget applications from “scratch”. This
template can be found in the file xmng_tmpl.pro in the lib subdirectory of the IDL
distribution.

The documentation header should be altered to reflect the actual implementation of
the XMNG_TMPL widget. Use a global search and replace to replace the word
XMNG_TMPL with the name of the routine you would like to use. All the comments
with a “***” in front of them should be read, decided upon and removed from the
final copy of your new widget routine.

Syntax

XMNG_TMPL [, /BLOCK] [, GROUP=widget_id]

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have
XMNG_TMPL block, any earlier calls to XMANAGER must have been called
with the NO_BLOCK keyword. See the documentation for the NO_BLOCK
keyword to XMANAGER for an example.

GROUP

The widget ID of the widget that calls XMNG_TMPL. When this ID is specified, the
death of the caller results in the death of XMNG_TMPL.

See Also

CW_TMPL
IDL Reference Guide XMNG_TMPL

1730
XMTOOL

The XMTOOL procedure displays a tool for viewing widgets currently being
managed by the XMANAGER. Only one instance of the XMTOOL can run at one
time.

This routine is written in the IDL language. Its source code can be found in the file
xmtool.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XMTOOL [, /BLOCK] [, GROUP=widget_id]

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XMTOOL
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

GROUP

The widget ID of the widget that calls XMTOOL. If the calling widget is destroyed,
the XMTOOL is also destroyed.

See Also

XLOADCT
XMTOOL IDL Reference Guide

1731
XOBJVIEW

The XOBJVIEW procedure is a utility used to quickly and easily view and
manipulate IDL Object Graphics on screen. It displays given objects in an IDL
widget with toolbar buttons and menus providing functionality for manipulating,
printing, and exporting the resulting graphic. The mouse can be used to rotate, scale,
or translate the overall model shown in a view, or to select graphic objects in a view.

This routine is written in the IDL language. Its source code can be found in the file
xobjview.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XOBJVIEW, Obj [, BACKGROUND=[r, g, b]] [, /BLOCK] [, /DOUBLE_VIEW]
[, GROUP=widget_id] [, /MODAL] [, REFRESH=widget_id] [, SCALE=value]
[, STATIONARY=objref(s)] [, /TEST] [, TITLE=string] [, TLB=variable]
[, XSIZE=pixels] [, YSIZE=pixels]

Arguments

Obj

A reference to an atomic graphics object, an IDLgrModel, or an array of such
references. If Obj is an array, the array can contain a mixture of such references.
Also, if Obj is an array, all object references in the array must be unique (i.e. no two
references in the array can refer to the same object).

Obj is not destroyed when XOBJVIEW is quit or killed.

Keywords

BACKGROUND

Set this keyword to a three-element [r, g, b] color vector specifying the background
color of the XOBJVIEW window.

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting the BLOCK keyword causes
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keyword to XMANAGER.
IDL Reference Guide XOBJVIEW

1732
Note
Only the outermost call to XMANAGER can block. Therefore, to have
XOBJVIEW block, any earlier calls to XMANAGER must have been called with
the NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

DOUBLE_VIEW

Set this keyword to cause XOBJVIEW to set the DOUBLE property on the
IDLgrView that it uses to display graphical data.

GROUP

The widget ID of the widget that calls XOBJVIEW. When this ID is specified, the
death of the caller results in the death of XOBJVIEW.

MODAL

Set this keyword to block processing of events from other widgets until the user quits
XOBJVIEW. The MODAL keyword does not require a group leader to be specified.
If no group leader is specified, and the MODAL keyword is set, XOBJVIEW
fabricates an invisible group leader for you.

Note
To be modal, XOBJVIEW does not require that its caller specify a group leader.
This is unlike other IDL widget procedures such as XLOADCT, which, to be
modal, do require that their caller specify a group leader. These other procedures
were implemented this way to encourage the caller to create a modal widget that
will be well-behaved with respect to layering and iconizing. (See “Iconizing,
Layering, and Destroying Groups of Top-Level Bases” on page 1536 for more
information.)

To provide a simple means of invoking XOBJVIEW as a modal widget in
applications that contain no other widgets, XOBJVIEW can be invoked as MODAL
without specifying a group leader, in which case XOBJVIEW fabricates an
invisible group leader for you. For applications that contain multiple widgets,
however, it is good programming practice to supply an appropriate group leader
when invoking XOBJVIEW, /MODAL. As with other IDL widget procedures with
names prefixed with “X”, specify the group leader via the GROUP keyword.
XOBJVIEW IDL Reference Guide

1733
REFRESH

Set this keyword to the widget ID of the XOBJVIEW instance to be refreshed. To
retrieve the widget ID of an instance of XOBJVIEW, first call XOBJVIEW with the
TLB keyword. To refresh that instance of XOBJVIEW, call XOBVIEW again and
set REFRESH to the value retrieved by the TLB keyword in the earlier call to
XOBJVIEW. For example, in the initial call to XOBJVIEW, use the TLB keyword as
follows:

XOBJVIEW, myobj, TLB=tlb

If the properties of myobj are changed in your application or at the IDL command
line, refresh the view in XOBJVIEW by calling XOBJVIEW again with the
REFRESH keyword:

XOBJVIEW, myobj, REFRESH=tlb

For an example application demonstrating the use of the REFRESH keyword, see
“Example 3” on page 1737.

Note
Currently, the REFRESH keyword can only be used to refresh the object itself. All
other keywords to XOBJVIEW are ignored when REFRESH is specified, therefore,
properties such as the background color and scale are not affected.

SCALE

Set this keyword to the zoom factor for the initial view. The default is 1/SQRT(3).
This default value provides the largest possible view of the object, while ensuring
that no portion of the object will be clipped by the XOBJVIEW window, regardless
of the object’s orientation.

STATIONARY

Set this keyword to a reference to an atomic graphics object, an IDLgrModel, or an
array of such references. If this keyword is an array, the array can contain a mixture
of such references. Also, if this keyword is an array, all object references in the array
must be unique (i.e., no two references in the array can refer to the same object).
Objects passed to XOBJVIEW via this keyword will not scale, rotate, or translate in
response to mouse events. Default stationary objects are two lights. These two lights
are replaced if one or more lights are supplied via this keyword. Objects specified via
this keyword are not destroyed by XOBJVIEW when XOBJVIEW is quit or killed.

For example, to change the default lights used by XOBJVIEW, you could specify
your own lights using the STATIONARY keyword as follows:
IDL Reference Guide XOBJVIEW

1734
mylight1 = OBJ_NEW('IDLgrLight', TYPE=0, $
 COLOR=[255,0,0]) ; Ambient red
mylight2 = OBJ_NEW('IDLgrLight', TYPE=2, $
 COLOR=[255,0,0], LOCATION=[2,2,5]) ; Directional red

mymodel = OBJ_NEW('IDLgrModel')
mymodel -> Add, mylight1
mymodel -> Add, mylight2

XOBJVIEW, /TEST, STATIONARY=mymodel

TLB

Set this keyword to a named variable that upon return will contain the widget ID of
the top level base.

TEST

If set, the Obj argument is not required (and is ignored if provided). A blue sinusoidal
surface is displayed. This allows you to test code that uses XOBJVIEW without
having to create an object to display.

TITLE

Set this keyword to the string that appears in the XOBJVIEW title bar.

XSIZE

Set this keyword to the width of the drawable area in pixels. The default is 400.

YSIZE

Set this keyword to the height of the drawable area in pixels. The default is 400.
XOBJVIEW IDL Reference Guide

1735
Using XOBJVIEW

XOBJVIEW displays a resizeable top-level base with a menu, toolbar and draw
widget, as shown in the following figure:

The XOBJVIEW Toolbar

The XOBJVIEW toolbar contains the following buttons:

Figure 35: The XOBJVIEW widget

Reset: Resets rotation, scaling, and panning.

Rotate: Click the left mouse button on the object and drag to rotate.

Pan: Click the left mouse button on the object and drag to pan.

Zoom: Click the left mouse button on the object and drag to zoom in or out.

Select:
Click on the object. The name of the selected object is displayed, if
the object has a name, otherwise its class is displayed.
IDL Reference Guide XOBJVIEW

1736
Examples

Example 1

This example displays a simple IDLgrSurface object using XOBJVIEW:

oSurf = OBJ_NEW('IDLgrSURFACE', DIST(20))
XOBJVIEW, oSurf

Example 2

This example displays an IDLgrModel object consisting of two separate objects:

; Create contour object:
oCont = OBJ_NEW('IDLgrContour', DIST(20), N_LEVELS=10)

; Create surface object:
oSurf = OBJ_NEW('IDLgrSurface', $
 DIST(20),INDGEN(20)+20, INDGEN(20)+20)

; Create model object:
oModel = OBJ_NEW('IDLgrModel')

; Add contour and surface objects to model:
oModel->Add, oCont
oModel->Add, oSurf

; View model:
XOBJVIEW, oModel

This code results in the following view in the XOBJVIEW widget:

Figure 36: Using XOBJVIEW to view a model consisting of two objects
XOBJVIEW IDL Reference Guide

1737
Note that when you click the Select button, and then click on an object, the class of
that object appears next to the Select button. If the selected object has a non-null
NAME property associated with it, that string value will be displayed, otherwise the
name of the selected object’s class will be displayed.

If you want the class of the model to appear when you click over any object in the
model, you can set the SELECT_TARGET property of the model as follows:

oModel->SetProperty, /SELECT_TARGET

Also note that it is not necessary to create a model to view more than one object using
XOBJVIEW. We could view the oCont and oSurf objects created in the above
example by placing them in an array as follows:

XOBJVIEW, [oCont, oSurf]

Example 3

This example demonstrates how the REFRESH keyword can be used to refresh the
object displayed in an instance of XOBJVIEW.

PRO xobjview_refresh_event, event
WIDGET_CONTROL, event.id, GET_UVALUE=uval
WIDGET_CONTROL, event.top, GET_UVALUE=state

CASE uval OF
'red': BEGIN

WIDGET_CONTROL, event.id, GET_VALUE=val
state.myobj -> GetProperty, COLOR=c
state.myobj -> SetProperty, COLOR=[val,c[1],c[2]]
XOBJVIEW, state.myobj, GROUP=event.top, $

REFRESH=state.tlb
END

 'green': BEGIN
WIDGET_CONTROL, event.id, GET_VALUE=val
state.myobj -> GetProperty, COLOR=c
state.myobj -> SetProperty, COLOR=[c[0],val,c[2]]
XOBJVIEW, state.myobj, GROUP=event.top, $

REFRESH=state.tlb
END

 'blue': BEGIN
WIDGET_CONTROL, event.id, GET_VALUE=val
state.myobj -> GetProperty, COLOR=c
state.myobj -> SetProperty, COLOR=[c[0],c[1],val]
XOBJVIEW, state.myobj, GROUP=event.top, $

REFRESH=state.tlb
END

ENDCASE
END
IDL Reference Guide XOBJVIEW

1738
PRO xobjview_cleanup, wID
WIDGET_CONTROL, wID, GET_UVALUE=uval
OBJ_DESTROY, uval.myobj

END

PRO xobjview_refresh
base = WIDGET_BASE(/COLUMN, TITLE='Adjust Object Color', $

XOFFSET=420, XSIZE=200)

myobj = OBJ_NEW('IDLgrSurface', $
BESELJ(SHIFT(DIST(40), 20, 20) / 2,0) * 20, $
COLOR=[255, 60, 60], STYLE=2, SHADING=1)

XOBJVIEW, myobj, TLB=tlb, GROUP=base, BACKGROUND=[0,0,0]

red = WIDGET_SLIDER(base, /DRAG, MIN=0, MAX=255, TITLE='Red', $
UVALUE='red', VALUE=255)

green = WIDGET_SLIDER(base, /DRAG, MIN=0, MAX=255, $
TITLE='Green', UVALUE='green', VALUE=60)

blue = WIDGET_SLIDER(base, /DRAG, MIN=0, MAX=255, $
TITLE='Blue', UVALUE='blue', VALUE=60)

WIDGET_CONTROL, base, /REALIZE

state = {myobj:myobj, tlb:tlb}
WIDGET_CONTROL, base, SET_UVALUE=state

XMANAGER, 'xobjview_refresh', base, /NO_BLOCK, $
CLEANUP='xobjview_cleanup'

END
XOBJVIEW IDL Reference Guide

1739
XPALETTE

The XPALETTE procedure is a utility that displays a widget interface that allows
interactive creation and modification of colortables using the RGB, CMY, HSV, or
HLS color systems. Single colors can be defined or multiple color indices between
two endpoints can be interpolated.

This routine is written in the IDL language. Its source code can be found in the file
xpalette.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XPALETTE [, /BLOCK] [, GROUP=widget_id]
[, UPDATECALLBACK=‘procedure_name’ [, UPDATECBDATA=value]]

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have
XPALETTE block, any earlier calls to XMANAGER must have been called with
the NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

GROUP

The widget ID of the widget that calls XPALETTE. When this ID is specified, a
death of the caller results in a death of XPALETTE.

UPDATECALLBACK

Set this keyword to a string containing the name of a user-supplied procedure that
will be called when the color table is updated by XLOADCT. The procedure may
optionally accept a keyword called DATA, which will be automatically set to the
value specified by the optional UPDATECBDATA keyword.
IDL Reference Guide XPALETTE

1740
UPDATECBDATA

Set this keyword to a value of any type. It will be passed via the DATA keyword to
the user-supplied procedure specified via the UPDATECALLBACK keyword, if any.
If the UPDATECBDATA keyword is not set the value accepted by the DATA
keyword to the procedure specified by UPDATECALLBACK will be undefined.

Using the XPALETTE Interface

Calling XPALETTE causes a graphical interface to appear. The elements of this
interface are described below.

Plots on Left Side of Interface

Three plots show the current red, green, and blue vectors.

Status Region

The center of the XPALETTE widget is a status region containing:

• The total number of colors.

• The current color index. XPALETTE allows changing one color at a time. This
color is known as the “current color” and is indicated in the color spectrum
display with a special marker.

• The current mark index. The mark is used to remember a color index. Click the
“Set Mark Button” to make the current color index the mark index.

• A sample of the current color. The special marker used in the color spectrum
display prevents the user from seeing the color of the current index, but it is
visible here.

Control Panel

A panel of 8 buttons control common XPALETTE functions:

• Done: Click this button to exit XPALETTE. The new color tables are saved in
the COLORS common block and loaded to the display.

• Predefined: Click this button to start XLOADCT, allowing selection of one of
the predefined color tables. Note that when you change the color map via
XLOADCT, XPALETTE is not always able to keep its display accurate. This
problem can be overcome by pressing the XPALETTE “Redraw” button after
changing the colortable via XLOADCT.

• Help: Click this button to display help information.
XPALETTE IDL Reference Guide

1741
• Redraw: Click this button to redraws the display using the current state of the
color map.

• Set Mark: Click this button to set the value of the mark index to the current
color index.

• Switch Mark: Click this button to exchange the mark and the current index.

• Copy Current: Click this button to make every color lying between the
current index and the mark index (inclusive) the same color as the current
color.

• Interpolate: Click this button to smoothly interpolate colors between the
current index and the mark index.

Color System Control

This section of the interface allows you to select the color system used to modify
individual colors. The “Select Color System” pulldown menu lets you select from
four different systems—RGB, CMY, HSV, and HLS. Depending upon the current
system, 3 sliders below the pulldown menu allow you to alter the current color.

Right Side Color Spectrum Display

A display on the right side of the XPALETTE interface shows the current color map
as a series of squares. Color index 0 is at the upper left. The color index increases
monotonically by rows going left to right and top to bottom. The current color index
is indicated by a special marker symbol. There are 4 ways to change the current color:

• Click on any square in the color map display.

• Use the “By Index” slider to move to the desired color index.

• Use the “Row” Slider to move the marker vertically.

• Use the “Column” Slider to move the marker horizontally.

A Note about the Colors Used in the Interface

XPALETTE uses two colors from the current color table as drawing foreground and
background colors. These are used for the RGB plots on the left, and the current
index marker on the right. This means that if the user set these two colors to the same
value, the XPALETTE display could become unreadable (like writing on black paper
with black ink). XPALETTE minimizes this possibility by noting changes to the
color map and always using the brightest available color for the foreground color and
the darkest for the background. Thus, the only way to make XPALETTE’s display
unreadable is to set the entire color map to a single color, which is highly unlikely.
IDL Reference Guide XPALETTE

1742
The only side effect of this policy is that you may notice XPALETTE redrawing the
entire display after you’ve modified the current color. This simply means that the
change has made XPALETTE pick new drawing colors.

See Also

LOADCT, MODIFYCT, XLOADCT, TVLCT
XPALETTE IDL Reference Guide

1743
XPCOLOR

The XPCOLOR procedure is a utility that allows you to adjust the value of the
current plotting color (foreground) using sliders, and store the desired color in the
global system variable, !P.COLOR.

When XPCOLOR is called from the IDL input command line, the Set Plot Color
dialog box appears. The dialog has two buttons (Done and Help) a single color
swatch window, three sliders, and a pulldown menu with the four color systems: red,
green, blue (RGB); cyan, magenta, yellow (CMY); hue, saturation, value (HSV); and
hue, lightness, and saturation (HLS).

When you have chosen the color system and adjusted the sliders to your liking, click
Done to store the color selected in the !P.COLOR system variable. Any plots
generated in IDL afterwards use the color selected as the plotting (foreground) color
until !P.COLOR is changed again.

Note
For a more flexible color editor, use the XPALETTE User Library routine.

This routine is written in the IDL language. Its source code can be found in the file
xpcolor.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XPCOLOR [, GROUP=widget_id]

Arguments

None.

Keywords

GROUP

Set this keyword to the group leader widget ID as passed to XMANAGER.
IDL Reference Guide XPCOLOR

1744
XPLOT3D

The XPLOT3D procedure is a utility for creating and interactively manipulating 3D
plots.

This routine is written in the IDL language. Its source code can be found in the file
xplot3d.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XPLOT3D, X, Y, Z [, /BLOCK] [, COLOR=[r,g,b]] [, /DOUBLE_VIEW]
[, GROUP=widget_id] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5 | 6}]] [, /MODAL]
[, NAME=string] [, /OVERPLOT] [, SYMBOL=objref(s)] [, /TEST]
[, THICK=points{1.0 to 10.0}] [, TITLE=string] [, XRANGE=[min, max]]
[, YRANGE=[min, max]] [, ZRANGE=[min, max]] [, XTITLE=string]
[, YTITLE=string] [, ZTITLE=string]

Arguments

X

A vector of X data values.

Y

A vector of Y data values.

Z

A vector of Z data values.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting the BLOCK keyword causes
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XPLOT3D
block, any earlier calls to XMANAGER must have been called with the
XPLOT3D IDL Reference Guide

1745
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

COLOR

Set this keyword to an [r, g, b] triplet specifying the color of the curve.

DOUBLE_VIEW

Set this keyword to cause XPLOT3D to set the DOUBLE property on the IDLgrView
that it uses to display the plot.

GROUP

Set this keyword to the widget ID of the widget that calls XPLOT3D. When this
keyword is specified, the death of the caller results in the death of XPLOT3D.

LINESTYLE

Set this keyword to a value indicating the line style that should be used to draw the
curve. The value can be either an integer value specifying a pre-defined line style, or
a 2-element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE keyword to one of the following
integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1s or 0s in the
bitmask should be repeated. (That is, if three consecutive 0s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. The bitmask is most conveniently specified as a 16-bit hexadecimal value.
IDL Reference Guide XPLOT3D

1746
For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8 bits
off, 8 bits on, 8 bits off).

MODAL

Set this keyword to block processing of events from other widgets until the user quits
XPLOT3D. The MODAL keyword does not require a group leader to be specified. If
no group leader is specified, and the MODAL keyword is set, XPLOT3D fabricates
an invisible group leader for you.

Note
To be modal, XPLOT3D does not require that its caller specify a group leader. This
is unlike other IDL widget procedures such as XLOADCT, which, to be modal, do
require that their caller specify a group leader. These other procedures were
implemented this way to encourage the caller to create a modal widget that will be
well-behaved with respect to layering and iconizing. (See “Iconizing, Layering, and
Destroying Groups of Top-Level Bases” on page 1536 for more information.)

To provide a simple means of invoking XPLOT3D as a modal widget in
applications that contain no other widgets, XPLOT3D can be invoked as MODAL
without specifying a group leader, in which case XPLOT3D fabricates an invisible
group leader for you. For applications that contain multiple widgets, however, it is
good programming practice to supply an appropriate group leader when invoking
XPLOT3D, /MODAL. As with other IDL widget procedures with names prefixed
with “X”, specify the group leader via the GROUP keyword.

NAME

Set this keyword to a string specifying the name for the data curve being plotted. The
name is displayed on the XPLOT3D toolbar when the curve is selected with the
mouse. (To select the curve with the mouse, XPLOT3D must be in select mode. You
can put XPLOT3D in select mode by clicking on the rightmost button on the
XPLOT3D toolbar.)

OVERPLOT

Set this keyword to draw the curve in the most recently created view. The TITLE,
[XYZ]TITLE, [XYZ]RANGE, and MODAL keywords are ignored if this keyword is
set.

SYMBOL

Set this keyword to a vector containing one or more instances of the IDLgrSymbol
object class to indicate the plotting symbols to be used at each vertex of the polyline.
XPLOT3D IDL Reference Guide

1747
If there are more vertices than elements in SYMBOL, the elements of the SYMBOL
vector are cyclically repeated. By default, no symbols are drawn. To remove symbols
from a polyline, set SYMBOL to a scalar.

TEST

If set, the X, Y, and Z arguments are not required (and are ignored if provided). A
sinusoidal curve is displayed instead. This allows you to test code that uses
XPLOT3D without having to specify plot data.

THICK

Set this keyword to a value between 1.0 and 10.0, specifying the line thickness to be
used to draw the polyline, in points. The default is 1.0 points.

TITLE

Set this keyword to a string to appear in the XPLOT3D title bar.

XRANGE

Set this keyword to a 2-element array of the form [min, max] specifying the X-axis
range.

YRANGE

Set this keyword to a 2-element array of the form [min, max] specifying the Y-axis
range.

ZRANGE

Set this keyword to a 2-element array of the form [min, max] specifying the Z-axis
range.

XTITLE

Set this keyword to a string specifying the title for the X axis of the plot.

YTITLE

Set this keyword to a string specifying the title for the Y axis of the plot.

ZTITLE

Set this keyword to a string specifying the title for the Z axis of the plot.
IDL Reference Guide XPLOT3D

1748
Using XPLOT3D

XPLOT3D displays a resizeable top-level base with a menu, toolbar and draw
widget, as shown in the following figure:

The XPLOT3D Toolbar

The XPLOT3D toolbar contains the following buttons:

Figure 37: The XPLOT3D Utility

Reset: Resets rotation, scaling, and panning.

Rotate: Click the left mouse button on the plot and drag to rotate.

Zoom: Click the left mouse button on the plot and drag to zoom in or out.

Pan: Click the left mouse button on the plot and drag to pan.

Select:
Click on a curve to display the curve name (if defined with the
NAME keyword) on the XPLOT3D toolbar. If no name was defined
for the curve, “IDLGRPOLYLINE” is displayed.
XPLOT3D IDL Reference Guide

1749
Projecting Data onto Plot “Walls”

To turn on or off the projection of data onto the walls of the box enclosing the 3D
plot, select All On, All Off, XY, YZ, or XZ from the View → 2D Projection menu.

Changing the Axis Type

The View → Axes menu allows you to select one of the following types of axes:

• Simple Axes — displays the X, Y, and Z axes as lines.

• Box Axes — displays the X, Y, and Z axes as planes.

• No Axes — turns off the display of axes.

Example

The following example displays two curves in XPLOT3D, using a custom plotting
symbol for one of the curves:

;Define plot data:
X = INDGEN(20)
Y1 = SIN(X/3.)
Y2 = COS(X/3.)
Z = X

;Display curve 1 in XPLOT3D:
XPLOT3D, X, Y1, Z, NAME='Curve1', THICK=2

;Define custom plotting symbols:
oOrb = OBJ_NEW('orb', COLOR=[0, 0, 255])
oOrb->Scale, .75, .1, .5
oSymbol = OBJ_NEW('IDLgrSymbol', oOrb)

;Overplot curve 2 in XPLOT3D:
XPLOT3D, X, Y2, Z, COLOR=[0,255,0], NAME='Curve2', $

SYMBOL=oSymbol, THICK=2, /OVERPLOT
IDL Reference Guide XPLOT3D

1750
This code results in the following:

Figure 38: Two curves displayed in XPLOT3D
XPLOT3D IDL Reference Guide

1751
XREGISTERED

The XREGISTERED function returns True if the widget named as its argument is
currently registered with the XMANAGER as an exclusive widget. Otherwise the
routine returns false.

If the named widget is registered, XREGISTERED returns the number of instances of
that name in the list maintained by XMANAGER. The registered widget is brought to
the front of the desktop unless the NOSHOW keyword is set.

This routine is written in the IDL language. Its source code can be found in the file
xregistered.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = XREGISTERED(Name [, /NO_SHOW])

Arguments

Name

A string containing the name of the widget in question.

Note
XREGISTERED checks for Name in a COMMON block created by XMANAGER.
The stored name is case-sensitive.

Keywords

NOSHOW

If the widget in question is registered, it is brought to the front of all the other
windows by default. Set this keyword to keep the widget from being brought to the
front.

Example

Suppose that you have a widget program that registers itself with the XMANAGER
with the command:

XMANAGER, 'mywidget', base
IDL Reference Guide XREGISTERED

1752
You could limit this widget to one instantiation by adding the following line as the
first line (after the procedure definition statement) of the widget creation routine:

IF XREGISTERED('mywidget') THEN RETURN

See Also

XMANAGER
XREGISTERED IDL Reference Guide

1753
XROI

The XROI procedure is a utility for interactively defining regions of interest (ROIs),
and obtaining geometry and statistical data about these ROIs.

This routine is written in the IDL language. Its source code can be found in the file
xroi.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XROI [, ImageData] [, R] [, G] [, B] [, /BLOCK]
[[, /FLOATING] , GROUP=widget_ID] [, /MODAL] [, REGIONS_IN=value]
[, REGIONS_OUT=value] [, REJECTED=variable] [, RENDERER={0 | 1}]
[, ROI_COLOR=[r, g, b] or variable] [, ROI_GEOMETRY=variable]
[, ROI_SELECT_COLOR=[r, g, b] or variable] [, STATISTICS=variable]
[, TITLE=string] [, TOOLS=string/string array {valid values are 'Freehand Draw',
'Polygon Draw', and 'Selection'}]

Arguments

ImageData

ImageData is both an input and output argument. It is an array representing an 8-bit
or 24-bit image to be displayed. ImageData can be any of the following:

• [m, n] — 8-bit image

• [3, m, n] — 24-bit image

• [m, 3, n] — 24-bit image

• [m, n, 3] — 24-bit image

If ImageData is not supplied, the user will be prompted for a file via
DIALOG_PICKFILE. On output, ImageData will be set to the current image data.
(The current image data can be different than the input image data if the user
imported an image via the File → Import Image menu item.)

R, G, B

R, G, and B are arrays of bytes representing red, green, or blue color table values,
respectively. R, G, and B are both input and output arguments. On input, these values
are applied to the image if the image is 8-bit. To get the red, green, or blue color table
values for the image on output from XROI, specify a named variable for the
appropriate argument. (If the image is 24-bit, this argument will output a 256-element
IDL Reference Guide XROI

1754
byte array containing the values given at input, or BINDGEN(256) if the argument
was undefined on input.)

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting the BLOCK keyword causes
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XROI
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

FLOATING

Set this keyword, along with the GROUP keyword, to create a floating top-level base
widget. If the windowing system provides Z-order control, floating base widgets
appear above the base specified as their group leader. If the windowing system does
not provide Z-order control, the FLOATING keyword has no effect.

Note
Floating widgets must have a group leader. Setting this keyword without also
setting the GROUP keyword causes an error.

GROUP

Set this keyword to the widget ID of the widget that calls XROI. When this keyword
is specified, the death of the caller results in the death of XROI.

MODAL

Set this keyword to block other IDL widgets from receiving events while XROI is
active.
XROI IDL Reference Guide

1755
REGIONS_IN

Set this keyword to an array of IDLgrROI references. This allows you to open XROI
with ROIs already defined. This is also useful when using a loop to open multiple
images in XROI. By using the same named variable for both the REGIONS_IN and
REGIONS_OUT keywords, you can reuse the same ROIs in multiple images (see
Example 2). This keyword also accepts –1, or OBJ_NEW() (Null object) to indicate
that there are no ROIs to read in. This allows you to assign the result of a previous
REGIONS_OUT to REGIONS_IN without worrying about the case where the
previous REGIONS_OUT is undefined.

REGIONS_OUT

Set this keyword to a named variable that will contain an array of IDLgrROI
references. This keyword is assigned the null object reference if there are no ROIs
defined. By using the same named variable for both the REGIONS_IN and
REGIONS_OUT keywords, you can reuse the same ROIs in multiple images (see
Example 2).

REJECTED

Set this keyword to a named variable that will contain those REGIONS_IN that are
not in REGIONS_OUT. The objects defined in the variable specified for REJECTED
can be destroyed with a call to OBJ_DESTROY, allowing you to perform cleanup on
objects that are not required (see Example 2). This keyword is assigned the null
object reference if no REGIONS_IN are rejected by the user.

RENDERER

Set this keyword to an integer value to indicate which graphics renderer to use when
drawing objects within the window. Valid values are:

• 0 = Platform native OpenGL

• 1 = IDL’s software implementation (the default)

ROI_COLOR

This keyword is both an input and an output parameter. Set this keyword to a
3-element byte array, [r, g, b], indicating the color of ROI outlines when they are not
selected. This color will be used by XROI unless and until the color is changed by the
user via the “Unselected Outline Color” portion of the “ROI Outline Colors” dialog
(which is accessed by selecting Edit → Outline Colors). If this keyword is assigned
a named variable, that variable will be set to the current [r, g, b] value at the time that
XROI returns.
IDL Reference Guide XROI

1756
ROI_GEOMETRY

Set this keyword to a named variable that will contain an array of anonymous
structures, one for each ROI that is valid when this routine returns. The structures
will contain the following fields:

If there are no valid regions of interest when this routine returns, ROI_GEOMETRY
will be undefined.

Note
If there are no REGIONS_IN, XROI must either be modal or must block control
flow in order for ROI_GEOMETRY to be defined upon exit from XROI.
Otherwise, XROI will return before an ROI can be defined, and ROI_GEOMETRY
will therefore be undefined.

ROI_SELECT_COLOR

This keyword is both an input and an output parameter. Set this keyword to a
3-element byte array, [r, g, b], indicating the color of ROI outlines when they are
selected. This color will be used by XROI unless and until the color is changed by the
user via the “Selected Outline Color” portion of the “ROI Outline Colors” dialog
(which is accessed by selecting Edit → Outline Colors). If this keyword is assigned
a named variable, that variable will be set to the current [r, g, b] value at the time that
XROI returns.

Field Description

area The area of the region of interest, in square pixels.

centroid The coordinates (x, y, z) of the centroid of the region
of interest, in pixels.

perimeter The perimeter of the region of interest, in pixels.

Table 100: Fields of the structure returned by ROI_GEOMETRY
XROI IDL Reference Guide

1757
STATISTICS

Set this keyword to a named variable to receive an array of anonymous structures,
one for each ROI that is valid when this routine returns. The structures will contain
the following fields:

If ImageData is 24-bit, or if there are no valid regions of interest when the routine
exits, STATISTICS will be undefined.

Note
If there are no REGIONS_IN, XROI must either be modal or must block control
flow in order for STATISTICS to be defined upon exit from XROI. Otherwise,
XROI will return before an ROI can be defined, and STATISTICS will therefore be
undefined.

TITLE

Set this keyword to a string to appear in the XROI title bar.

TOOLS

Set this keyword a string or vector of strings from the following list to indicate which
ROI manipulation tools should be supported when XROI is run:

• 'Freehand Draw' — Freehand ROI drawing. Mouse down begins a region,
mouse motion adds vertices to the region (following the path of the mouse),
mouse up finishes the region.

• 'Polygon Draw' — Polygon ROI drawing. Mouse down begins a region,
subsequent mouse clicks add vertices, double-click finishes the region.

Field Description

count Number of pixels in region.

minimum Minimum pixel value.

maximum Maximum pixel value.

mean Mean pixel value.

stddev Standard deviation of pixel values.

Table 101: Fields of the structure returned by STATISTICS
IDL Reference Guide XROI

1758
• 'Selection' — ROI selection. Mouse down/up selects the nearest region. The
nearest vertex in that region is identified with a crosshair symbol.

If more than one string is specified, a series of bitmap buttons will appear at the top of
the XROI widget in the order specified (to the right of the fixed set of bitmap buttons
used for saving regions, displaying region information, copying to clipboard, and
flipping the image). If only one string is specified, no additional bitmap buttons will
appear, and the manipulation mode is implied by the given string. If this keyword is
not specified, bitmap buttons for all three manipulation tools are included on the
XROI toolbar.

Using XROI

XROI displays a top-level base with a menu, toolbar and draw widget. After defining
an ROI, the ROI Information window appears, as shown in the following figure:

As you move the mouse over an image, the x and y pixel locations are shown in the
status line on the bottom of the XROI window. For 8-bit images, the data value (z) is
also shown. If an ROI is defined, the status line also indicates the mouse position
relative to the ROI using the text “Inside”, “Outside”, “On Edge,” or “On Vertex.”

Figure 39: The XROI Utility
XROI IDL Reference Guide

1759
The XROI Toolbar

The XROI toolbar contains the following buttons:

Depending on the value of the TOOLS keyword, the XROI toolbar may also contain
the following buttons:

Importing an Image into XROI

To import an image into XROI, select File → Import Image. This opens a
DIALOG_READ_IMAGE dialog, which can be used to preview and select an image.

Changing the Image Color Table

To change the color table properties for the current image, select Edit → Image
Color Table. This opens the CW_PALETTE_EDITOR dialog, which is a compound
widget used to edit color palettes. See CW_PALETTE_EDITOR for more
information. This menu item is grayed out if the image does not have a color palette.

Save:
Opens a file selection dialog for saving the currently defined
ROIs to a save file.

Info: Opens the ROI Information window.

Copy: Copies the contents of the display area to the clipboard.

Flip:
Flips image vertically. Note that only the image is flipped;
any ROIs that have been defined do not move.

Draw
Freehand:

Click this button to draw freehand ROIs. Mouse down
begins a region, mouse motion adds vertices to the region
(following the path of the mouse), mouse up finishes the
region.

Draw
Polygon:

Click this button to draw polygon ROIs. Mouse down
begins a region, subsequent mouse clicks add vertices,
double-click finishes the region.

Select:
Click this button to select an ROI region. Clicking the image
causes a cross hairs symbol to be drawn at the nearest vertex
of the selected ROI.
IDL Reference Guide XROI

1760
Changing the ROI Outline Colors

To change the outline colors for selected and unselected ROIs, select Edit → Outline
Colors. This opens the ROI Outline Colors dialog, which consists of two
CW_RGBSLIDER widgets for interactively adjusting the ROI outline colors. The
left widget is used to define the color for the selected ROI, and the right widget is
used to define the color of unselected ROIs. You can select the RGB, CMY, HSV, or
HLS color system from the Color System drop-down list.

Viewing ROI Information

To view geometry and statistical data about the currently selected ROI, click the Info
button or select Edit → ROI Information. This opens the ROI Information dialog,
which displays area, perimeter, number of pixels, minimum and maximum pixel
values, and standard deviation. Values for statistical information (minimum,
maximum, mean, and standard deviation) appear as “N/A” for 24-bit images.

To view a histogram for the currently selected ROI, click the Histogram button. This
opens a LIVE_PLOT dialog, which can be used to interactively control the plot
properties.

Note
The Histogram button is enabled only for 8-bit images.

Deleting an ROI

To delete an ROI, do the following:

1. Click the Info button or select Edit → ROI Information. This opens the ROI
Information dialog.

2. In the ROI Information dialog, select the ROI you wish to delete from the list
of ROIs. You can also select an ROI by clicking the Select button on the XROI
toolbar, then clicking on an ROI on the image.

3. Click the Delete ROI button.

Examples

Example 1

This example opens a single image in XROI:

image = READ_PNG(FILEPATH('mineral.png', $
SUBDIR=['examples','data']))

XROI, image
XROI IDL Reference Guide

1761
Example 2

This example reads 3 images from the file mr_abdomen.dcm, and calls XROI for
each image. A single list of regions is maintained, saving the user from having to
redefine regions on each image:

;Read 3 images from mr_abdomen.dcm and open each one in XROI:
FOR i=0,2 DO BEGIN

image = READ_DICOM(FILEPATH('mr_abdomen.dcm',$
SUBDIR=['examples','data']), IMAGE_INDEX=i)

XROI, image, r, g, b, REGIONS_IN=regions,$
REGIONS_OUT=regions, ROI_SELECT_COLOR=roi_select_color,$
ROI_COLOR=roi_color, REJECTED=rejected, /BLOCK

OBJ_DESTROY, rejected
ENDFOR

OBJ_DESTROY, regions

Perform the following steps:

1. Draw an ROI on the first image, then close that XROI window. Note that the
next image contains the ROI defined in the first image. This is accomplished
by setting REGIONS_IN and REGIONS_OUT to the same named variable in
the FOR loop of the above code.

2. Draw another ROI on the second image.

3. Click the Select button and select the first ROI. Then click the Info button to
open the ROI Information window, and click the Delete ROI button.

4. Close the second XROI window. Note that the third image contains the ROI
defined in the second image, but not the ROI deleted on the second image.
This example sets the REJECTED keyword to a named variable, and calls
OBJ_DESTROY on that variable. Use of the REJECTED keyword is not
necessary to prevent deleted ROIs from appearing on subsequent images, but
allows you perform cleanup on objects that are no longer required.
IDL Reference Guide XROI

1762
XSQ_TEST

The XSQ_TEST function computes the Chi-square goodness-of-fit test between
observed frequencies and the expected frequencies of a theoretical distribution. The
result is a two-element vector containing the Chi-square test statistic X2 and the one-
tailed probability of obtaining a value of X2 or greater.

Expected frequencies of magnitude less than 5 are combined with adjacent elements
resulting in a reduction of cells used to formulate the chi-squared test statistic. If the
observed frequencies differ significantly from the expected frequencies, the Chi-
square test statistic will be large and the fit is poor. This situation requires the
rejection of the hypothesis that the given observed frequencies are an accurate
approximation to the expected frequency distribution.

This routine is written in the IDL language. Its source code can be found in the file
xsq_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = XSQ_TEST(Obfreq, Exfreq [, EXCELL=variable] [, OBCELL=variable]
[, RESIDUAL=variable])

Arguments

Obfreq

An n-element integer, single-, or double-precision floating-point vector containing
observed frequencies.

Exfreq

An n-element integer, single-, or double-precision floating-point vector containing
expected frequencies.

Keywords

EXCELL

Set this keyword to a named variable that will contain a vector of expected
frequencies used to formulate the Chi-square test statistic. If each of the expected
frequencies contained in Exfreq, has a magnitude of 5 or greater, then this vector is
identical to Exfreq. If Exfreq contains elements of magnitude less than 5, adjacent
expected frequencies are combined. The identical combinations are performed on the
corresponding elements of Obfreq.
XSQ_TEST IDL Reference Guide

1763
OBCELL

Set this keyword to a named variable that will contain a vector of observed
frequencies used to formulate the Chi-square test statistic. The elements of this vector
are often referred to as the “cells” of the observed frequencies. The length of this
vector is determined by the length of EXCELL described below.

RESIDUAL

Set this keyword to a named variable that will contain a vector of signed differences
between corresponding cells of observed frequencies and expected frequencies.

RESIDUAL[i] = OBCELL[i] - EXCELL[i].

The length of this vector is determined by the length of EXCELL described above.

Example

; Define the vectors of observed and expected frequencies:
obfreq = [2, 1, 4, 15, 10, 5, 3]
exfreq = [0.5, 2.1, 5.9, 10.3, 10.7, 7.0, 3.5]

; Test the hypothesis that the given observed frequencies are an
; accurate approximation to the expected frequency distribution:
result = XSQ_TEST(obfreq, exfreq)
PRINT, result

IDL Output

3.05040 0.383920

Since the vector of expected frequencies contains elements of magnitude less than 5,
adjacent expected frequencies are combined resulting in fewer cells. The identical
combinations are performed on the corresponding elements of observed frequencies.
The computed value of 0.383920 indicates that there is no reason to reject the
proposed hypothesis at the 0.05 significance level.

See Also

CTI_TEST
IDL Reference Guide XSQ_TEST

1764
XSURFACE

The XSURFACE procedure is a utility that provides a graphical interface to the
SURFACE and SHADE_SURF commands. Different controls are provided to
change the viewing angle and other plot parameters. The command used to generate
the resulting surface plot is shown in a text window. Note that this procedure does not
accept SURFACE or SHADE_SURF keywords.

This routine is written in the IDL language. Its source code can be found in the file
xsurface.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XSURFACE, Data [, /BLOCK] [, GROUP=widget_id]

Arguments

Data

The two-dimensional array to display as a wire-mesh or shaded surface.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have
XSURFACE block, any earlier calls to XMANAGER must have been called with
the NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

GROUP

Set this keyword to the widget ID of the widget that calls XSURFACE. When
GROUP is specified, the death of the calling widget results in the death of
XSURFACE.
XSURFACE IDL Reference Guide

1765
Example

; Make a 2D array:
z = DIST(30)

; Call XSURFACE. The XSURFACE widget appears:
XSURFACE, z

See Also

SHADE_SURF, SURFACE
IDL Reference Guide XSURFACE

1766
XVAREDIT

The XVAREDIT procedure is a utility that provides a widget-based editor for any
IDL variable. Use the input fields to change desired values of the variable or array.
Click “Accept” to write the new values into the variable. Click “Cancel” to exit
XVAREDIT without saving changes.

This routine is written in the IDL language. Its source code can be found in the file
xvaredit.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XVAREDIT, Var [, NAME='variable_name'{ignored if variable is a structure}]
[, GROUP=widget_id] [, X_SCROLL_SIZE=columns] [, Y_SCROLL_SIZE=rows]

Arguments

Var

The variable to be edited. On output, this variable contains the edited value if the user
selects the “Accept” button, or the original value if the user selects the “Cancel”
button.

Keywords

NAME

The NAME of the variable. This keyword is overwritten with the structure name if
the variable is a structure.

GROUP

The widget ID of the widget that calls XVAREDIT. When this ID is specified, a
death of the caller results in a death of XVAREDIT.

X_SCROLL_SIZE

Set this keyword to the column width of the scrolling viewport. The default is 4.

Y_SCROLL_SIZE

Set this keyword to the row width of the scrolling viewport. The default is 4.
XVAREDIT IDL Reference Guide

1767
XVOLUME

The XVOLUME procedure is a utility for viewing and interactively manipulating
volumes and isosurfaces.

This routine is written in the IDL language. Its source code can be found in the file
xvolume.pro in the lib/utilities subdirectory of the IDL distribution.

Tip
The XVOLUME_ROTATE and XVOLUME_WRITE_IMAGE procedures, which
can be called only after a call to XVOLUME, can be used to easily create
animations of volumes and isosurfaces displayed in XVOLUME. See
XVOLUME_ROTATE for an example.

Syntax

XVOLUME, Vol, [, /BLOCK] [, GROUP=widget_id] [, /INTERPOLATE]
[, /MODAL] [, RENDERER={0 | 1}] [, /REPLACE] [, SCALE=value] [, /TEST]
[, XSIZE=pixels] [, YSIZE=pixels]

Arguments

Vol

A 3-element array of the form [x, y, z] that specifies a data volume.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting the BLOCK keyword causes
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XVOLUME
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.
IDL Reference Guide XVOLUME

1768
GROUP

Set this keyword to the widget ID of the widget that calls XVOLUME. When this
keyword is specified, the death of the caller results in the death of XVOLUME.

INTERPOLATE

Set this keyword to indicate that trilinear interpolation is to be used when rendering
the volume and the image planes. Setting this keyword improves the quality of
images produced, at the cost of more computing time, especially when the volume
has low resolution with respect to the size of the viewing plane. Nearest neighbor
sampling is used by default.

MODAL

Set this keyword to block processing of events from other widgets until the user quits
XVOLUME. The MODAL keyword does not require a group leader to be specified.
If no group leader is specified, and the MODAL keyword is set, XVOLUME
fabricates an invisible group leader for you.

Note
To be modal, XVOLUME does not require that its caller specify a group leader.
This is unlike other IDL widget procedures such as XLOADCT, which, to be
modal, do require that their caller specify a group leader. These other procedures
were implemented this way to encourage the caller to create a modal widget that
will be well-behaved with respect to layering and iconizing. (See “Iconizing,
Layering, and Destroying Groups of Top-Level Bases” on page 1536 for more
information.)

To provide a simple means of invoking XVOLUME as a modal widget in
applications that contain no other widgets, XVOLUME can be invoked as MODAL
without specifying a group leader, in which case XVOLUME fabricates an invisible
group leader for you. For applications that contain multiple widgets, however, it is
good programming practice to supply an appropriate group leader when invoking
XVOLUME, /MODAL. As with other IDL widget procedures with names prefixed
with “X”, specify the group leader via the GROUP keyword.

RENDERER

Set this keyword to an integer value indicating which graphics renderer to use when
drawing objects within the window. Valid values are:

• 0 = Platform native OpenGL (the default)

• 1 = IDL’s software implementation
XVOLUME IDL Reference Guide

1769
REPLACE

If this keyword is set, and there is a current instance of XVOLUME running, the
volume displayed in XVOLUME is replaced with the volume specified by Vol. For
example, display volume1 using the command

XVOLUME, volume1

To replace volume1 with volume2, you would use the command

XVOLUME, volume2, /REPLACE

SCALE

Set this keyword to the zoom factor for the initial view. The default is 1/SQRT(3).
This default value provides the largest possible view of the volume, while ensuring
that no portion of the volume will be clipped by the XVOLUME window, regardless
of the volume’s orientation.

TEST

If set, the Vol argument is not required (and is ignored if provided). A volume of
random numbers is displayed instead. This allows you to test code that uses
XVOLUME without having to specify volume data.

XSIZE

The width of the drawable area in pixels.

YSIZE

The height of the drawable area in pixels.
IDL Reference Guide XVOLUME

1770
Using XVOLUME

XVOLUME displays a resizeable top-level base with a toolbar, a menu, a graphical
interface for controlling volume and isosurface properties, and a draw widget for
displaying and manipulating the volume, as shown in the following figure:

The XVOLUME Toolbar

The XVOLUME toolbar contains the following buttons.

Note
If you have the Auto-Render option selected, the Rotate, Zoom, and Pan features
may be more difficult to use. For the best performance while manipulating the
orientation of a volume using these features, uncheck the Auto-Render option.

Figure 40: The XVOLUME Utility

Reset: Resets rotation, scaling, and panning.

Rotate: Click the left mouse button on the volume and drag to rotate.
XVOLUME IDL Reference Guide

1771
The XVOLUME Interface

The XVOLUME interface provides the following elements for controlling the display
of image planes and contours, volumes, and isosurfaces:

Image Planes and Contours

Image planes and contours allow you to visualize the values associated with the
volume or isosurface at a specified X, Y, or Z plane.

• Image Planes: Select one of the following options from the dropdown list for
each dimension to control the display of image planes:

• Off: Turns off the image plane display.

• Opaque: Displays an opaque image plane at the location specified by the
corresponding plane slider.

• Transparent: Displays a transparent image plane at the location specified
by the corresponding plane slider. The transparency value of the plane is
taken from the volume at the current location of the image plane.

• Contours: Check this option to display contours on the specified plane at the
location specified by corresponding the plane slider.

• Plane Sliders: Move these sliders to change the position of the plane in each
dimension.

Volume

• Color and Opacity: Click this button to change the color and/or opacity of the
current volume. This opens a CW_PALETTE_EDITOR dialog, which is a
compound widget used to edit color palettes. See CW_PALETTE_EDITOR
for more information.

• Auto-Render: Select this option to have rendering executed automatically
after each change you make to the volume. If Auto-Render is unchecked, you

Zoom:
Click the left mouse button on the volume and drag to zoom in or
out.

Pan: Click the left mouse button on the volume and drag to pan.

Select:
Click in the draw widget to identify the selected item. A name
identifying the selected item is displayed next to the Select button.
IDL Reference Guide XVOLUME

1772
must manually click the Render button to see changes you have made to the
volume. If Auto-Render is checked, the Render button will be grayed out.

• Render: Click on this button to execute rendering computations and display
the current volume. If Auto-Render is checked, this button will be grayed out.

Isosurface

An isosurface is a 3D surface on which the data values are constant along the entire
surface. Use the following elements to control the appearance of the isosurface:

• Color: Click this button to change the color system and/or values for the
current isosurface. This opens a CW_RGBSLIDER dialog, which is a
compound widget that provides a drop-down list for selecting the RGB, CMY,
HSV, or HLS color system, and three sliders for adjusting the values
associated with each color system.

• Isosurface Off: Select this option to turn off the isosurface display.

• Opaque Isosurface: Select this option to display an opaque isosurface.

• Semi-transparent Isosurface: Select this option to display a semi-transparent
isosurface.

• Level: Use this slider to adjust the threshold value of the isosurface.

Example

Create a volume and display using XVOLUME:

; Create a volume:
vol = BYTSCL(RANDOMU((SEED=0),5,5,5))
vol = CONGRID(vol, 30,30,30)

; Display volume:
XVOLUME, vol

See Also

XVOLUME_ROTATE, XVOLUME_WRITE_IMAGE, IDLgrVolume,
ISOSURFACE, SHADE_VOLUME, SLICER3, “Volume Objects” in Chapter 26 of
Using IDL.
XVOLUME IDL Reference Guide

1773
XVOLUME_ROTATE

The XVOLUME_ROTATE procedure is used to programmatically rotate the volume
currently displayed in XVOLUME. XVOLUME must be called prior to calling
XVOLUME_ROTATE. This procedure can be used to create animations of volumes
and isosurfaces.

This routine is written in the IDL language. Its source code can be found in the file
xvolume_rotate.pro in the lib/utilities subdirectory of the IDL
distribution.

Syntax

XVOLUME_ROTATE, Axis, Angle [, /PREMULTIPLY]

Arguments

Axis

A 3-element vector of the form [x, y, z] describing the axis about which the model is
to be rotated.

Angle

The amount of rotation, measured in degrees.

Keywords

PREMULTIPLY

Set this keyword to cause the rotation matrix specified by Axis and Angle to be pre-
multiplied to the model’s transformation matrix. By default, the rotation matrix is
post-multiplied.

Example

The following example creates an animation of the volume currently displayed in
XVOLUME. It does this by rotating the volume through 360 degrees in increments of
10 degrees using XVOLUME_ROTATE, and writing the volume to a BMP file for
each increment using XVOLUME_WRITE_IMAGE. It then loops through the
images and uses TV to display each image.

First, display a volume as follows:

; Create a volume:
IDL Reference Guide XVOLUME_ROTATE

1774
vol = BYTSCL(RANDOMU((SEED=0),5,5,5))
vol = CONGRID(vol, 30,30,30)

; Display volume:
XVOLUME, vol

Now, use the XVOLUME interface to modify the orientation and appearance of the
volume or isosurface as desired. Once you have the volume or isosurface displayed
the way you want it, run the following program:

PRO spin_volume

inc = 10. ; degrees.
; Create images
FOR i=0,(360./inc)-2 DO BEGIN

XVOLUME_WRITE_IMAGE, $
'spin' + STRCOMPRESS(i, /REMOVE_ALL) + '.bmp', 'bmp'

XVOLUME_ROTATE, [0,0,1], inc, /PREMULTIPLY
ENDFOR
XVOLUME_ROTATE, [0,0,1], inc, /PREMULTIPLY

; Read images
img = READ_BMP('spin0.bmp')
siz = SIZE(img, /DIM)
arr = BYTARR(3, siz[1], siz[2], 360./inc-1)
FOR i=0,360./inc-2 DO BEGIN

img = READ_BMP($
'spin' + STRCOMPRESS(i, /REMOVE_ALL) + '.bmp', /RGB)

arr[0,0,0, i] = img
PRINT, i

ENDFOR

; Display animation
FOR i=0,2 DO BEGIN ; num rotations

FOR j=0,(360./inc)-2 DO BEGIN
TV, arr[*,*,*,j], /TRUE

ENDFOR
ENDFOR

TV, arr[*,*,*,0], /TRUE

END

See Also

XVOLUME, XVOLUME_WRITE_IMAGE
XVOLUME_ROTATE IDL Reference Guide

1775
XVOLUME_WRITE_IMAGE

The XVOLUME_WRITE_IMAGE procedure is used to write the volume currently
displayed in XVOLUME to an image file with the specified name and file format.
XVOLUME must be called prior to calling XVOLUME_WRITE_IMAGE.

This routine is written in the IDL language. Its source code can be found in the file
xvolume_write_image.pro in the lib/utilities subdirectory of the IDL
distribution.

Syntax

XVOLUME_WRITE_IMAGE, Filename, Format [, DIMENSIONS=[x, y]]

Arguments

Filename

A scalar string containing the name of the file to write.

Format

A scalar string containing the name of the file format to write. See QUERY_IMAGE
for a list of supported formats.

Keywords

DIMENSIONS

Set this keyword to a 2-element vector of the form [x, y] specifying the size of the
output image, in pixels. If this keyword is not specified, the image will be written
using the dimensions of the current XVOLUME draw widget.

Example

See XVOLUME_ROTATE.

See Also

XVOLUME, XVOLUME_ROTATE
IDL Reference Guide XVOLUME_WRITE_IMAGE

1776
XYOUTS

The XYOUTS procedure draws text on the currently-selected graphics device
starting at the designated coordinate.

Arguments X, Y, and String can be any combination of scalars or arrays. If the
arguments are arrays, multiple strings are output.

If the optional X and Y arguments are omitted, the text is positioned at the end of the
most recently output text string.

Important keywords that control the appearance and positioning of the text include:
ALIGNMENT, the justification of the text; CHARSIZE, the size of the text; FONT,
chooses between vector drawn and hardware fonts; COLOR, the color of the text; and
ORIENTATION, the angle between the baseline of the text and the horizontal. With
hardware fonts, most of the text attributes, (e.g., size and orientation), are
predetermined and not changeable.

Note
Specify the Z coordinate with the Z keyword when positioning text in three
dimensions.

Syntax

XYOUTS, [X, Y,] String [, ALIGNMENT=value{0.0 to 1.0}] [, CHARSIZE=value]
[, CHARTHICK=value] [, TEXT_AXES={0 | 1 | 2 | 3 | 4 | 5}] [, WIDTH=variable]

Graphics Keywords:[, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value][, /DATA | ,
/DEVICE | , /NORMAL] [, FONT=integer]
[, ORIENTATION=ccw_degrees_from_horiz] [, /NOCLIP] [, /T3D] [, Z=value]

Arguments

X, Y

The horizontal and vertical coordinates used to position the string(s). X and Y are
normally interpreted in data coordinates. The DEVICE and NORMAL keywords can
be used to specify the coordinate units.

X and Y can be arrays of positions if String is an array.
XYOUTS IDL Reference Guide

1777
String

The string(s) to be output. This argument can be a scalar string or an array of strings.
If this argument is not a string, it is converted prior to use using the default formatting
rules. If String is an array, X, Y, and the COLOR keyword can also be arrays so that
each string can have a separate location and color.

Keywords

ALIGNMENT

Specifies the alignment of the text baseline. An alignment of 0.0 (the default) aligns
the left edge of the text baseline with the given (x, y) coordinate. An alignment of 1.0
right-justifies the text, while 0.5 results in text centered over the point (x, y).

CHARSIZE

The overall character size for the annotation. A CHARSIZE of 1.0 is normal. Setting
CHARSIZE = -1 suppresses output of the text string. This keyword has no effect
when used with the hardware drawn fonts; for exceptions, see “Scaled Hardware
Fonts” on page 1778.

CHARTHICK

The line thickness of the vector drawn font characters. This keyword has no effect
when used with the hardware drawn fonts; for exceptions, see “Scaled Hardware
Fonts” on page 1778. The default value is 1.0.

TEXT_AXES

This keyword specifies the plane of vector drawn text when three-dimensional
plotting is enabled. By default, text is drawn in the plane of the XY axes. The
horizontal text direction is in the X plane, and the vertical text direction is in the Y
plane. Values for this keyword can range from 0 to 5, with the following effects: 0 for
XY, 1 for XZ, 2 for YZ, 3 for YX, 4 for ZX, and 5 for ZY. The notation ZY means
that the horizontal direction of the text lies in the Z plane, and the vertical direction of
the text is drawn in the Y plane.

WIDTH

Set this keyword to a named variable in which to return the width of the text string, in
normalized coordinate units.
IDL Reference Guide XYOUTS

1778
Graphics Keywords Accepted

See Appendix C, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above. CLIP, COLOR, DATA, DEVICE, FONT, NOCLIP,
NORMAL, ORIENTATION, T3D, Z.

Examples

Print the string “This is text” at device coordinate position (100,100):

XYOUTS, 100, 100, 'This is text', /DEVICE

Print an array of strings with each element of the array printed at a different location.
Use larger text than in the previous example:

XYOUTS, [0, 200, 250], [200, 50, 100], $
['This', 'is', 'text'], CHARSIZE = 3, /DEVICE

Determine the text size for a window device before opening an on-screen window:

WINDOW, /FREE, /PIXMAP, XSIZE=myWinXSize, YSIZE=myWinYSize
XYOUTS, 'Check this out', WIDTH=w
WDELETE

myWinXSize and myWinYSize are chosen to match your onscreen window. Since we
can not know the characteristics of a given device (such as character size) until a
window has been opened, the PIXMAP keyword to WINDOW allows you to
compute appropriate dimensions for text with an invisible window before displaying
a window on your screen.

Scaled Hardware Fonts

One example of hardware fonts which can be scaled are PostScript fonts. If you are
using PostScript fonts, the keywords CHARTHICK and CHARSIZE will have an
effect on a call to XYOUTS. Of the devices we provide that support hardware fonts,
only the PostScript device uses scalable PostScript fonts for its “hardware” font
system. All other devices use a bitmapped font technology.

Scaling is related to whether or not a device supports Hershey formatting commands
when hardware fonts are used. Formatting requires the ability to scale the text on a
per-character basis (i.e. for subscripting). To see if a given device supports Hershey
formatting when hardware fonts are used, look at bit 12 of !D.FLAGS. You can also
use this indicator to determine whether or not the hardware fonts will be scaled.

See Also

ANNOTATE, PRINT/PRINTF
XYOUTS IDL Reference Guide

1779
ZOOM

The ZOOM procedure displays part of an image from the current window enlarged in
a new (“zoom”) window. The cursor is used to mark the center of the zoom area, and
different zoom factors can be specified interactively.

Note
ZOOM only works with color systems.

This routine is written in the IDL language. Its source code can be found in the file
zoom.pro in the lib subdirectory of the IDL distribution.

Using ZOOM

After calling ZOOM, place the mouse cursor over an image in an IDL graphics
window. Click the left mouse button to display a magnified version of the image in a
new window. The zoomed image is centered around the pixel selected in the original
window. Click the middle mouse button to display a menu of zoom factors. Click the
right mouse button to exit the procedure.

Using ZOOM with Draw Widgets

Note that the ZOOM procedure is only for use with IDL graphics windows. It should
not be used with draw widgets. To obtain a zooming effect in a draw widget, use the
CW_ZOOM function.

Syntax

ZOOM [, /CONTINUOUS] [, FACT=integer] [, /INTERP] [, /KEEP]
[, /NEW_WINDOW] [, XSIZE=value] [, YSIZE=value]
[, ZOOM_WINDOW=variable]

Keywords

CONTINUOUS

Set this keyword to make the zoom window track the mouse without requiring the
user to press the left mouse button. This feature only works well on fast computers.
IDL Reference Guide ZOOM

1780
FACT

Use this keyword to specify the zoom factor, which must be an integer. The default
zoom factor is 4.

INTERP

Set this keyword to use bilinear interpolation. The default is to use pixel replication.

KEEP

Set this keyword to keep the zoom window after exiting the procedure.

NEW_WINDOW

Normally, if ZOOM is called with KEEP and then called again, it will use the same
window to display the new zoomed image. Set the NEW_WINDOW keyword to
force ZOOM to create a new window for this purpose.

XSIZE

Use this keyword to specify the X size of the zoom window. The default is 512.

YSIZE

Use this keyword to specify the Y size of the zoom window. The default is 512.

ZOOM_WINDOW

Set this keyword to a named variable that will contain the index of the zoom window.
KEEP must also be set. If KEEP is not set, ZOOM_WINDOW will contain the
integer -1.

See Also

CW_ZOOM, ZOOM_24
ZOOM IDL Reference Guide

1781
ZOOM_24

The ZOOM_24 procedure displays part of a 24-bit color image from the current
window expanded in a new (“zoom”) window, and provides information about cursor
location and color values in an auxiliary (“data”) window. The cursor is used to mark
the center of the zoom area, and different zoom factors can be specified interactively.

Note
ZOOM only works on 24-bit color systems.

This routine is written in the IDL language. Its source code can be found in the file
zoom_24.pro in the lib subdirectory of the IDL distribution.

Using ZOOM_24

After calling ZOOM_24, windows titled “Zoomed Image” (the zoom window) and
“Pixel Values” (the data window) appear on the screen. Place the mouse cursor over a
24-bit color image in an IDL graphics window and click the left mouse button to
display a magnified version of the image in the zoom window. The zoomed image is
centered around the pixel selected in the original window. Move the mouse cursor in
the zoom window to determine the coordinates (in the original image) and color
values of individual pixels.

With the cursor located in the zoom window, click the right mouse button to return to
selection mode, which allows you to either choose a new zoom center, change the
zoom factor, or exit the procedure. Move the cursor to the original image and click
the middle mouse button to display a menu of zoom factors, or click the right mouse
button to exit the procedure.

Using ZOOM_24 with Draw Widgets

Note that the ZOOM_24 procedure is only for use with IDL graphics windows. It
should not be used with draw widgets. To obtain a zooming effect in a draw widget,
use the CW_ZOOM function.

Syntax

ZOOM_24 [, FACT=integer] [, /RIGHT] [, XSIZE=value] [, YSIZE=value]
IDL Reference Guide ZOOM_24

1782
Keywords

FACT

Use this keyword to specify the zoom factor, which must be an integer. The default
zoom factor is 4.

RIGHT

Set this keyword to position the zoom and data windows to the right of the original
window.

XSIZE

Use this keyword to specify the X size of the zoom window. The default is 512.

YSIZE

Use this keyword to specify the Y size of the zoom window. The default is 512.

See Also

CW_ZOOM, ZOOM
ZOOM_24 IDL Reference Guide

Appendix A:

IDL Object Class &
Method Reference

This appendix describes IDL’s built-in graphics class library. The following objects are covered in
this appendix:

• IDL_Container • IDLgrColorbar • IDLgrPlot • IDLgrText

• IDLanROI • IDLgrContour • IDLgrPolygon • IDLgrView

• IDLanROIGroup • IDLgrFont • IDLgrPolyline • IDLgrViewgroup

• IDLffDICOM • IDLgrImage • IDLgrPrinter • IDLgrVolume

• IDLffDXF • IDLgrLegend • IDLgrROI • IDLgrVRML

• IDLffLanguageCat • IDLgrLight • IDLgrROIGroup • IDLgrWindow

• IDLffShape • IDLgrModel • IDLgrScene • TrackBall

• IDLgrAxis • IDLgrMPEG • IDLgrSurface

• IDLgrBuffer • IDLgrPalette • IDLgrSymbol

• IDLgrClipboard • IDLgrPattern • IDLgrTessellator
IDL Reference Guide 1783

1784 Appendix A: IDL Object Class & Method Reference
Using this Appendix

The elements of IDL’s graphics class library are documented alphabetically in this
appendix. The page or pages describing each class include references to sub- and
super-classes, and to the methods associated with the class. Class methods are
documented alphabetically following the description of the class itself.

A description of each method follows its name. Beneath the general description of the
method are a number of sections that describe the Syntax for the method, its
arguments (if any), its keywords (if any). These sections are described below.

Syntax

The Syntax section shows the proper syntax for calling the method.

Procedure Methods

IDL procedure methods have the syntax:

Obj -> Procedure_Name, Argument [, Optional_Arguments]

where Obj is a valid object reference, Procedure_Name is the name of the procedure
method, Argument is a required parameter, and Optional_Argument is an optional
parameter to the procedure method. Note that the square brackets around optional
arguments are not used in the actual call to the procedure, they are simply used to
denote the optional nature of the arguments within this document.

Function Methods

IDL function methods have the syntax:

Result = Obj -> Function_Name(Argument [, Optional_Arguments])

where Obj is a valid object reference, Result is the returned value of the function
method, Function_Name is the name of the function method, Argument is a required
parameter, and Optional_Argument is an optional parameter. Note that the square
brackets around optional arguments are not used in the actual call to the function,
they are simply used to denote the optional nature of the arguments within this
document. Note also that all arguments and keyword arguments to functions should
be supplied within the parentheses that follow the function’s name.
Using this Appendix IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1785
Arguments

The “Arguments” section describes each valid argument to the method. Note that
these arguments are positional parameters that must be supplied in the order indicated
by the method’s syntax.

Named Variables

Often, arguments that contain values upon return from the function or procedure
method (“output arguments”) are described as accepting “named variables”. A named
variable is simply a valid IDL variable name. This variable does not need to be
defined before being used as an output argument. Note, however that when an
argument calls for a named variable, only a named variable can be used—sending an
expression causes an error.

Keywords

The “Keywords” section describes each valid keyword argument to the method. Note
that keyword arguments are formal parameters that can be supplied in any order.

Keyword arguments are supplied to IDL methods by including the keyword name
followed by an equal sign (“=”) and the value to which the keyword should be set.
Note that keywords can be abbreviated to their shortest unique length. For example,
the XSTYLE keyword can be abbreviated to XST.

Setting Keywords

When the documentation for a keyword says something similar to, “Set this keyword
to enable logarithmic plotting,” the keyword is simply a switch that turns an option
on and off. Usually, setting such keywords equal to 1 causes the option to be turned
on. Explicitly setting the keyword to zero (or not including the keyword) turns the
option off.

There is a “shortcut” that can be used to set a keyword equal to 1 without the usual
syntax (i.e., KEYWORD=1). To “set” a keyword, simply preface it with a slash
character (“/”). For example, to create a surface object with a skirt around it, set the
SKIRT keyword to the SURFACE routine as follows:

mySurface = OBJ_NEW('IDLgrSurface', DIST(10), /SKIRT)

Creating Objects from the Graphics Class Library

To create an object from the IDL Graphics Class Library, use the OBJ_NEW
function. See “OBJ_NEW” on page 949. The Init method for each class describes the
arguments and keywords available when you are creating a new graphics object.
IDL Reference Guide Using this Appendix

1786 Appendix A: IDL Object Class & Method Reference
For example, to create a new graphics object from the IDLgrAxis class, use the
following call to OBJ_NEW along with the arguments and keywords accepted by the
IDLgrAxis::Init method:

myAxis = OBJ_NEW(IDLgrAxis, DIRECTION=1, RANGE=[0.0,40.0])
Using this Appendix IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1787
IDL_Container

An IDL_Container object holds other objects. Destroying an IDL_Container object
destroys any objects that have been added to the container via the Add method.

Superclasses

This class has no superclasses.

Subclasses

The following classes are subclassed from this class:

• IDLgrModel

• IDLgrScene

• IDLgrView

• IDLgrViewgroup

Creation

See “IDL_Container::Init” on page 1792.

Methods

Intrinsic Methods

This class has the following methods:

• IDL_Container::Add

• IDL_Container::Cleanup

• IDL_Container::Count

• IDL_Container::Get

• IDL_Container::Init

• IDL_Container::IsContained

• IDL_Container::Move

• IDL_Container::Remove
IDL Reference Guide IDL_Container

1788 Appendix A: IDL Object Class & Method Reference
IDL_Container::Add

The IDL_Container::Add procedure method adds a child object to the container.

Syntax

Obj -> [IDL_Container::]Add, Object [POSITION=index]

Arguments

Object

An instance of an object to be added to the container object.

Keywords

POSITION

Set this keyword equal to the zero-based index of the position within the container at
which the new object should be placed. The default is to add the new object at the end
of the list of contained items.

Example

If the container has three objects, the new object will be placed at the fourth position.
Since positions begin at zero, this would be equivalent to setting POSITION=3.
IDL_Container IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1789
IDL_Container::Cleanup

The IDL_Container::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj-> [IDL_Container::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDL_Container

1790 Appendix A: IDL Object Class & Method Reference
IDL_Container::Count

The IDL_Container::Count function method returns the number of objects contained
by the container object.

Syntax

Result = Obj -> [IDL_Container::]Count()

Arguments

None

Keywords

None
IDL_Container IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1791
IDL_Container::Get

The IDL_Container::Get function method returns an array of object references to
objects in a container. Unless the ALL or POSITION keywords are specified, the first
object in the container is returned. If no objects are found in the container, the Get
function returns -1.

Syntax

Result = Obj -> [IDL_Container::]Get ([, /ALL [, ISA=class_name(s)] | ,
POSITION=index] [COUNT=variable])

Arguments

None

Keywords

ALL

Set this keyword to return an array of object references to all of the objects in the
container.

COUNT

Set this keyword equal to a named variable that will contain the number of objects
selected by the function. If the ALL keyword is also specified, specifying this
keyword is the same as calling the IDL_Container::Count method.

ISA

Set this keyword equal to a class name or vector of class names. This keyword is used
in conjunction with the ALL keyword. The ISA keyword filters the array returned by
the ALL keyword, returning only the objects that inherit from the class or classes
specified by the ISA keyword.

Note
This keyword is ignored if the ALL keyword is not provided.

POSITION

Set this keyword equal to a scalar or array containing the zero-based indices of the
positions of the objects to return.
IDL Reference Guide IDL_Container

1792 Appendix A: IDL Object Class & Method Reference
IDL_Container::Init

The IDL_Container::Init function method initializes the container object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDL_Container')

or

Result = Obj -> [IDL_Container::]Init() (Only in a subclass’ Init method.)

Arguments

None

Keywords

None
IDL_Container IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1793
IDL_Container::IsContained

The IDL_Container::IsContained function method returns true (1) if the specified
object is in the container, or false (0) otherwise.

Syntax

Result = Obj -> [IDL_Container::]IsContained(Object [, POSITION=variable])

Arguments

Object

The object reference or vector of object references of the object(s) to search for in the
container.

Keywords

POSITION

Set this keyword to a named variable that upon return will contain the position(s) at
which (each of) the argument(s) is located within the container, or -1 if it is not
contained.
IDL Reference Guide IDL_Container

1794 Appendix A: IDL Object Class & Method Reference
IDL_Container::Move

The IDL_Container::Move procedure method moves an object from one position in a
container to a new position. The order of the other objects in the container remains
unchanged.

Positioning within a container controls the rendering order of the contained objects.
The object whose location has the lowest index value is rendered first. If several
objects are located at the same point in three-dimensional space, the object rendered
first will occlude objects rendered later. Objects located “behind” other objects in
three-dimensional space must be rendered before objects in front of them, even if the
“front” objects are translucent.

Syntax

Obj -> [IDL_Container::]Move, Source, Destination

Arguments

Source

The zero-based index of the current location of the object to be moved.

Destination

The zero-based index of the location in the container where the object will reside
after being moved.

Keywords

None
IDL_Container IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1795
IDL_Container::Remove

The IDL_Container::Remove procedure method removes an object from the
container.

Syntax

Obj -> [IDL_Container::]Remove [, Child_object | , POSITION=index | , /ALL]

Arguments

Child_object

The object reference of the object to be removed from the container. If Child_object
is not provided (and neither the ALL nor POSITION keyword are set), the first object
in the container will be removed.

Keywords

ALL

Set this keyword to remove all objects from the container. If this keyword is set, the
Child_object argument is not required.

POSITION

Set this keyword equal to the zero-based index of the object to be removed. If the
Child_object argument is supplied, this keyword is ignored.
IDL Reference Guide IDL_Container

1796 Appendix A: IDL Object Class & Method Reference
IDLanROI

The IDLanROI object class represents a region of interest.

Note
The IDLan* naming convention is used for objects in the analysis domain.

Regions of interest are described as a set of vertices that may be connected to
generate a path or a polygon, or may be treated as separate points. This object may be
used as a source for analytical computations on regions. (For additional information
about display of ROIs in Object Graphics, refer to the IDLgrROI object class.)

Superclasses

None.

Subclasses

This class is a superclass of IDLgrROI.

Creation

See IDLanROI::Init.

Methods

Intrinsic Methods

The IDLanROI class has the following methods.

• IDLanROI::AppendData

• IDLanROI::Cleanup

• IDLanROI::ComputeGeometry

• IDLanROI::ComputeMask

• IDLanROI::ContainsPoints

• IDLanROI::GetProperty

• IDLanROI::Init

• IDLanROI::RemoveData
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1797
• IDLanROI::ReplaceData

• IDLanROI::Rotate

• IDLanROI::Scale

• IDLanROI::SetProperty

• IDLanROI::Translate
IDL Reference Guide IDLanROI

1798 Appendix A: IDL Object Class & Method Reference
IDLanROI::AppendData

The IDLanROI::AppendData procedure method appends vertices to the region.

Syntax

Obj–>[IDLanROI::]AppendData, X [, Y] [, Z] [, XRANGE=variable]
[, YRANGE=variable] [, ZRANGE=variable]

Arguments

X

A vector providing the X components of the vertices to be appended. If the Y and Z
arguments are not specified, X must be a two-dimensional array with the leading
dimensions either 2 or 3 ([2,*] or [3,*]), in which case, X[0,*] represents the X
values, X[1,*] represents the Y values, and X[2,*] represents the Z values. If the
DOUBLE property is non-zero, the data is converted to double precision and is
appended to the existing double precision data. Otherwise it is converted to single
precision floating point and appended to the existing single precision data.

Y

A vector providing the Y components of the vertices to be appended. If the
DOUBLE property is non-zero, the data is converted to double precision and is
appended to the existing double precision data. Otherwise it is converted to single
precision floating point and appended to the existing single precision data.

Z

A vector providing the Z components of the vertices to be appended. If the DOUBLE
property is non-zero, the data is converted to double precision and is appended to the
existing double precision data. Otherwise it is converted to single precision floating
point and appended to the existing single precision data.

Keywords

XRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[xmin, xmax], representing the X range of the modification to the region. The reported
range accounts for the last vertex in the region before the append occurred, as well as
all vertices appended. This data is returned in double-precision floating-point.
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1799
YRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[ymin, ymax], representing the Y range of the modification to the region. The reported
range accounts for the last vertex in the region before the append occurred, as well as
all vertices appended. This data is returned in double-precision floating-point.

ZRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[zmin, zmax], representing the Z range of the modification to the region. The reported
range accounts for the last vertex in the region before the append occurred, as well as
all vertices appended. This data is returned in double-precision floating-point.
IDL Reference Guide IDLanROI

1800 Appendix A: IDL Object Class & Method Reference
IDLanROI::Cleanup

The IDLanROI::Cleanup procedure method performs all cleanup for a region of
interest object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you cannot
call the Cleanup method directly. There is one exception to this rule: If you write
your own subclass of this class, you can call the Cleanup method from within the
Cleanup method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj–>[IDLanROI::]Cleanup (In a subclass’ Cleanup method only)

Arguments

None.

Keywords

None.
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1801
IDLanROI::ComputeGeometry

The IDLanROI::ComputeGeometry function method computes the geometrical
values for area, perimeter, and/or centroid of the region.

Syntax

Result = Obj–>[IDLanROI::]ComputeGeometry([, AREA=variable]
[, CENTROID=variable] [, PERIMETER=variable] [, SPATIAL_OFFSET=vector]
[, SPATIAL_SCALE=vector])

Return Value

Result

This function method returns a 1 for success, or a 0 for failure. Each computed value
is returned in the variable name assigned to each keyword.

Arguments

None.

Keywords

AREA

Set this keyword to a named variable that upon return contains a double-precision
floating-point value representing the area of the region. Interior regions (holes) return
a negative area.

CENTROID

Set this keyword to a named variable that upon return contains a double-precision
floating-point value representing the centroid for the region. If the TYPE of the
region is 0 (points), the centroid is computed as the average of each of the vertices in
the region. If the TYPE of the region is 1 (path), the centroid is computed as the
weighted average of each of the midpoints of the lines in the region. Weights are
proportional to the length of the lines. If the TYPE of the region is 2 (polygon), the
centroid is computed as a weighted average of the centroids of the polygons making
up the ROI (interior centroids use negative weights). Weights are proportional to the
polygon area.
IDL Reference Guide IDLanROI

1802 Appendix A: IDL Object Class & Method Reference
PERIMETER

Set this keyword to a named variable that upon return contains a double-precision
floating-point value representing the perimeter of the region.

SPATIAL_OFFSET

Set this keyword to a two or three-element vector, [tx, ty] or [tx, ty, tz], representing
the spatial calibration offset factors to be applied for the geometry calculations. The
value of SPATIAL_SCALE is applied before the spatial offset values are applied.
The default is [0.0, 0.0, 0.0]. IDL converts and maintains this value in double-
precision floating-point.

SPATIAL_SCALE

Set this keyword to a two or three-element vector, [sx, sy] or [sx, sy, sz], representing
the spatial calibration scaling factors to be applied for the geometry calculations. The
spatial calibration scale is applied first, then the value of SPATIAL_OFFSET is
applied. The default is [1.0, 1.0, 1.0]. IDL converts and maintains this value in
double-precision floating-point.
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1803
IDLanROI::ComputeMask

The IDLanROI::ComputeMask function method prepares a two-dimensional mask
for the region.

Syntax

Result = Obj–>[IDLanROI::]ComputeMask([, INITIALIZE={ –1 | 0 | 1 }]
[, DIMENSIONS=[xdim, ydim]] | [, MASK_IN=array] [, LOCATION=[x, y [, z]]]
[, MASK_RULE={ 0 | 1 | 2 }] [, PLANE_NORMAL=[x, y, z]]
[, PLANE_XAXIS=[x,y,z]])

Return Value

Result

The return value is a two-dimensional array of bytes whose values range from 0 to
255. The mask is computed by applying the following formula to the current mask for
each mask point contained within the ROI:

Mout = MAX(MIN(0, (Mroi*Ext) + Min), 255)

where Mroi is 255 and Ext is 1 for points within an exterior region and –1 for points
within an interior region.

If the TYPE of the region is 0 (points), a single mask pixel is set for each region
vertex that falls within the bounds of the mask.

If the TYPE of the region is 1 (path), one-pixel-wide line segments are set within the
mask.

If the TYPE of the region is 2 (closed polygon), a mask pixel is set if that pixel is on
the plane of a region, and the pixel falls within the region (according to the
MASK_RULE).

Arguments

None.

Keywords

DIMENSIONS

Set this keyword to a two-element vector, [xdim, ydim], specifying the requested
dimensions of the returned mask. If MASK_IN is provided, the value of this keyword
IDL Reference Guide IDLanROI

1804 Appendix A: IDL Object Class & Method Reference
is ignored and the dimensions of that mask are used. Otherwise, the default
dimensions are [100, 100].

INITIALIZE

Set this keyword to indicate how the mask should be initialized. Valid values include:

• –1 = The mask is not initialized. This option is useful when updating an
already existing mask. This is the default if the MASK_IN keyword is set.

• 0 = The mask is initialized so that each pixel is set to 0. This is the default if
the MASK_IN keyword is not set.

• 1 = The mask is initialized so that each pixel is set to 255.

LOCATION

Set this keyword to a vector of the form [X, Y[, Z]] specifying the location of the
origin of the mask. The default is [0, 0, 0]. IDL converts and maintains this value in
double-precision floating-point.

MASK_IN

Set this keyword to a two-dimensional array representing a mask that is already
allocated and to be updated for this region. If this keyword is provided, the data
portion of this variable is grabbed and used in the returned value (an implicit
NO_COPY). If this keyword is not provided, a mask is allocated by default to match
the dimensions specified via the DIMENSIONS keyword.

MASK_RULE

Set this keyword to an integer specifying the rule used to determine whether a given
pixel should be set within the mask. Valid values include:

• 0 = Boundary only. All pixels falling on a region’s boundary are set.

• 1 = Interior only. All pixels falling within the region’s boundary, but not on the
boundary, are set.

• 2 = Boundary + Interior. All pixels falling on or within a region’s boundary are
set.

PLANE_NORMAL

Set this keyword to a three-element vector, [x, y, z], specifying the normal vector for
the plane on which the mask is to be computed. The default is [0, 0, 1].
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1805
PLANE_XAXIS

Set this keyword to a three-element vector, [x, y, z], specifying the direction vector
along which each row of mask pixels is to be computed (starting at LOCATION).
The default is [1, 0, 0].
IDL Reference Guide IDLanROI

1806 Appendix A: IDL Object Class & Method Reference
IDLanROI::ContainsPoints

The IDLanROI::ContainsPoints function method determines whether the given data
coordinates are contained within the closed polygon region.

Syntax

Result = Obj–>[IDLanROI::]ContainsPoints(X [, Y [, Z]])

Return Value

The return value is a vector of values, one per provided point, indicating whether that
point is contained. Valid values within this return vector include:

• 0 = Exterior. The point lies strictly out of bounds of the ROI.

• 1 = Interior. The point lies strictly inside the bounds of the ROI.

• 2 = On edge. The point lies on an edge of the ROI boundary.

• 3 = On vertex. The point matches a vertex of the ROI.

A point is considered to be exterior if:

• the point falls within the boundary of an interior region (hole).

• the point does not lie in the plane of the region.

• the region TYPE property is set to 0 (points) or 1 (path).

Arguments

X

A vector providing the X components of the points to be tested. If the Y and Z
arguments are not specified, X must be a two-dimensional array with the leading
dimension either 2 or 3 ([2,*] or [3,*]), in which case, X[0,*] represents the X values,
X[1,*] represents the Y values, and X[2,*] represents the Z values.

Y

A vector providing the Y components of the points to be tested.

Z

A scalar or vector providing the Z component(s) of the points to be tested. If not
provided, the Z components default to 0.0.
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1807
Keywords

None.
IDL Reference Guide IDLanROI

1808 Appendix A: IDL Object Class & Method Reference
IDLanROI::GetProperty

The IDLanROI::GetProperty procedure method retrieves the value of a property or
group of properties for the region.

Syntax

Obj–>[IDLanROI::]GetProperty [, ALL=variable] [, N_VERTS=variable]
[, ROI_XRANGE=variable] [, ROI_YRANGE=variable]
[, ROI_ZRANGE=variable]

Arguments

None.

Keywords

Any keyword to IDLanROI::Init followed by the word (Get) can be retrieved using
IDLanROI::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like block size, type, etc., but not
vertex data.

Note
The fields in this structure may change in subsequent releases of IDL.

N_VERTS

Set this keyword to a named variable that will contain the number of vertices
currently being used by the region.

ROI_XRANGE

Set this keyword to a named variable. Upon return, ROI_XRANGE contains a two-
element double-precision floating-point vector of the form [xmin, xmax] that
specifies the range of X data coordinates covered by the region.
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1809
ROI_YRANGE

Set this keyword to a named variable. Upon return, ROI_YRANGE contains a two-
element double-precision floating-point vector of the form [ymin, ymax] that
specifies the range of Y data coordinates covered by the region.

ROI_ZRANGE

Set this keyword to a named variable. Upon return, ROI_ZRANGE contains a two-
element double-precision floating-point vector of the form [zmin, zmax] that specifies
the range of Z data coordinates covered by the region.
IDL Reference Guide IDLanROI

1810 Appendix A: IDL Object Class & Method Reference
IDLanROI::Init

The IDLanROI::Init function method initializes a region of interest object.

Note
Init methods are special life cycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLanROI' [, X [, Y [, Z]]] [, BLOCKSIZE{Get, Set}=vertices]
[, DATA{Get, Set}=array] [, /DOUBLE{Get, Set}] [, /INTERIOR{Get, Set}]
[, TYPE{Get}={ 0 | 1 | 2 }])

or

Result = Obj -> [IDLanROI::]Init([X [, Y [, Z]]]) (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

X

A vector providing the X components of the vertices for the region. If the Y and Z
arguments are not specified, X must be a two-dimensional array with the leading
dimension either 2 or 3 ([2,*] or [3,*]), in which case, X[0,*] represents the X values,
X[1,*] represents the Y values, and X[2,*] represents the Z values. The value for this
argument is double-precision floating-point if the DOUBLE keyword is set or the
inputted value is of type DOUBLE. Otherwise, it is converted to single-precision
floating-point.

Y

A vector providing the Y components of the vertices. The value for this argument is
double-precision floating-point if the DOUBLE keyword is set or the inputted value
is of type DOUBLE. Otherwise, it is converted to single-precision floating-point.
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1811
Z

A scalar or vector providing the Z component(s) of the vertices. If not provided, Z
values default to 0.0. The value for this argument is double-precision floating-point if
the DOUBLE keyword is set or the inputted value is of type DOUBLE. Otherwise, it
is converted to single-precision floating-point.

Keywords

BLOCK_SIZE (Get, Set)

Set this keyword to the number of vertices to allocate per block as needed for the
region. When additional vertices are required, an additional block is allocated. The
default is 100.

DATA (Get, Set)

Set this keyword to a 2 x n or a 3 x n array which defines, respectively, the 2D or 3D
vertex data. DATA is equivalent to the optional arguments, X, Y, and Z. This
property is stored as double precision floating point values if the argument variable is
of type DOUBLE or if the DOUBLE property is non-zero. Otherwise it is stored as
single precision floating point.

DOUBLE (Get, Set)

Set this keyword to a non-zero value to indicate that data should be stored in this
object in double precision floating point. Set this keyword to zero to indicate that the
data should be stored in single precision floating point, which is the default. The
DOUBLE property controls the precision used for storing the data in the
AppendData, Init, and ReplaceData methods via the X, Y, and Z arguments and in
SetProperty method via the DATA keyword. IDL converts any data already stored
in the object to the requested precision, if necessary. Note that this keyword does not
need to be set if any of the X, Y, or Z arguments or the DATA parameters are of type
DOUBLE. However, setting this keyword may be desirable if the data consists of
large integers that cannot be accurately represented in single precision floating point.
This property is also automatically set to one if any of the X, Y or Z arguments or the
DATA parameter is stored using a variable of type DOUBLE.

INTERIOR (Get, Set)

Set this keyword to mark this region as an interior region (i.e., a region treated as a
hole). By default, the region is treated as an exterior region.
IDL Reference Guide IDLanROI

1812 Appendix A: IDL Object Class & Method Reference
TYPE (Get)

Set this keyword to indicate the type of the region. The TYPE keyword determines
how computational operations, such as mask generation, are performed. Valid values
include:

• 0 = points

• 1 = path

• 2 = closed polygon (the default)
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1813
IDLanROI::RemoveData

The IDLanROI::RemoveData procedure method removes vertices from the region.

Syntax

Obj–>[IDLanROI::]RemoveData[, COUNT=vertices] [, START=index]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

None.

Keywords

COUNT

Set this keyword to the number of vertices to remove. The default is one vertex.

START

Set this keyword to an index (into the region’s current vertex list) where the removal
is to begin. By default, the final vertex is removed.

XRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[xmin, xmax], that represents the X range of the modification to the region. The
reported range accounts for the vertex just before the removal (if any), the vertex just
after the removal (if any), and the removed vertices. This data is returned in double-
precision floating-point.

YRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[ymin, ymax], that represents the Y range of the modification to the region. The
reported range accounts for the vertex just before the removal (if any), the vertex just
after the removal (if any), and the removed vertices. This data is returned in double-
precision floating-point.

ZRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[zmin, zmax], that represents the Z range of the modification to the region. The
reported range accounts for the vertex just before the removal (if any), the vertex just
after the removal (if any), and the removed vertices. This data is returned in double-
precision floating-point.
IDL Reference Guide IDLanROI

1814 Appendix A: IDL Object Class & Method Reference
IDLanROI::ReplaceData

The IDLanROI::ReplaceData procedure method replaces vertices in the region with
alternate values. The number of replacement values need not match the number of
values being replaced.

Syntax

Obj–>[IDLanROI::]ReplaceData, X[, Y[, Z]] [, START=index] [, FINISH=index]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

X

A vector providing the X components of the new replacement vertices. If the Y and Z
arguments are not specified, X must be a two-dimensional array with the leading
dimensions either 2 or 3 ([2, *] or [3, *]), in which case, X[0, *] represents the X
values, X[1, *] represents the Y values, and X[2, *] represents the Z values. If the
DOUBLE property is non-zero, the data is converted to double precision and is
appended to the existing double precision data. Otherwise it is converted to single
precision floating point and appended to the existing single precision data.

Y

A vector providing the Y components of the new replacement vertices. If the
DOUBLE property is non-zero, the data is converted to double precision and is
appended to the existing double precision data. Otherwise it is converted to single
precision floating point and appended to the existing single precision data.

Z

A vector providing the Z components of the new replacement vertices. If the
DOUBLE property is non-zero, the data is converted to double precision and is
appended to the existing double precision data. Otherwise it is converted to single
precision floating point and appended to the existing single precision data.

Keywords

FINISH

Set this keyword to the index of the region’s current subregion vertex list where the
replacement ends. If the START keyword value is ≥ 0, the default FINISH is given
by
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1815
FINISH = ((START + N_NEW – 1) MOD N_OLD)

where N_NEW is the number of replacement vertices provided via the [X, Y, Z]
arguments and N_OLD is the number of vertices (prior to replacement) in the current
subregion.

If the START keyword is not set or is negative, the default FINISH is given by

FINISH = N_OLD – 1

FINISH may be less than START in which case the vertices, including and following
START and the vertices preceding and including FINISH, are replaced with the new
values.

START

Set this keyword to an index of the region’s current subregion vertex list where the
replacement begins. If the FINISH keyword value is ≥ 0, the default START is given
by

START = ((FINISH – N_NEW + 1) MOD N_OLD)

where N_NEW is the number of replacement vertices provided via the [X, Y, Z]
arguments and N_OLD is the number of vertices (prior to replacement) in the current
subregion.

If the FINISH keyword is not set (or negative), the default START is clamped to 0
and is given by

N_OLD – N_NEW

XRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[xmin, xmax], representing the X range of the modification to the region. The reported
range accounts for the replaced vertices, the vertex just before the replacement (if
any), the vertex just after the replacement (if any), and the new replacement vertices.
This data is returned in double-precision floating-point.

YRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[ymin, ymax], representing the Y range of the modification to the region. The reported
range accounts for the replaced vertices, the vertex just before the replacement (if
any), the vertex just after the replacement (if any), and the new replacement vertices.
This data is returned in double-precision floating-point.
IDL Reference Guide IDLanROI

1816 Appendix A: IDL Object Class & Method Reference
ZRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[zmin, zmax], representing the Z range of the modification to the region. The reported
range accounts for the replaced vertices, the vertex just before the replacement (if
any), the vertex just after the replacement (if any), and the new replacement vertices.
This data is returned in double-precision floating-point.
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1817
IDLanROI::Rotate

The IDLanROI::Rotate procedure method modifies the vertices for the region by
applying a rotation.

Syntax

Obj–>[IDLanROI::]Rotate, Axis, Angle [, CENTER=[x, y[, z]]]

Arguments

Axis

A three-element vector of the form [x, y, z] describing the axis about which the region
is to be rotated.

Angle

The angle, measured in degrees, by which the rotation is to occur.

Keywords

CENTER

Set this keyword to a two or three-element vector of the form [x, y], or [x, y, z]
specifying the center of rotation. The default is [0, 0, 0]. IDL converts and applies
this data in double-precision floating-point.
IDL Reference Guide IDLanROI

1818 Appendix A: IDL Object Class & Method Reference
IDLanROI::Scale

The IDLanROI::Scale procedure method modifies the vertices for the region by
applying a scale.

Syntax

Obj–>[IDLanROI::]Scale, Sx[, Sy[, Sz]]

Arguments

Sx

The X scale factor. If the Sy and Sz arguments are not specified, Sx must be a two or
three-element vector, in which case Sx[0] represents the scale in X, Sx[1] represents
the scale in Y, Sx[2] represents the scale in Z. IDL converts and applies this data in
double-precision floating-point.

Sy

The Y scale factor. IDL converts and applies this data in double-precision floating-
point.

Sz

The Z scale factor. IDL converts and applies this data in double-precision floating-
point.

Keywords

None.
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1819
IDLanROI::SetProperty

The IDLanROI::SetProperty procedure method sets the value of a property or group
of properties for the region.

Syntax

Obj–>[IDLanROI::]SetProperty

Arguments

None.

Keywords

Any keywords to IDLanROI::Init followed by the word (Set) can be set using
IDLanROI::SetProperty.
IDL Reference Guide IDLanROI

1820 Appendix A: IDL Object Class & Method Reference
IDLanROI::Translate

The IDLanROI::Translate procedure method modifies the vertices for the region by
applying a translation.

Syntax

Obj–>[IDLanROI::]Translate, Tx[, Ty[, Tz]]

Arguments

Tx

The X translation factor. If the Ty and Tz arguments are not specified, Tx must be a
two or three-element vector, in which case Tx[0] represents translation in X, Tx[1]
represents translation in Y, Tx[2] represents translation in Z. IDL converts and applies
this data in double-precision floating-point.

Ty

The Y translation factor. IDL converts and applies this data in double-precision
floating-point.

Tz

The Z translation factor. IDL converts and applies this data in double-precision
floating-point.

Keywords

None.
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1821
IDLanROIGroup

The IDLanROIGroup object class is an analytical representation of a group of
regions of interest.

Superclasses

This class is a subclass of IDL_Container.

Subclasses

This class is a superclass of IDLgrROIGroup.

Creation

See IDLanROIGroup::Init.

Methods

Intrinsic Methods

The IDLanROIGroup class has the following methods:

• IDLanROIGroup::Add

• IDLanROIGroup::Cleanup

• IDLanROIGroup::ComputeMask

• IDLanROIGroup::ComputeMesh

• IDLanROIGroup::ContainsPoints

• IDLanROIGroup::GetProperty

• IDLanROIGroup::Init

• IDLanROIGroup::Rotate

• IDLanROIGroup::Scale

• IDLanROIGroup::Translate

Inherited Methods

This class inherits the following methods:

• IDL_Container::Count
IDL Reference Guide IDLanROIGroup

1822 Appendix A: IDL Object Class & Method Reference
• IDL_Container::Get

• IDL_Container::IsContained

• IDL_Container::Move

• IDL_Container::Remove
IDLanROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1823
IDLanROIGroup::Add

The IDLanROIGroup::Add procedure method adds a region to the region group.
Only objects of the IDLanROI class may be added to the group. The regions in the
group must all be of the same type: all points, all paths, or all polygons.

Syntax

Obj–>[IDLanROIGroup::]Add, ROI

Arguments

ROI

A reference to an instance of the IDLanROI object class representing the region of
interest to be added to the group.

Keywords

Accepts all keywords accepted by the IDL_Container::Add method.
IDL Reference Guide IDLanROIGroup

1824 Appendix A: IDL Object Class & Method Reference
IDLanROIGroup::Cleanup

The IDLanROIGroup::Cleanup procedure method performs all cleanup for a region
of interest group object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you cannot
call the Cleanup method directly. There is one exception to this rule: If you write
your own subclass of this class, you can call the Cleanup method from within the
Cleanup method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj–>[IDLanROIGroup::]Cleanup (In a subclass’ Cleanup method only.)

Arguments

None.

Keywords

None.
IDLanROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1825
IDLanROIGroup::ComputeMask

The IDLanROIGroup::ComputeMask function method prepares a two-dimensional
mask for this group of regions.

Syntax

Result = Obj–>[IDLanROIGroup::]ComputeMask([, INITIALIZE={ –1 | 0 | 1 }]
[, DIMENSIONS=[xdim, ydim]] | [, MASK_IN=array] [, LOCATION=[x, y [, z]]]
[, MASK_RULE={ 0 | 1 | 2 }])

Return Value

Result

The return value is a two-dimensional array of bytes whose values range from 0 to
255. The mask is computed by applying the following formula to the current mask for
each mask point contained within the ROI:

Mout = MAX(MIN(0, (Mroi*Ext) + Min), 255)

where Mroi is 255 and Ext is 1 for points within an exterior region and –1 for points
within an interior region.

If the TYPE of the contained regions is 0 (points), a single mask pixel is set for each
region vertex that falls within the bounds of the mask.

If the TYPE of the contained regions is 1 (path), each pixel along the paths of the
regions is set if it falls within the mask.

If the TYPE of the region is 2 (closed polygon), a mask pixel is set if that pixel is on
the plane of a contained region, and the pixel falls within that region (according to the
MASK_RULE).

Arguments

None.

Keywords

DIMENSIONS

Set this keyword to a two-element vector, [xdim, ydim], specifying the requested
dimensions of the returned mask. If MASK_IN is provided, the value of this keyword
IDL Reference Guide IDLanROIGroup

1826 Appendix A: IDL Object Class & Method Reference
is ignored, and the dimensions of that mask are used. Otherwise, the default
dimensions are [100, 100].

INITIALIZE

Set this keyword to indicate how the mask should be initialized. Valid values include:

• –1 = The mask is not initialized; the default if the MASK_IN keyword is set.
This option is useful when updating an already existing mask.

• 0 = The mask is initialized with each pixel set to 0; the default if the
MASK_IN keyword is not set.

• 1 = The mask is initialized with each pixel set to 255.

LOCATION

Set this keyword to a vector of the form [X, Y[, Z]] specifying the location of the
origin of the mask. The default is [0, 0, 0].

MASK_IN

Set this keyword to a two-dimensional array representing a mask that is already
allocated and to be updated for this region. If this keyword is provided, the data
portion of this variable is grabbed and used in the returned value (an implicit
NO_COPY). If this keyword is not provided, a mask is allocated by default to match
the dimensions specified via the DIMENSIONS keyword.

MASK_RULE

Set this keyword to an integer specifying the rule used to determine whether a given
pixel should be set within the mask. Valid values include:

• 0 = Boundary Only. All pixels falling on a region’s boundary are set.

• 1 = Interior Only. All pixels falling within the region’s boundary, but not on
the boundary, are set.

• 2 = Boundary + Interior. All pixels falling on or within a region’s boundary are
set.

PLANE_NORMAL

Set this keyword to a three-element vector, [x, y, z], specifying the normal vector for
the plane on which the mask is to be computed. The default is [0, 0, 1].
IDLanROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1827
PLANE_XAXIS

Set this keyword to a three-element vector, [x, y, z], specifying the direction vector
along which each row of mask pixels is to be computed (starting at LOCATION).
The default is [1, 0, 0].
IDL Reference Guide IDLanROIGroup

1828 Appendix A: IDL Object Class & Method Reference
IDLanROIGroup::ComputeMesh

The IDLanROIGroup::ComputeMesh function method triangulates a surface mesh
with optional capping from the stack of regions contained within this group.

Note
The contained regions may be concave. However, this method will fail under the
following conditions:

• The region group contains fewer than two regions.
• The TYPE property of the contained regions is 0 (points) or 1 (path).
• Any of the contained regions are not simple

(i.e., a region is self-intersecting).
• The region group contains interior regions (holes).
• More than one region lies on the same plane

(i.e., the region group contains branches).

Each region pair is normalized by perimeter and the triangulation is computed by
walking the contours in parallel, keeping the normalized progress along each contour
in sync. The returned triangulation minimizes the mesh surface area. Each vertex
may appear only once in the output, and the resulting polygon mesh is solid with
outward facing normals computed via the right-hand rule. If capping is requested, it
is computed using the IDLgrTessellator on the top and bottom regions, and/or the
regions on either side of an inter-slice gap.

Syntax

Result = Obj->[IDLanROIGroup::]ComputeMesh(Vertices, Conn
[, CAPPED={ 0 | 1 | 2}] [, SURFACE_AREA=variable])

Return Value

Result

The return value of this function method is the number of triangles generated if the
surface mesh triangulation is successful, or zero if unsuccessful.

Arguments

Vertices

An output [3, n] array of vertices. If all regions in the group are defined with single
precision vertices (DOUBLE property is zero), then IDL returns a single precision
IDLanROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1829
floating point array. Otherwise, if any of the regions in the group are defined with
double precision vertices (DOUBLE property is non-zero), then IDL returns a double
precision floating point array.

Conn

An output polygon mesh connectivity array.

Keywords

CAPPED

Set this keyword to a value to indicate whether flat caps are to be computed at the
top-most or bottom-most regions (as selected by a counter-clockwise rule), or at the
regions on either side of an inter-slice gap. The value of this keyword is a bit-wise
OR of the values shown below. For example, to cap the top-most and bottom-most
regions only, set the CAPPED keyword to 3. The default is 0 (no caps).

• 0 = no caps

• 1 = cap the top-most region

• 2 = cap the bottom-most region

SURFACE_AREA

Set this keyword to a named variable that upon return contains the overall surface
area of the computed triangulation. This value was minimized in the computation of
the triangulation. IDL returns this value in a double-precision floating-point variable.
IDL Reference Guide IDLanROIGroup

1830 Appendix A: IDL Object Class & Method Reference
IDLanROIGroup::ContainsPoints

The IDLanROIGroup::ContainsPoints function method determines whether the given
points (in data coordinates) are contained within this region group.

The regions within this group must have a TYPE of 2 (closed polygon) and must fall
on parallel planes for successful containment testing to occur.

For each point to be tested:

• If the point lies directly on one of the region planes, it is tested for containment
within each of the regions that fall on that plane.

• If the point lies between two of the region planes, it is projected onto the
nearest region plane, and tested for containment within each of the regions on
that plane.

• If the point lies above or below the stack of parallel region planes, the point
will be considered to be exterior to the region group.

On a given plane, a point will be considered to be exterior if either of the following
conditions are true:

• The point does not fall within any of the regions on that plane.

• The point falls within as many or more holes than non-hole regions on that
plane.

 Syntax

Result = Obj–>[IDLanROIGroup::]ContainsPoints(X[, Y[, Z]])

Return Value

The return value is a vector of values, one per provided point, indicating whether that
point is contained. Valid values within this return vector include:

• 0 = Exterior. The point lies strictly outside the bounds of the ROI.

• 1 = Interior. The point lies strictly inside the bounds of the ROI.

• 2 = On Edge. The point lies on an edge of the ROI boundary.

• 3 = On Vertex. The point matches a vertex of the ROI.
IDLanROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1831
Arguments

X

A vector providing the X components of the points to be tested. If the Y and Z
arguments are not specified, X must be a two-dimensional array with the leading
dimension either 2 or 3 ([2,*] or [3,*]), in which case, X[0,*] represents the X values,
X[1,*] represents the Y values, and X[2,*] represents the Z values.

Y

A vector providing the Y components of the points to be tested.

Z

A scalar or vector providing the Z components of the points to be tested. If not
provided, the Z components default to 0.0.

 Keywords

None.
IDL Reference Guide IDLanROIGroup

1832 Appendix A: IDL Object Class & Method Reference
IDLanROIGroup::GetProperty

The IDLanROIGroup::Get Property procedure method retrieves the value of a
property or group of properties for the region group.

Syntax

Obj–>[IDLanROIGroup::]GetProperty[, ALL=variable]
[, ROIGROUP_XRANGE=variable] [, ROIGROUP_YRANGE=variable]
[, ROIGROUP_ZRANGE=variable]

Arguments

None.

Keywords

Any keyword to IDLanROIGroup::Init followed by the word (Get) can be retrieved
using IDLanROIGroup::GetProperty. In addition, the following keywords are
available:

ALL

Set this keyword to a named variable. Upon return, ALL contains an anonymous
structure with the values of all of the properties associated with the state of this
object.

Note
The fields in this structure may change in subsequent releases of IDL.

ROIGROUP_XRANGE

Set this keyword to a named variable. Upon return, ROIGROUP_XRANGE contains
a two-element double-precision floating-point vector of the form [xmin, xmax] that
specifies the range of X data coordinates covered by the region.

ROIGROUP_YRANGE

Set this keyword to a named variable. Upon return, ROIGROUP_YRANGE contains
a two-element double-precision floating-point vector of the form [ymin, ymax] that
specifies the range of Y data coordinates covered by the region.
IDLanROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1833
ROIGROUP_ZRANGE

Set this keyword to a named variable. Upon return, ROIGROUP_ZRANGE contains
a two-element double-precision floating-point vector of the form [zmin, zmax] that
specifies the range of Z data coordinates covered by the region.
IDL Reference Guide IDLanROIGroup

1834 Appendix A: IDL Object Class & Method Reference
IDLanROIGroup::Init

The IDLanROIGroup::Init function method initializes a region of interest group
object.

Note
Init methods are special life cycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLanROIGroup')

or

Result = Obj–>[IDLanROIGroup::]Init() (Only in a subclass’ Init method.)

Arguments

None.

Keywords

None.
IDLanROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1835
IDLanROIGroup::Rotate

The IDLanROIGroup::Rotate procedure method modifies the vertices for all regions
within the group by applying a rotation.

Syntax

Obj–>[IDLanROIGroup::]Rotate, Axis, Angle[, CENTER=[x, y[, z]]]

Arguments

Axis

A three-element vector of the form [x, y, z] describing the axis about which the region
group is to be rotated.

Angle

The angle, measured in degrees, by which to rotate the ROI group.

Keywords

CENTER

Set this keyword to a two or three-element vector of the form [x, y], or [x, y, z]
specifying the center of rotation. The default is [0, 0, 0]. IDL converts and applies
this data in double-precision floating-point.
IDL Reference Guide IDLanROIGroup

1836 Appendix A: IDL Object Class & Method Reference
IDLanROIGroup::Scale

The IDLanROIGroup::Scale procedure method modifies the vertices for the region
by applying a scale.

Syntax

Obj–>[IDLanROIGroup::]Scale, Sx[, Sy[, Sz]]

Arguments

Sx

The X scale factor. If the Sy and Sz arguments are not specified, Sx must be a two or
three-element vector, in which case Sx[0] represents the scale in X, Sx[1] represents
the scale in Y, Sx[2] represents the scale in Z. IDL converts and applies this data in
double-precision floating-point.

Sy

The Y scale factor. IDL converts and applies this data in double-precision floating-
point.

Sz

The Z scale factor. IDL converts and applies this data in double-precision floating-
point.

Keywords

None.
IDLanROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1837
IDLanROIGroup::Translate

The IDLanROIGroup::Translate procedure method modifies the vertices of all
regions within the group by applying a translation.

Syntax

Obj–>[IDLanROIGroup::]Translate, Tx[, Ty[, Tz]]

Arguments

Tx

The X translation factor. If the Ty and Tz arguments are not specified, Tx must be a
two or three-element vector, in which case Tx[0] represents translation in X, Tx[1]
represents translation in Y, Tx[2] represents translation in Z. IDL converts and applies
this data in double-precision floating-point.

Ty

The Y translation factor. IDL converts and applies this data in double-precision
floating-point.

Tz

The Z translation factor. IDL converts and applies this data in double-precision
floating-point.

Keywords

None.
IDL Reference Guide IDLanROIGroup

1838 Appendix A: IDL Object Class & Method Reference
IDLffDICOM

An IDLffDICOM object contains the data for one or more images embedded in a
DICOM Part 10 file. The API to the IDLffDICOM object provides accessor methods
to the basic data elements of a DICOM file, namely the group/element tag, value
representation, length, and data values. Additional methods deal with the file header
preamble, data dictionary description for individual elements, and embedded
sequences of elements. Most methods take a DICOM group/element tag as a
parameter. An alternative parameter to the DICOM tag in some methods is the
reference. A reference value is a LONG integer that is unique to each element in the
DICOM object. This value can be used to directly access a specific element and to
differentiate between elements in the DICOM file that have the same group/element
tag. Valid reference values are always positive.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See IDLffDICOM::Init.

Methods

• IDLffDICOM::Cleanup

• IDLffDICOM::DumpElements

• IDLffDICOM::GetChildren

• IDLffDICOM::GetDescription

• IDLffDICOM::GetElement

• IDLffDICOM::GetGroup

• IDLffDICOM::GetLength

• IDLffDICOM::GetParent

• IDLffDICOM::GetPreamble
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1839
• IDLffDICOM::GetReference

• IDLffDICOM::GetValue

• IDLffDICOM::GetVR

• IDLffDICOM::Init

• IDLffDICOM::Read

• IDLffDICOM::Reset
IDL Reference Guide IDLffDICOM

1840 Appendix A: IDL Object Class & Method Reference
IDL DICOM v3.0 Conformance Summary

Introduction

This section is an abbreviated DICOM conformance statement for IDL, and specifies
the compliance of Research Systems IDL DICOM file reading support to the DICOM
v3.0 standard. As described in the DICOM Standard PS 3.2 (Conformance), the
purpose of this document is to outline the level of conformance to the DICOM
standard and to enumerate the supported DICOM Service Classes, Information
Objects, and Communications Protocols supported by this implementation.

IDL does not contain or support any of the DICOM services such as Storage,
Query/Retrieve, Print, Verification, etc., so there will be no conformance claims
relating to these services and no mention of any Application Entities for these
services. Communications Protocol profiles will also be absent from this document
for the same reasons. The remainder of this document will describe how IDL handles
the various Information Objects it is capable of reading.

Reading of DICOM Part 10 files

IDL supports reading files that conform to the DICOM Standard PS 3.10 DICOM
File Format. This format provides a means to encapsulate in a file the Data Set
representing a SOP (Service Object Pair) Instance related to a DICOM IOD
(Information Object Definition). Files written to disk in this DICOM File Format will
be referred to as DICOM Part 10 files for the remainder of this document. Note that
IDL does NOT support the writing of files in this DICOM File Format, only reading.

Encapsulated Transfer Syntaxes Supported

IDL supports reading DICOM Part 10 files whose contents have been written using
the following Transfer Syntaxes. The Transfer Syntax UID is in the file’s DICOM
Tag field (0002,0010).

UID Value UID Name

1.2.840.10008.1.2 Implicit VR Little Endian: Default Transfer Syntax for
DICOM

1.2.840.10008.1.2.1 Explicit VR Little Endian

1.2.840.10008.1.2.2 Explicit VR Big Endian

Table A-1: Encapsulated Transfer Syntaxes Supported
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1841
Encapsulated Transfer Syntaxes NOT Supported

IDL does NOT support reading DICOM Part 10 files whose contents have
compressed data that has been written using the following Transfer Syntaxes. IDL
will NOT be able to access the data element (DICOM Tag field (7FE0,0010)) of files
with these types of compressed data. The Transfer Syntax UID is in the file’s
DICOM Tag field (0002,0010).

UID Value UID Name

1.2.840.10008.1.2.4.50 JPEG Baseline (Process 1): Default Transfer Syntax for
Lossy JPEG 8 Bit Image Compression

1.2.840.10008.1.2.4.51 JPEG Extended (Process 2 & 4): Default Transfer Syntax
for Lossy JPEG 12 Bit Image Compression (Process 4
only)

1.2.840.10008.1.2.4.52 JPEG Extended (Process 3 & 5)

1.2.840.10008.1.2.4.53 JPEG Spectral Selection, Non-Hierarchical (Process 6 &
8)

1.2.840.10008.1.2.4.54 JPEG Spectral Selection, Non-Hierarchical (Process 7 &
9)

1.2.840.10008.1.2.4.55 JPEG Full Progression, Non-Hierarchical (Process 10 &
12)

1.2.840.10008.1.2.4.56 JPEG Full Progression, Non-Hierarchical (Process 11 &
13)

1.2.840.10008.1.2.4.57 JPEG Lossless, Non-Hierarchical (Process 14)

1.2.840.10008.1.2.4.58 JPEG Lossless, Non-Hierarchical (Process 15)

1.2.840.10008.1.2.4.59 JPEG Extended, Hierarchical (Process 16 & 18)

1.2.840.10008.1.2.4.60 JPEG Extended, Hierarchical (Process 17 & 19)

1.2.840.10008.1.2.4.61 JPEG Spectral Selection, Hierarchical (Process 20 & 22)

1.2.840.10008.1.2.4.62 JPEG Spectral Selection, Hierarchical (Process 21 & 23)

1.2.840.10008.1.2.4.63 JPEG Full Progression, Hierarchical (Process 24 & 26)

1.2.840.10008.1.2.4.64 JPEG Full Progression, Hierarchical (Process 25 & 27)

1.2.840.10008.1.2.4.65 JPEG Lossless, Hierarchical (Process 28)

Table A-2: Encapsulated Transfer Syntaxes NOT Supported
IDL Reference Guide IDLffDICOM

1842 Appendix A: IDL Object Class & Method Reference
Encapsulated SOP Classes Supported

IDL supports reading DICOM Part 10 files whose contents encapsulate the data of
the following SOP Classes. The SOP Class UID is in the file’s DICOM Tag field
(0008,0016).

Handling of odd length data elements

The DICOM Standard PS 3.5 (Data Structures and Encoding) specifies that the data
element values which make up a DICOM data stream must be padded to an even
length. The toolkit upon which IDL’s DICOM reading functionality is built strictly
enforces this specification. If IDL encounters an incorrectly formed odd length data

1.2.840.10008.1.2.4.66 JPEG Lossless, Hierarchical (Process 29)

1.2.840.10008.1.2.4.70 JPEG Lossless, Non-Hierarchical, First-Order Prediction
(Process 14 [Selection Value 1]): Default Transfer Syntax
for Lossless JPEG Image Compression

1.2.840.10008.1.2.5 RLE Lossless

UID Value UID Name

1.2.840.10008.5.1.4.1.1.1 CR Image Storage

1.2.840.10008.5.1.4.1.1.2 CT Image Storage

1.2.840.10008.5.1.4.1.1.4 MR Image Storage

1.2.840.10008.5.1.4.1.1.6.1 Ultrasound Image Storage

1.2.840.10008.5.1.4.1.1.7 Secondary Capture Image Storage

1.2.840.10008.5.1.4.1.1.12.1 X-Ray Angiographic Image Storage

1.2.840.10008.5.1.4.1.1.12.2 X-Ray Radiofluoroscopic Image Storage

1.2.840.10008.5.1.4.1.1.20 Nuclear Medicine Image Storage

1.2.840.10008.5.1.4.1.1.128 Positron Emission Tomography Image Storage

Table A-3: Encapsulated SOP Classes Supported

UID Value UID Name

Table A-2: Encapsulated Transfer Syntaxes NOT Supported
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1843
field while reading a DICOM Part 10 file it will report an error and stop the reading
process.

Handling of undefined VRs

The VR (Value Representation) of a data element describes the data type and format
of that data element's values. If IDL encounters an undefined VR while reading a
DICOM Part 10 file, it will set that data element's VR to be UN (unknown).

Handling of retired and private data elements

Certain data elements are no longer supported under the v3.0 of the DICOM standard
and are denoted as retired. Also, some DICOM implementations may require the
communication of information that cannot be contained in standard data elements,
and thus create private data elements to contain such information. Retired and private
data elements should pose no problem to IDL’s DICOM Part 10 file reading
capability. When IDL encounters a retired or private data element tag during reading
a DICOM Part 10 file, it will treat it just like any standard data element: read the data
value and allow it to be accessed via the IDLffDICOM::GetValue method.
IDL Reference Guide IDLffDICOM

1844 Appendix A: IDL Object Class & Method Reference
IDLffDICOM::Cleanup

This method destroys the IDLffDICOM object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

OBJ -> [IDLffDICOM::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Examples

; create a DICOM object, read a DICOM file and dump its contents:
obj = OBJ_NEW('IDLffDICOM')
var = obj->Read(DIALOG_PICKFILE(FILTER="*"))
obj->DumpElements
OBJ_DESTROY, obj

; executing this statement should produce an invalid object
; reference error since obj no longer exists:
obj->DumpElements
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1845
IDLffDICOM::DumpElements

This method dumps a description of the DICOM data elements of the IDLffDICOM
object to the screen or to a file.

Syntax

Obj -> [IDLffDICOM::]DumpElements [, Filename]

Arguments

Filename

A scalar string that contains the full path and filename of the file to which to dump
the elements. The file is written as ASCII text.

Keywords

None

Examples

The columns output by DumpElements are the element reference, the (group,
element) tuple, the value representation, the description, the value length, and some
of the data values.

; create a DICOM object, read a DICOM file and dump its contents:
obj = OBJ_NEW('IDLffDICOM')
var = obj->Read(DIALOG_PICKFILE(FILTER='*'))
obj->DumpElements

; dump the contents of the current DICOM object to a file under
; Windows:
obj->DumpElements, 'c:\rsi\elements.dmp'

; dump the contents of the current DICOM object to a file under
; UNIX:
obj->DumpElements, '/rsi/elements.dmp'

OBJ_DESTROY, obj
IDL Reference Guide IDLffDICOM

1846 Appendix A: IDL Object Class & Method Reference
IDLffDICOM::GetChildren

This method is used to find the member element references of a DICOM sequence. It
takes as an argument a scalar reference to a DICOM element representing the parent
of the sequence, and returns an array of references to the elements of the object that
are members of that sequence. The scalar parent reference is possibly obtained by a
previous call to GetReference or any method that generates a reference list. Any
member of a sequence may also itself be the parent of another sequence. If the scalar
reference argument is not the parent of a sequence, the method returns -1.

Syntax

array = Obj -> [IDLffDICOM::]GetChildren(Reference)

Arguments

Reference

This argument is a scalar reference to a DICOM element that is known to be the
parent of a DICOM sequence.

Keywords

None

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get a list of references to all elements that are sequences:
refs = obj->GetReference(VR='SQ')

; Cycle through the returned list and print out the immediate
; children references and descriptions of each sequence:
FOR i = 0, N_ELEMENTS(refs)-1 DO BEGIN

IF (refs[i] NE -1) THEN $
BEGIN

children = obj->GetChildren(refs[i])
FOR j = 0, N_ELEMENTS(children)-1 DO $

BEGIN
PRINT,children[j]

PRINT,obj->GetDescription(REFERENCE=children[j])
ENDFOR

ENDIF
ENDFOR
OBJ_DESTROY,obj
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1847
IDLffDICOM::GetDescription

This accessor method takes optional DICOM group and element arguments and
returns an array of STRING descriptions. The description is a string describing the
field’s contents as per the data dictionary in the DICOM specification PS 3.6. If no
arguments or keywords are specified, the returned array contains the descriptions for
all elements in the object. The effect of multiple keywords and parameters is to AND
their results. If no DICOM elements can be found matching the search criteria, -1 will
be returned.

Syntax

array = Obj -> [IDLffDICOM::]GetDescription([Group [, Element]]
[, REFERENCE=list of element references])

Arguments

Group

Set this optional argument to the value for the DICOM group to search for, i.e.
‘0018’x. If this argument is omitted, then all of the DICOM array elements are
returned.

Element

This optional argument can be specified only if the Group argument has also been
specified. Set this argument to the value for the DICOM element for which to search,
such as ‘0010’x. If this argument is omitted and the Group argument was specified,
then all elements of the specified Group are returned.

Keywords

REFERENCE

Set this keyword to a list of element reference values from which to return
description values.

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get the description of the patient name element:
arr = obj->GetDescription('0010'x,'0010'x)
PRINT, arr
IDL Reference Guide IDLffDICOM

1848 Appendix A: IDL Object Class & Method Reference
; Get array of all of the descriptions from the patient info group:
arr = obj->GetDescription('0010'x)
FOR i = 0, N_ELEMENTS(arr)-1 DO BEGIN

PRINT, arr[i]
ENDFOR

OBJ_DESTROY, obj
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1849
IDLffDICOM::GetElement

This accessor method takes optional DICOM group and/or element arguments and
returns an array of DICOM Element numbers for those parameters. If no arguments
or keywords are specified, the returned array contains Element numbers for all
elements in the object. The effect of multiple keywords and parameters is to AND
their results. If no matching elements can be found, the function returns -1.

Syntax

array = Obj -> [IDLffDICOM::]GetElement([Group [, Element]]
[, REFERENCE=list of element references])

Arguments

Group

Set this optional argument to the value for the DICOM group to search for, i.e.
‘0018’x. If this argument is omitted, then all of the DICOM array elements are
returned.

Element

This optional argument can be specified only if the Group argument has also been
specified. Set this argument to the value for the DICOM element to search for, such
as ‘0010’x. If this argument is omitted and the Group argument was specified, then
all elements of the specified Group are returned.

Keywords

REFERENCE

Set this keyword to a list of element reference values from which to return element
number values.

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get references to all elements with "patient" in the description:
refs = obj->GetReference(DESCRIPTION='patient')

; Get the element numbers of the elements containing "patient":
FOR i = 0, N_ELEMENTS(refs)-1 DO BEGIN
IDL Reference Guide IDLffDICOM

1850 Appendix A: IDL Object Class & Method Reference
num = obj->GetElement(REFERENCE=refs[i])
PRINT,num

ENDFOR

; Get the element numbers from the Patient Info group, 0010:
elements = obj->GetElement('0010'x)
PRINT, elements

OBJ_DESTROY,obj
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1851
IDLffDICOM::GetGroup

This accessor method takes optional DICOM group and/or element arguments and
returns an array of DICOM Group numbers for those parameters. If no arguments or
keywords are specified, the returned array contains Group numbers for all groups in
the object. The effect of multiple keywords and parameters is to AND their results. If
no matching elements can be found, the function returns -1.

Syntax

array = Obj -> [IDLffDICOM::]GetGroup([Group[, Element]]
[, REFERENCE=list of element references])

Arguments

Group

Set this optional argument to the value for the DICOM group for which to search,
such as ‘0018’x. If this argument is omitted, then all of the DICOM array elements
are returned.

Element

This optional argument can be specified only if the Group argument has also been
specified. Set this to the value for the DICOM element for which to search, such as
‘0010’x. If this argument is omitted and the Group argument was specified, then all
elements of the specified Group are returned.

Keywords

REFERENCE

Set this keyword to a list of element references from which to return group number
values.

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get references to all elements with "patient" in the description:
refs = obj->GetReference(DESCRIPTION='patient')

; Get the group numbers of the elements containing "patient":
FOR i = 0, N_ELEMENTS(refs)-1 DO BEGIN
IDL Reference Guide IDLffDICOM

1852 Appendix A: IDL Object Class & Method Reference
IDLffDICOM IDL Reference Guide

num = obj->GetGroup(REFERENCE=refs[i])
PRINT, num

ENDFOR

; Get the group numbers from the Patient Info group, 0010:
grp = obj->GetGroup('0010'x)
PRINT, grp

OBJ_DESTROY,obj

Appendix A: IDL Object Class & Method Reference 1853
IDL Reference Guide IDLffDICOM

IDLffDICOM::GetLength

This accessor method takes optional DICOM group and/or element arguments and
returns an array of LONGs. The length is the field length that explicitly exists in the
DICOM file, and represents the length of the element value in bytes. If no arguments
or keywords are specified, the returned array contains the lengths for all elements in
the object. The effect of multiple keywords and parameters is to AND their results. If
no matching elements can be found, the function returns -1.

Syntax

array = Obj -> [IDLffDICOM::]GetLength([Group [, Element]]
[, REFERENCE=list of element references])

Arguments

Group

Set this optional argument to the value for the DICOM group for which to search,
such as ‘0018’x. If this argument is omitted, all DICOM array elements are returned.

Element

This optional argument can be specified only if the Group argument has also been
specified. Set this to the value for the DICOM element for which to search, such as
‘0010’x. If this argument is omitted and the Group argument was specified, then all
elements of the specified Group are returned.

Keywords

REFERENCE

Set this keyword to a list of element references from which to return length values.

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get the length of the patient name element:
arr = obj->GetLength('0010'x,'0010'x)
PRINT, arr

; Get an array of all of the lengths from the patient info group:
arr = obj->GetLength('0010'x)
PRINT, arr
OBJ_DESTROY, obj

1854 Appendix A: IDL Object Class & Method Reference
IDLffDICOM::GetParent

This method is used to find the parent references of a set of elements in a DICOM
sequence. It takes as an argument an array of references that represent DICOM
elements. If no members of the ReferenceList are members of a sequence, a -1 is
returned, and for each member of the ReferenceList which is not a member of a
sequence, a -1 is returned.

Syntax

array = Obj ->[IDLffDICOM::]GetParent(ReferenceList)

Arguments

ReferenceList

An array of references to DICOM elements that are known to be members of a
DICOM sequence.

Keywords

None

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get the reference to the Referenced Study Sequence
; element, if it exists:
ref = obj->GetReference('0008'x,'1110'x)
PRINT, ref
PRINT, obj->GetDescription(REFERENCE=ref)

; Get and print the parent sequence, if it exists.
; This should result in a -1 since this element is not
; a member of a sequence:
parent = obj->GetParent(ref)
PRINT, parent
PRINT, obj->GetDescription(REFERENCE=parent)

; Get the children of the Referenced Study Sequence
; element, if it exists:
refs = obj->GetChildren(ref[0])
PRINT, refs
PRINT, obj->GetDescription(REFERENCE=refs)
OBJ_DESTROY,obj
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1855
IDLffDICOM::GetPreamble

This method returns the preamble of a DICOM v3.0 Part 10 file. The preamble is a
fixed 128 byte field available for implementation specified usage. If it is not used by
the implementor of the file, it will be set to all zeroes. The return value is a 128-
element BYTE array.

Syntax

array = Obj -> [IDLffDICOM::]GetPreamble()

Arguments

None

Keywords

None

Examples

; Create a DICOM object, read a DICOM file:
obj = OBJ_NEW('IDLffDICOM')
var = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get an array of the byte contents of the DICOM file preamble:
arr = obj->GetPreamble()
PRINT, arr

OBJ_DESTROY, obj
IDL Reference Guide IDLffDICOM

1856 Appendix A: IDL Object Class & Method Reference
IDLffDICOM::GetReference

This method takes optional DICOM group and/or element arguments and returns an
array of references to matching elements in the object. References are opaque,
meaning that they have no specific significance other than a correspondence to the
element they refer to. If no arguments or keywords are specified, the returned array
contains references to all elements in the object. The effect of multiple keywords and
parameters is to AND their results. If no matching elements can be found, the
function returns -1.

Syntax

array = Obj -> [IDLffDICOM::]GetReference([Group [, Element]]
[, DESCRIPTION=string] [, VR=DICOM VR string])

Arguments

Group

Set this optional argument to the value for the DICOM group for which to search,
such as ‘0018’x. If this argument is omitted, then all of the DICOM array elements
are returned.

Element

This optional argument can be specified only if the Group argument has also been
specified. Set this to the value for the DICOM element to search for, such as ‘0010’x.
If this argument is omitted and the Group argument was specified, then all elements
of the specified Group are returned.

Keywords

DESCRIPTION

Set this keyword to a string containing text to be searched for in each element’s
DICOM description. An element will be returned only if the text in this string can be
found in the description. The text comparison is case-insensitive.

VR

Set this keyword to a DICOM VR string. An element will be returned only if its value
representation matches this string.
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1857
Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get the reference to the patient name element:
ref = obj->GetReference('0010'x,'0010'x)
PRINT, ref

; get references to all elements with "patient" in the description:
refs = obj->GetReference(DESCRIPTION='patient')
FOR i = 0, N_ELEMENTS(refs)-1 DO BEGIN

PRINT, refs[i]
PRINT, obj->GetDescription(REFERENCE=refs[i])

ENDFOR

; Get references to all elements with a VR of DA (date):
refs = obj->GetReference(vr='DA')
FOR i = 0, N_ELEMENTS(refs)-1 DO BEGIN

PRINT, refs[i]
PRINT, obj->GetDescription(REFERENCE=refs[i])

ENDFOR

OBJ_DESTROY, obj
IDL Reference Guide IDLffDICOM

1858 Appendix A: IDL Object Class & Method Reference
IDLffDICOM::GetValue

This method takes optional DICOM group and/or element arguments and returns an
array of POINTERs to the values of the elements matching those parameters. If no
arguments or keywords are specified, the returned array contains pointers to all
elements in the object. The effect of multiple keywords and parameters is to AND
their results. If no matching elements can be found, the function returns -1.

Syntax

ptrArray = Obj -> [IDLffDICOM::]GetValue([Group [, Element]]
[, REFERENCE=list of element references] [, /NO_COPY])

Arguments

Group

Set this optional argument to the value for the DICOM group for which to search,
such as ‘0018’x. If this argument is omitted, then all of the DICOM array elements
are returned.

Element

This optional argument can be specified only if the Group argument has also been
specified. Set this to the value for the DICOM element for which to search, such as
‘0010’x. If this argument is omitted and the Group argument was specified, then all
elements of the specified Group are returned.

Keywords

REFERENCE

Set this keyword to a list of element references from which to return pointer values.

NO_COPY

If this keyword is set, the pointers returned point to the actual data in the object for
the specified DICOM fields. If not set (the default), the pointers point to copies of the
data instead, and need to be freed by using PTR_FREE.
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1859
Examples

Example 1

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get the image data
array = obj->GetValue('7fe0'x, '0010'x)
OBJ_DESTROY, obj

TVScl, *array[0]
PTR_FREE, array

Example 2

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get all of the image data element(s), 7fe0,0010, from the file:
array = obj->GetValue('7fe0'x,'0010'x,/NO_COPY)

; Get the row & column size of the image(s):
rows = obj->GetValue('0028'x,'0010'x,/NO_COPY)
cols = obj->GetValue('0028'x,'0011'x,/NO_COPY)

; If the image has a samples per pixel value greater than 1
; it is most likely a color image, get the samples per pixel:
isColor = 0
samples = obj->GetValue('0028'x,'0002'x,/NO_COPY)
IF (SIZE(samples,/N_DIMENSIONS) NE 0) THEN BEGIN
 IF (*samples[0] GT 1) THEN isColor = 1
ENDIF

; Next, we need to differentiate between files with color data
; that is either color-by-plane or color-by-pixel, get the planar
; configuration:
IF (isColor EQ 1) THEN BEGIN
 isPlanar = 0
 planar = obj->GetValue('0028'x,'0006'x, /NO_COPY)
 IF (SIZE(planar, /N_DIMENSIONS) NE 0) THEN BEGIN
 IF (*planar[0] EQ 1) THEN isPlanar = 1
 ENDIF
ENDIF

; Display the first NumWin images from the file:
IF N_ELEMENTS(array) GT 10 THEN NumWin = 10 $
ELSE NumWin = N_ELEMENTS(array)
offset = 0
IDL Reference Guide IDLffDICOM

1860 Appendix A: IDL Object Class & Method Reference
FOR index = 0, NumWin-1 DO BEGIN
 ; Create window for each image that is the size of the image:
 WINDOW,index,XSize=*cols[0],YSize=*rows[0],XPos=offset,YPos=0
 WSET,index
 ; Display the image data
 IF (isColor EQ 1) THEN $
 IF (isPlanar EQ 1) THEN $
 ; color-by-plane
 TVScl,TRANSPOSE(*array[index],[2,0,1]),/TRUE $
 ELSE $
 ; color-by-pixel
 TVScl,*array[index],/TRUE $
 ELSE $
 ; monochrome
 TVScl,*array[index]
 offset = offset+10
ENDFOR

; Clean up
OBJ_DESTROY,obj
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1861
IDLffDICOM::GetVR

This accessor method takes optional DICOM group and/or element arguments and
returns an array of VR (Value Representation) STRINGs for those parameters. A VR
is a string that represents a DICOM value representation as described in the DICOM
specification PS 3.5. If no arguments or keywords are specified, the returned array
contains VRs for all elements in the object. The effect of multiple keywords and
parameters is to AND their results. If no matching elements can be found, the
function returns -1.

Syntax

array = Obj -> [IDLffDICOM::]GetVR([Group [, Element]] [, REFERENCE=list
of references])

Arguments

Group

Set this optional argument to the value for the DICOM group for which to search,
such as ‘0018’x. If this argument is omitted, then all of the DICOM array elements
are returned.

Element

This optional argument can be specified only if the Group argument has also been
specified. Set this to the value for the DICOM element for which to search, such as
‘0010’x. If this argument is omitted and the Group argument was specified, then all
elements of the specified Group are returned.

Keywords

REFERENCE

Use the specified list of references from which to return VR STRING values.

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get the VR of the patient name element:
arr = obj->GetVR('0010'x,'0010'x)
PRINT, arr
IDL Reference Guide IDLffDICOM

1862 Appendix A: IDL Object Class & Method Reference
; Get an array of all of the VRs from the patient info group:
arr = obj->GetVR('0010'x)
PRINT, arr

OBJ_DESTROY,obj
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1863
IDLffDICOM::Init

This method creates a new IDLffDICOM object and optionally reads the specified
file as defined in the IDLffDICOM::Read method.

Syntax

Result = OBJ_NEW('IDLffDICOM' [, Filename] [, /VERBOSE])

or

Result = Obj -> [IDLffDICOM::]Init([Filename] [, /VERBOSE]) (Only in a
subclass’ Init method.)

Arguments

Filename

This optional argument is a scalar string that contains the full path and filename of a
DICOM v3.0 Part 10 file to open, read into memory, then close, when the object is
created. It is the same as calling: result->Read(Filename).

Keywords

VERBOSE

Set this keyword to print informational messages to the Output Log during the
operational life of the object.

Examples

; Create a DICOM object:
obj = OBJ_NEW('IDLffDICOM')

; Create a DICOM object and read in a DICOM file named ct_head.dcm
; under Microsoft Windows:
obj = OBJ_NEW('IDLffDICOM', $

'c:\rsi\idl52\examples\data\mr_brain.dcm')

; Create a DICOM object and allow the user to choose a DICOM file
; to be read:
obj = OBJ_NEW('IDLffDICOM', DIALOG_PICKFILE(FILTER='*'))
IDL Reference Guide IDLffDICOM

1864 Appendix A: IDL Object Class & Method Reference
IDLffDICOM::Read

This method opens and reads from the specified disk file, places the information into
the DICOM object, then closes the file. The return value is 1 on success and 0 on
failure.

Syntax

result = Obj -> [IDLffDICOM::]Read(Filename [, ENDIAN={1 | 2 | 3 | 4}])

Arguments

Filename

This argument is a scalar string that contains the full path and filename of a DICOM
Part 10 file to open and read into memory.

Keywords

ENDIAN

Set this keyword to configure the endian format when reading a DICOM file.

• 1 = Implicit VR Little Endian

• 2 = Explicit VR Little Endian

• 3 = Implicit VR Big Endian

• 4 = Explicit VR Big Endian

Examples

; Create a DICOM object and read a DICOM file:
obj = OBJ_NEW('IDLffDICOM')
var = obj->Read(DIALOG_PICKFILE(FILTER='*'))
OBJ_DESTROY, obj
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1865
IDLffDICOM::Reset

This method removes all of the elements from the IDLffDICOM object, leaving the
object otherwise intact.

Syntax

Obj -> [IDLffDICOM::]Reset

Arguments

None

Keywords

None

Examples

; Create a DICOM object, read a DICOM file and dump its contents:
obj = OBJ_NEW('IDLffDICOM')
var = obj->Read(DIALOG_PICKFILE(FILTER='*'))
obj->DumpElements
obj->Reset

; DumpElements should produce no output here:
obj->DumpElements
OBJ_DESTROY, obj
IDL Reference Guide IDLffDICOM

1866 Appendix A: IDL Object Class & Method Reference
IDLffDXF

An IDLffDXF object contains geometry, connectivity and attributes for graphics
primitives.

Note
IDL supports version 2.003 of the DXF Library.

Superclasses

This class has no superclass.

Subclasses

This class has no subclasses.

Creation

See “IDLffDXF::Init” on page 1884

Methods

Intrinsic Methods

This class has the following methods:

• IDLffDXF::Cleanup

• IDLffDXF::GetContents

• IDLffDXF::GetEntity

• IDLffDXF::GetPalette

• IDLffDXF::Init

• IDLffDXF::PutEntity

• IDLffDXF::Read

• IDLffDXF::RemoveEntity

• IDLffDXF::Reset

• IDLffDXF::SetPalette
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1867
• IDLffDXF::Write

This object treats a DXF file as a list of entities. Note, these are not directly mapped
to DXF entity types, rather they are an abstraction of the DXF types. The Read
method is used to read the contents of a DXF file into the current entity list. The user
may then query this list using the GetContents method to determine the types and
number of entities in the file. The user may retrieve arrays of entities from the list
using the GetEntity method and add additional entities using the PutEntity method.
Entities can also be removed from the list (RemoveEntity) or the entire list destroyed
(Reset). The current list of entities can also be written to disk as a DXF file. Note, this
object converts DXF entities to IDL entities and back. This conversion is not
reversible; thus, if a DXF file is read and then written, the data in the file is not
changed, but the internal DXF entity types may be changed by IDL. As an example,
DXF face3d entities may be written as DXF polyline entities.

The object has one attribute which can be modified using the Get/SetPalette methods.
This palette is used to convert color index values. The palette is not actually written
to the DXF file. So, if the user wanted to specify entity colors from a 256 entry table,
that table would be set using SetPalette, but the actual colors written to the file are the
closest colors matched to the fixed AutoCAD color palette. There are two special
color values: (0) = color by block color, (256) = color by layer color.

In this object, blocks and layers are treated as named entities with attributes, but are
special in that all other entities have a block and layer entity reference in them. This
allows the user to use these entity names as filters for many operations. There is a
default block and a default layer. The default block has the name “” (the null string),
and the default layer is '0'. The user may change the (non-name) attributes for these
implicit blocks using PutEntity.
IDL Reference Guide IDLffDXF

1868 Appendix A: IDL Object Class & Method Reference
IDLffDXF::Cleanup

The IDLffDXF::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLffDXF::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1869
IDLffDXF::GetContents

The IDLffDXF::GetContents method returns the DXF entity types contained in the
object. The returned value is a one-dimensional string array of the type names found
in the file. The Read or PutEntity methods must have been called previously for the
results of this method to be valid.

Valid DXF ENTITY
Types

DXF_TYPE
(0=default)

ARC 1

CIRCLE 2

ELLIPSE 3

LINE 4

LINE3D 5

TRACE 6

POLYLINE 7

LWPOLYLINE 8

POLYGON 9

FACE3D 10

SOLID 11

RAY 12

XLINE 13

TEXT 14

MTEXT 15

POINT 16

SPLINE 17

BLOCK 18

INSERT 19

LAYER 20

Table A-4: DXF Entity Types
IDL Reference Guide IDLffDXF

1870 Appendix A: IDL Object Class & Method Reference
This object uses a small number of IDL named structures to return the data associated
which each entity. This means that several of these DXF types are returned in the
same structures, using different values of the DXF_TYPE field. The mapping of
DXF entities to IDL named structures is as follows (each of these structures is
documented in the GetEntity method):

Syntax

Result = Obj-> [IDLffDXF::]GetContents([Filter] [BLOCK=string]
[, COUNT=variable] [LAYER=string])

Arguments

Filter

An integer array of the DXF entity types to which the return types are restricted. If
set, Result can contain only types given in this argument and count will also reflect
that restriction.

IDL Structure DXF Entity

IDL_DXF_ELLIPSE arc, circle, ellipse

IDL_DXF_POLYLINE line, line3d, trace, polyline, lwpolyline

IDL_DXF_POLYGON face3d, solid, polyline (3d mesh)

IDL_DXF_POINT point

IDL_DXF_XLINE ray, xline

IDL_DXF_SPLINE spline

IDL_DXF_TEXT text, multitext

IDL_DXF_BLOCK block

IDL_DXF_INSERT insert

IDL_DXF_LAYER layer

Table A-5: DXF mapping to IDL structures
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1871
Keywords

BLOCK

Set this keyword to a string value containing the block name to obtain the entities
from. The default is all blocks.

COUNT

A long array containing the number of each entity type contained within the DXF
object. If the Filter argument was provided, the numbers reflect the reduced set of
entities caused by the Filter argument.

LAYER

Set this keyword to a string value containing the layer name to obtain the entities
from. The default is all layers.
IDL Reference Guide IDLffDXF

1872 Appendix A: IDL Object Class & Method Reference
IDLffDXF::GetEntity

The IDLffDXF::GetEntity method returns an array of vertex data for the requested
entity type.

Syntax

Result = Obj-> [IDLffDXF::]GetEntity(Type [, BLOCK=string] [, INDEX=value]
[, LAYER=string])

Note
Result has one of the named structure formats described in “Structure Formats” on
page 1874.

Arguments

Type

The integer DXF entity type from which to obtain the geometry information.

Keywords

BLOCK

Set this keyword to a block name specifying the graphic block from which to obtain
the entity geometry information. The default is all blocks. Setting this keyword to the
null string '' '' will cause this method to only return entities from the default DXF
entity block.

INDEX

Set this keyword to a scalar long or a long array of indices to return from the entity
type. If not set, this method returns all entities for the given type.

LAYER

Set this keyword to a string value containing the layer name to obtain the entities
from. The default is all layers.

Fields Common to all Structures

BLOCK

The name of the block this entity is in (these may be in the default block “”).
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1873
COLOR

A color index value into the current object palette with 0=use block color and
256=use layer color.

EXTRUSION

The DXF extrusion vector (if any).

LAYER

The name of the layer this entity is in (the default layer is '0').

LINESTYLE

Defined the same as the user linestyle for IDLgrPolyline::Init.

Note
IDL will always return a solid line regardless of the linestyle in DXF

THICKNESS

In AutoCAD units.

DXF_TYPE

Set to one of the values listed in IDLffDXF::GetContents.

Note
It is the user’s responsibility to free all the pointers returned in these structures
when the entity is no longer needed.
IDL Reference Guide IDLffDXF

1874 Appendix A: IDL Object Class & Method Reference
Structure Formats

Structure IDL_DXF_ELLIPSE

This object is centered at PT0 and has a radius defined by the vector PT1_OFFSET.
This vector determines the length and orientation of the major axis of an ellipse as
well.

The MIN_TO_MAJ_RATIO value specifies the length of the minor axis as a fraction
of the major axis length. For a circle, this value is 1.0.

The START_ANGLE and END_ANGLE values select the portion of the curve to be
drawn. If they are equal, the entire circle or ellipse is drawn.

Field Data Type

PT0 Double [3]

PT1_OFFSET Double [3]

MIN_TO_MAJ_RATIO Double

START_ANGLE Double

END_ANGLE Double

EXTRUSION Double [3]

LINESTYLE Integer [2]

THICKNESS Double

COLOR Integer

DXF_TYPE Integer

BLOCK String

LAYER String

Table A-6: Fields of the IDL_DXF_ELLIPSE structure
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1875
Structure IDL_DXF_POLYGON

VERTICES is a pointer to an array of dimension [3, n] containing the points for this
entity.

CONNECTIVITY is the array used to connect these points into polygons (see the
POLYGONS keyword for IDLgrPolygon::Init). If this array is not present, the
connectivity is implicit in (U, V) space defined by the values in MESH_DIMS; the
vertices represent a quad mesh of dimensions (MESH_DIMS[0], MESH_DIMS[1]).

VERTEX_COLORS points to an array of color index values for each of the vertices.
If a quad mesh is being returned, it can be closed in either dimension according to the
CLOSED array.

FIT_TYPE, CURVE_FIT, and SPLINE_FIT return the type of curve fit (if any) this
polygon assumes.

Field Data Type

VERTICES Pointer (to an array of 3D points)

CONNECTIVITY Pointer (to an array on integers)

VERTEX_COLORS Pointer (to an array of integers)

MESH_DIMS Integer [2]

CLOSED Integer [2]

COLOR Integer

EXTRUSION Double [3]

FIT_TYPE Integer

CURVE_FIT Integer

SPLINE_FIT Integer

DXF_TYPE Integer

BLOCK String

LAYER String

Table A-7: Fields of the IDL_DXF_POLYGON structure
IDL Reference Guide IDLffDXF

1876 Appendix A: IDL Object Class & Method Reference
Structure IDL_DXF_POLYLINE

VERTICES is a pointer to an array of dimension [3, n] containing the points for this
entity.

CONNECTIVITY is the array used to connect these points into polylines (see the
POLYLINES keyword for IDLgrPolyline::Init). If this array is not present, the
connectivity is implicit in (U, V) space defined by the values in MESH_DIMS; the
vertices represent a quad mesh of dimensions (MESH_DIMS[0], MESH_DIMS[1]).

VERTEX_COLORS points to an array of color index values for each of the vertices.
If a quad mesh is being returned, it can be closed in either dimension according to the
CLOSED array.

FIT_TYPE, CURVE_FIT, and SPLINE_FIT return the type of curve fit (if any) this
polyline assumes.

Field Data Type

VERTICES Pointer (to an array of 3D points)

CONNECTIVITY Pointer (to an array on integers)

VERTEX_COLORS Pointer (to an array of integers)

COLOR Integer

MESH_DIMS Integer [2]

CLOSED Integer [2]

THICKNESS Double

LINESTYLE Integer [2]

EXTRUSION Double [3]

FIT_TYPE String

CURVE_FIT Integer

SPLINE_FIT Integer

DXF_TYPE Integer

BLOCK String

LAYER String

Table A-8: Fields of the IDL_DXF_POLYLINE structure
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1877
Structure IDL_DXF_POINT

PT0 is the location of the point in space.

UCSX_ANGLE is an internal DXF orientation parameter used for symbol plotting.

Field Data Type

PT0 Double [3]

UCSX_ANGLE Double

THICKNESS Double

COLOR Integer

DXF_TYPE Integer

BLOCK String

LAYER String

Table A-9: Fields of the IDL_DXF_POINT structure
IDL Reference Guide IDLffDXF

1878 Appendix A: IDL Object Class & Method Reference
Structure IDL_DXF_SPLINE

This structure is returned verbatim from the DXF spline structure without
interpretation. It is up to the user to interpret these values.

Field Data Type

CTR_PTS Pointer

FIT_PTS Pointer

KNOTS Pointer

WEIGHTS Pointer

COLOR Integer

DEGREE Integer

PERIODIC Integer

RATIONAL Integer

PLANAR Integer

LINEAR Integer

KNOT_TOLERANCE Double

CTL_TOLERANCE Double

FIT_TOLERANCE Double

START_TANGENT Double [3]

END_TANGENT Double [3]

THICKNESS Double

LINESTYLE Integer [2]

EXTRUSION Double [3]

DXF_TYPE Integer

BLOCK String

LAYER String

Table A-10: Fields of the IDL_DXF_SPLINE structure
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1879
Structure IDL_DXF_TXT

PT0 is the location of the text string.

TEXT_STR is the actual string.

HEIGHT specifies the overall scaling of the glyphs while WIDTH_FACTOR is a
correction in the baseline direction (anisotropic scaling). For multi-line text,
BOX_WIDTH determines where the line breaks should be placed (0.0 for single line
text).

The text baseline is specified by DIRECTION and its rotation about the Z axis is
specified by ROT_ANGLE. Justification is specified by JUSTIFICATION and

Field Data Type

PT0 Double [3]

TEXT_STR String

COLOR Integer

HEIGHT Double

WIDTH_FACTOR Double

BOX_WIDTH Double

DIRECTION Double [3]

ROT_ANGLE Double

JUSTIFICATION Integer (0=left, 1=center, 2=right,
3=aligned, 4=middle, 5=fit)

VERTICAL_ALIGN Integer (0=baseline, 1=bottom,
2=middle, 3=top)

SHAPE_FILE String

THICKNESS Double

EXTRUSION Double [3]

DXF_TYPE Integer

BLOCK String

LAYER String

Table A-11: Fields of the IDL_DXF_TXT structure
IDL Reference Guide IDLffDXF

1880 Appendix A: IDL Object Class & Method Reference
VERTICAL_ALIGN. SHAPE_FILE is the name of the glyph file used to image this
string. The shape file is NOT read by IDL.

Structure IDL_DXF_XLINE

PT0 is the start of a ray or a point on a infinite line in space in the case of an XLINE
entity.

UNIT_VEC determines the direction of the line in space.

Field Data Type

PT0 Double [3]

UNIT_VEC Double [3]

COLOR Integer

THICKNESS Double

LINESTYLE Integer [2]

EXTRUSION Double [3]

DXF_TYPE Integer

BLOCK String

LAYER String

Table A-12: Fields of the IDL_DXF_XLINE structure
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1881
Structure IDL_DXF_INSERT

The insert entity allows for the “instancing” of a block in a grid fashion.

INSTANCE_BLOCK is the name of a block to repeat.

The block is scaled by SCALE and rotated about the Z axis by ROTATION. The grid
begins at PT0 and contains the number of rows and columns specified by
NUM_ROW_COL (Note: 0 rows or columns will always give a single instance of the
block).

The spacing of the grid is specified by DISTANCE_BETWEEN.

Field Data Type

SCALE Double [3]

PT0 Double [3]

ROTATION Double

INSTANCE_BLOCK String

NUM_ROW_COL Integer [2]

DISTANCE_BETWEEN Double [2]

DXF_TYPE Integer

BLOCK String

COLOR Integer

LAYER String

Table A-13: Fields of the IDL_DXF_INSERT structure
IDL Reference Guide IDLffDXF

1882 Appendix A: IDL Object Class & Method Reference
Structure IDL_DXF_BLOCK

This entity specifies a BLOCK. Blocks have a location in space (PT0) [objects in the
block are interpreted relative to this point], a name, and a COLOR. They are not
contained in layers or other blocks, so these fields are not present.

Structure IDL_DXF_LAYER

This entity specifies a LAYER. Layer is a NAME and a COLOR. They are not
contained in layers or other blocks, so these fields are not present.

Field Data Type

PT0 Double [3]

COLOR Integer

NAME String

DXF_TYPE Integer

Table A-14: Fields of the IDL_DXF_BLOCK structure

Field Data Type

COLOR Integer

NAME String

DXF_TYPE Integer

Table A-15: Fields of the IDL_DXF_LAYER structure
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1883
IDLffDXF::GetPalette

The IDLffDXF::GetPalette method returns the current color table in the object.

Syntax

Obj-> [IDLffDXF::]GetPalette, Red, Green, Blue

Arguments

Red

Returns an array of the red components to the current color table.

Green

Returns an array of the green components to the current color table.

Blue

Returns an array of the blue components to the current color table.
IDL Reference Guide IDLffDXF

1884 Appendix A: IDL Object Class & Method Reference
IDLffDXF::Init

The IDL_Container::Init function method initializes the DXF object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = OBJ_NEW('IDLffDXF' [, Filename])

or

Result = Obj -> [IDLffDXF::]Init([Filename]) (Only in a subclass’ Init method.)

Arguments

Filename

Set this optional argument to a scalar string containing the full path and filename of a
DXF file to be read as the object is created.

Keywords

None
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1885
IDLffDXF::PutEntity

The IDLffDXF::PutEntity procedure method inserts an entity into the DXF object.
The type of the entity is determined from the DXF_TYPE field of the entity structure.
If DXF_TYPE is set to 0, the type is implied by the entity structure.

Note
Line3D entity types will be written as Line entities due to the obsolete status of
Line3D. Polyline entities will be automatically converted to Lightweight Polylines
where applicable.

Syntax

Obj -> [IDLffDXF::]PutEntity, Data

Arguments

Data

An array of Entity structures as defined by the GetEntity method.

Note
If the entity references a non-existent block or layer, one will automatically be
created. Blocks and layers can also be created by passing IDL_DXF_BLOCK or
IDL_DXF_LAYER structures to this routine.
IDL Reference Guide IDLffDXF

1886 Appendix A: IDL Object Class & Method Reference
IDLffDXF::Read

The IDLffDXF::Read method reads a file, parsing the DXF object information
contained in the file, and inserts it into itself. This method returns an indication of
success in reading the file.

Syntax

Result = Obj-> [IDLffDXF::]Read(Filename)

Arguments

Filename

A scalar string containing the full path and filename of the DXF file to be read.

Example

; Read all the lines from the electrical layer:
oDXF = OBJ_NEW('IDLffDXF')
IF (oDXF->Read('myDXF.dxf')) THEN BEGIN

contents = oDXF->GetContents(4,COUNT=numLines, $
LAYER='Electrical')

IF (numLines ne 0) THEN BEGIN
lines = oDXF->GetEntity(4,LAYER='Electrical')

ENDIF
ENDIF
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1887
IDLffDXF::RemoveEntity

The IDLffDXF::RemoveEntity method removes the specified entity or entities from
the DXF object.

Syntax

Obj -> [IDLffDXF::]RemoveEntity[, Type] [, INDEX=value]

Arguments

Type

An optional scalar string containing the DXF type to be removed from the DXF
object.

Note
Specifying a block or layer entity will cause all the entities in that layer or block to
be removed.

Keywords

INDEX

Set this keyword to a scalar long or a long array of indices to remove from the DXF
object. If not set, or set negative, all entities of the given type are removed.
IDL Reference Guide IDLffDXF

1888 Appendix A: IDL Object Class & Method Reference
IDLffDXF::Reset

The IDLffDXF::Reset method removes all the entities from the DXF object.

Syntax

Obj-> [IDLffDXF::]Reset

Arguments

None

Keywords

None
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1889
IDLffDXF::SetPalette

The IDLffDXF::SetPalette method sets the current color table in the object.

Syntax

Obj-> [IDLffDXF::]SetPalette, Red, Green, Blue

Arguments

Red

Sets the red components of the current color table to this array.

Green

Sets the green components of the current color table to this array.

Blue

Sets the blue components of the current color table to this array.

Keywords

None
IDL Reference Guide IDLffDXF

1890 Appendix A: IDL Object Class & Method Reference
IDLffDXF::Write

The IDLffDXF::Write method writes a file for the DXF entity information this object
contains. This method returns an indication of success in writing the file.

Syntax

Result = Obj-> [IDLffDXF::]Write(Filename)

Arguments

Filename

A scalar string containing the full path and filename of the DXF file to be written.

Example

; Write a square to a new DXF file using lines:
oDXF = OBJ_NEW('IDLffDXF')
lines = {IDL_DXF_POLYLINE}
lines.dxf_type = 4
lines.layer='myLayer'
lines.thickness = 1.0

; Create clockwise square:
lines = REPLICATE(lines, 4)
lines[0].vertices = PTR_NEW([[0.0,0.0,0.0], $

 [0.0,1.0,0.0]])
lines[0].connectivity = PTR_NEW([0,1])
lines[1].vertices = PTR_NEW([[0.0,1.0,0.0], $

[1.0,1.0,0.0]])
lines[1].connectivity = PTR_NEW([0,1])
lines[2].vertices = PTR_NEW([[1.0,1.0,0.0], $

[1.0,0.0,0.0]])
lines[2].connectivity = PTR_NEW([0,1])
lines[3].vertices = PTR_NEW([[1.0,0.0,0.0], $

[0.0,0.0,0.0]])
lines[3].connectivity = PTR_NEW([0,1])
oDXF->PutEntity, lines
IF (not oDXF->Write('mySquare.dxf')) THEN $

PRINT, 'Write Failed.'
; Clean up the memory in the structs:
OBJ_DESTROY, oDXF
FOR i=0,3 DO BEGIN

PTR_FREE, lines[i].vertices, lines[i].connectivity
ENDFOR
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1891
IDLffLanguageCat

The IDLffLanguageCat object provides an interface to IDL language catalog files.

Note
This object is not savable. Restored IDLffLanguageCat objects may contain invalid
data.

Note
This object is not intended to be created with OBJ_NEW. The MSG_CAT_OPEN
function is used to return the correct object reference.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See MSG_CAT_OPEN.

Methods

• IDLffLanguageCat::IsValid

• IDLffLanguageCat::Query

• IDLffLanguageCat::SetCatalog

See Also

MSG_CAT_CLOSE, MSG_CAT_COMPILE, MSG_CAT_OPEN
IDL Reference Guide IDLffLanguageCat

1892 Appendix A: IDL Object Class & Method Reference
IDLffLanguageCat::IsValid

The IDLffLanguageCat::IsValid function method is used to determine whether the
object has a valid catalog.

Syntax

Result = Obj ->[IDLffLanguageCat::]IsValid()

Arguments

None

Keywords

None
IDLffLanguageCat IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1893
IDLffLanguageCat::Query

The IDLffLanguageCat::Query function method is used to return the language string
associated with the given key. If the key is not found in the given catalog, the default
string is returned.

Syntax

Result = Obj ->[IDLffLanguageCat::]Query(key [, DEFAULT_STRING=string])

Arguments

key

The scalar, or array of (string) keys associated with the desired language string. If key
is an array, Result will be a string array of the associated language strings.

Keywords

DEFAULT_STRING

Set this keyword to the desired value of the return string if the key cannot be found in
the catalog file. The default value is the empty string.
IDL Reference Guide IDLffLanguageCat

1894 Appendix A: IDL Object Class & Method Reference
IDLffLanguageCat::SetCatalog

The IDLffLanguageCat::SetCatalog function method is used to set the appropriate
catalog file. This function returns 1 upon success, and 0 on failure.

Syntax

Result = Obj ->[IDLffLanguageCat::]SetCatalog(application
[, FILENAME=string] [, LOCALE=string] [, PATH=string])

Arguments

application

A scalar string representing the name of the desired application’s catalog file.

Keywords

FILENAME

Set this keyword to a scalar string containing the full path and filename of the catalog
file to open. If this keyword is set, application, PATH, and LOCALE are ignored.

LOCALE

Set this keyword to the desired locale for the catalog file. If not set, the current locale
is used.

PATH

Set this keyword to a scalar string containing the path to search for language catalog
files. The default is the current directory.
IDLffLanguageCat IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1895
IDLffShape

An IDLffShape object contains geometry, connectivity and attributes for graphics
primitives accessed from ESRI Shapefiles.

Superclasses

This class has no superclass.

Subclasses

This class has no subclasses.

Creation

See IDLffShape::Init

Methods

Intrinsic Methods

This class has the following methods:

• IDLffShape::AddAttribute

• IDLffShape::Cleanup

• IDLffShape::Close

• IDLffShape::DestroyEntity

• IDLffShape::GetAttributes

• IDLffShape::GetEntity

• IDLffShape::GetProperty

• IDLffShape::Init

• IDLffShape::Open

• IDLffShape::PutEntity

• IDLffShape::SetAttributes
IDL Reference Guide IDLffShape

1896 Appendix A: IDL Object Class & Method Reference
Overview

An ESRI Shapefile stores nontopological geometry and attribute information for the
spatial features in a data set.

A Shapefile consists of a main file (.shp), an index file (.shx), and a dBASE table
(.dbf). For example, the Shapefile “states” would have the following files:

• states.shp

• states.shx

• states.dbf

Naming Conventions for a Shapefile

All the files that comprise an ESRI Shapefile must adhere to the 8.3 filename
convention and must be lower case. The main file, index file, and dBASE file must
all have the same prefix. The prefix must start with an alphanumeric character and
can contain any alphanumeric, underscore (_), or hyphen (-). The main file suffix
must use the .shp extension, the index file the .shx extension, and the dBASE table
the .dbf extension.

Major Elements of a Shapefile

A Shapefile consists of the following elements that you can access through the
IDLffShape class:

• Entities

• Attributes

Entities

The geometry for a feature is stored as a shape comprising a set of vector coordinates
(referred to as ‘entities’). The entities in a Shapefile must all be of the same type. The
following are the possible types for entities in a Shapefile:

Shape Type Type Code

Point 1

PolyLine 3

Polygon 5

Table A-16: Entity Types
IDLffShape IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1897
When retrieving entities using the IDLffShape::GetEntity method, an IDL structure is
returned. This structure has the following fields:

MultiPoint 8

PointZ 11

PolyLineZ 13

PolygonZ 15

MultiPointZ 18

PointM 21

PolyLineM 23

PolygonM 25

MultiPointM 28

MultiPatch 31

Field Data Type

SHAPE_TYPE IDL_LONG

ISHAPE IDL_LONG

BOUNDS Double[8]

N_VERTICES IDL_LONG

VERTICES Pointer (to Vertices array)

MEASURE Pointer (to Measure array)

N_PARTS IDL_LONG

PARTS Pointer (to Parts array).

PART_TYPES Pointer (to part types)

ATTRIBUTES Pointer to attribute array.

Table A-17: Entity Structure Field Data Types

Shape Type Type Code

Table A-16: Entity Types (Continued)
IDL Reference Guide IDLffShape

1898 Appendix A: IDL Object Class & Method Reference
The following table describes each field in the structure:

Field Description

SHAPE_TYPE The entity type.

ISHAPE The identifier of the specific entity in the shape object.

BOUNDS A bounding box that specifies the range limits of the entity.
This eight element array contains the following information:

• Index 0 — X minimum value

• Index 1 — Y minimum value

• Index 2 — Z minimum value (if Z is supported by type)

• Index 3 — Measure minimum value (if measure is
supported by entity type).

• Index4 — X maximum value.

• Index5 — Y maximum value.

• Index6 — Z maximum value (if Z is supported by the
entity type).

• Index7 — Measure maximum value (if measure is
supported by entity type).

Note - If the entity is a point type, the values contained in the
bounds array are also the values of the entity.

N_VERTICES The number of vertices in the entity. If this value is one and
the entity is a POINT type (POINT, POINTM, POINTZ), the
vertices pointer will be set to NULL and the entity value will
be maintained in the BOUNDS field.

Table A-18: Entity Structure Field Descriptions
IDLffShape IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1899
VERTICES An IDL pointer that contains the vertices of the entity. This
pointer contains a double array that has one of the following
formats:

• [2, N] - If Z data is not present

• [3, N] - If Z data is present.

where N is the number of vertices. These array formats can be
passed to the polygon and polyline objects of IDL Object
Graphics.

Note - This pointer will be null if the entity is a point type,
with the values maintained in the BOUNDS array.

MEASURE If the entity has a measure value (this is dependent on the
entity type), this IDL pointer will contain a vector array of
measure values. The length of this vector is N_VERTICES.

Note - This pointer will be null if the entity is of type
POINTM, with the values contained in the BOUNDS array.

N_PARTS If the values of the entity are separated into parts, the break
points are enumerated in the parts array. This field lists the
number of parts in this entity. If this value is 0, the entity is
one part and the PARTS pointer will be NULL.

PARTS An IDL pointer that contains an array of indices into the
vertex/measure arrays. These values represent the start of each
part of the entity. The index range of each entity part is
defined by the following:

• Start = Parts[I]

• End = Parts[I+1]-1 or the end of the array

PART_TYPES This IDL pointer is only valid for entities of type MultiPatch
and defines the type of the particular part. If the entity type is
not MultiPatch, part types are assumed to be type RING
(SHPP_RING).

Note - This pointer is NULL if the entity is not type
MultiPatch.

Field Description

Table A-18: Entity Structure Field Descriptions (Continued)
IDL Reference Guide IDLffShape

1900 Appendix A: IDL Object Class & Method Reference
Attributes

A Shapefile provides the ability to associate information describing each entity (a
geometric element) contained in the file. This descriptive information, called
attributes, consists of a set of named data elements for each geometric entity
contained in the file. The set of available attributes is the same for every entity
contained in a Shapefile, with each entity having it’s own set of attribute values.

An attribute consist of two components:

• A name

• A data value

The name consists of an 11 character string that is used to identify the data value. The
data value is not limited to any specific format.

The two components that form an attribute are accessed differently using the shape
object. To get the name of attributes for the specific file, the ATTRIBUTE_NAMES
keyword to the IDLffShape::GetProperty method is used. This returns a string array
that contains the names for the attributes defined for the file.

To get the attribute values for an entity, the IDLffShape::GetAttributes method is
called or the ATTRIBUTES keyword of the IDLffShape::GetEntity method is set. In
each case, the attribute values for the specified entity is returned as an anonymous
IDL structure. The numeric order of the fields in the returned structure map to the
numeric order of the attributes defined for the file. The actual format of the returned
structure is:

ATTRIBUTE_0 : VALUE,

ATTRIBUTE_1 : VALUE,

ATTRIBUTE_2 : VALUE,

...

ATTRIBUTE_<N-1> : VALUE

ATTRIBUTES If the attributes for an entity were requested, this field contains
an IDL pointer that contains a structure of attributes for the
entity. For more information on this structure, see “Attributes”
on page 1900.

Field Description

Table A-18: Entity Structure Field Descriptions (Continued)
IDLffShape IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1901
To access the values in the returned structure, you can either hardcode the structure
field names or use the structure indexing feature of IDL.

Accessing Shapefiles

The following example shows how to access data in a Shapefile. This example sets
up a map to display parts of a Shapefile, opens a Shapefile, reads the entities from the
Shapefile, and then plots only the state of Colorado:

PRO ex_shapefile

DEVICE, RETAIN=2, DECOMPOSED=0
!P.BACKGROUND=255

;Define a color table
r=BYTARR(256) & g=BYTARR(256) & b=BYTARR(256)
r[0]=0 & g[0]=0 & b[0]=0 ;Definition of black
r[1]=100 & g[1]=100 & b[1]=255 ;Definition of blue
r[2]=0 & g[2]=255 & b[2]=0 ;Definition of green
r[3]=255 & g[3]=255 & b[3]=0 ;Definition of yellow
r[255]=255 & g[255]=255 & b[255]=255 ;Definition of white

TVLCT, r, g, b
black=0 & blue=1 & green=2 & yellow=3 & white=255

; Set up map to plot Shapefile on
MAP_SET, /ORTHO,45, -120, /ISOTROPIC, $
/HORIZON, E_HORIZON={FILL:1, COLOR:blue}, $
/GRID, COLOR=black, /NOBORDER

; Fill the continent boundaries:
MAP_CONTINENTS, /FILL_CONTINENTS, COLOR=green

; Overplot coastline data:
MAP_CONTINENTS, /COASTS, COLOR=black

; Show national borders:
MAP_CONTINENTS, /COUNTRIES, COLOR=black

;Open the states Shapefile in the examples directory
myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $

SUBDIR=['examples', 'data']))

;Get the number of entities so we can parse through them
myshape -> IDLffShape::GetProperty, N_ENTITIES=num_ent

;Parsing through the entities and only plotting the state of
;Colorado
IDL Reference Guide IDLffShape

1902 Appendix A: IDL Object Class & Method Reference
FOR x=1, (num_ent-1) DO BEGIN
 ;Get the Attributes for entity x
 attr = myshape -> IDLffShape::GetAttributes(x)
 ;See if 'Colorado' is in ATTRIBUTE_1 of the attributes for

;entity x
 IF attr.ATTRIBUTE_1 EQ 'Colorado' THEN BEGIN
 ;Get entity
 ent = myshape -> IDLffShape::GetEntity(x)
 ;Plot entity
 POLYFILL, (*ent.vertices)[0,*], (*ent.vertices)[1,*],
COLOR=yellow
 ;Clean-up of pointers
 myshape -> IDLffShape::DestroyEntity, ent
 ENDIF
ENDFOR

;Close the Shapefile
OBJ_DESTROY, myshape

END

This results in the following:

Figure A-1: Example Use of Shapefiles
IDLffShape IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1903
Creating New Shapefiles

To create a Shapefile, you need to create a new Shapefile object, define the entity and
attributes definitions, and then add your data to the file. For example, the following
program creates a new Shapefile (cities.shp), defines the entity type to be
“Point”, defines 2 attributes (CITY_NAME and STATE_NAME), and then adds an
entity to the new file:

PRO ex_shapefile_newfile

;Create the new shapefile and define the entity type to Point
mynewshape=OBJ_NEW('IDLffShape', FILEPATH('cities.shp', $

SUBDIR=['examples', 'data']), /UPDATE, ENTITY_TYPE=1)

;Set the attribute definitions for the new Shapefile
mynewshape->IDLffShape::AddAttribute, 'CITY_NAME', 7, 25, $

PRECISION=0
mynewshape->IDLffShape::AddAttribute, 'STAT_NAME', 7, 25, $

PRECISION=0

;Create structure for new entity
entNew = {IDL_SHAPE_ENTITY}

; Define the values for the new entity
entNew.SHAPE_TYPE = 1
entNew.ISHAPE = 1458
entNew.BOUNDS[0] = -104.87270
entNew.BOUNDS[1] = 39.768040
entNew.BOUNDS[2] = 0.00000000
entNew.BOUNDS[3] = 0.00000000
entNew.BOUNDS[4] = -104.87270
entNew.BOUNDS[5] = 39.768040
entNew.BOUNDS[6] = 0.00000000
entNew.BOUNDS[7] = 0.00000000

;Create structure for new attributes
attrNew = mynewshape ->IDLffShape::GetAttributes($
/ATTRIBUTE_STRUCTURE)

;Define the values for the new attributes
attrNew.ATTRIBUTE_0 = 'Denver'
attrNew.ATTRIBUTE_1 = 'Colorado'

;Add the new entity to new shapefile
mynewshape -> IDLffShape::PutEntity, entNew

;Add the Colorado attributes to new shapefile
mynewshape -> IDLffShape::SetAttributes, 0, attrNew
IDL Reference Guide IDLffShape

1904 Appendix A: IDL Object Class & Method Reference
;Close the shapefile
OBJ_DESTROY, mynewshape

END

Updating Existing Shapefiles

You can modify existing Shapefiles with the following:

• Adding new entities

• Adding new attributes (only to Shapefiles without any existing values in any
attributes)

• Modifying existing attributes

Note
You cannot modify existing entities.

For example, the following program adds an entity and attributes for the city of
Boulder to the cities.shp file we created in the previous example:

PRO ex_shapefile_modify

;Open the cities Shapefile
myshape=OBJ_NEW('IDLffShape', FILEPATH('cities.shp', $
 SUBDIR=['examples', 'data']), /UPDATE)

;Create structure for new entity
entNew = {IDL_SHAPE_ENTITY}

; Define the values for the new entity
entNew.SHAPE_TYPE = 1
entNew.ISHAPE = 1380
entNew.BOUNDS[0] = -105.25100
entNew.BOUNDS[1] = 40.026878
entNew.BOUNDS[2] = 0.00000000
entNew.BOUNDS[3] = 0.00000000
entNew.BOUNDS[4] = -105.25100
entNew.BOUNDS[5] = 40.026878
entNew.BOUNDS[6] = 0.00000000
entNew.BOUNDS[7] = 0.00000000

;Create structure for new attributes
attrNew = myshape ->IDLffShape::GetAttributes($
/ATTRIBUTE_STRUCTURE)
IDLffShape IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1905
;Define the values for the new attributes
attrNew.ATTRIBUTE_0 = 'Boulder'
attrNew.ATTRIBUTE_1 = 'Colorado'

;Add the new entity to new shapefile
myshape -> IDLffShape::PutEntity, entNew

;Add the Colorado attributes to new shapefile
myshape -> IDLffShape::SetAttributes, 0, attrNew

;Close the shapefile
OBJ_DESTROY, myshape

END
IDL Reference Guide IDLffShape

1906 Appendix A: IDL Object Class & Method Reference
IDLffShape::AddAttribute

The IDLffShape::AddAttribute method adds an attribute definition to a Shapefile.
Adding a the attribute definition is required before adding the actual attribute data to
a file. For more information on attributes, see “Attributes” on page 1900.

Note
You can only define new attributes to Shapefiles that do not have any existing
values in any attributes.

Syntax

Obj->[IDLffShape::]AddAttribute, Name, Type, Width [, PRECISION=integer]

Arguments

Name

Set to a string that contains the attribute name. Name values are limited to 11
characters. Arguments longer than 11 characters will be truncated.

Type

Set to the IDL type code that corresponds to the data type that will be stored in the
attribute. The valid types are:

Code Description

3 Longword Integer

5 Double-precision floating-point

7 String

Table A-19: Type Code Descriptions
IDLffShape IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1907
Width

Set to the width of the field for the data value of the attribute. The following table
describes the possible values depending on the defined Type:

Keywords

PRECISION

Set this keyword to the number of positions to be included after the decimal point.
The default is 8. This keyword is only valid for fields defined as double-precision
floating-point.

Example

In the following example, we add the attribute “ELEVATION” to an existing
Shapefile. Note that if the file already contains data in an attribute for any of the
entities defined in the file, this operation will fail.

PRO ex_addattr_shapefile

;Open a shapefile
myshape=OBJ_NEW('IDLffShape', FILEPATH('cities.shp', $
 SUBDIR=['examples', 'data']), /UPDATE)

;Define a new attribute for the Shapefile
myshape->IDLffShape::AddAttribute, 'ELEVATION', 3, 4, $
 PRECISION=0

;Close the shapefile
OBJ_DESTROY, myshape

END

Field Type Valid Values

Longword Integer Maximum size of the field.

Double-precision floating-point Maximum size of the field.

String Maximum length of the string.

Table A-20: Width Values
IDL Reference Guide IDLffShape

1908 Appendix A: IDL Object Class & Method Reference
IDLffShape::Cleanup

The IDLffShape::Cleanup method performs all cleanup on a Shapefile object. If the
Shapefile being accessed by the object is open and the file has been modified, the
new information is written to the file if one of the following conditions is met:

• The file was opened with write permissions using the UPDATE keyword to
the IDLffShape::Open method

• It is a newly created file that has not been written previously.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you cannot
call the Cleanup method directly. There is one exception to this rule: If you write
your own subclass of this class, you can call the Cleanup method from within the
Cleanup method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLffShape::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLffShape IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1909
IDLffShape::Close

The IDLffShape::Close method closes a Shapefile. If the file has been modified, it is
also written to the disk if neither of the following conditions is met:

• The file was opened with write permissions using the UPDATE keyword to
the IDLffShape::Open method

• It is a newly created file that has not been written previously.

If the file has been modified and one of the previous conditions is not met, the file is
closed and the changes are not written to disk.

Syntax

Obj->[IDLffShape::]Close

Arguments

None.

Keywords

None.
IDL Reference Guide IDLffShape

1910 Appendix A: IDL Object Class & Method Reference
IDLffShape::DestroyEntity

The IDLffShape::DestroyEntity method frees memory associated with the entity
structure. For more information on the entity structure, see “Entities” on page 1896.

Syntax

Obj->[IDLffShape::]DestroyEntity, Entity

Arguments

Entity

This argument specifies a scalar or array of entities to destroy.

Keywords

None.

Example

In the following example, all of the entities from the states.shp Shapefile are read
and then the DestroyEntity method is called to clean up all pointers:

PRO ex_shapefile

;Open the states Shapefile in the examples directory
myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $

SUBDIR=['examples', 'data']))

;Get the number of entities so we can parse through them
myshape -> IDLffShape::GetProperty, N_ENTITIES=num_ent

;Read all the entities
FOR x=1, (num_ent-1) DO BEGIN

;Read the entity x
ent = myshape -> IDLffShape::GetEntity(x)
;Clean-up of pointers
myshape -> IDLffShape::DestroyEntity, ent

ENDFOR

;Close the Shapefile
OBJ_DESTROY, myshape

END
IDLffShape IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1911
IDLffShape::GetAttributes

The IDLffShape::GetAttributes method retrieves the attributes for the entities you
specify from a Shapefile.

Syntax

Result = Obj->[IDLffShape::]GetAttributes([Index] [, /ALL]
[, /ATTRIBUTE_STRUCTURE])

Return Value

This method returns an anonymous structure array. For more information on the
structure, see “Attributes” on page 1900.

Arguments

Index

A scalar or array of longs specifying the entities for which you want to retrieve the
attributes, with 0 being the first entity in the Shapefile.

Note
If you do not specify Index and the ALL keyword is not set, the attributes for the
first entity (0) are returned.

Keywords

ALL

Set this keyword to retrieve the attributes for all entities in a Shapefile. If you set this
keyword, the Index argument is not required.

ATTRIBUTE_STUCTURE

Set this keyword to return an empty attribute structure that can then be used with the
IDLffShape::SetAttributes method to add attributes to a Shapefile.

Examples

In the first example, we retrieve the attributes associated with entity at location 0 (the
first entity in the file):

attr = myShape->getAttributes(0)
IDL Reference Guide IDLffShape

1912 Appendix A: IDL Object Class & Method Reference
In the next example, we retrieve the attributes associated with entities 10 through 20:

attr = myShape->getAttributes(10+indgen(11))

In the next example, we retrieve the attributes for entities 1,4, 9 and 70:

attr = myShape->getAttributes([1, 4, 9, 70])

In the next example, we retrieve all the attributes for a Shapefile:

attr = myShape->getAttributes(/ALL)
IDLffShape IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1913
IDLffShape::GetEntity

The IDLffShape::GetEntity method returns the entities you specify from a Shapefile.

Syntax

Result = Obj->[IDLffShape::]GetEntity([Index] [, /ALL] [, /ATTRIBUTES])

Return Value

This method returns a type {IDL_SHAPE_ENTITY} structure array. For more
information on the structure, see “Entities” on page 1896.

Note
Since an entity structure contains IDL pointers, you must free all the pointers
returned in these structures when the entity is no longer needed using the
IDLffShape::DestroyEntity method.

Note
Since entities cannot be modified in a Shapefile, an entity is read directly from the
Shapefile each time you use the IDLffShape::GetEntity method even if you have
already read that entity. If you modify the structure array returned by this method
for a given entity and then use IDLffShape::GetEntity on that same entity, the
modified data will NOT be returned, the data that is actually written in the file is
returned.

Arguments

Index

A scalar or array of longs specifying the entities for which you want to retrieve with 0
being the first entity in the Shapefile. If the ALL keyword is set, this argument is not
required. If you do not specify any entities and the ALL keyword is not set, the first
entity (0) is returned.

Keywords

ALL

Set this keyword to retrieve all entities from the Shapefile. If this keyword is set, the
Index argument is not required.
IDL Reference Guide IDLffShape

1914 Appendix A: IDL Object Class & Method Reference
ATTRIBUTES

Set this keyword to return the attributes in the entity structure. If not set, the
ATTRIBUTES tag in the entity structure will be a null IDL pointer.

Example

In the following example, all of the entities from the states.shp Shapefile are read:

PRO ex_shapefile

;Open the states Shapefile in the examples directory
myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $

SUBDIR=['examples', 'data']))

;Get the number of entities so we can parse through them
myshape -> IDLffShape::GetProperty, N_ENTITIES=num_ent

;Read all the entities
FOR x=1, (num_ent-1) DO BEGIN

;Read the entity x
ent = myshape -> IDLffShape::GetEntity(x)
;Clean-up of pointers
myshape -> IDLffShape::DestroyEntity, ent

ENDFOR

;Close the Shapefile
OBJ_DESTROY, myshape

END
IDLffShape IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1915
IDLffShape::GetProperty

The IDLffShape::GetProperty method returns the values of properties associated with
a Shapefile object. These properties are:

• Number of entities

• The type of the entities

• The number of attributes associated with each entity

• The names of the attributes

• The name, type, width, and precision of the attributes

• The status of a Shapefile

• The filename of the Shapefile object

Syntax

Obj->[IDLffShape::]GetProperty [, N_ENTITIES=variable]
[, ENTITY_TYPE=variable] [, N_ATTRIBUTES=variable]
[, ATTRIBUTE_NAMES=variable] [, ATTRIBUTE_INFO=variable]
[, IS_OPEN=variable] [, FILENAME=variable]

Arguments

None.

Keywords

N_ENTITIES

Set this keyword to a named variable to return the number of entities contained in
Shapefile object. If the value is unknown, this method returns 0.

ENTITY_TYPE

Set this keyword to a named variable to return the integer type code for the entities
contained in the Shapefile object. If the value is unknown, this method returns -1. For
more information on entity type codes, see “Entities” on page 1896.

N_ATTRIBUTES

Set this keyword to a named variable to return the number of attributes associated
with a Shapefile object. If the value is unknown, this method returns 0.
IDL Reference Guide IDLffShape

1916 Appendix A: IDL Object Class & Method Reference
ATTRIBUTE_NAMES

Set this keyword to a named variable to return the names of each attribute in the
Shapefile object. These names are returned as a string array.

ATTRIBUTE_INFO

Set this keyword to a named variable to return the attribute information for each
attribute. This consists of an array of attribute information structures that have the
following fields:

The file must be open to obtain this information.

IS_OPEN

Set this keyword to a named variable to return information about the status of a
Shapefile. The following values can be returned:

FILENAME

Set this keyword to a named variable to return the fully qualified path name of the
Shapefile in the current Shapefile object.

Field Description

NAME A string that contains the name of the attribute.

TYPE The IDL type code of the attribute.

WIDTH The width of the attribute.

PRECISION The precision of the attribute.

Table A-21: ATTRIBUTE_INFO Fields

Value Description

0 File is not open

1 File is open in read-only mode.

3 File is open in update mode.

Table A-22: IS_OPEN Values
IDLffShape IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1917
Examples

In the following example, the number of entities and the entity type is returned:

PRO entity_info
;Open the states Shapefile in the examples directory
myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $

SUBDIR=['examples', 'data']))

;Get the number of entities and the entity type
myshape -> IDLffShape::GetProperty, N_ENTITIES=num_ent, $

ENTITY_TYPE=ent_type

;Print the number of entities and the type
PRINT, 'Number of Entities: ', num_ent
PRINT, 'Entity Type: ', ent_type

;Close the Shapefile
OBJ_DESTROY, myshape

END

This results in the following:

Number of Entities: 51
Entity Type: 5

In the next example, the definitions for attribute 1 are returned:

PRO attribute_info
;Open the states Shapefile in the examples directory
myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $

SUBDIR=['examples', 'data']))

;Get the info for all attribute
myshape -> IDLffShape::GetProperty, ATTRIBUTE_INFO=attr_info

;Print Attribute Info
PRINT, 'Attribute Number: ', '1'
PRINT, 'Attribute Name: ', attr_info[1].name
PRINT, 'Attribute Type: ', attr_info[1].type
PRINT, 'Attribute Width: ', attr_info[1].width
PRINT, 'Attribute Precision: ', attr_info[1].precision

;Close the Shapefile
OBJ_DESTROY, myshape

END

This results in the following:
IDL Reference Guide IDLffShape

1918 Appendix A: IDL Object Class & Method Reference
Attribute Number: 1
Attribute Name: STATE_NAME
Attribute Type: 7
Attribute Width: 25
Attribute Precision: 0
IDLffShape IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1919
IDLffShape::Init

The IDLffShape::Init function method initializes or constructs a Shapefile object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = OBJ_NEW(‘IDLffShape’ [, Filename] [, /UPDATE]
[, ENTITY_TYPE=’Value’)

Return Value

This method returns a Shapefile object.

Arguments

Filename

Set this argument to a scalar string containing the full path and filename of a
Shapefile (.shp) to open. If this file exists, it is opened. If the file does not exist, a
new Shapefile object is constructed. You do not need to use IDLffShape::Open to
open an existing file when specifying this keyword.

Note
The .shp, .shx, and .dbx files must exist in the same directory for you to be able
to open and access the file unless the UPDATE keyword is set.

Keywords

UPDATE

Set this keyword to have the file opened for writing. The default is read-only.
IDL Reference Guide IDLffShape

1920 Appendix A: IDL Object Class & Method Reference
ENTITY_TYPE

Set this keyword to the entity type of a new Shapefile. Use this keyword only when
creating a new Shapefile. For more information on entity types, see “Entities” on
page 1896.

Example

In the following example, we create a new Shapefile object and open the
examples/data/states.shp file:

myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $
 SUBDIR=['examples', 'data']))
IDLffShape IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1921
IDLffShape::Open

The IDLffShape::Open method opens a specified Shapefile.

Syntax

Result = Obj->[IDLffShape::]Open(‘Filename’ [, /UPDATE]
[, ENTITY_TYPE=’value’])

Return Value

This method returns 1 if the file can be read successfully. If not able to open the file,
it returns 0.

Arguments

Filename

Set this argument to a scalar string containing the full path and filename of a
Shapefile (.shp) to open. Note that the .shp, .shx, and .dbx files must exist in the
same directory for you to be able to open and access the file unless the UPDATE
keyword is set.

Keywords

UPDATE

Set this keyword to have the file opened for writing. The default is read-only.

ENTITY_TYPE

Set this keyword to the entity type of a new Shapefile. Use this keyword only when
creating a new Shapefile. For more information on entity types, see “Entities” on
page 1896

Example

In the following example, the file examples/data/states.shp is opened for
reading and writing:

status = myShape->Open(FILEPATH('states.shp', $
 SUBDIR=['examples', 'data']), /UPDATE)
IDL Reference Guide IDLffShape

1922 Appendix A: IDL Object Class & Method Reference
IDLffShape::PutEntity

The IDLffShape::PutEntity method inserts an entity into the Shapefile object. The
entity must be in the proper structure. For more information on the structure, see
“Entities” on page 1896.

Note
The shape type of the new entity must be the same as the shape type defined for the
Shapefile. If the shape type has not been defined for the Shapefile using the
ENTITY_TYPE keyword for the IDLffShape::Open or IDLffShape::Init methods,
the first entity that is inserted into the Shapefile defines the type.

Note
Only new entities can be inserted into a Shapefile. Existing entities cannot be
updated.

Syntax

Obj->[IDLffShape::]PutEntity, Data

Arguments

Data

Set this argument to a scalar or an array of entity structures.

Keywords

None.

Example

In the following example, we create a new shapefile, define a new entity, and then
use the PutEntity method to insert it into the new file:

PRO ex_shapefile_newfile

;Create the new shapefile and define the entity type to Point
mynewshape=OBJ_NEW('IDLffShape', FILEPATH('cities.shp', $

SUBDIR=['examples', 'data']), /UPDATE, ENTITY_TYPE=1)

;Create structure for new entity
IDLffShape IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1923
entNew = {IDL_SHAPE_ENTITY}

; Define the values for the new entity
entNew.SHAPE_TYPE = 1
entNew.ISHAPE = 1458
entNew.BOUNDS[0] = -104.87270
entNew.BOUNDS[1] = 39.768040
entNew.BOUNDS[2] = 0.00000000
entNew.BOUNDS[3] = 0.00000000
entNew.BOUNDS[4] = -104.87270
entNew.BOUNDS[5] = 39.768040
entNew.BOUNDS[6] = 0.00000000
entNew.BOUNDS[7] = 0.00000000

;Add the new entity to new shapefile
mynewshape -> IDLffShape::PutEntity, entNew

;Close the shapefile
OBJ_DESTROY, mynewshape

END
IDL Reference Guide IDLffShape

1924 Appendix A: IDL Object Class & Method Reference
IDLffShape::SetAttributes

The IDLffShape::SetAttributes method sets the attributes for a specified entity in a
Shapefile object.

Syntax

Obj->[IDLffShape::]SetAttributes, Index, Attribute_Num, Value

or

Obj->[IDLffShape::]SetAttributes, Index, Attributes

Arguments

Index

A scalar specifying the entity in which you want to set the attributes. The first entity
in the Shapefile object is 0.

Attribute_Num

The field number for the attribute whose value is being set. This value is 0-based.

Value

The value that the attribute is being set to. If the value is not of the correct type, type
conversion is attempted.

If Value is an array and Index is a scalar, the value of record is treated as a starting
point. Using this feature, all the attribute values of a specific field can be set for a
Shapefile.

Attributes

An Attribute structure whose fields match the fields in the attribute table. If Attributes
is an array, the entities specified in Index, up to the size of the Attributes array, are
set. Using this feature, all the attribute values of a set of entities can be set for a
Shapefile.

The type of this Attribute structure must match the type that is generated internally
for Attribute table. To get a copy of this structure, either get the attribute set for an
entity or get the definition using the ATTRIBUTE_STRUCTURE keyword of the
IDLffShape::GetProperty method.
IDLffShape IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1925
Keywords

None.

Example

In the following example, we create a new shapefile, define the attributes for the new
file, define a new entity, define some attributes, insert the new entity, and then use the
SetAttributes method to insert the attributes into the new file:

PRO ex_shapefile_newfile

;Create the new shapefile and define the entity type to Point
mynewshape=OBJ_NEW('IDLffShape', FILEPATH('cities.shp', $

SUBDIR=['examples', 'data']), /UPDATE, ENTITY_TYPE=1)

;Set the attribute definitions for the new Shapefile
mynewshape->IDLffShape::AddAttribute, 'CITY_NAME', 7, 25, $

PRECISION=0
mynewshape->IDLffShape::AddAttribute, 'STAT_NAME', 7, 25, $

PRECISION=0

;Create structure for new entity
entNew = {IDL_SHAPE_ENTITY}

; Define the values for the new entity
entNew.SHAPE_TYPE = 1
entNew.ISHAPE = 1458
entNew.BOUNDS[0] = -104.87270
entNew.BOUNDS[1] = 39.768040
entNew.BOUNDS[2] = 0.00000000
entNew.BOUNDS[3] = 0.00000000
entNew.BOUNDS[4] = -104.87270
entNew.BOUNDS[5] = 39.768040
entNew.BOUNDS[6] = 0.00000000
entNew.BOUNDS[7] = 0.00000000

;Create structure for new attributes
attrNew = mynewshape ->IDLffShape::GetAttributes($
/ATTRIBUTE_STRUCTURE)

;Define the values for the new attributes
attrNew.ATTRIBUTE_0 = 'Denver'
attrNew.ATTRIBUTE_1 = 'Colorado'

;Add the new entity to new shapefile
mynewshape -> IDLffShape::PutEntity, entNew
IDL Reference Guide IDLffShape

1926 Appendix A: IDL Object Class & Method Reference
;Add the Colorado attributes to new shapefile
mynewshape -> IDLffShape::SetAttributes, 0, attrNew

;Close the shapefile
OBJ_DESTROY, mynewshape

END
IDLffShape IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1927
IDLgrAxis

An axis object represents a single vector that may include a set of tick marks, tick
labels, and a title.

An IDLgrAxis object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See “IDLgrAxis::Init” on page 1933.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrAxis::Cleanup

• IDLgrAxis::GetCTM

• IDLgrAxis::GetProperty

• IDLgrAxis::Init

• IDLgrAxis::SetProperty
IDL Reference Guide IDLgrAxis

1928 Appendix A: IDL Object Class & Method Reference
IDLgrAxis::Cleanup

The IDLgrAxis::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrAxis::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1929
IDLgrAxis::GetCTM

The IDLgrAxis::GetCTM function method returns the 4 x 4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrAxis::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the axis
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrAxis::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDL Reference Guide IDLgrAxis

1930 Appendix A: IDL Object Class & Method Reference
TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1931
IDLgrAxis::GetProperty

The IDLgrAxis::GetProperty procedure method retrieves the value of a property or
group of properties for the axis.

Syntax

Obj -> [IDLgrAxis::]GetProperty [, ALL=variable] [, CRANGE=variable]
[, PARENT=variable] [, XRANGE=variable] [, YRANGE=variable]
[, ZRANGE=variable]

Arguments

None

Keywords

Any keyword to IDLgrAxis::Init followed by “Get” can be retrieved using
IDLgrAxis::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

CRANGE

Set this keyword to a named variable that will contain the actual full range of the axis
as a double-precision floating-point vector of the form [minval, maxval]. This range
may not exactly match the requested range provided via the RANGE keyword in the
Init and SetProperty methods. Adjustments may have been made to round to the
nearest even tick interval or to accommodate the EXTEND keyword.

PARENT

Set this keyword equal to a named variable that will contain an object reference to the
object that contains this object.
IDL Reference Guide IDLgrAxis

1932 Appendix A: IDL Object Class & Method Reference
XRANGE

Set this keyword equal to a named variable that will contain a two-element double-
precision floating-point vector of the form [xmin, xmax] that specifies the range of x
data coordinates covered by the graphic object.

YRANGE

Set this keyword equal to a named variable that will contain a two-element double-
precision floating-point vector of the form [ymin, ymax] that specifies the range of y
data coordinates covered by the graphic object.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element double-
precision floating-point vector of the form [zmin, zmax] that specifies the range of z
data coordinates covered by the graphic object.
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1933
IDLgrAxis::Init

The IDLgrAxis::Init function method initializes an axis object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrAxis' [, Direction] [, AM_PM{Get, Set}=array]
[, COLOR{Get, Set}=index or RGB_vector] [, DAYS_OF_WEEK{Get, Set}=array]
[, DIRECTION{Get, Set}=integer] [, /EXACT{Get, Set}] [, /EXTEND{Get, Set}]
[, GRIDSTYLE{Get, Set}=integer{0 to 6}or [repeat{1 to 255}, bitmask]]
[, /HIDE{Get, Set}] [, LOCATION{Get, Set}=[x, y] or [x, y, z]] [, /LOG{Get, Set}]
[, MAJOR{Get, Set}=integer] [, MINOR{Get, Set}=integer] [, MONTHS{Get,
Set}=array] [, NAME{Get, Set}=string] [, /NOTEXT{Get, Set}] [, PALETTE{Get,
Set}=objref] [, RANGE{Get, Set}=[min, max]] [, SUBTICKLEN{Get, Set}=value]
[, TEXTALIGNMENTS{Get, Set}=[horiz{0.0 to 1.0}, vert{0.0 to 1.0}]]
[, TEXTBASELINE{Get, Set}=vector] [, TEXTPOS{Get, Set}={0 | 1}]
[, TEXTUPDIR{Get, Set}=vector] [, THICK{Get, Set}=points{1.0 to 10.0}]
[, TICKDIR{Get, Set}={0 | 1}] [, TICKFORMAT{Get,
Set}=string or array of strings] [, TICKFRMTDATA{Get, Set}=value]
[, TICKINTERVAL{Get, Set}=value] [, TICKLAYOUT{Get, Set}=scalar]
[, TICKLEN{Get, Set}=value] [, TICKTEXT{Get, Set}=objref or vector]
[, TICKUNITS{Get, Set}=string] [, TICKVALUES{Get, Set}=vector]
[, TITLE{Get, Set}=objref] [, /USE_TEXT_COLOR{Get, Set}] [, UVALUE{Get,
Set}=value] [, XCOORD_CONV{Get, Set}=vector] [, YCOORD_CONV{Get,
Set}=vector] [, ZCOORD_CONV{Get, Set}=vector])

or

Result = Obj -> [IDLgrAxis::]Init([Direction]) (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.
IDL Reference Guide IDLgrAxis

1934 Appendix A: IDL Object Class & Method Reference
Arguments

Direction

An integer value specifying which axis is being created. Specify 0 (zero) to create an
X axis, 1 (one) to create a Y axis, or 2 to create a Z axis.

Keywords

Properties retrievable via IDLgrAxis::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrAxis::SetProperty are indicated
by the word “Set” following the keyword.

AM_PM (Get, Set)

Supplies a string array of 2 names to be used for the names of the AM and PM string
when processing explicitly formatted dates (CAPA, CApA, and CapA format codes)
with the TICKFORMAT keyword.

COLOR (Get, Set)

Set this keyword to the color to be used as the foreground color for this axis. The
color may be specified as a color lookup table index or as an RGB vector. The default
is [0, 0, 0].

DAYS_OF_WEEK (Get, Set)

Supplies a string array of 7 names to be used for the names of the days of the week
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the TICKFORMAT keyword.

DIRECTION (Get, Set)

Set this keyword to an integer value specifying which axis is being created. Specify 0
(zero) to create an X axis, 1 (one) to create a Y axis, or 2 to create a Z axis.
Specifying this keyword is the same as specifying the optional Direction argument.

EXACT (Get, Set)

Set this keyword to force the axis range to be exactly as specified. If this keyword is
not set, the range may be lengthened or shortened slightly to allow for evenly spaced
tick marks.

EXTEND (Get, Set)

Set this keyword to a nonzero value to extend the axis slightly beyond the specified
range. This can be useful when you specify the axis range based on the minimum and
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1935
maximum data values, but do not want the graphic to extend all the way to the end of
the axis.

GRIDSTYLE (Get, Set)

Set this keyword to indicate the line style that should be used to draw the axis’ tick
marks. The value can be either an integer value specifying a pre-defined line style, or
a two-element vector specifying a stippling pattern.

To use a pre-defined line style, set the GRIDSTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, GRIDSTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic
IDL Reference Guide IDLgrAxis

1936 Appendix A: IDL Object Class & Method Reference
LOCATION (Get, Set)

Set this keyword to a two- or three-element vector of the form [x, y] or [x, y, z] to
specify the coordinate through which the axis should pass. The default is [0, 0, 0].
IDL converts, maintains, and returns this data as double-precision floating-point.

LOG (Get, Set)

Set this keyword to indicate that the axis is logarithmic.

MAJOR (Get, Set)

Set this keyword to an integer representing the number of major tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely.

MINOR (Get, Set)

Set this keyword to an integer representing the number of minor tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely.

MONTHS (Get, Set)

Supplies a string array of 12 names to be used for the names of the months when
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) with
the TICKFORMAT keyword.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this object.
The default is the null string, ' '.

NOTEXT (Get, Set)

Set this keyword to prevent the tick labels and the axis title from being drawn.

PALETTE

Set this keyword equal to the object reference of a palette object (an instance of the
IDLgrPalette object class). This keyword is only used if the destination device is
using the RGB color model. If so, and a color value for the object is specified as a
color index value, the palette set by this keyword is used to translate the color to RGB
space. If the PALETTE property on this object is not set, the destination object
PALETTE property is used (which defaults to a grayscale ramp).
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1937
RANGE (Get, Set)

Set this keyword to a two-element vector containing the minimum and maximum
data values covered by the axis. The default is [0.0, 1.0]. IDL converts, maintains,
and returns this data as double-precision floating-point.

SUBTICKLEN (Get, Set)

Set this keyword to a scale ratio specifying the length of minor tick marks relative to
the length of major tick marks. The default is 0.5, specifying that the minor tick mark
is one-half the length of the major tick mark.

TEXTALIGNMENTS (Get, Set)

Set this keyword to a two-element floating-point vector, [horizontal, vertical],
specifying the horizontal and vertical alignments for the tick text. Each alignment
value should be a value between 0.0 and 1.0. For horizontal alignment, 0.0 left-
justifies the text; 1.0 right-justifies the text. For vertical alignment, 0.0 bottom-
justifies the text, 1.0 top-justifies the text. The defaults are as follows:

• X-Axis: [0.5, 1.0] (centered horizontally, top-justified vertically)

• Y-Axis: [1.0, 0.5] (right-justified horizontally, centered vertically)

• Z-Axis: [1.0, 0.5] (right-justified horizontally, centered vertically)

TEXTBASELINE (Get, Set)

Set this keyword to a two- or three-element vector describing the direction in which
the baseline of the tick text is to be oriented. Use this keyword in conjunction with the
TEXTUPDIR keyword to specify the plane on which the tick text lies. The default is
[1,0,0].
IDL Reference Guide IDLgrAxis

1938 Appendix A: IDL Object Class & Method Reference
TEXTPOS (Get, Set)

Set this keyword to either a zero or one to indicate on which side of the axis the tick
text labels are to be drawn. The table below describes the placement of the tick text
with each setting.

TEXTUPDIR (Get,Set)

Set this keyword to a two- or three-element vector describing the direction in which
the up-vector of the tick text is to be oriented. Use this keyword in conjunction with
the TEXTBASELINE keyword to specify the plane on which the tick text lies.
TEXTUPDIR should be orthogonal to TEXTBASELINE. The default is as follows:

• X-Axis: [0, 1, 0]

• Y-Axis: [0, 1, 0]

• Z-Axis: [0, 0, 1]

THICK (Get, Set)

Set this keyword to a value between 1.0 and 10.0, specifying the line thickness used
to draw the axis, in points. The default is 1.0 points.

Axis TEXTPOS=0 TEXTPOS=1

X

Tick text will be drawn below
the X axis, where below is
defined as being toward the
direction of the negative Y axis
(this is the default).

Tick text will be drawn above
the X axis, where above is
described as being toward the
direction of the positive Y axis.

Y

Tick text will be drawn to the
left of the Y Axis, where left is
defined as being toward the
direction of the negative X axis
(this is the default).

Tick text will be drawn to the
right of the Y axis, where right
is defined as being toward the
direction of the positive X axis.

Z

Tick text will be drawn to the
left of the Z axis, where left is
defined as being toward the
direction of the negative X axis
(this is the default).

Tick text will be drawn to the
right of the Z axis, where right
is defined as being toward the
direction of the positive X axis.

Table A-23: Values for the TEXTPOS keyword
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1939
TICKDIR (Get, Set)

Set this keyword to either zero or one to indicate the tick mark direction. For an X
axis, setting TICKDIR=0 means the tick marks will be drawn above the X axis, in the
direction of the positive Y axis (this is the default); setting TICKDIR=1 means the
tick marks will be drawn below the X axis. For a Y axis, setting TICKDIR=0 means
the tick marks will be drawn to the right of the Y axis, in the direction of the positive
X axis (this is the default); setting TICKDIR=1 means the tick marks will be drawn to
the left of the Y axis. For a Z axis, setting TICKDIR=0 means the tick marks will be
drawn to the right the Z axis, in the direction of the positive X axis (this is the
default); setting TICKDIR=1 means the tick marks will be drawn to the left of the Z
axis.

TICKFORMAT (Get, Set)

Set this keyword to a string (or an array of strings), where each string represents a
format string or the name of a function to be used to format the tick mark labels. If an
array is provided, each string corresponds to a level of the axis. (The TICKUNITS
keyword determines the number of levels for an axis.)

If the string begins with an open parenthesis, it is treated as a standard format string.
(Refer to the Format Codes in the IDL Reference Guide.)

If the string does not begin with an open parenthesis, it is interpreted as the name of a
callback function to be used to generate tick mark labels.

If TICKUNITS are not specified:

• The callback function is called with three parameters: Axis, Index, and Value,
where:

• Axis is the axis number: 0 for X axis, 1 for Y axis, 2 for Z axis

• Index is the tick mark index (indices start at 0)

• Value is the data value at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

• Axis, Index, and Value are the same as described above.

• Level is the index of the axis level for the current tick value to be labeled.
(Level indices start at 0.)
IDL Reference Guide IDLgrAxis

1940 Appendix A: IDL Object Class & Method Reference
Used with the LABEL_DATE function, this keyword can easily create axes with
date/time labels.

TICKFRMTDATA (Get, Set)

Set this keyword to a value of any type. It will be passed via the DATA keyword to
the user-supplied formatting function specified via the TICKFORMAT keyword, if
any. By default, this value is 0, indicating that the DATA keyword will not be set
(and furthermore, need not be supported by the user-supplied function.)

Note
TICKFRMTDATA will not be included in the structure returned via the ALL
keyword to the IDLgrColorbar::GetProperty method.

TICKINTERVAL (Get, Set)

Set this keyword to a scalar indicating the interval between major tick marks for the
first axis level. The default value is computed according to the axis RANGE and the
number of major tick marks (MAJOR). This keyword takes precedence over
MAJOR.

For example, if TICKUNITS=['S','H','D'], and TICKINTERVAL=30, then the
interval between major ticks for the first axis level will be 30 seconds.

TICKLAYOUT (Get, Set)

Set this keyword to a scalar that indicates the tick layout style to be used to draw each
level of the axis.

Valid values include:

0 = The axis line, major tick marks and tick labels are all included. Minor tick marks
only appear on the first level of the axis. This is the default tick layout style.

1 = Only the labels for the major tick marks are drawn. The axis line, major tick
marks, and minor tick marks are omitted.

2 = Each major tick interval is outlined by a box. The tick labels are positioned
within that box (left-aligned). For the first axis level only, the major and minor tick
marks will also be drawn.
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1941
Note
For all tick layout styles, at least one tick label will appear on each level of the axis
(even if no major tick marks fall along the axis line). If there are no major tick
marks, the single tick label will be centered along the axis.

TICKLEN (Get, Set)

Set this keyword to the length of each major tick mark, measured in data units. The
recommended, and default, tick mark length is 0.2. IDL converts, maintains, and
returns this data as double-precision floating-point.

TICKTEXT (Get, Set)

Set this keyword to either a single instance of the IDLgrText object class (with
multiple strings) or to a vector of instances of the IDLgrText object class (one per
major tick) to specify the annotations to be assigned to the tickmarks. By default,
with TICKTEXT set equal to a null object, IDL computes the tick labels based on
major tick values. The positions of the provided text objects may be overwritten;
position is determined according to tick mark location. The tickmark text will have
the same color as the IDLgrAxis object, regardless of the color specified by the
COLOR property of the IDLgrText object or objects, unless the
USE_TEXT_COLOR keyword is specified.

Note
If IDL computes the tick labels, the text object it creates will be destroyed
automatically when the axis object is destroyed, even if you have altered the
properties of the text object. If you create your own text object containing tickmark
text, however, it will not be destroyed automatically.

TICKUNITS (Get, Set)

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axis tick labeling.

If more than one unit is provided, the axis will be drawn in multiple levels, one level
per unit.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).

Valid unit strings include:
IDL Reference Guide IDLgrAxis

1942 Appendix A: IDL Object Class & Method Reference
• "Numeric"

• "Years"

• "Months"

• "Days"

• "Hours"

• "Minutes"

• "Seconds"

• "Time" - Use this value to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon
the range of values covered by the axis.

• ""- Use the empty string to indicate that no tick units are being explicitly set.
This implies that a single axis level will be drawn using the "Numeric" unit.
This is the default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values.

Note that the singular form of each of the time value strings is also acceptable (e.g,
TICKUNITS='Day' is equivalent to TICKUNITS='Days').

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

TICKVALUES (Get, Set)

Set this keyword to a vector of data values representing the values at each tick mark.
If TICKVALUES is set to 0, the default, IDL computes the tick values based on the
axis range and the number of major ticks. IDL converts, maintains, and returns this
data as double-precision floating-point.

TITLE (Get, Set)

Set this keyword to an instance of the IDLgrText object class to specify the title for
the axis. The default is the null object, specifying that no title is drawn. The title will
be centered along the axis, even if the text object itself has an associated location.
The title will have the same color as the IDLgrAxis object, regardless of the color
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1943
specified by the COLOR property of the IDLgrText object, unless the
USE_TEXT_COLOR keyword is specified.

USE_TEXT_COLOR (Get, Set)

Set this keyword to indicate that, for the tick text and/or title of the axis, the color
property values set for the given IDLgrText objects are to be used to draw those text
items. By default, this value is zero, indicating that the color properties of the
IDLgrText objects will be ignored, and that the COLOR property for the axis object
will be used for these text items instead.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object it is a user value of.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.
IDL Reference Guide IDLgrAxis

1944 Appendix A: IDL Object Class & Method Reference
ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1945
IDLgrAxis::SetProperty

The IDLgrAxis::SetProperty procedure method sets the value of a property or group
of properties for the axis.

Syntax

Obj -> [IDLgrAxis::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrAxis::Init followed by the word “Set” can be set using
IDLgrAxis::SetProperty.
IDL Reference Guide IDLgrAxis

1946 Appendix A: IDL Object Class & Method Reference
IDLgrBuffer

An IDLgrBuffer object is an in-memory, off-screen destination object. Object trees
can be drawn to instances of the IDLgrBuffer object and the resulting image can be
retrieved from the buffer using the Read() method. The off-screen representation
avoids dithering artifacts by providing a full-resolution buffer for objects using either
the RGB or Color Index color models.

Note
Objects or subclasses of this type can not be saved or restored.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See “IDLgrBuffer::Init” on page 1957.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrBuffer::Cleanup

• IDLgrBuffer::Draw

• IDLgrBuffer::Erase

• IDLgrBuffer::GetContiguousPixels

• IDLgrBuffer::GetDeviceInfo

• IDLgrBuffer::GetFontnames

• IDLgrBuffer::GetProperty

• IDLgrBuffer::GetTextDimensions
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1947
• IDLgrBuffer::Init

• IDLgrBuffer::PickData

• IDLgrBuffer::Read

• IDLgrBuffer::Select

• IDLgrBuffer::SetProperty
IDL Reference Guide IDLgrBuffer

1948 Appendix A: IDL Object Class & Method Reference
IDLgrBuffer::Cleanup

The IDLgrBuffer::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrBuffer::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1949
IDLgrBuffer::Draw

The IDLgrBuffer::Draw procedure method draws the given picture to this graphics
destination.

Note
Objects are drawn to the destination device in the order that they are added to the
model, view, viewgroup, or scene object that contains them.

Syntax

Obj -> [IDLgrBuffer::]Draw [, Picture] [, CREATE_INSTANCE={1 | 2}]
[, /DRAW_INSTANCE]

Arguments

Picture

The view (an instance of an IDLgrView object), viewgroup (an instance of an
IDLgrViewgroup object) or scene (an instance of an IDLgrScene object) to be drawn.

Keywords

CREATE_INSTANCE

Set this keyword equal to one to specify that this scene or view is the unchanging part
of a drawing. Some destinations can make an instance from the current window
contents without having to perform a complete redraw. If the view or scene to be
drawn is identical to the previously drawn view or scene, this keyword can be set
equal to 2 to hint the destination to create the instance from the current window
contents if it can.

DRAW_INSTANCE

Set this keyword to specify that this scene, viewgroup, or view is the changing part of
the drawing. It is overlaid on the result of the most recent CREATE_INSTANCE
draw.
IDL Reference Guide IDLgrBuffer

1950 Appendix A: IDL Object Class & Method Reference
IDLgrBuffer::Erase

The IDLgrBuffer::Erase procedure method erases this graphics destination.

Syntax

Obj -> [IDLgrBuffer::]Erase [, COLOR=index or RGB vector]

Arguments

None

Keywords

COLOR

Set this keyword to the color to be used for the erase. The color may be specified as a
color lookup table index or as an RGB vector.
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1951
IDLgrBuffer::GetContiguousPixels

The IDLgrBuffer::GetContiguousPixels function method returns an array of long
integers whose length is equal to the number of colors available in the index color
mode (that is, the value of the N_COLORS property).

The returned array marks contiguous pixels with the ranking of the range’s size. This
means that within the array, the elements in the largest available range are set to zero,
the elements in the second-largest range are set to one, etc. Use this range to set an
appropriate colormap for use with the SHADE_RANGE property of the
IDLgrSurface and IDLgrPolygon object classes.

To get the largest contiguous range, you could use the following IDL command:

result = obj -> GetContiguousPixels()
Range0 = WHERE(result EQ 0)

A contiguous region in the colormap can be increasing or decreasing in values. The
following would be considered contiguous:

[0,1,2,3,4]

[4,3,2,1,0]

Syntax

Return = Obj -> [IDLgrBuffer::]GetContiguousPixels()

Arguments

None

Keywords

None
IDL Reference Guide IDLgrBuffer

1952 Appendix A: IDL Object Class & Method Reference
IDLgrBuffer::GetDeviceInfo

The IDLgrBuffer::GetDeviceInfo procedure method returns information which
allows IDL applications to intelligently make decisions for optimal performance. For
example, it allows an application to determine if RENDERER=1 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Obj–>[IDLgrBuffer::]GetDeviceInfo [, ALL=variable]
[, MAX_TEXTURE_DIMENSIONS=variable]
[, MAX_VIEWPORT_DIMENSIONS=variable] [, NAME=variable]
[, NUM_CPUS=variable] [, VENDOR=variable] [, VERSION=variable]

Arguments

None.

Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure with
the values of all the device information keywords as fields.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two-element integer array that
specifies the maximum texture size supported by the device.

MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two-element integer array that
specifies the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the name
of the rendering device as a string.
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1953
NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains an
integer that specifies the number of CPUs that are known to, and available to IDL.

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI Irix,
SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in the
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains the
version of the rendering device driver as a string.
IDL Reference Guide IDLgrBuffer

1954 Appendix A: IDL Object Class & Method Reference
IDLgrBuffer::GetFontnames

The IDLgrBuffer::GetFontnames function method returns the list of available fonts
that can be used in IDLgrFont objects. This method will only return the names of the
available TrueType fonts. Hershey fonts will not be returned. See Appendix H,
“Fonts” for more information.

Syntax

Return = Obj -> [IDLgrBuffer::]GetFontnames(FamilyName[, IDL_FONTS={0 | 1 |
2 }] [, STYLES=string])

Arguments

FamilyName

A string representing the name of the font family to which all of the returned fonts
must belong. The string may be a fully specified family name—such as “Helvetica”.
You can use both “*” and “?” as wildcard characters, matching any number of
characters or one character respectively. To return all available family names, use
“*”.

Keywords

IDL_FONTS

Set this keyword to specify where to search for fonts that IDL may use. Set
IDL_FONT to 1 to select only fonts installed by IDL and to 2 to select only fonts
detected in the host operating system. The default value is 0, specifying that both IDL
and operating system fonts should be returned.

STYLES

Set this keyword to a string specifying the styles that are to be matched by the
returned font names. You can set STYLES to a fully specified style string, such as
“Bold Italic”. If you set STYLES to the null string, ' ', only fontnames without style
modifiers will be returned. You can use both “*” and “?” as wildcard characters,
matching any number of characters or one character respectively. The default value is
the string, “*”, which returns all fontnames containing the FamilyName argument,
with or without style modifiers.
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1955
IDLgrBuffer::GetProperty

The IDLgrBuffer::GetProperty procedure method retrieves the value of a property or
group of properties for the buffer.

Syntax

Obj -> [IDLgrBuffer::]GetProperty [, ALL=variable] [, IMAGE_DATA=variable]
[, SCREEN_DIMENSIONS=variable] [, ZBUFFER_DATA=variable]

Keywords

Any keyword to IDLgrBuffer::Init followed by the word “Get” can be retrieved using
IDLgrBuffer::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the retrievable properties associated with this object
(except IMAGE_DATA and ZBUFFER_DATA).

IMAGE_DATA

Set this keyword to a named variable that will contain a byte array representing the
image that is currently rendered within the buffer. If the buffer uses an RGB color
model, the returned array will have dimensions (3, xdim, ydim). If the window object
uses an indexed color model, the returned array will have dimensions (xdim, ydim).

SCREEN_DIMENSIONS

Set this keyword to a named variable that will contain a two-element vector of the
form [width, height] specifying the maximum allowed dimensions (measured in
device units) for the buffer object.

ZBUFFER_DATA

Set this keyword to a named variable that will contain a float array representing the
zbuffer that is currently within the buffer. The returned array will have dimensions
(xdim, ydim).
IDL Reference Guide IDLgrBuffer

1956 Appendix A: IDL Object Class & Method Reference
IDLgrBuffer::GetTextDimensions

The IDLgrBuffer::GetTextDimensions function method retrieves the dimensions of a
text object that will be rendered in a window. The result is a 3-element double-
precision floating-point vector [xDim, yDim, zDim] representing the dimensions of
the text object, measured in data units.

Syntax

Result = Obj ->[IDLgrBuffer::]GetTextDimensions(TextObj
[, DESCENT=variable] [, PATH=objref(s)])

Arguments

TextObj

The object reference to a text or axis object for which text dimensions are requested.

Keywords

DESCENT

Set this keyword equal to a named variable that will contain an array of double-
precision floating-point values (one for each string in the IDLgrText object). The
values represent the distance to travel (parallel to the UPDIR vector) from the text
baseline to reach the bottom of the lowest descender in the string. All values will be
negative numbers, or zero. This keyword is valid only if TextObj is an IDLgrText
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the text dimensions.
Each path object reference specified with this keyword must contain an alias. The
text dimensions are computed for the version of the object falling within that path. If
this keyword is not set, the PARENT properties determine the path from the current
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrBuffer::GetTextDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw is
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1957
IDLgrBuffer::Init

The IDLgrBuffer::Init function method initializes the buffer object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrBuffer' [, COLOR_MODEL{Get}={0 | 1}]
[, DIMENSIONS{Get, Set}=[width, height]] [, GRAPHICS_TREE{Get,
Set}=objref] [, N_COLORS{Get}=integer{2 to 256}] [, PALETTE{Get,
Set}=objref] [, QUALITY{Get, Set}={0 | 1 | 2}] [, RESOLUTION{Get, Set}=[xres,
yres]] [, UNITS{Get, Set}={0 | 1 | 2 | 3}] [, UVALUE{Get, Set}=value])

or

Result = Obj -> [IDLgrBuffer::]Init() (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

None

Keywords

Properties retrievable via IDLgrBuffer::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrBuffer::SetProperty are
indicated by the word “Set” following the keyword.

COLOR_MODEL (Get)

Set this keyword to the color model to be used for the buffer:

• 0 = RGB (default)

• 1 = Color Index
IDL Reference Guide IDLgrBuffer

1958 Appendix A: IDL Object Class & Method Reference
DIMENSIONS (Get, Set)

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the buffer in units specified by the UNITS property. The default is
[640,480].

GRAPHICS_TREE (Get, Set)

Set this keyword to an object reference of type IDLgrScene, IDLgrViewgroup, or
IDLgrView. If this property is set to a valid object reference, calling the Draw
method on the destination object with no arguments will cause the object reference
associated with this property to be drawn. If this object is valid and the destination
object is destroyed, this object reference will be destroyed as well. By default the
GRAPHICS_TREE property is set equal to the null-object.

N_COLORS (Get)

Set this keyword to the number of colors (between 2 and 256) to be used if
COLOR_MODEL is set to Color Index.

PALETTE (Get, Set)

Set this keyword to the object reference of a palette object (an instance of the
IDLgrPalette object class) to specify the red, green, and blue values that are to be
loaded into the buffer’s color lookup table.

QUALITY (Get, Set)

Set this keyword to an integer indicating the rendering quality at which graphics are
to be drawn to the buffer. Valid values are:

• 0 = Low

• 1 = Medium

• 2 = High (default)

RESOLUTION (Get, Set)

Set this keyword to a two-element vector of the form [xres, yres] specifying the
device resolution in centimeters per pixel. This value is stored in double precision.
The default value is: [0.035277778, 0.035277778] (72 DPI).
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1959
UNITS (Get, Set)

Set this keyword to indicate the units of measure for the DIMENSIONS property.
Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to 1600 x 1200

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object it is a user value of.
IDL Reference Guide IDLgrBuffer

1960 Appendix A: IDL Object Class & Method Reference
IDLgrBuffer::PickData

The IDLgrBuffer::Pickdata function method maps a point in the two-dimensional
device space of the buffer to a point in the three-dimensional data space of an object
tree. The resulting 3D data space coordinates are returned in a user-specified variable.
The Pickdata function returns one if the specified location in the buffer’s device
space “hits” a graphic object, or zero otherwise.

Syntax

Result = Obj -> [IDLgrBuffer::]PickData(View, Object, Location, XYZLocation
[, PATH=objref(s)])

Arguments

View

The object reference of an IDLgrView object that contains the object being picked.

Object

The object reference of a model or atomic graphic object from which the data space
coordinates are being requested.

Location

A two-element vector [x, y] specifying the location in the buffer’s device space of the
point to pick data from.

XYZLocation

A named variable that will contain the three-dimensional double-precision floating-
point data space coordinates of the picked point. Note that the value returned in this
variable is a location, not a data value.

Note
If the atomic graphic object specified as the target has been transformed using either
the LOCATION or DIMENSIONS properties (this is only possible with
IDLgrAxis, IDLgrImage, and IDLgrText objects), these transformations will not be
included in the data coordinates returned by the Pickdata function. This means that
you may need to re-apply the transformation accomplished by specifying
LOCATION or DIMENSIONS once you have retrieved the data coordinates with
Pickdata. This situation does not occur if you transform the axis, text, or image
object using the [XYZ]COORD_CONV properties.
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1961
Keywords

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to map the device position to a
data space coordinate. Each path object reference specified with this keyword must
contain an alias. The data space coordinate is computed for the version of the object
falling within that path. If this keyword is not set, the PARENT properties determine
the path from the current object to the top of the graphics hierarchy and no alias paths
are pursued.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDL Reference Guide IDLgrBuffer

1962 Appendix A: IDL Object Class & Method Reference
IDLgrBuffer::Read

The IDLgrWindow::Read function method reads an image from a buffer. The
returned value is an instance of the IDLgrImage object class.

Syntax

Result = Obj -> [IDLgrBuffer::]Read()

Arguments

None

Keywords

None
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1963
IDLgrBuffer::Select

The IDLgrBuffer::Select function method returns a list of objects selected at a
specified location. If no objects are selected, the Select function returns -1.

Note
IDL returns a maximum of 512 objects. This maximum may be smaller if any of the
objects are contained in deep model hierarchies. Because of this limit, it is possible
that not all objects eligible for selection will appear in the list.

Syntax

Result = Obj -> [IDLgrBuffer::]Select(Picture, XY [, DIMENSIONS=[width,
height]] [, UNITS={0 | 1 | 2 | 3}])

Arguments

Picture

The view, viewgroup, or scene (an instance of the IDLgrView, IDLgrViewgroup, or
IDLgrScene class) whose children are among the candidates for selection.

If the first argument is a scene or viewgroup, then the returned object list will contain
one or more views. If the first argument is a view, the list will contain atomic graphic
objects (or model objects which have their SELECT_TARGET property set). Objects
are returned in order, according to their distance from the viewer. The closer an
object is to the viewer, the lower its index in the returned object list. If multiple
objects are at the same distance from the viewer (views in a scene or 2D geometry),
the last object drawn will appear at a lower index in the list.

XY

A two-element array defining the center of the selection box in device space. By
default, the selection box is 3 pixels by 3 pixels.

Keywords

DIMENSIONS

Set this keyword to a two-element array [w, h] to specify that the selection box will
have a width w and a height h, and will be centered about the coordinates [x, y]
specified in the XY argument. The box occupies the rectangle defined by:

(x-(w/2), y-(h/2)) - (x+(w/1), y+(h/2))
IDL Reference Guide IDLgrBuffer

1964 Appendix A: IDL Object Class & Method Reference
Any object which intersects this box is considered to be selected. By default, the
selection box is 3 pixels by 3 pixels.

UNITS

Set this keyword to indicate the units of measure. Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to the dimensions of the graphics destination.
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1965
IDLgrBuffer::SetProperty

The IDLgrBuffer::SetProperty procedure method sets the value of a property or
group of properties for the buffer.

Syntax

Obj -> [IDLgrBuffer::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrBuffer::Init followed by the word “Set” can be retrieved using
IDLgrBuffer::SetProperty.
IDL Reference Guide IDLgrBuffer

1966 Appendix A: IDL Object Class & Method Reference
IDLgrClipboard

An IDLgrClipboard object will send Object Graphics output to the operating system
native clipboard in bitmap format. The format of bitmaps sent to the clipboard is
operating system dependent: output is stored as a PICT image on the Macintosh, as a
device-independent bitmap under Windows, and as an Encapsulated PostScript (EPS)
image under UNIX and VMS.

Note
Objects or subclasses of this type can not be saved or restored.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See “IDLgrClipboard::Init” on page 1976.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrClipboard::Cleanup

• IDLgrClipboard::Draw

• IDLgrClipboard::GetContiguousPixels

• IDLgrClipboard::GetDeviceInfo

• IDLgrClipboard::GetFontnames

• IDLgrClipboard::GetProperty

• IDLgrClipboard::GetTextDimensions

• IDLgrClipboard::Init

• IDLgrClipboard::SetProperty
IDLgrClipboard IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1967
IDLgrClipboard::Cleanup

The IDLgrClipboard::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj-> [IDLgrClipboard::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrClipboard

1968 Appendix A: IDL Object Class & Method Reference
IDLgrClipboard::Draw

The IDLgrClipboard::Draw procedure method draws the given picture to this
graphics destination.

Note
Objects are drawn to the destination device in the order that they are added to the
model, view, viewgroup, or scene object that contains them.

Syntax

Obj -> [IDLgrClipboard::]Draw [, Picture] [, FILENAME=string]
[, POSTSCRIPT=value] [, VECTOR={ 0 | 1 }]

Arguments

Picture

The view (an instance of an IDLgrView object), viewgroup (an instance of an
IDLgrViewgroup object) or scene (an instance of an IDLgrScene object) to be drawn.

Keywords

FILENAME

Set this keyword to a string representing the name of a file to which the output should
be written. By default, this keyword is the null string, indicating that the output is
written to the clipboard.

POSTSCRIPT

Set this keyword to a nonzero value to indicate that the generated output should be in
PostScript format. By default, the generated output is in Windows Enhanced Metafile
Format on Windows platforms, PICT format on Macintosh platforms, and PostScript
on Unix/VMS platforms.

VECTOR

Set this keyword to indicate the type of graphics primitives generated. Valid values
include:

0 = Bitmap (default)

1 = Vector
IDLgrClipboard IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1969
If VECTOR = 0 (Bitmap), the Draw method renders the scene to a buffer and then
copies the buffer to the printer in bitmap format. The bitmap retains the quality of the
original image, but the user cannot scale the bitmap effectively on all devices.

If VECTOR = 1 (Vector), the Draw method renders the scene using simple vector
operations that result in a representation of the Scene that is scalable to the printer.
The vector representation does not retain all the attributes of the original image,
however, a user can effectively scale it on other devices. On Windows, the
representation is the Windows Enhanced Metafile (EMF). On UNIX platforms, the
representation is PostScript. On Macintosh, it is PICT.
IDL Reference Guide IDLgrClipboard

1970 Appendix A: IDL Object Class & Method Reference
IDLgrClipboard::GetContiguousPixels

The IDLgrClipboard::GetContiguousPixels function method returns an array of long
integers whose length is equal to the number of colors available in the index color
mode (that is, the value of the N_COLORS property).

The returned array marks contiguous pixels with the ranking of the range’s size. This
means that within the array, the elements in the largest available range are set to zero,
the elements in the second-largest range are set to one, etc. Use this range to set an
appropriate colormap for use with the SHADE_RANGE property of the
IDLgrSurface and IDLgrPolygon object classes.

To get the largest contiguous range, you could use the following IDL command:

result = obj -> GetContiguousPixels()
Range0 = WHERE(result EQ 0)

A contiguous region in the colormap can be increasing or decreasing in values. The
following would be considered contiguous:

[0,1,2,3,4]

[4,3,2,1,0]

Syntax

Return = Obj ->[IDLgrClipboard::]GetContiguousPixels()

Arguments

None

Keywords

None
IDLgrClipboard IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1971
IDLgrClipboard::GetDeviceInfo

The IDLgrClipboard::GetDeviceInfo procedure method returns information which
allows IDL applications to intelligently make decisions for optimal performance. For
example, it allows an application to determine if RENDERER=1 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Obj–>[IDLgrClipboard::]GetDeviceInfo [, ALL=variable]
[, MAX_TEXTURE_DIMENSIONS=variable]
[, MAX_VIEWPORT_DIMENSIONS=variable] [, NAME=variable]
[, NUM_CPUS=variable] [, VENDOR=variable] [, VERSION=variable]

Arguments

None.

Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure with
the values of all the device information keywords as fields.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two element integer array that
specifies the maximum texture size supported by the device.

MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two element integer array that
specifies the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the name
of the rendering device as a string.
IDL Reference Guide IDLgrClipboard

1972 Appendix A: IDL Object Class & Method Reference
NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains an
integer that specifies the number of CPUs that are known to, and available to IDL.

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI Irix,
SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in the
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains the
version of the rendering device driver as a string.
IDLgrClipboard IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1973
IDLgrClipboard::GetFontnames

The IDLgrClipboard::GetFontnames function method returns the list of available
fonts that can be used in IDLgrFont objects. This method will only return the names
of the available TrueType fonts. Hershey fonts will not be returned; see Appendix H,
“Fonts” for more information.

Syntax

Return = Obj -> [IDLgrClipboard::]GetFontnames(FamilyName
[, IDL_FONTS={0 | 1 | 2}] [, STYLES=string])

Arguments

FamilyName

A string representing the name of the font family to which all of the returned fonts
must belong. The string may be a fully specified family name—such as “Helvetica”.
You can use both “*” and “?” as wildcard characters, matching any number of
characters or one character respectively. To return all available family names, use
“*”.

Keywords

IDL_FONTS

Set this keyword to specify where to search for fonts that IDL may use. Set
IDL_FONT to 1 to select only fonts installed by IDL and to 2 to select only fonts
detected in the host operating system. The default value is 0, specifying that both IDL
and operating system fonts should be returned.

STYLES

Set this keyword to a string specifying the styles that are to be matched by the
returned font names. You can set STYLES to a fully specified style string, such as
“Bold Italic”. If you set STYLES to the null string, ' ', only fontnames without style
modifiers will be returned. You can use both “*” and “?” as wildcard characters,
matching any number of characters or one character respectively. The default value is
the string, “*”, which returns all fontnames containing the FamilyName argument,
with or without style modifiers.
IDL Reference Guide IDLgrClipboard

1974 Appendix A: IDL Object Class & Method Reference
IDLgrClipboard::GetProperty

The IDLgrClipboard::GetProperty procedure method retrieves the value of a property
or group of properties for the clipboard buffer.

Syntax

Obj -> [IDLgrClipboard::]GetProperty [, ALL=variable]
[, SCREEN_DIMENSIONS=variable]

Arguments

None

Keywords

Any keyword to IDLgrClipboard::Init followed by the word “Get” can be retrieved
using IDLgrClipboard::GetProperty. In addition, the following keywords are
available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the retrievable properties associated with this object.

SCREEN_DIMENSIONS

Set this keyword to a named variable that will contain a two-element vector of the
form [width, height] specifying the maximum allowed dimensions (measured in
device units) for the clipboard object.
IDLgrClipboard IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1975
IDLgrClipboard::GetTextDimensions

The IDLgrClipboard::GetTextDimensions function method retrieves the dimensions
of a text object that will be rendered in the clipboard buffer. The result is a 3-element
double-precision floating-point vector [xDim, yDim, zDim] representing the
dimensions of the text object, measured in data units.

Syntax

Result = Obj ->[IDLgrClipboard::]GetTextDimensions(TextObj
[, DESCENT=variable] [, PATH=objref(s)])

Arguments

TextObj

The object reference to a text or axis object for which the text dimensions are
requested.

Keywords

DESCENT

Set this keyword equal to a named variable that will contain an array of double-
precision floating-point values (one for each string in the IDLgrText object). The
values represent the distance to travel (parallel to the UPDIR vector) from the text
baseline to reach the bottom of the lowest descender in the string. All values will be
negative numbers, or zero. This keyword is valid only if TextObj is an IDLgrText
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the text dimensions.
Each path object reference specified with this keyword must contain an alias. The
text dimensions are computed for the version of the object falling within that path. If
this keyword is not set, the PARENT properties determine the path from the current
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrClipboard::GetTextDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw is
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDL Reference Guide IDLgrClipboard

1976 Appendix A: IDL Object Class & Method Reference
IDLgrClipboard::Init

The IDLgrClipboard::Init function method initializes the clipboard object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrClipboard' [, COLOR_MODEL{Get}={0 | 1}]
[, DIMENSIONS{Get, Set}=[width, height]] [, GRAPHICS_TREE{Get,
Set}=objref] [, N_COLORS{Get}=integer{2 to 256}] [, PALETTE{Get,
Set}=objref] [, QUALITY{Get, Set}={0 | 1 | 2}] [, RESOLUTION{Get, Set}=[xres,
yres]] [, UNITS{Get, Set}={0 | 1 | 2 | 3}] [, UVALUE{Get, Set}=value])

or

Result = Obj -> [IDLgrClipboard::]Init() (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

None

Keywords

Properties retrievable via IDLgrClipboard::GetProperty are indicated by the word
“Get” following the keyword. Properties settable via IDLgrClipboard::SetProperty
are indicated by the word “Set” following the keyword.
IDLgrClipboard IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1977
COLOR_MODEL (Get)

Set this keyword to the color model to be used for the clipboard buffer:

• 0 = RGB (default)

• 1 = Color Index

DIMENSIONS (Get, Set)

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the clipboard buffer in units specified by the UNITS property. The
default is [640,480].

GRAPHICS_TREE (Get, Set)

Set this keyword to an object reference of type IDLgrScene, IDLgrViewgroup, or
IDLgrView. If this property is set to a valid object reference, calling the Draw
method on the destination object with no arguments will cause the object reference
associated with this property to be drawn. If this object is valid and the destination
object is destroyed, this object reference will be destroyed as well. By default the
GRAPHICS_TREE property is set equal to the null-object.

N_COLORS (Get)

Set this keyword to the number of colors (between 2 and 256) to be used if
COLOR_MODEL is set to Color Index.

PALETTE (Get, Set)

Set this keyword to the object reference of a palette object (an instance of the
IDLgrPalette object class) to specify the red, green, and blue values that are to be
loaded into the clipboard buffer’s color lookup table.

QUALITY (Get, Set)

Set this keyword to an integer indicating the rendering quality at which graphics are
to be drawn to the clipboard buffer. Valid values are:

• 0 = Low

• 1 = Medium

• 2 = High (default)
IDL Reference Guide IDLgrClipboard

1978 Appendix A: IDL Object Class & Method Reference
RESOLUTION (Get, Set)

Set this keyword to a two-element vector of the form [xres, yres] specifying the
device resolution in centimeters per pixel. This value is stored in double precision.
The default value is: [0.035277778, 0.035277778] (72 DPI).

Note
To match screen rendering on an IDLgrClipboard object, the following properties
should be matched between the devices: DIMENSIONS, UNITS, RESOLUTION,
COLOR_MODEL and N_COLORS.

UNITS (Get, Set)

Set this keyword to indicate the units of measure for the DIMENSIONS property.
Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized (relative to 1600 x 1200)

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object it is a user value of.
IDLgrClipboard IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1979
IDLgrClipboard::SetProperty

The IDLgrClipboard::SetProperty procedure method sets the value of a property or
group of properties for the clipboard buffer.

Syntax

Obj -> [IDLgrClipboard::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrClipboard::Init followed by the word “Set” can be retrieved
using IDLgrClipboard::SetProperty.
IDL Reference Guide IDLgrClipboard

1980 Appendix A: IDL Object Class & Method Reference
IDLgrColorbar

The IDLgrColorbar object consists of a color-ramp with an optional framing box and
annotation axis. The object can be horizontal or vertical.

An IDLgrColorbar object is a composite object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

This object class is implemented in the IDL language. Its source code can be found in
the file idlgrcolorbar_ _define.pro in the lib subdirectory of the IDL
distribution.

Superclasses

This class is a subclass of IDLgrModel.

Subclasses

This class has no subclasses.

Creation

See “IDLgrColorbar::Init” on page 1985.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrColorbar::Cleanup

• IDLgrColorbar::ComputeDimensions

• IDLgrColorbar::GetProperty

• IDLgrColorbar::Init

• IDLgrColorbar::SetProperty

Inherited Methods

This class inherits the following methods:

• IDLgrModel::GetCTM
IDLgrColorbar IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1981
IDLgrColorbar::Cleanup

The IDLgrColorbar::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrColorbar::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrColorbar

1982 Appendix A: IDL Object Class & Method Reference
IDLgrColorbar::ComputeDimensions

The IDLgrColorbar::ComputeDimensions function method retrieves the dimensions
of a colorbar object for the given destination object. The result is a three-element
double-precision floating-point vector [xDim, yDim, zDim] representing the
dimensions of the colorbar object measured in data units.

Syntax

Result = Obj ->[IDLgrColorbar::]ComputeDimensions(DestinationObj
[, PATH=objref(s)])

Arguments

DestinationObject

The object reference to a destination object (IDLgrBuffer, IDLgrClipboard,
IDLgrPrinter, or IDLgrWindow) for which the dimensions of the colorbar are being
requested.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the dimensions. Each
path object reference specified with this keyword must contain an alias. The text
dimensions are computed for the version of the object falling within that path. If this
keyword is not set, the PARENT properties determine the path from the current
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrColorbar::ComputeDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw is
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDLgrColorbar IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1983
IDLgrColorbar::GetProperty

The IDLgrColorbar::GetProperty procedure method retrieves the value of a property
or group of properties for the colorbar.

Syntax

Obj -> [IDLgrColorbar::]GetProperty [, ALL=variable] [, PARENT=variable]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

None

Keywords

Any keyword to IDLgrColorbar::Init followed by the word “Get” can be retrieved
using IDLgrColorbar::GetProperty. In addition, the following keywords are
available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the retrievable properties associated with this object.

PARENT

Set this keyword to a named variable that will contain an object reference to the
object that contains this colorbar.

XRANGE

Set this keyword to a named variable that will contain a two-element double-
precision floating-point vector of the form [xmin, xmax] specifying the range of the x
data coordinates covered by the colorbar.

YRANGE

Set this keyword to a named variable that will contain a two-element double-
precision floating-point vector of the form [ymin, ymax] specifying the range of the Y
data coordinates covered by the colorbar.
IDL Reference Guide IDLgrColorbar

1984 Appendix A: IDL Object Class & Method Reference
ZRANGE

Set this keyword to a named variable that will contain a two-element double-
precision floating-point vector of the form [zmin, zmax] specifying the range of the Z
data coordinates covered by the colorbar.

Note
Until the colorbar is drawn to the destination object, the [XYZ]RANGE properties
will be zero. Use the ComputeDimensions method on the colorbar object to get the
data dimensions of the colorbar prior to a draw operation.
IDLgrColorbar IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1985
IDLgrColorbar::Init

The IDLgrColorbar::Init function method initializes the colorbar object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrColorbar' [, aRed, aGreen, aBlue]
[, BLUE_VALUES{Get, Set}=vector] [, COLOR{Get, Set}=index or RGB vector]
[, DIMENSIONS{Get, Set}=[dx, dy]] [, GREEN_VALUES{Get, Set}=vector]
[, /HIDE{Get, Set}] [, MAJOR{Get, Set}=integer] [, MINOR{Get, Set}=integer]
[NAME{Get, Set}=string] [, PALETTE{Get, Set}=objref] [, RED_VALUES{Get,
Set}=vector] [, SHOW_AXIS{Get, Set}={0 | 1 | 2}] [, /SHOW_OUTLINE{Get,
Set}] [, SUBTICKLEN{Get, Set}=minor_tick_length/major_tick_length]
[, THICK{Get, Set}=points{1.0 to 10.0}] [, /THREED{Get}]
[, TICKFORMAT{Get, Set}=string] [, TICKFRMTDATA{Get, Set}=value]
[, TICKLEN{Get, Set}=value] [, TICKTEXT{Get, Set}=objref(s)]
[, TICKVALUES{Get, Set}=vector] [, TITLE{Get, Set}=objref] [, UVALUE{Get,
Set}=value] [, XCOORD_CONV{Get, Set}=vector] [, YCOORD_CONV{Get,
Set}=vector] [, ZCOORD_CONV{Get, Set}=vector])

or

Result = Obj -> [IDLgrColorbar::]Init([aRed, aGreen, aBlue]) (Only in a subclass’
Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.
IDL Reference Guide IDLgrColorbar

1986 Appendix A: IDL Object Class & Method Reference
Arguments

aRed

A vector containing the red values for the color palette. These values should be
within the range of 0 < Value < 255. The number of elements comprising the aRed
vector must not exceed 256.

aGreen

A vector containing the green values for the color palette. These values should be
within the range of 0 < Value < 255. The number of elements comprising the aGreen
vector must not exceed 256.

aBlue

A vector containing the blue values for the color palette. These values should be
within the range of 0 < Value < 255. The number of elements comprising the aBlue
vector must not exceed 256.

If aRed, aGreen, and aBlue are not provided, the color palette will default to a 256
entry greyscale ramp.

Keywords

Properties retrievable via IDLgrColorbar::GetProperty are indicated by the word
“Get” following the keyword. Properties settable via IDLgrColorbar::SetProperty are
indicated by the word “Set” following the keyword.

BLUE_VALUES (Get, Set)

A vector containing the blue values for the color palette. Setting this value is the same
as specifying the aBlue argument to the IDLgrColorbar::Init method.

COLOR (Get, Set)

Set this keyword to the color to be used as the foreground color for the axis and
outline box. The color may be specified as a color lookup table index or as an RGB
vector. The default is [0, 0, 0].

DIMENSIONS (Get, Set)

Set this keyword to a two element vector [dx, dy] that specifies the size of the ramp
display (not the axis) in pixels. If dx > dy, the colorbar is drawn horizontally with the
axis placed below or above the ramp box depending on the value of the
SHOW_AXIS property. If dx < dy, the colorbar is drawn vertically with the axis
IDLgrColorbar IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1987
placed to the right or left of the ramp box depending on the value of the
SHOW_AXIS property. The default value is [16,256].

GREEN_VALUES (Get, Set)

A vector containing the green values for the color palette. Setting this value is the
same as specifying the aGreen argument to the IDLgrColorbar::Init method.

HIDE (Get, Set)

Set this keyword to a boolean value to indicate whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

MAJOR (Get, Set)

Set this keyword to an integer representing the number of major tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely.

MINOR (Get, Set)

Set this keyword to an integer representing the number of minor tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely.

NAME (Get, Set)

Set this keyword to a string representing the name to be associated with this object.
The default is the null string, ''.

PALETTE (Get, Set)

Set this keyword to an instance of the IDLgrPalette object class. If this keyword is a
valid object reference, the colors within the IDLgrPalette are used to specify the
colors for the colorbar.

RED_VALUES (Get, Set)

A vector containing the red values for the color palette. Setting this value is the same
as specifying the aRed argument to the IDLgrColorbar::Init method.

SHOW_AXIS (Get, Set)

Set this keyword to an integer value indicating whether the axis should be drawn:

• 0 = Do not display axis (the default)
IDL Reference Guide IDLgrColorbar

1988 Appendix A: IDL Object Class & Method Reference
• 1 = Display axis on left side or below the color ramp

• 2 = Display axis on right side or above the color ramp

SHOW_OUTLINE (Get, Set)

Set this keyword to a boolean value indicating whether the colorbar bounds should be
outlined:

• 0 = Do not display outline (the default)

• 1 = Display outline

SUBTICKLEN (Get, Set)

Set this keyword to a scale ratio specifying the length of minor tick marks relative to
the length of major tick marks. The default is 0.5, specifying that the minor tick mark
is one-half the length of the major tick mark.

THICK (Get, Set)

Set this keyword to a value between 1.0 and 10.0, specifying the line thickness used
to draw the axis and box outline, in points. The default is 1.0 points.

THREED (Get)

Set this keyword on initialization to create the colorbar as a graphic object that can be
fully transformed in three dimensions. By default, the colorbar always faces the
viewer and is drawn at z=0.

TICKFORMAT (Get, Set)

Set this keyword to either a standard IDL format string (see “Files and Input/Output”
in Chapter 8 of Building IDL Applications for details on format codes) or a string
containing the name of a user-supplied function that returns a string to be used to
format the axis tick mark labels. The function should accept integer arguments for the
direction of the axis, the index of the tick mark, and the value of the tick mark, and
should return a string to be used as the tick mark's label. The function may optionally
accept a keyword called DATA, which will be automatically set to the
TICKFRMTDATA value. The default TICKFORMAT is '', the null string, which
indicates that IDL will determine the appropriate format for each value.

TICKFRMTDATA (Get, Set)

Set this keyword to a value of any type. It will be passed via the DATA keyword to
the user-supplied formatting function specified via the TICKFORMAT keyword, if
any. By default, this value is 0, indicating that the DATA keyword will not be set
(and furthermore, need not be supported by the user-supplied function). Note that
IDLgrColorbar IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1989
TICKFRMTDATA will not be included in the structure returned via the ALL
keyword to the IDLgrColorbar::GetProperty method.

TICKLEN (Get, Set)

Set this keyword to the length of each major tick mark, measured in data units. The
recommended, and default, tick mark length is 0.2. IDL converts, maintains, and
returns this data as double-precision floating-point.

TICKTEXT (Get, Set)

Set this keyword to either a single instance of the IDLgrText object class (with
multiple strings) or to a vector of instances of the IDLgrText object class (each with a
single string) to specify the annotations to be assigned to the tick marks. By default,
TICKTEXT is set to the NULL object, which indicates that IDL will compute tick
annotations based upon the major tick values. The positions and orientation of the
provided text object(s) may be overwritten by the colorbar.

TICKVALUES (Get, Set)

Set this keyword to a vector of data values representing the values at each tick mark.
If TICKVALUES is set to 0, the default, IDL computes the tick values based on the
axis range and the number of major ticks. IDL converts, maintains, and returns this
data as double-precision floating-point.

TITLE (Get, Set)

Set this keyword to an instance of the IDLgrText object class to specify the title for
the axis. The default is the null object, specifying that no title is drawn. The title will
be centered along the axis, even if the text object itself has an associated location.

UVALUE (Get, Set)

Set this keyword to a value of any type. You may use this value to contain any
information you wish.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]
IDL Reference Guide IDLgrColorbar

1990 Appendix A: IDL Object Class & Method Reference
The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.
IDLgrColorbar IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1991
IDLgrColorbar::SetProperty

The IDLgrColorbar::SetProperty procedure method sets the value of a property or
group of properties for the colorbar.

Syntax

Obj -> [IDLgrColorbar::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrColorbar::Init followed by the word “Set” can be retrieved
using IDLgrColorbar::SetProperty.
IDL Reference Guide IDLgrColorbar

1992 Appendix A: IDL Object Class & Method Reference
IDLgrContour

The IDLgrContour object draws a contour plot from data stored in a rectangular array
or from a set of unstructured points. Both line contours and filled contour plots can be
created.

An IDLgrContour object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

The object stores the following argument or property in double-precision if the
DOUBLE_DATA keyword parameter is specified, and in single-precision otherwise.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See “IDLgrContour::Init” on page 1998.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrContour::Cleanup

• IDLgrContour::GetCTM

• IDLgrContour::GetProperty

• IDLgrContour::Init

• IDLgrContour::SetProperty
IDLgrContour IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1993
IDLgrContour::Cleanup

The IDLgrContour::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrContour::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrContour

1994 Appendix A: IDL Object Class & Method Reference
IDLgrContour::GetCTM

The IDLgrContour::GetCTM method returns the 4 x 4 double-precision floating-
point graphics transform matrix from the current object upward through the graphics
tree.

Syntax

Result = Obj -> [IDLgrContour::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the surface
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrContour::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDLgrContour IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1995
TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.
IDL Reference Guide IDLgrContour

1996 Appendix A: IDL Object Class & Method Reference
IDLgrContour::GetProperty

The IDLgrContour::GetProperty procedure method retrieves the value of a property
or group of properties for the contour.

Syntax

Obj -> [IDLgrContour::]GetProperty [, ALL=variable] [, GEOM=variable]
[, PARENT=variable] [, XRANGE=variable] [, YRANGE=variable]
[, ZRANGE=variable]

Arguments

None

Keywords

Any keyword to IDLgrContour::Init followed by the word “Get” can be retrieved
using IDLgrContour::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the retrievable properties associated with this object.

GEOM

Set this keyword to a named variable that will contain the geometry associated with
the contour. IDL returns this data in single-precision floating-point by default or in
double-precision floating-point if the DOUBLE_GEOM keyword is set in the
IDLgrContour::Init method.

PARENT

Set this keyword to a named variable that will contain an object reference to the
object that contains this contour.

XRANGE

Set this keyword to a named variable that will contain a two-element double-
precision floating-point vector of the form [xmin, xmax] specifying the range of the X
data coordinates covered by the contour.
IDLgrContour IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1997
YRANGE

Set this keyword to a named variable that will contain a two-element double-
precision floating-point vector of the form [ymin, ymax] specifying the range of the Y
data coordinates covered by the contour.

ZRANGE

Set this keyword to a named variable that will contain a two-element double-
precision floating-point vector of the form [zmin, zmax] specifying the range of the Z
data coordinates covered by the contour.
IDL Reference Guide IDLgrContour

1998 Appendix A: IDL Object Class & Method Reference
IDLgrContour::Init

The IDLgrContour::Init function method initializes the contour object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrContour' [, Values] [, ANISOTROPY{Get, Set}=[x, y, z]]
[, C_COLOR{Get, Set}=vector] [, C_FILL_PATTERN{Get, Set}=array of
IDLgrPattern objects] [, C_LINESTYLE{Get, Set}=array of linestyles]
[, C_THICK{Get, Set}=float array{each element 1.0 to 10.0}] [, C_VALUE{Get,
Set}=scalar or vector] [, COLOR{Get, Set}=index or RGB vector]
[, DATA_VALUES{Get, Set}=vector or 2D array] [, /DOUBLE_DATA]
[, /DOUBLE_GEOM] [, /DOWNHILL{Get, Set}] [, /FILL{Get, Set}]
[, GEOMX{Set}=vector or 2D array] [, GEOMY{Set}=vector or 2D array]
[, GEOMZ{Set}=scalar, vector, or 2D array] [, /HIDE{Get, Set}]
[, MAX_VALUE{Get, Set}=value] [, MIN_VALUE{Get, Set}=value]
[, NAME{Get, Set}=string] [, N_LEVELS{Get, Set}=value] [, PALETTE{Get,
Set}=objref] [, /PLANAR{Get, Set}] [, POLYGONS{Get, Set}=array of polygon
descriptions] [, SHADE_RANGE{Get, Set}=[min, max]] [, SHADING{Get,
Set}={0 |1}] [, TICKINTERVAL{Get, Set}=value] [, TICKLEN{Get, Set}=value]
[, UVALUE{Get, Set}=value] [, XCOORD_CONV{Get, Set}=vector]
[, YCOORD_CONV{Get, Set}=vector] [, ZCOORD_CONV{Get, Set}=vector])

or

Result = Obj -> [IDLgrContour::]Init([Values]) (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.
IDLgrContour IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1999
Arguments

Values

A vector or two-dimensional array of values to be contoured. If no values are
provided, the values will be derived from the GEOMZ keyword value (if set and the
PLANAR keyword is not set). In this case, the values to be contoured will match the
Z coordinates of the provided geometry. IDL converts and maintains this data as
double-precision floating-point if the argument is of type DOUBLE or if the
DOUBLE_DATA keyword is set. Otherwise, the data is stored in single-precision.
IDL returns the data as double-precision if it was stored in double-precision.

Keywords

Properties retrievable via IDLgrContour::GetProperty are indicated by the word
“Get” following the keyword. Properties settable via IDLgrContour::SetProperty are
indicated by the word “Set” following the keyword.

ANISOTROPY (Get, Set)

Set this keyword equal to a three-element vector [x, y, z] that represents the
multipliers to be applied to the internally computed correction factors along each axis
that account for anisotropic geometry. Correcting for anisotropy is particularly
important for the appropriate representations of downhill tickmarks.

By default, IDL will automatically compute correction factors for anisotropy based
on the [XYZ] range of the contour geometry. If the geometry (as provided via the
GEOMX, GEOMY, and GEOMZ keywords) falls within the range [xmin, ymin,
zmin] to [xmax, ymax, zmax], then the default correction factors are computed as
follows:

dx = xmax - xmin
dy = ymax - ymin
dz = zmax - zmin
; Get the maximum of the ranges:
maxRange = (dx > dy) > dz
IF (dx EQ 0) THEN xcorrection = 1.0 ELSE $

xcorrection = maxRange / dx
IF (dy EQ 0) THEN ycorrection = 1.0 ELSE $

ycorrection = maxRange / dy
IF (dz EQ 0) THEN zcorrection = 1.0 ELSE $

zcorrection = maxRange / dz

This internally computed correction is then multiplied by the corresponding [x, y, z]
values of the ANISOTROPY keyword. The default value for this keyword is [1,1,1].
IDL converts, maintains, and returns this data as double-precision floating-point.
IDL Reference Guide IDLgrContour

2000 Appendix A: IDL Object Class & Method Reference
C_COLOR (Get, Set)

Set this keyword to a vector of colors representing the colors to be applied at each
contour level. If there are more contour levels than elements in this vector, the colors
will be cyclically repeated. If C_COLORS is set to 0, all contour levels will be drawn
in the color specified by the COLOR keyword (this is the default).

C_FILL_PATTERN (Get, Set)

Set this keyword to an array of IDLgrPattern objects representing the patterns to be
applied at each contour level if the FILL keyword is non-zero. If there are more
contour levels than fill patterns, the patterns will be cyclically repeated. If this
keyword is set to 0, all contour levels are filled with a solid color (this is the default).

C_LINESTYLE (Get, Set)

Set this keyword to an array of linestyles representing the linestyles to be applied at
each contour level. The array may be either a vector of integers representing pre-
defined linestyles, or an array of 2-element vectors representing a stippling pattern
specification. If there are more contour levels than linestyles, the linestyles will be
cyclically repeated. If this keyword is set to 0, all levels are drawn as solid lines (this
is the default).

C_THICK (Get, Set)

Set this keyword to an array of line thicknesses representing the thickness to be
applied at each contour level, where each element is a value between 1.0 and 10.0. If
there are more contour levels than line thicknesses, the thicknesses will be cyclically
repeated. If this keyword is set to 0, all contour levels are drawn with a line thickness
of 1.0 points (this is the default).

C_VALUE (Get, Set)

Set this keyword to a scalar value or a vector of values for which contour values are
to be drawn. If this keyword is set to 0, contour levels will be evenly sampled across
the range of the DATA_VALUES, using the value of the N_LEVELS keyword to
determine the number of samples. IDL converts, maintains, and returns this data as
double-precision floating-point.

COLOR (Get, Set)

Set this keyword to the color to be used to draw the contours. The color may be
specified as a color lookup table index or as an RGB vector. The default is [0,0,0].
This value will be ignored if the C_COLORS keyword is set to a vector.
IDLgrContour IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2001
DATA_VALUES (Get, Set)

Set this keyword to a vector or two-dimensional array specifying the values to be
contoured. The keyword is the same as the Values argument described in the
Arguments section above. IDL converts and stores this data as double-precision
floating-point if the argument is of type DOUBLE or if the DOUBLE_DATA
keyword is set. Otherwise, the data is stored in single-precision. IDL returns the data
as double-precision if it was stored in double-precision.

DOUBLE_DATA (Get, Set)

Set this keyword to indicate that the object is to store data provided by either the
Values argument or the DATA_VALUES keyword parameter in double-precision
floating-point. Otherwise, the data is stored in single-precision floating-point. IDL
converts any value data already stored in the object to the requested precision, if
necessary.

DOUBLE_GEOM (Get, Set)

Set this keyword to indicate that the object is to store data provided by any of the
GEOMX, GEOMY, or GEOMZ keyword parameters in double-precision floating-
point. Otherwise, the data is stored in single-precision floating-point. IDL converts
any geometry data already stored in the object to the requested precision, if
necessary.

DOWNHILL (Get, Set)

Set this keyword to indicate that downhill tick marks should be rendered as part of
each contour level to indicate the downhill direction relative to the contour line.

FILL (Get, Set)

Set this keyword to indicate that the contours should be filled. The default is to draw
the contour levels as lines without filling. Filling contour may produce less than
satisfactory results if your data contains NaNs, or if the contours are not closed.

GEOMX (Set)

Set this keyword to a vector or two-dimensional array specifying the X coordinates of
the geometry with which the contour values correspond. If X is a vector, it must
match the number of elements in the Values argument or DATA_VALUES keyword
value, or it must match the first of the two dimensions of the Values argument or
DATA_VALUES keyword value (in which case, the X coordinates will be repeated
for each row of data values). IDL converts and maintains this data as double-
precision floating-point if the parameter is of type DOUBLE or if the
DOUBLE_GEOM property is non-zero. Otherwise, the data is stored in single-
IDL Reference Guide IDLgrContour

2002 Appendix A: IDL Object Class & Method Reference
precision. IDL returns the data as double-precision if it was stored in double-
precision.

GEOMY (Set)

Set this keyword to a vector or two-dimensional array specifying the Y coordinates of
the geometry with which the contour values correspond. If Y is a vector, it must
match the number of elements in the Values argument or DATA_VALUES keyword
value, or it must match the second of the two dimensions of the Values argument or
DATA_VALUES keyword value (in which case, the Y coordinates will be repeated
for each column of data values). IDL converts and maintains this data as double
precision floating point if the parameter is of type DOUBLE or if the
DOUBLE_GEOM property is non-zero. Otherwise, the data is stored in single
precision. IDL returns the data as double precision if it was stored in double
precision.

GEOMZ (Set)

Set this keyword to a scalar, a vector, or a two-dimensional array specifying the Z
coordinates of the geometry with which the contour values correspond.

• If GEOMZ is a scalar, and the PLANAR keyword is set, the resulting contour
geometry will be projected onto the plane Z=GEOMZ. If GEOMZ is a scalar,
and the PLANAR keyword is not set, any geometry associated with the
contour will be freed.

• If GEOMZ is a vector or an array, it must match the number of elements in the
Values argument or the DATA_VALUES keyword value.

• If GEOMZ is not set, the geometry will be derived from the DATA_VALUES
property (if it is set to a two-dimensional array). In this case, the connectivity
is implied. The X and Y coordinates match the row and column indices of the
array, and the Z coordinates match the data values.

IDL converts and maintains this data as double precision floating point if the
parameter is of type DOUBLE or if the DOUBLE_GEOM property is non-zero.
Otherwise, the data is stored in single precision. IDL returns the data as double
precision if it was stored in double precision.

HIDE (Get, Set)

Set this keyword to a boolean value to indicate whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic
IDLgrContour IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2003
MAX_VALUE (Get, Set)

Set this keyword to the maximum value to be plotted. Data values greater than this
value are treated as missing data. The default is the maximum value of the input Z
data. IDL converts, maintains, and returns this data as double-precision floating-
point.

MIN_VALUE (Get, Set)

Set this keyword to the minimum value to be plotted. Data values less than this value
are treated as missing data. The default is the minimum value of the input Z data. IDL
converts, maintains, and returns this data as double-precision floating-point.

NAME (Get, Set)

Set this keyword to a string representing the name to be associated with this object.
The default is the null string, ''.

N_LEVELS (Get, Set)

Set this keyword to the number of contour levels to generate. This keyword is ignored
if the C_VALUE keyword is set to a vector, in which case, the number of levels is
derived from the number of elements in that vector. Set this keyword to zero to
indicate that IDL should compute a default number of levels based on the range of
data values. This is the default.

PALETTE

Set this keyword equal to the object reference of a palette object (an instance of the
IDLgrPalette object class). This keyword is only used if the destination device is
using the RGB color model. If so, and a color value for the object is specified as a
color index value, the palette set by this keyword is used to translate the color to RGB
space. If the PALETTE property on this object is not set, the destination object
PALETTE property is used (which defaults to a grayscale ramp).

PLANAR (Get, Set)

Set this keyword to indicate that the contoured data is to be projected onto a plane.
This keyword is ignored if GEOMZ is not a scalar. The default is non-planar (i.e., to
display the contoured data at the Z locations provided by the GEOMZ keyword.

POLYGONS (Get, Set)

Set this keyword to an array of polygon descriptions that represents the connectivity
information for the data to be contoured (as specified in the Values argument or the
DATA_VALUES keyword). A polygon description is an integer or longword array
of the form: [n, i0, i1, ..., in-1], where n is the number of vertices that define the
IDL Reference Guide IDLgrContour

2004 Appendix A: IDL Object Class & Method Reference
polygon, and i0..in-1 are indices into the X, Y, and Z arguments that represent the
polygon vertices. To ignore an entry in the POLYGONS array, set the vertex count,
n, to 0. To end the drawing list, even if additional array space is available, set n to -1.
If this keyword is not specified, a single polygon will be generated.

Note
The connectivity array described by POLYGONS allows an individual object to
contain more than one polygon. Vertex, normal, and color information can be
shared by the multiple polygons. Consequently, the polygon object can represent an
entire mesh and compute reasonable normal estimates in most cases.

SHADE_RANGE (Get, Set)

Set this keyword to a two-element array that specifies the range of pixel values (color
indices) to use for shading. The first element is the color index for the darkest pixel.
The second element is the color index for the brightest pixel. This value is ignored
when the contour is drawn to a graphics destination that uses the RGB color model.

SHADING (Get, Set)

Set this keyword to an integer representing the type of shading to use:

• 0 = Flat (default): The color has a constant intensity for each face of the
contour, based on the normal vector.

• 1 = Gouraud: The colors are interpolated between vertices, and then along
scanlines from each of the edge intensities.

Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

TICKINTERVAL (Get, Set)

Set this keyword equal to a number indicating the distance between downhill
tickmarks, in data units. If TICKINTERVAL is not set, or if you explicitly set it to
zero, IDL will compute the distance based on the geometry of the contour. IDL
converts, maintains, and returns this data as double-precision floating-point.

TICKLEN (Get, Set)

Set this keyword equal to a number indicating the length of the downhill tickmarks,
in data units. If TICKLEN is not set, or if you explicitly set it to zero, IDL will
compute the length based on the geometry of the contour. IDL converts, maintains,
and returns this data as double-precision floating-point
IDLgrContour IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2005
UVALUE (Get, Set)

Set this keyword to a value of any type. Use this value to contain any information you
wish.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.
IDL Reference Guide IDLgrContour

2006 Appendix A: IDL Object Class & Method Reference
IDLgrContour::SetProperty

The IDLgrContour::SetProperty procedure method sets the value of a property or
group of properties for the contour.

Syntax

Obj -> [IDLgrContour::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrContour::Init followed by the word “Set” can be retrieved
using IDLgrContour::SetProperty.
IDLgrContour IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2007
IDLgrFont

A font object represents a typeface, style, weight, and point size that may be
associated with text objects.

Superclasses

This class has no superclass.

Subclasses

This class has no subclasses.

Creation

See “IDLgrFont::Init” on page 2010.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrFont::Cleanup

• IDLgrFont::GetProperty

• IDLgrFont::Init

• IDLgrFont::SetProperty
IDL Reference Guide IDLgrFont

2008 Appendix A: IDL Object Class & Method Reference
IDLgrFont::Cleanup

The IDLgrFont::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrFont::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrFont IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2009
IDLgrFont::GetProperty

The IDLgrFont::GetProperty procedure method retrieves the value of a property or
group of properties for the font.

Syntax

Obj -> [IDLgrFont:]GetProperty [, ALL=variable]

Arguments

None

Keywords

Any keyword to IDLgrFont::Init followed by the word “Get” can be retrieved using
IDLgrFont::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.
IDL Reference Guide IDLgrFont

2010 Appendix A: IDL Object Class & Method Reference
IDLgrFont::Init

The IDLgrFont::Init function method initializes the font object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrFont' [, Fontname] [, NAME{Get, Set}=string]
[, SIZE{Get, Set}=points] [, SUBSTITUTE{Get, Set}={ 'Helvetica' | 'Courier' |
'Times' | 'Symbol' | 'Hershey'}] [, THICK{Get, Set}=points{1.0 to 10.0}]
[, UVALUE{Get, Set}=value])

or

Result = Obj -> [IDLgrFont::]Init([Fontname]) (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

Fontname

A string representing the name of the font to be used. This string should take the form
'fontname*modifier1*modifier2*...*modifierN'. All destination objects support the
following fontnames: Helvetica, Courier, Times, Symbol, and Monospace Symbol.
(These fonts are included with IDL; you may have other fonts installed on your
system as well.) Valid modifiers for each of these fonts (except Symbol and
Monospace Symbol) are:

• Font weight: Bold

• Font angle: Italic

For example, 'Helvetica*Bold*Italic'.
IDLgrFont IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2011
To select a Hershey font, use a fontname of the form: 'Hershey*fontnum'. See
Appendix H, “Fonts” for further information and a list of fonts supported by IDL.

Note
Beginning with IDL version 5.1, only TrueType and Hershey fonts are supported in
the Object Graphics system.

Keywords

Properties retrievable via IDLgrFont::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrFont::SetProperty are indicated
by the word “Set” following the keyword.

NAME (Get, Set)

Set this keyword equal to a string containing the name of the font to use. Setting the
NAME keyword is the same as supplying the Fontname argument described above.

SIZE (Get, Set)

Set this keyword equal to a floating-point integer representing the point size of the
font. The default is 12.0 points.

SUBSTITUTE (Get, Set)

Set this keyword to a string that indicates the font to use as a substitute if the
specified Fontname is not available on the graphics destination. Valid values are only
those fonts that are available on all destination objects (the fonts included with IDL).
These are: 'Helvetica' (the default), 'Courier', 'Times', 'Symbol', or 'Hershey'.

THICK (Get, Set)

Set this keyword to a value between 1.0 and 10.0, indicating the line thickness
(measured in points) to use for the Hershey vector fonts. The default is 1.0 points.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object it is a user value of.
IDL Reference Guide IDLgrFont

2012 Appendix A: IDL Object Class & Method Reference
IDLgrFont::SetProperty

The IDLgrFont::SetProperty procedure method sets the value of a property or group
of properties for the font.

Syntax

Obj -> [IDLgrFont:]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrFont::Init followed by the word “Set” can be set using
IDLgrFont::SetProperty.
IDLgrFont IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2013
IDLgrImage

An image object represents a mapping from a two-dimensional array of data values to
a two dimensional array of pixel colors, resulting in a flat 2D-scaled version of the
image, drawn at Z = 0.

The image object is drawn at Z =0 and is positioned and sized with respect to two
points:

p1 = [LOCATION(0), LOCATION(1), 0]
p2 = [LOCATION(0) + DIMENSION(0), LOCATION(1) + DIMENSION(1), 0].

where LOCATION and DIMENSION are properties of the image object. These
points are transformed in three dimensions, resulting in screen space points
designated as p1' and p2'. The image data is drawn on the display as a 2D image
within the 2D rectangle defined by (p1'[0], p1'[1] - p2'[0], p2'[1]). The 2D image data
is scaled in 2D (not rotated) to fit into this projected rectangle and then drawn with Z
buffering disabled

Note
Image objects do not take into account the Z locations of other objects that may be
included in the view object. This means that objects that are drawn to the
destination object (window or printer) after the image is drawn will appear to be in
front of the image, even if they are located at a negative Z value (behind the image
object). Objects are drawn to a destination device in the order that they are added
(via the Add method) to the model, view, or scene that contains them. To rotate or
position image objects in three-dimensional space, use the IDLgrPolygon object
with texture mapping enabled.

An IDLgrImage object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.
IDL Reference Guide IDLgrImage

2014 Appendix A: IDL Object Class & Method Reference
Creation

See “IDLgrImage::Init” on page 2020.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrImage::Cleanup

• IDLgrImage::GetCTM

• IDLgrImage::GetProperty

• IDLgrImage::Init

• IDLgrImage::SetProperty
IDLgrImage IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2015
IDLgrImage::Cleanup

The IDLgrImage::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrImage::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrImage

2016 Appendix A: IDL Object Class & Method Reference
IDLgrImage::GetCTM

The IDLgrImage::GetCTM function method returns the 4 x 4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrImage::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the image
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrImage::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDLgrImage IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2017
TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.
IDL Reference Guide IDLgrImage

2018 Appendix A: IDL Object Class & Method Reference
IDLgrImage::GetProperty

The IDLgrImage::GetProperty procedure method retrieves the value of the property
or group of properties for the image.

Syntax

Obj -> [IDLgrImage::]GetProperty [, ALL=variable] [, PARENT=variable]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

None

Keywords

Any keyword to IDLgrImage::Init followed by the word “Get” can be retrieved using
IDLgrImage::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to the
object that contains this object.

XRANGE

Set this keyword equal to a named variable that will contain a two-element double-
precision floating-point vector of the form [xmin, xmax] that specifies the range of x
data coordinates covered by the graphic object.
IDLgrImage IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2019
YRANGE

Set this keyword equal to a named variable that will contain a two-element double-
precision floating-point vector of the form [ymin, ymax] that specifies the range of y
data coordinates covered by the graphic object.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element double-
precision floating-point vector of the form [zmin, zmax] that specifies the range of z
data coordinates covered by the graphic object.
IDL Reference Guide IDLgrImage

2020 Appendix A: IDL Object Class & Method Reference
IDLgrImage::Init

The IDLgrImage::Init function method initializes the image object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrImage' [, ImageData] [, BLEND_FUNCTION{Get,
Set}=vector] [, CHANNEL{Get, Set}=hexadecimal bitmask] [, DATA{Get,
Set}=nxm, 2xnxm, 3xnxm, or 4xnxm array of image data] [, DIMENSIONS{Get,
Set}=[width, height]] [, /GREYSCALE{Get, Set}] [, /HIDE{Get, Set}]
[, INTERLEAVE{Get, Set}={0 | 1 | 2}] [, /INTERPOLATE{Get, Set}]
[LOCATION{Get, Set}=[x, y] or [x, y, z]] [, NAME{Get, Set}=string]
[, /NO_COPY{Get, Set}] [, /ORDER{Get, Set}] [, PALETTE{Get, Set}=objref]
[, /RESET_DATA{Set}] [, SHARE_DATA{Set}=objref] [, SUB_RECT{Get,
Set}=[x, y, xdim, ydim]] [, UVALUE{Get, Set}=value] [, XCOORD_CONV{Get,
Set}=vector] [YCOORD_CONV{Get, Set}=vector] [, ZCOORD_CONV{Get,
Set}=vector])

or

Result = Obj -> [IDLgrImage::]Init([ImageData]) (Only in a subclass’ Init
method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

ImageData

An array of data values to be displayed as an image. If this argument is not already of
byte type, it is converted to byte type when the image object is created. Since IDL
maintains the image data using the byte type, the input data values should range from
IDLgrImage IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2021
0 through 255. The input data values can be either color lookup table indices when
using a palette or channel intensities for greyscale or RGB images with an optional
Alpha channel. When used as channel intensities, the data value of 0 specifies
minimum intensity and the data value of 255 specifies maximum intensity. The
Alpha channel values are also specified in the image data in the range 0 through 255,
with an image data value of 0 corresponding to an Alpha blend factor of 0 and an
image data value of 255 corresponding to an Alpha blend factor of 1.0. ImageData
can be any of the following, where n is the width of the image, and m is the height:

• An n x m array of color lookup table indices.

• An n x m greyscale image, or a 2 x n x m, n x 2 x m, or n x m x 2 greyscale
image with an alpha channel. (The alpha channel is ignored if the destination
device uses Indexed color mode.)

• A 3 x n x m, n x 3 x m, or n x m x 3 RGB image, or a 4 x n x m, n x 4 x m, or
n x m x 4 RGB image with an alpha channel.

If the array has more than one channel, the interleave is specified by the
INTERLEAVE property.

Keywords

Properties retrievable via IDLgrImage::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrImage::SetProperty are
indicated by the word “Set” following the keyword.

BLEND_FUNCTION (Get, Set)

Set this keyword equal to a two-element vector [src, dst] specifying one of the
functions listed below for each of the source and destination objects. These are only
valid for RGB model destinations. If no Alpha data are specified in an image, the
image’s Alpha blend factor is assumed to be 1.0. The values of the blending function
(Vsrc and Vdst) are used in the following equation

where Cd is the initial color of a pixel on the destination device (the background
color), Ci is the color of the pixel in the image, and Cd' is the resulting color of the
pixel.

Cd' Vsrc Ci⋅() Vdst Cd⋅()+=
IDL Reference Guide IDLgrImage

2022 Appendix A: IDL Object Class & Method Reference
Setting src and dst in the BLEND_FUNCTION vector to the following values
determine how each term in the equation is calculated:

Since the Alpha blending operation is dependent on the values of pixels already
drawn to the destination for some blending functions, the final result may depend
more on the order of drawing the images, and not necessarily on their relative
location along the Z axis. IDL draws images in the order that they are stored in the
IDLgrModel object that contains them.

CHANNEL (Get, Set)

Set this keyword to a hexadecimal bitmask that defines which color channel(s) to
draw. Each bit that is a 1 is drawn; each bit that is a 0 is not drawn. For example,
'ff0000'X represents a Red channel write. The default is to draw all channels, and is
represented by the hexadecimal value 'ffffff'X.

Note
This keyword is ignored for CI destination objects.

DATA (Get, Set)

Set this keyword to a n x m, 2 x n x m, 3 x n x m, or 4 x n x m array of image data for
the object. The n and m values may be in any position as specified by the

src or dst Vsrc or Vdst What the function does

0 n/a Alpha blending is disabled. Cd' = Ci.

1 0 The value of Vsrc or Vdst in the equation
is zero, thus the value of the term is zero.

2 1 The value of Vsrc or Vdst in the equation
is one, thus the value of the term is the
same as the color value.

3 Imageα The value of Vsrc or Vdst in the equation
is the blend factor of the image’s Alpha
channel.

4 1-Imageα The value of Vsrc or Vdst in the equation
is one minus the blend factor of the
image’s Alpha channel.

Table A-24: Values for src and dst in BLEND_FUNCTION
IDLgrImage IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2023
INTERLEAVE keyword. This keyword is equivalent to the optional argument,
ImageData.

DIMENSIONS (Get, Set)

Set this keyword equal to a two-element vector of the form [width, height] specifying
the dimensions of the rectangle in which the image is to be drawn on the device. The
image will be resampled as necessary to fit within this rectangle. The default is
derived from the dimensions of the given image data and is measured in pixels. IDL
converts, maintains, and returns this data as double-precision floating-point.

GREYSCALE (Get, Set)

Set this keyword to specify that the image not be drawn through a palette.

If this keyword is not set, for an RGB colormodel destination, if a palette is present in
the image object, it is used. If there is no current destination palette, a greyscale
palette is used. For a Color Index colormodel destination, the current destination
palette is used.

Note
Only single band images (i.e. 1 x n x m) are affected by this keyword. By default,
GREYSCALE is disabled.

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

INTERLEAVE (Get, Set)

Set this keyword to indicate the dimension over which color is interleaved for images
with more than one channel:

• 0 = Pixel interleaved: Images with dimensions (3, m, n)

• 1 = Scanline interleaved (row interleaved): Images with dimensions (m, 3, n)

• 2 = Planar interleaved: Images with dimensions (m, n, 3).

Note
If an alpha channel is present, the 3s should be replaced by 4s. In a greyscale image
with an alpha channel, the 3s should be replaced by 2s.
IDL Reference Guide IDLgrImage

2024 Appendix A: IDL Object Class & Method Reference
INTERPOLATE (Get, Set)

Set this keyword to one to display the IDLgrImage object using bilinear interpolation.
The default is to use nearest neighbor interpolation.

LOCATION (Get, Set)

A two- or three-element vector [x, y] or [x, y, z] specifying the position of the lower
lefthand corner of the image, measured in data units. If the vector is of the form [x, y],
then the z value is set equal to zero. The default is [0, 0, 0]. IDL converts, maintains,
and returns this data as double-precision floating-point.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this object.
The default is the null string, ' '.

NO_COPY (Get, Set)

Set this keyword to relocate the image data from the input variable to the image
object, leaving the input variable ImageData undefined. Only the ImageData
argument is affected. If this keyword is omitted, the input image data will be
duplicated and a copy will be stored in the object.

ORDER (Get, Set)

Set this keyword to force the rows of the image data to be drawn from top to bottom.
By default, image data is drawn from the bottom row up to the top row.

PALETTE (Get, Set)

Set this keyword equal to the object reference of a palette object (an instance of the
IDLgrPalette object class) to specify the red, green, and blue values of the color
lookup table to be associated with the image if it is an indexed color image. This
property is ignored if the image is a greyscale or RGB image.

Note
This table is only used when the destination is an RGB model device. The Indexed
color model writes the indices directly to the device. In order to ensure that these
colors are used when the image is displayed, this palette must be copied to the
graphics destination’s palette for any graphics destination that uses the Indexed
color model.
IDLgrImage IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2025
RESET_DATA (Set)

Set this keyword to treat the data provided via the DATA property as a new data set
unique to this object, rather than overwriting data that is shared by other objects.
There is no reason to use this keyword if the object on which the property is being set
does not currently share data with another object (that is, if the SHARE_DATA
property is not in use). This keyword has no effect if no new data is provided via the
DATA property.

SHARE_DATA (Set)

Set this keyword equal to the object reference of an object with which data is to be
shared by this image. An image may only share data with another image. The
SHARE_DATA property is intended for use when data values are not set via an
argument to the object’s Init method or by setting the object’s DATA property.

SUB_RECT (Get, Set)

Set this keyword to a four-element vector, [x, y, xdim, ydim], specifying the position
of the lower left-hand corner and the dimensions of the sub-rectangle to display.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object it is a user value of.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY
IDL Reference Guide IDLgrImage

2026 Appendix A: IDL Object Class & Method Reference
Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.
IDLgrImage IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2027
IDLgrImage::SetProperty

The IDLgrImage::SetProperty procedure method sets the value of the property or
group of properties for the image.

Syntax

Obj -> [IDLgrImage::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrImage::Init followed by the word “Set” can be set using
IDLgrImage::SetProperty.
IDL Reference Guide IDLgrImage

2028 Appendix A: IDL Object Class & Method Reference
IDLgrLegend

The IDLgrLegend object provides a simple interface for displaying a legend. The
legend itself consists of a (filled and/or framed) box around one or more legend items
(arranged in a single column) and an optional title string. Each legend item consists
of a glyph patch positioned to the left of a text string. The glyph patch is drawn in a
square which is a fraction of the legend label font height. The glyph itself can be in
one of two types (see the TYPE keyword). In line type, the glyph is a line segment
with linestyle, thickness and color attributes and an optional symbol object drawn
over it. In fill type, the glyph is a square patch drawn with color and optional pattern
object attributes.

An IDLgrLegend object is a composite object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

This object class is implemented in the IDL language. Its source code can be found in
the file idlgrlegend_ _define.pro in the lib subdirectory of the IDL
distribution.

Superclasses

This class is a subclass of IDLgrModel.

Subclasses

This class has no subclasses.

Creation

See “IDLgrLegend::Init” on page 2034.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrLegend::Cleanup

• IDLgrLegend::ComputeDimensions

• IDLgrLegend::GetProperty

• IDLgrLegend::Init
IDLgrLegend IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2029
• IDLgrLegend::SetProperty

Inherited Methods

This class inherits the following methods:

• IDLgrModel::GetCTM
IDL Reference Guide IDLgrLegend

2030 Appendix A: IDL Object Class & Method Reference
IDLgrLegend::Cleanup

The IDLgrLegend::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrLegend::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrLegend IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2031
IDLgrLegend::ComputeDimensions

The IDLgrLegend::ComputeDimensions function method retrieves the dimensions of
a legend object for the given destination object. The result is a three-element double-
precision floating-point vector [xDim, yDim, zDim] representing the dimensions of
the legend object measured in data units.

Syntax

Result = Obj ->[IDLgrLegend::]ComputeDimensions(DestinationObject
[, PATH=objref(s)])

Arguments

DestinationObject

The object reference to a destination object (IDLgrBuffer, IDLgrClipboard,
IDLgrPrinter, or IDLgrWindow) for which the dimensions of the legend are being
requested.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the dimensions. Each
path object reference specified with this keyword must contain an alias. The text
dimensions are computed for the version of the object falling within that path. If this
keyword is not set, the PARENT properties determine the path from the current
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrLegend::ComputeDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw is
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDL Reference Guide IDLgrLegend

2032 Appendix A: IDL Object Class & Method Reference
IDLgrLegend::GetProperty

The IDLgrLegend::GetProperty procedure method retrieves the value of a property or
group of properties for the legend.

Syntax

Obj -> [IDLgrLegend::]GetProperty [, ALL=variable] [, PARENT=variable]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

None

Keywords

Any keyword to IDLgrLegend::Init followed by the word “Get” can be retrieved
using IDLgrLegend::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the retrievable properties associated with this object.

PARENT

Set this keyword to a named variable that will contain an object reference to the
object that contains this legend.

XRANGE

Set this keyword to a named variable that will contain a two-element double-
precision floating-point vector of the form [xmin, xmax] specifying the range of the X
data coordinates covered by the legend.

YRANGE

Set this keyword to a named variable that will contain a two-element double-
precision floating-point vector of the form [ymin, ymax] specifying the range of the Y
data coordinates covered by the legend.

ZRANGE

Set this keyword to a named variable that will contain a two-element double-
precision floating-point vector of the form [zmin, zmax] specifying the range of the Z
data coordinates covered by the legend.
IDLgrLegend IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2033
Note
Until the legend is drawn to the destination object, the [XYZ]RANGE properties
will be zero. Use the ComputeDimensions method on the legend object to get the
data dimensions of the legend prior to a draw operation.
IDL Reference Guide IDLgrLegend

2034 Appendix A: IDL Object Class & Method Reference
IDLgrLegend::Init

The IDLgrLegend::Init function method initializes the legend object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrLegend' [, aItemNames] [, BORDER_GAP{Get,
Set}=value] [, COLUMNS{Get, Set}=integer] [, FILL_COLOR{Get, Set}=index or
RGB vector] [, FONT{Get, Set}=objref] [, GAP{Get, Set}=value]
[, GLYPH_WIDTH{Get, Set}=value] [, /HIDE{Get, Set}] [, ITEM_COLOR{Get,
Set}=array of colors] [, ITEM_LINESTYLE{Get, Set}=int array]
[, ITEM_NAME{Get, Set}=string array] [, ITEM_OBJECT{Get, Set}=array of
objrefs of type IDLgrSymbol or IDLgrPattern] [, ITEM_THICK{Get, Set}=float
array{each element 1.0 to 10.0}] [, ITEM_TYPE{Get, Set}=int array{each element
0 or 1}] [, NAME{Get, Set}=string] [, OUTLINE_COLOR{Get, Set}=index or
RGB vector] [, OUTLINE_THICK{Get, Set}=points{1.0 to 10.0}]
[, /SHOW_FILL{Get, Set}] [, /SHOW_OUTLINE{Get, Set}]
[, TEXT_COLOR{Get, Set}=index or RGB vector] [, TITLE{Get, Set}=objref]
[, UVALUE{Get, Set}=value] [, XCOORD_CONV{Get, Set}=vector]
[, YCOORD_CONV{Get, Set}=vector] [, ZCOORD_CONV{Get, Set}=vector])

or

Result = Obj -> [IDLgrLegend::]Init([aItemNames]) (Only in a subclass’ Init
method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.
IDLgrLegend IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2035
Arguments

aItemNames

An array of strings to be used as the displayed item label. The length of this array is
used to determine the number of items to be displayed. Each item is defined by taking
one element from the ITEM_NAME, ITEM_TYPE, ITEM_LINESTYLE,
ITEM_THICK, ITEM_COLOR, and ITEM_OBJECT vectors. If the number of items
(as defined by the ITEM_NAME array) exceeds any of the attribute vectors, the
attribute defaults will be used for any additional items.

Keywords

Properties retrievable via IDLgrLegend::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrLegend::SetProperty are
indicated by the word “Set” following the keyword.

BORDER_GAP (Get, Set)

Set this keyword to a floating-point value to indicate the amount of blank space to be
placed around the outside of the glyphs and text items. The units for this property are
fractions of the legend label font height. The default is 0.1 (10% of the label font
height).

COLUMNS (Get, Set)

Set this keyword to an integer value to indicate the number of columns the legend
items should be displayed in. The default is one column.

FILL_COLOR (Get, Set)

Set this keyword to the color to be used to fill the legend background box. The color
may be specified as a color lookup table index or as an RGB vector. The default is
[255,255,255].

FONT (Get, Set)

Set this keyword to an instance of an IDLgrFont object class to describe the font to
use to draw the legend labels. The default is 12 point Helvetica.

Note
If the default font is in use, retrieving the value of the FONT property (using the
GetProperty method) will return a font object that will be destroyed when this
legend object is destroyed, leaving a dangling object reference.
IDL Reference Guide IDLgrLegend

2036 Appendix A: IDL Object Class & Method Reference
GAP (Get, Set)

Set this keyword to a floating-point value to indicate the amount of blank space to be
placed vertically between each legend item. The units for this keyword are fractions
of the legend label font height. The default is 0.1 (10% of the label font height). The
same gap is placed horizontally between the legend glyph and the legend text string.

GLYPH_WIDTH (Get, Set)

Set this keyword to a floating-point value to indicate the width of the glyphs,
measured as a fraction of the font height. The default is 0.8 (80% of the font height).

HIDE (Get, Set)

Set this keyword to a boolean value to indicate whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

ITEM_COLOR (Get, Set)

Set this keyword to an array of colors defining the color of each item. The array
defines M different colors, and should be either of the form [3,M] or [M]. In the first
case, the three values are used as an RGB triplet, in the second case, the single value
is used as a color index value. The default color is [0,0,0].

ITEM_LINESTYLE (Get, Set)

Set this keyword to an array of integers defining the style of the line to be drawn if
the TYPE property is set to zero. The array can be of the form [M] or [2,M]. The first
form selects the linestyle for each legend item from the predefined defaults:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot

• 5 = long dash

• 6 = no line drawn

The second form specifies the stippling pattern explicitly for each legend item (see
the LINESTYLE keyword to IDLgrPolyline::Init for details).
IDLgrLegend IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2037
ITEM_NAME (Get, Set)

Set this keyword to an array of strings. Specifying this keyword is the same as
providing the aName argument for the IDLgrLegend::Init method.

ITEM_OBJECT (Get, Set)

Set this keyword to an array of object references of type IDLgrSymbol or
IDLgrPattern. A symbol object is drawn only if the TYPE property is set to zero. A
pattern object is used when drawing the color patch if the TYPE property is set to
one. The default object is the NULL object.

Note
If one or more IDlgrSymbol object references are provided, the SIZE property of
those objects may be modified by this legend to suit its layout needs.

ITEM_THICK (Get, Set)

Set this keyword to an array of floats that define the thickness of each item line, in
points, where each element is a value between 1.0 and 10.0. This property is only
used if the TYPE property is set to zero. The default is 1.0 points.

ITEM_TYPE (Get, Set)

Set this keyword to an array of integers which define the type of glyph to be
displayed for each item:

• 0 = line type (the default)

• 1 = filled box type

NAME (Get, Set)

Set this keyword to a string representing the name to be associated with this object.
The default is the null string, ''.

OUTLINE_COLOR (Get, Set)

Set this keyword to the color to be used to draw the legend outline box. The color
may be specified as a color lookup table index or as an RGB vector. The default is
[0,0,0].

OUTLINE_THICK (Get, Set)

Set this keyword to a value between 1.0 and 10.0 that defines the thickness of the
outline frame, in points. The default is 1.0 points.
IDL Reference Guide IDLgrLegend

2038 Appendix A: IDL Object Class & Method Reference
SHOW_FILL (Get, Set)

Set this keyword to a boolean value indicating whether the background should be
filled with a color:

• 0 = Do not fill background (the default)

• 1 = Fill background

SHOW_OUTLINE (Get, Set)

Set this keyword to a boolean value indicating whether the outline box should be
displayed:

• 0 = Do not display outline (the default)

• 1 = Display outline

TEXT_COLOR (Get, Set)

Set this keyword to the color to be used to draw the legend item text. The color may
be specified as a color lookup table index or as an RGB vector. The default is [0,0,0].

TITLE (Get, Set)

Set this keyword to an instance of the IDLgrText object class to specify the title for
the legend. The default is the null object, specifying that no title is drawn. The title
will be centered at the top of the legend, even if the text object itself has an associated
location.

UVALUE (Get, Set)

Set this keyword to a value of any type. Use this value to contain any information you
wish.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.
IDLgrLegend IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2039
YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.
IDL Reference Guide IDLgrLegend

2040 Appendix A: IDL Object Class & Method Reference
IDLgrLegend::SetProperty

The IDLgrLegend::SetProperty procedure method sets the value of a property or
group of properties for the legend.

Syntax

Obj-> [IDLgrLegend::]SetProperty [, RECOMPUTE={0 | 1}{0 prevents recompute,
1 is the default}]

Arguments

None

Keywords

Any keyword to IDLgrLegend::Init followed by the word “Set” can be retrieved
using IDLgrLegend::SetProperty. In addition, the following keywords are available:

RECOMPUTE

Set this keyword to 1 to force IDL to recompute the legend dimensions when the
legend is redrawn. Set this keyword to 0 to prevent IDL from recomputing legend
dimensions.
IDLgrLegend IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2041
IDLgrLight

A light object represents a source of illumination for three-dimensional graphic
objects. Lights may be either ambient, positional, directional, or spotlights. A
maximum of 8 lights per view are allowed. Lights are not required for objects
displayed in two dimensions.

An IDLgrLight object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See “IDLgrLight::Init” on page 2046.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrLight::Cleanup

• IDLgrLight::GetCTM

• IDLgrLight::GetProperty

• IDLgrLight::Init

• IDLgrLight::SetProperty
IDL Reference Guide IDLgrLight

2042 Appendix A: IDL Object Class & Method Reference
IDLgrLight::Cleanup

The IDLgrLight::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrLight::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrLight IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2043
IDLgrLight::GetCTM

The IDLgrLight::GetCTM function method returns the 4 x 4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrLight::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the light
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrLight::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDL Reference Guide IDLgrLight

2044 Appendix A: IDL Object Class & Method Reference
TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.
IDLgrLight IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2045
IDLgrLight::GetProperty

The IDLgrLight::GetProperty procedure method retrieves the value of a property or
group of properties for the light.

Syntax

Obj -> [IDLgrLight::]GetProperty [, ALL=variable] [, PARENT=variable]

Arguments

None

Keywords

Any keyword to IDLgrLight::Init followed by the word “Get” can be retrieved using
IDLgrLight::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to the
object that contains this object.
IDL Reference Guide IDLgrLight

2046 Appendix A: IDL Object Class & Method Reference
IDLgrLight::Init

The IDLgrLight::Init function method initializes the light object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrLight' [, ATTENUATION{Get, Set}=[constant, linear,
quadratic]] [, COLOR{Get, Set}=[R, G, B]] [, CONEANGLE{Get, Set}=degrees]
[, DIRECTION{Get, Set}=3-element vector] [, FOCUS{Get, Set}=value]
[, /HIDE{Get, Set}] [, INTENSITY{Get, Set}=value{0.0 to 1.0}]
[, LOCATION{Get, Set}=[x, y, z]] [, NAME{Get, Set}=string] [, TYPE{Get,
Set}={0 | 1 | 2 | 3}] [, UVALUE{Get, Set}=value] [, XCOORD_CONV{Get,
Set}=vector] [, YCOORD_CONV{Get, Set}=vector] [, ZCOORD_CONV{Get,
Set}=vector])

or

Result = Obj -> [IDLgrLight::]Init() (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

None

Keywords

Properties retrievable via IDLgrLight::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrLight::SetProperty are indicated
by the word “Set” following the keyword.
IDLgrLight IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2047
ATTENUATION (Get, Set)

Set this keyword to a 3-element floating-point vector of the form [constant, linear,
quadratic] that describes the factor by which light intensity is to fall with respect to
distance from the light source. ATTENTUATION applies only to Positional and Spot
lights, as specified by the TYPE keyword. The overall attenuation factor is computed
as follows:

attenuation = 1/(constant + linear*distance +
quadratic*distance^2)

By default, the values are [1, 0, 0].

COLOR (Get, Set)

Set this keyword to a three-element vector specifying the RGB color of the light. The
default is [255, 255, 255], which is a white light. The color of a light is ignored when
graphics are sent to graphics destinations using the Indexed color model, in which
case light intensities are scaled into the range of colors available on the graphics
destination.

CONEANGLE (Get, Set)

Set this keyword to the angle (measured in degrees) of coverage for a spotlight. The
default is 60.

DIRECTION (Get, Set)

Set this keyword to the three-element vector representing the direction in which a
spotlight is to be pointed. The default is [0,0,-1].

Note
For directional lights, the light’s parallel rays follow a vector beginning at the
position specified by LOCATION and ending at [0, 0, 0].

FOCUS (Get, Set)

Set this keyword to a floating-point value that describes the attenuation of intensity
for spotlights as the distance from the center of the cone of coverage increases. This
factor is used as an exponent to the cosine of the angle between the direction of the
spotlight and the direction from the light to the vertex being lighted. The default is
0.0.

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this light should be enabled:
IDL Reference Guide IDLgrLight

2048 Appendix A: IDL Object Class & Method Reference
• 0 = Enable light (the default)

• 1 = Disable light

Note
If no lights are present in the view (or if all lights in the view are hidden), an
ambient light will be provided by default.

INTENSITY (Get, Set)

Set this keyword to a floating-point value between 0.0 (darkest) and 1.0 (brightest)
indicating the intensity of the light. The default is 1.0.

LOCATION (Get, Set)

Set this keyword to a vector of the form [x, y, z] describing the position of the light.
By default, the position is [0, 0, 0]. IDL converts, maintains, and returns this data as
double-precision floating-point.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this object.
The default is the null string, ' '.

TYPE (Get, Set)

Set this keyword to one of the following values, indicating the type of light. Valid
values are:

• 0 = Ambient light. An ambient light is a universal light source, which has no
direction or position. An ambient light illuminates every surface in the scene
equally, which means that no edges are made visible by contrast. Ambient
lights control the overall brightness and color of the entire scene. If no value is
specified for the TYPE property, an ambient light is created.

• 1 = Positional light. A positional light supplies divergent light rays, and will
make the edges of surfaces visible by contrast if properly positioned. A
positional light source can be located anywhere in the scene.

• 2 = Directional light. A directional light supplies parallel light rays. The effect
is that of a positional light source located at an infinite distance from scene.

• 3 = Spot light. A spot light illuminates only a specific area defined by the
light’s position, direction, and the cone angle, or angle which the spotlight
covers.
IDLgrLight IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2049
UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object it is a user value of.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.
IDL Reference Guide IDLgrLight

2050 Appendix A: IDL Object Class & Method Reference
IDLgrLight::SetProperty

The IDLgrLight::SetProperty procedure method sets the value of a property or group
of properties for the light.

Syntax

Obj -> [IDLgrLight::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrLight::Init followed by the word “Set” can be set using
IDLgrLight::SetProperty.
IDLgrLight IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2051
IDLgrModel

A model object represents a graphical item or group of items that can be transformed
(rotated, scaled, and/or translated). It serves as a container of other IDLgrModel
objects or atomic graphic objects. IDLgrModel applies a transform to the current
view tree.

Superclasses

This class is a subclass of IDL_Container.

Subclasses

The following classes are subclassed from this class:

• IDLgrColorbar

• IDLgrLegend

Creation

See “IDLgrModel::Init” on page 2060.

Methods

Intrinsic Methods

This class has this following methods:

• IDLgrModel::Add

• IDLgrModel::Cleanup

• IDLgrModel::Draw

• IDLgrModel::GetByName

• IDLgrModel::GetCTM

• IDLgrModel::GetProperty

• IDLgrModel::Init

• IDLgrModel::Reset

• IDLgrModel::Rotate
IDL Reference Guide IDLgrModel

2052 Appendix A: IDL Object Class & Method Reference
• IDLgrModel::Scale

• IDLgrModel::SetProperty

• IDLgrModel::Translate

Inherited Methods

This class inherits the following methods:

• IDL_Container::Count

• IDL_Container::Get

• IDL_Container::IsContained

• IDL_Container::Move
IDLgrModel IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2053
IDLgrModel::Add

The IDLgrModel::Add procedure method adds a child to this Model.

Syntax

Obj -> [IDLgrModel::]Add, Object [, /ALIAS] [, POSITION=index]

Arguments

Object

An instance of an atomic graphic object or another model object to be added to the
model object.

Keywords

ALIAS

Set this keyword to a nonzero value to indicate that an alias—rather than the object
itself—is to be added to the model. With this keyword you can add the same object to
multiple models without duplicating that object and its children. If this keyword is
set, the PARENT keyword on the object being added will not change. Furthermore, if
this keyword is set, the object being added will not be destroyed when the model is
destroyed.

POSITION

Set this keyword equal to the zero-based index of the position within the container at
which the new object should be placed.
IDL Reference Guide IDLgrModel

2054 Appendix A: IDL Object Class & Method Reference
IDLgrModel::Cleanup

The IDLgrModel::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrModel::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrModel IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2055
IDLgrModel::Draw

The IDLgrModel::Draw procedure method draws the specified picture to the
specified graphics destination. This method is provided for purposes of sub-classing
only, and is intended to be called only from the Draw method of a subclass of
IDLgrModel.

Note
Objects are drawn to the destination device in the order that they are added to the
model, view, viewgroup, or scene object that contains them.

Syntax

Obj -> [IDLgrModel::]Draw, Destination, Picture

Arguments

Destination

The destination object (IDLgrBuffer, IDLgrClipboard, IDLgrPrinter, or
IDLgrWindow) to which the specified view object will be drawn.

Picture

The view (an instance of an IDLgrView object), viewgroup (an instance of an
IDLgrViewgroup object), or scene (an instance of an IDLgrScene object) to be
drawn.

Keywords

None
IDL Reference Guide IDLgrModel

2056 Appendix A: IDL Object Class & Method Reference
IDLgrModel::GetByName

The IDLgrModel::GetByName function method finds contained objects by name and
returns the object reference to the named object. If the named object is not found, the
GetByName function returns a null object reference.

Note
The GetByName function does not perform a recursive search through the object
hierarchy. If a fully qualified object name is not specified, only the contents of the
current container object are inspected for the named object.

Syntax

Result = Obj -> [IDLgrModel::]GetByName(Name)

Arguments

Name

A string containing the name of the object to be returned.

Object naming syntax is very much like the syntax of a UNIX file system. Objects
contained by other objects can include the name of their parent object; this allows
you to create a fully qualified name specification. For example, if object1 contains
object2, which in turn contains object3, the string specifying the fully qualified
object name of object3 would be 'object1/object2/object3'.

Object names are specified relative to the object on which the GetByName method is
called. If used at the beginning of the name string, the / character represents the top
of an object hierarchy. The string '..' represents the object one level “up” in the
hierarchy.

Keywords

None
IDLgrModel IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2057
IDLgrModel::GetCTM

The IDLgrModel::GetCTM function method returns the 4 x 4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrModel::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the model
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrModel::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDL Reference Guide IDLgrModel

2058 Appendix A: IDL Object Class & Method Reference
TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.
IDLgrModel IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2059
IDLgrModel::GetProperty

The IDLgrModel::GetProperty procedure method retrieves the value of a property or
group of properties for the model.

Syntax

Obj -> [IDLgrModel::]GetProperty [, ALL=variable] [, PARENT=variable]

Arguments

None

Keywords

Any keyword to IDLgrModel::Init followed by the word “Get” can be retrieved using
IDLgrModel::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with this object.

Note
The fields of this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to the
object that contains this object.
IDL Reference Guide IDLgrModel

2060 Appendix A: IDL Object Class & Method Reference
IDLgrModel::Init

The IDLgrModel::Init procedure method initializes the model object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrModel' [, /HIDE{Get, Set}] [, LIGHTING{Get, Set}={0 | 1
| 2}] [, NAME{Get, Set}=string] [, /SELECT_TARGET{Get, Set}]
[, TRANSFORM{Get, Set}=4x4 transformation matrix] [, UVALUE{Get,
Set}=value])

or

Result = Obj -> [IDLgrModel::]Init() (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

None

Keywords

Properties retrievable via IDLgrModel::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrModel::SetProperty are
indicated by the word “Set” following the keyword.

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be drawn:

• 0 = Draw model and children (the default)

• 1 = Do not draw model or children
IDLgrModel IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2061
Note
HIDE only controls the display attributes of IDLgrModel children since the
IDLgrModel object itself lacks geometry.

LIGHTING (Get, Set)

Set this keyword to one of the following values to indicate whether lighting is to be
enabled or disabled for all atomic graphic objects that have this model as a parent.
IDLgrModel objects that have this model as a parent will not be effected, as they
have their own value for this property. If this value is set to 0, any lights added as
children of this model will be used to illuminate any other models in the view
hierarchy that have lighting enabled.

• 0 = Disable lighting

• 1 = Enable single-sided lighting

• 2 = Enable double-sided lighting (the default)

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this object.
The default is the null string, ' '.

SELECT_TARGET (Get, Set)

Set this keyword to tag the model object as the target object to be returned when any
object contained by the model is selected via the IDLgrWindow::Select method. By
default, an IDLgrModel object cannot be returned as the target of a SELECT
operation since it contains no geometry.

TRANSFORM (Get, Set)

Set this keyword to a 4x4 transformation matrix to be applied to the object. This
matrix will be multiplied by its parent’s transformation matrix (if the parent has one).
The default is the identity matrix. IDL converts, maintains, and returns this data as
double-precision floating-point.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object it is a user value of.
IDL Reference Guide IDLgrModel

2062 Appendix A: IDL Object Class & Method Reference
IDLgrModel::Reset

The IDLgrModel::Reset procedure method sets the current transform matrix for the
model object to the identity matrix.

Note
Using this method is functionally identical to the following statement:

Obj ->[IDLgrModel::]SetProperty, TRANSFORM=IDENTITY(4)

Syntax

Obj -> [IDLgrModel::]Reset

Arguments

None

Keywords

None
IDLgrModel IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2063
IDLgrModel::Rotate

The IDLgrModel::Rotate procedure method rotates the model about the specified
axis by the specified angle. IDL computes and maintains the resulting transform
matrix in double-precision floating-point.

Syntax

Obj -> [IDLgrModel::]Rotate, Axis, Angle [, /PREMULTIPLY]

Arguments

Axis

A three-element vector of the form [x, y, z] describing the axis about which the model
is to be rotated.

Angle

The angle (measured in degrees) by which the rotation is to occur.

Keywords

PREMULTIPLY

Set this keyword to cause the rotation matrix specified by Axis and Angle to be pre-
multiplied to the model’s transformation matrix. By default, the rotation matrix is
post-multiplied.
IDL Reference Guide IDLgrModel

2064 Appendix A: IDL Object Class & Method Reference
IDLgrModel::Scale

The IDLgrModel::Scale procedure method scales the model by the specified scaling
factors. IDL computes and maintains the resulting transform matrix in double-
precision floating-point.

Syntax

Obj -> [IDLgrModel::]Scale, Sx, Sy, Sz [, /PREMULTIPLY]

Arguments

Sx, Sy, Sz

The scaling factors in the x, y, and z dimensions by which the model is to be scaled.

Keywords

PREMULTIPLY

Set this keyword to cause the scaling matrix specified by Sx, Sy, Sz to be pre-
multiplied to the model’s transformation matrix. By default, the scaling matrix is
post-multiplied.
IDLgrModel IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2065
IDLgrModel::SetProperty

The IDLgrModel::SetProperty procedure method sets the value of a property or
group of properties for the model.

Syntax

Obj -> [IDLgrModel::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrModel::Init followed by the word “Set” can be set using
IDLgrModel::SetProperty.
IDL Reference Guide IDLgrModel

2066 Appendix A: IDL Object Class & Method Reference
IDLgrModel::Translate

The IDLgrModel::Translate procedure method translates the model about the
specified axis by the specified translation offsets. IDL computes and maintains the
resulting transform matrix in double-precision floating-point.

Syntax

Obj -> [IDLgrModel::]Translate, Tx, Ty, Tz [, /PREMULTIPLY]

Arguments

Tx, Ty, Tz

The offsets in X, Y, and Z, respectively, by which the model is to be translated.

Keywords

PREMULTIPLY

Set this keyword to cause the translation matrix specified by Tx, Ty, Tz to be pre-
multiplied to the model’s transformation matrix. By default, the translation matrix is
post-multiplied.
IDLgrModel IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2067
IDLgrMPEG

An IDLgrMPEG object creates an MPEG movie file from an array of image frames.

Note
The MPEG standard does not allow movies with odd numbers of pixels to be
created.

Note
MPEG support in IDL requires a special license. For more information, contact
your Research Systems sales representative or technical support.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See “IDLgrMPEG::Init” on page 2070.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrMPEG::Cleanup

• IDLgrMPEG::GetProperty

• IDLgrMPEG::Init

• IDLgrMPEG::Put

• IDLgrMPEG::Save

• IDLgrMPEG::SetProperty
IDL Reference Guide IDLgrMPEG

2068 Appendix A: IDL Object Class & Method Reference
IDLgrMPEG::Cleanup

The IDLgrMPEG::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrMPEG::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrMPEG IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2069
IDLgrMPEG::GetProperty

The IDLgrMPEG::GetProperty procedure method retrieves the value of a property or
group of properties for the MPEG object.

Syntax

Obj -> [IDLgrMPEG::]GetProperty [, ALL=variable]

Arguments

None

Keywords

Any keyword to IDLgrMPEG::Init followed by the word “Get” can be retrieved
using IDLgrMPEG::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the retrievable properties associated with this object.
IDL Reference Guide IDLgrMPEG

2070 Appendix A: IDL Object Class & Method Reference
IDLgrMPEG::Init

The IDLgrMPEG::Init function method initializes the MPEG object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Note
MPEG support in IDL requires a special license. For more information, contact
your Research Systems sales representative or technical support.

Syntax

Obj = OBJ_NEW('IDLgrMPEG' [, BITRATE{Get, Set}=value]
[, DIMENSIONS{Get, Set}=2-element array] [, FILENAME{Get, Set}=string]
[, FORMAT{Get, Set}={0 | 1}] [, FRAME_RATE{Get, Set} ={1 | 2 | 3 | 4 | 5 | 6 | 7 |
8}] [, IFRAME_GAP{Get, Set}=integer value] [, /INTERLACED{Get, Set}]
[, MOTION_VEC_LENGTH{Get, Set}={1 | 2 | 3}] [QUALITY{Get, Set}=value{0
to 100}] [, SCALE{Get, Set}=[xscale, yscale]] [, /STATISTICS{Get, Set}]
[, TEMP_DIRECTORY=string])

or

Result = Obj -> [IDLgrMPEG::]Init() (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

None
IDLgrMPEG IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2071
Keywords

Properties retrievable via IDLgrMPEG::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrMPEG::SetProperty are
indicated by the word “Set” following the keyword.

BITRATE (Get, Set)

Set this keyword to a double-precision value to specify the MPEG movie bit rate.
Higher bit rates will create higher quality MPEGs but will increase file size. The
following table describes the valid values:

Set this keyword to 0.0 (the default setting) to indicate that IDL should compute the
BITRATE value based upon the value you have specified for the QUALITY
keyword. The value of BITRATE returned by IDLgrMPEG::GetProperty is either the
value computed by IDL from the QUALITY value or the last non-zero valid value
stored in this property.

Note
Only use the BITRATE keyword if changing the QUALITY keyword value does
not produce the desired results. It is highly recommended to set the BITRATE to at
least several times the frame rate to avoid unusable MPEG files or file generation
errors.

DIMENSIONS (Get, Set)

Set this keyword to a 2-element array specifying the dimensions (in pixels) of each of
the images to be used as frames for the movie. If this property is not specified, the
dimensions of the first image loaded will be used. Once IDLgrMPEG::Put has been
called, this keyword can no longer be set.

Note
When creating MPEG files, you must be aware of the capabilities of the MPEG
decoder you will be using to view it. Some decoders only support a limited set of

MPEG Version Range

MPEG 1 0.1 to 104857200.0

MPEG 2 0.1 to 429496729200.0

Table A-25: BITRATE Value Range
IDL Reference Guide IDLgrMPEG

2072 Appendix A: IDL Object Class & Method Reference
sampling and bitrate parameters to normalize computational complexity, buffer
size, and memory bandwidth. For example, the Windows Media Player supports a
limited set of sampling and bitrate parameters. In this case, it is best to use 352 x
240 x 30 fps or 352 x 288 x 25 fps when determining the dimensions and frame rate
for your MPEG file. When opening a file in Windows Media Player that does not
use these dimensions, you will receive a “Bad Movie File” error message. The file
is not “bad”, this decoder just doesn’t support the dimensions of the MPEG.

FILENAME (Get, Set)

Set this keyword to a string representing the name of the file in which the encoded
MPEG sequence is to be stored. The default is 'idl.mpg'.

FORMAT (Get, Set)

Set this keyword to one of the following values to specify the type of MPEG
encoding to use:

• 0 = MPEG1 (the default)

• 1 = MPEG2

FRAME_RATE (Get, Set)

Set this keyword to one of the following integer values to specify the frame rate used
in creating the MPEG file:

Value Descriptions

1 23.976 frames/sec: NTSC encapsulated film rate

2 24 frames/sec: Standard international film rate

3 25 frames/sec: PAL video frame rate

4 29.97 frames/sec: NTSC video frame rate

5 30 frames/sec: NTSC drop frame video frame rate (the default)

6 50 frames/sec: Double frame rate/progressive PAL

7 59.94 frames/sec: Double frame rate NTSC

8 60 frames/sec: Double frame rate NTSC drop frame video

Table A-26: FRAME_RATE Values
IDLgrMPEG IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2073
IFRAME_GAP (Get, Set)

Set this keyword to a positive integer value that specifies the number of frames
between I frames to be created in the MPEG file. I frames are full-quality image
frames that may have a number of predicted or interpolated frames between them.

Set this keyword to 0 (the default setting) to indicate that IDL should compute the
IFRAME_GAP value based upon the value you have specified for the QUALITY
keyword. The value of IFRAME_GAP returned by IDLgrMPEG::GetProperty is
either the value computed by IDL from the QUALITY value or the last non-zero
valid value stored in this property.

Note
Only use the IFRAME_GAP keyword if changing the QUALITY keyword value
does not produce the desired results.

INTERLACED (Get, Set)

Set this keyword to indicate that frames in the encoded MPEG file should be
interlaced. The default is non-interlaced.

MOTION_VEC_LENGTH (Get, Set)

Set this keyword to an integer value specifying the length of the motion vectors to be
used to generate predictive frames. The following table describes the valid values:

Set this keyword to 0 (the default setting) to indicate that IDL should compute the
MOTION_VEC_LENGTH value based upon the value you have specified for the
QUALITY keyword. The value of MOTION_VEC_LENGTH returned by
IDLgrMPEG::GetProperty is either the value computed by IDL from the QUALITY
value or the last non-zero value stored in this property.

Value Description

1 Small motion vectors.

2 Medium motion vectors.

3 Large motion vectors.

Table A-27: MOTION_VEC_LENGTH Values
IDL Reference Guide IDLgrMPEG

2074 Appendix A: IDL Object Class & Method Reference
Note
Only use the MOTION_VEC_LENGTH keyword if changing the QUALITY value
does not produce the desired results.

QUALITY (Get, Set)

Set this keyword to an integer value between 0 (low quality)and 100 (high quality)
inclusive to specify the quality at which the MPEG stream is to be stored. Higher
quality values result in lower rates of time compression and less motion prediction
which provide higher quality MPEGs but with substantially larger file size. Lower
quality factors may result in longer MPEG generation times. The default is 50.

Note
Since MPEG uses JPEG (lossy) compression, the original picture quality can’t be
reproduced even when setting QUALITY to its’ highest setting.

SCALE (Get, Set)

Set this keyword to a two-element vector, [xscale, yscale], indicating the scale factors
to be stored with the MPEG file as hints for playback. The default is [1.0, 1.0],
indicating that the movie should be played back at the dimensions of the stored image
frames.

STATISTICS (Get, Set)

Set this keyword to save statistical information about MPEG encoding for the
supplied image frames in a file when the IDLgrMPEG::Save method is called. The
information will be saved in a file with a name that matches that specified by the
FILENAME keyword, with the extension “.stat”. By default, statistics are not
saved.

TEMP_DIRECTORY

Set the keyword to a string value which specifies a directory in which to place
temporary files while creating the MPEG movie file. The default value is platform
specific.
IDLgrMPEG IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2075
IDLgrMPEG::Put

The IDLgrMPEG::Put procedure method puts a given image into the MPEG
sequence at the specified frame. Note that all images in a given MPEG movie must
have matching dimensions. If no dimensions were explicitly specified when the
MPEG object was initialized, the dimensions will be set according to the dimensions
of the first image.

Syntax

Obj -> [IDLgrMPEG::]Put, Image[, Frame]

Arguments

Image

An instance of an IDLgrImage object or a m x n or 3 x m x n array representing the
image to be loaded at the given frame.

Frame

An integer specifying the index of the frame at which the image is to be added. Frame
indices start at zero. If Frame is not supplied, the frame number used will be one
more than the last frame that was put. Frame number need not be consecutive; in case
of a gap in frame numbers, the frame before the gap is repeated to fill the space.

Keywords

None
IDL Reference Guide IDLgrMPEG

2076 Appendix A: IDL Object Class & Method Reference
IDLgrMPEG::Save

The IDLgrMPEG::Save procedure method encodes and saves the MPEG sequence to
the specified filename.

Note
The MPEG standard does not allow movies with odd numbers of pixels to be
created.

Syntax

Obj -> [IDLgrMPEG::]Save [, FILENAME=string]

Macintosh Keywords: [, CREATOR_TYPE=string]

Arguments

None

Keywords

CREATOR_TYPE

Set this keyword to a four character string representing the creator string to be used
when writing this file on a Macintosh. This property is ignored if the current platform
is not a Macintosh. The default is TVOD (Apple Movie Player application).

FILENAME

Set this keyword to a string representing the name of the file in which the encoded
MPEG sequence is to be stored. The default is idl.mpg.
IDLgrMPEG IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2077
IDLgrMPEG::SetProperty

The IDLgrMPEG::SetProperty procedure method sets the value of a property or
group of properties for the MPEG object.

Syntax

Obj -> [IDLgrMPEG::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrMPEG::Init followed by the word “Set” can be retrieved using
IDLgrMPEG::SetProperty.
IDL Reference Guide IDLgrMPEG

2078 Appendix A: IDL Object Class & Method Reference
IDLgrPalette

A palette object represents a color lookup table that maps indices to red, green, and
blue values.

Superclasses

This class has no superclass.

Subclasses

This class has no subclasses.

Creation

See “IDLgrPalette::Init” on page 2082.

Methods

Intrinsic Methods

This class has this following methods:

• IDLgrPalette::Cleanup

• IDLgrPalette::GetRGB

• IDLgrPalette::GetProperty

• IDLgrPalette::Init

• IDLgrPalette::LoadCT

• IDLgrPalette::NearestColor

• IDLgrPalette::SetRGB

• IDLgrPalette::SetProperty
IDLgrPalette IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2079
IDLgrPalette::Cleanup

The IDLgrPalette::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrPalette::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrPalette

2080 Appendix A: IDL Object Class & Method Reference
IDLgrPalette::GetRGB

The IDLgrPalette::GetRGB function method returns the RGB values contained in the
palette at the given index. The returned value is a three-element vector of the form
[red, green, blue].

Syntax

Result = Obj -> [IDLgrPalette::]GetRGB(Index)

Arguments

Index

The index whose RGB values are desired. This value should be in the range of
0 ≤ Index < N_COLORS, where N_COLORS is the number of elements in the color
palette, as returned by the N_COLORS keyword to the IDLgrPalette:GetProperty
method.

Keywords

None
IDLgrPalette IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2081
IDLgrPalette::GetProperty

The IDLgrPalette::GetProperty procedure method retrieves the value of a property or
group of properties for the palette.

Syntax

Obj -> [IDLgrPalette::]GetProperty [, ALL=variable] [, N_COLORS=variable]

Arguments

None

Keywords

Any keyword to IDLgrPalette::Init followed by the word “Get” can be retrieved
using IDLgrPalette::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

N_COLORS

Set this keyword to a named variable that upon return will contain the number of
elements in the color palette.
IDL Reference Guide IDLgrPalette

2082 Appendix A: IDL Object Class & Method Reference
IDLgrPalette::Init

The IDLgrPalette::Init function method initializes a palette object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj=OBJ_NEW('IDLgrPalette', aRed, aGreen, aBlue [, BLUE_VALUES{Get,
Set}=vector] [, BOTTOM_STRETCH{Get, Set}=value{0 to 100}] [, GAMMA{Get,
Set}=value{0.1 to 10.0}] [, GREEN_VALUES{Get, Set}=vector] [, NAME{Get,
Set}=string] [, RED_VALUES{Get, Set}=vector] [, TOP_STRETCH{Get,
Set}=value{0 to 100}] [, UVALUE{Get, Set}=value])

or

Result=Obj-> [IDLgrPalette::]Init([aRed, aGreen, aBlue]) (Only in a subclass’ Init
method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

aRed

A vector containing the red values for the color palette. These values should be
within the range of 0 ≤ Value ≤ 255. The number of elements comprising the aRed
vector must not exceed 256.

aGreen

A vector containing the green values for the color palette. These values should be
within the range of 0 ≤ Value ≤ 255. The number of elements comprising the aGreen
vector must not exceed 256.
IDLgrPalette IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2083
aBlue

A vector containing the blue values for the color palette. These values should be
within the range of 0 ≤ Value ≤ 255. The number of elements comprising the aBlue
vector must not exceed 256.

Keywords

Properties retrievable via IDLgrPalette::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrPalette::SetProperty are
indicated by the word “Set” following the keyword.

BLUE_VALUES (Get, Set)

A vector containing the blue values for the color palette. Setting this value is the same
as specifying the aBlue argument to the IDLgrPalette::Init method.

BOTTOM_STRETCH (Get, Set)

Set this keyword equal to the bottom parameter for stretching the colors in the palette.
This value must be in the range of 0 ≤ Value ≤ 100. The default value is 0.

GAMMA (Get, Set)

Set this keyword to the gamma value to be applied to the color palette. This value
should be in the range of 0.1 ≤ Gamma ≤ 10.0. The default is 1.0.

GREEN_VALUES (Get, Set)

A vector containing the green values for the color palette. Setting this value is the
same as specifying the aGreen argument to the IDLgrPalette::Init method.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this object.
The default is the null string, ' '.

RED_VALUES (Get, Set)

A vector containing the red values for the color palette. Setting this value is the same
as specifying the aRed argument to the IDLgrPalette::Init method.

TOP_STRETCH (Get, Set)

Set this keyword equal to the top parameter for stretching the colors in the palette.
This value must be in the range of 0 ≤ Value ≤ 100. The default value is 100.
IDL Reference Guide IDLgrPalette

2084 Appendix A: IDL Object Class & Method Reference
UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object to which the user value applies.
IDLgrPalette IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2085
IDLgrPalette::LoadCT

The IDLgrPalette::LoadCT procedure method loads one of the IDL predefined color
tables into an IDLgrPalette object.

Syntax

Obj -> [IDLgrPalette::]LoadCT, TableNum [, FILENAME=colortable filename]

Arguments

TableNum

The number of the pre-defined IDL color table to load, from 0 to 40.

Keywords

FILE

Set this keyword to the name of a colortable file to be used instead of the file
colors1.tbl in the IDL distribution. The MODIFYCT procedure can be used to
create and modify colortable files.
IDL Reference Guide IDLgrPalette

2086 Appendix A: IDL Object Class & Method Reference
IDLgrPalette::NearestColor

The IDLgrPalette::NearestColor function method returns the index of the color in the
palette that best matches the given RGB values.

Syntax

Result = Obj-> [IDLgrPalette::]NearestColor(Red, Green, Blue)

Arguments

Red

The red value of the color that should be matched. This value should be within the
range of 0 ≤ Value ≤ 255.

Green

The green value of the color that should be matched. This value should be within the
range of 0 ≤ Value ≤ 255.

Blue

The blue value of the color that should be matched. This value should be within the
range of 0 ≤ Value ≤ 255.

Keywords

None
IDLgrPalette IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2087
IDLgrPalette::SetRGB

The IDLgrPalette::SetRGB procedure method sets the color values at a specified
index in the palette to the specified Red, Green and Blue values.

Syntax

Obj -> [IDLgrPalette::]SetRGB, Index, Red, Green, Blue

Arguments

Index

The index within the Palette object to be set. This value should be in the range of
0 ≤ Value < N_COLORS.

Red

The red value to set in the color palette.

Green

The green value to set in the color palette.

Blue

The blue value to set in the color palette.

Keywords

None
IDL Reference Guide IDLgrPalette

2088 Appendix A: IDL Object Class & Method Reference
IDLgrPalette::SetProperty

The IDLgrPalette::SetProperty procedure method sets the value of a property or
group of properties for the palette.

Syntax

Obj -> [IDLgrPalette::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrPalette::Init followed by the word “Set” can be set using
IDLgrPalette::SetProperty.
IDLgrPalette IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2089
IDLgrPattern

A pattern object describes which pixels are filled and which are left blank when an
area is filled. Pattern objects are used by setting the FILL_PATTERN property of a
polygon object equal to the object reference of the pattern object.

Superclasses

This class has no superclass.

Subclasses

This class has no subclasses.

Creation

See IDLgrPattern::Init.

Methods

Intrinsic Methods

This class has this following methods:

• IDLgrPattern::Cleanup

• IDLgrPattern::GetProperty

• IDLgrPattern::Init

• IDLgrPattern:SetProperty
IDL Reference Guide IDLgrPattern

2090 Appendix A: IDL Object Class & Method Reference
IDLgrPattern::Cleanup

The IDLgrPattern::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrPattern::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrPattern IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2091
IDLgrPattern::GetProperty

The IDLgrPattern::GetProperty procedure method retrieves the value of a property or
group of properties for the pattern.

Syntax

Obj -> [IDLgrPattern::]GetProperty [, ALL=variable]

Arguments

None

Keywords

Any keyword to IDLgrPattern::Init followed by the word “Get” can be retrieved
using IDLgrPattern::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.
IDL Reference Guide IDLgrPattern

2092 Appendix A: IDL Object Class & Method Reference
IDLgrPattern::Init

The IDLgrPattern::Init function method initializes the pattern object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrPattern' [, Style] [, ORIENTATION{Get, Set}=ccw degrees
from horiz] [, NAME{Get, Set}=string] [, PATTERN{Get, Set}=32 x 32 bit array]
[, SPACING{Get, Set}=pixels] [, STYLE{Get, Set}={0 | 1 | 2}]
[, THICK=pixels{1.0 to 10.0}] [, UVALUE{Get, Set}=value])

or

Result = Obj -> [IDLgrPattern::]Init([Style]) (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

Style

A integer value representing the type of pattern. Valid values are:

• 0 = Solid color (default)

• 1 = Line Fill

• 2 = Pattern

Keywords

Properties retrievable via IDLgrPattern::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrPattern:SetProperty are
indicated by the word “Set” following the keyword.
IDLgrPattern IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2093
ORIENTATION (Get, Set)

Set this keyword to a scalar representing the angle (measured in degrees
counterclockwise from the horizontal) of the lines used in a Line Fill. This keyword
is ignored unless the Style argument (or STYLE property) is set to one.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this object.
The default is the null string, ' '.

PATTERN (Get, Set)

Set this keyword to a 32 x 32 bit array (bitmap) describing the pattern that will be
tiled over a polygon when a pattern fill is used. The bitmap must be configured as a
4 x 32 “bitmap byte array” as created by the CVTTOBM function. Each bit that is a 1
is drawn, each bit that is 0 is not drawn. Each bit in this array represents a 1 point by
1 point square area of pixels on the destination device. This keyword is ignored
unless the Style argument (or STYLE keyword) is set to 2.

SPACING (Get, Set)

Set this keyword equal to a floating-point value representing the distance (measured
in points) between the lines used for a Line Fill. This keyword is ignored unless the
Style argument (or STYLE property) is set to 1. The default is 2.0 points.

STYLE (Get, Set)

Set this keyword to one of the following values specifying the type of pattern:

• 0 = Solid (default)

• 1 = Line Fill

• 2 = Pattern

This keyword is the same as the Style argument described above.

THICK

Set this keyword to a value between 1.0 and 10.0, specifying the line thickness to be
used to draw the pattern lines for a Line Fill, in points. The default is 1.0 points. This
keyword is ignored unless the Style argument or STYLE keyword is set to 1.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object to which the user value applies.
IDL Reference Guide IDLgrPattern

2094 Appendix A: IDL Object Class & Method Reference
IDLgrPattern:SetProperty

The IDLgrPattern::SetProperty procedure method sets the value of a property or
group of properties for the pattern.

Syntax

Obj -> [IDLgrPattern::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrPattern::Init followed by the word “Set” can be set using
IDLgrPattern::SetProperty.
IDLgrPattern IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2095
IDLgrPlot

A plot object creates a set of polylines connecting data points in two-dimensional
space.

An IDLgrPlot object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See “IDLgrPlot::Init” on page 2101.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrPlot::Cleanup

• IDLgrPlot::GetCTM

• IDLgrPlot::GetProperty

• IDLgrPlot::Init

• IDLgrPlot::SetProperty
IDL Reference Guide IDLgrPlot

2096 Appendix A: IDL Object Class & Method Reference
IDLgrPlot::Cleanup

The IDLgrPlot::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj or Obj -> [IDLgrPlot::]Cleanup (Only in subclass’ Cleanup
method.)

Arguments

None

Keywords

None
IDLgrPlot IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2097
IDLgrPlot::GetCTM

The IDLgrPlot::GetCTM function method returns the 4 x 4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrPlot::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the plot
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrPlot::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDL Reference Guide IDLgrPlot

2098 Appendix A: IDL Object Class & Method Reference
TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.
IDLgrPlot IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2099
IDLgrPlot::GetProperty

The IDLgrPlot::GetProperty procedure method retrieves the value of the property or
group of properties for the plot.

Syntax

Obj -> [IDLgrPlot::]GetProperty [, ALL=variable] [, DATA=variable]
[, PARENT=variable] [, ZRANGE=variable]

Arguments

None

Keywords

Any keyword to IDLgrPlot::Init followed by the word “Get” can be retrieved using
IDLgrPlot::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

DATA

Set this keyword to a named variable that will contain the plot data in a 3 x n array,
[DataX, DataY, DataZ].

PARENT

Set this keyword equal to a named variable that will contain an object reference to the
object that contains this object.

ZRANGE

Set this keyword to a named variable that will contain a two-element vector of the
form [zmin, zmax] specifying the range of z data values covered by the graphic
object. IDL maintains and returns this property in double-precision floating-point.
IDL Reference Guide IDLgrPlot

2100 Appendix A: IDL Object Class & Method Reference
Note
The XRANGE and YRANGE properties can also be retrieved via the GetProperty
method; ZRANGE, however, can only be retrieved, not initialized (Init method) or
set (SetProperty method).
IDLgrPlot IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2101
IDLgrPlot::Init

The IDLgrPlot::Init function method initializes the plot object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrPlot' [, [X,] Y] [, COLOR{Get, Set}=index or RGB vector | ,
VERT_COLORS{Get, Set}=vector] [, DATAX {Set}=vector]
[, DATAY{Set}=vector] [, /DOUBLE{Get, Set}] [, /HIDE{Get, Set}]
[, /HISTOGRAM{Get, Set}] [, LINESTYLE{Get, Set}=integer or two-element
vector] [, MAX_VALUE{Get, Set}=value] [, MIN_VALUE{Get, Set}=value]
[, NAME{Get, Set}=string] [, NSUM{Get, Set}=value] [, PALETTE{Get,
Set}=objref] [, /POLAR{Get, Set}] [, /RESET_DATA{Set}]
[, SHARE_DATA{Set}=objref] [, SYMBOL{Get, Set}=objref(s)] [, THICK{Get,
Set}=points{1.0 to 10.0}] [, /USE_ZVALUE] [, UVALUE{Get, Set}=value]
[, XCOORD_CONV{Get, Set}=vector] [, XRANGE{Get, Set}=[xmin, xmax]]
[, YCOORD_CONV{Get, Set}=vector] [, YRANGE{Get, Set}=[ymin, ymax]]
[, ZCOORD_CONV{Get, Set}=vector] [, ZVALUE{Get, Set}=value])

or

Result = Obj -> [IDLgrPlot::]Init([[X,] Y]) (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

X

A vector representing the abscissa values to be plotted. If X is provided, Y is plotted
as a function of X. The value for this argument is double-precision floating-point if
IDL Reference Guide IDLgrPlot

2102 Appendix A: IDL Object Class & Method Reference
the DOUBLE keyword is set or the inputted value is of type DOUBLE. Otherwise it
is converted to single-precision floating-point.

Y

Either a vector of two-element arrays [x, y] representing the points to be plotted, or a
vector representing the ordinate values to be plotted. If Y is a vector of ordinate
values and X is not specified, Y is plotted as a function of the vector index of Y. The
value for this argument is double-precision floating-point if the DOUBLE keyword is
set or the inputted value is of type DOUBLE. Otherwise it is converted to single-
precision floating-point.

Keywords

Properties retrievable via IDLgrPlot::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrPlot::SetProperty are indicated
by the word “Set” following the keyword.

COLOR (Get, Set)

Set this keyword to the color to be used as the foreground color for this plot. The
color may be specified as a color lookup table index or as an RGB vector. The default
is [0, 0, 0].

DATAX (Set)

Set this keyword to a vector specifying the X values to be plotted. This keyword is
the same as the X argument.

DATAY (Set)

Set this keyword to a vector specifying the Y values to be plotted. This keyword is
the same as the Y argument.

DOUBLE (Get, Set)

Set this keyword to indicate that data provided by any of the X or Y arguments or
DATAX or DATAY keywords will be stored in this object as double-precision
floating-point. If you set this keyword equal to 0, the data provided will be stored in
this object as single-precision floating-point. If you do not specify this keyword, the
data is stored as double-precision floating-point if the original data was of type
DOUBLE or as single-precision floating-point if the original data was not of type
DOUBLE.

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be drawn:
IDLgrPlot IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2103
• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

HISTOGRAM (Get, Set)

Set this keyword to force only horizontal and vertical lines to be used to connect the
plotted points. By default, the points are connected using a single straight line.

LINESTYLE (Get, Set)

Set this keyword to indicate the line style that should be used to draw the plot lines.
The value can be either an integer value specifying a pre-defined line style, or a two-
element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

MAX_VALUE (Get, Set)

The maximum value to be plotted. If this keyword is present, data values greater than
the value of MAX_VALUE are treated as missing data and are not plotted. Note that
the IEEE floating-point value NaN is also treated as missing data. IDL converts,
maintains, and returns this data as double-precision floating-point.
IDL Reference Guide IDLgrPlot

2104 Appendix A: IDL Object Class & Method Reference
MIN_VALUE (Get, Set)

The minimum value to be plotted. If this keyword is present, data values less than the
value of MIN_VALUE are treated as missing data and are not plotted. Note that the
IEEE floating-point value NaN is also treated as missing data. IDL converts,
maintains, and returns this data as double-precision floating-point.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this object.
The default is the null string, ' '.

NSUM (Get, Set)

Set this keyword to the number of data points to average when plotting. If NSUM is
larger than 1, every group of NSUM points is averaged to produce one plotted point.
If there are M data points, then M/NSUM points are plotted.

PALETTE (Get, Set)

Set this keyword equal to the object reference of a palette object (an instance of the
IDLgrPalette object class). This keyword is only used if the destination device is
using the RGB color model. If so, and a color value for the object is specified as a
color index value, the palette set by this keyword is used to translate the color to RGB
space. If the PALETTE property on this object is not set, the destination object
PALETTE property is used (which defaults to a grayscale ramp).

POLAR (Get, Set)

Set this keyword to create a polar plot. The X and Y arguments must both be present.
The X argument represents the radius, and the Y argument represents the angle
expressed in radians.

RESET_DATA (Set)

Set this keyword to treat the data provided via one of the DATA[XY] properties as a
new data set unique to this object, rather than overwriting data that is shared by other
objects. There is no reason to use this keyword if the object on which the property is
being set does not currently share data with another object (that is, if the
SHARE_DATA property is not in use). This keyword has no effect if no new data is
provided via a DATA property.

SHARE_DATA (Set)

Set this keyword to an object with which data is to be shared by this plot. A plot may
only share data with another plot. The SHARE_DATA property is intended for use
when data values are not set via an argument to the object’s Init method or by setting
the object’s DATA property.
IDLgrPlot IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2105
SYMBOL (Get, Set)

Set this keyword to a vector containing instances of the IDLgrSymbol object class.
Each symbol in the vector will be drawn at the corresponding plotted point. If there
are more points than elements in SYMBOL, the elements of the SYMBOL vector are
cyclically repeated. By default, no symbols are drawn. To remove symbols from a
plot, set the SYMBOL property equal to a null object reference.

THICK (Get, Set)

Set this keyword to a value between 1.0 and 10.0, specifying the line thickness to be
used to draw the plotted lines, in points. The default is 1.0 points.

USE_ZVALUE

Set this keyword to use the current ZVALUE. The plot is considered three-
dimensional if this keyword is set.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object it is a user value of.

VERT_COLORS (Get, Set)

Set this keyword to a vector of colors to be used to draw at each vertex. Color is
interpolated between vertices. If there are more plot points than elements in
VERT_COLORS, the elements of VERT_COLORS are cyclically repeated. By
default, the plot is all drawn in the single color provided by the COLOR keyword. If
the VERT_COLORS is provided, the COLOR keyword is ignored.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.
IDL Reference Guide IDLgrPlot

2106 Appendix A: IDL Object Class & Method Reference
XRANGE (Get, Set)

Set this keyword equal to a two-element vector of the form [xmin, xmax] specifying
the range of x data coordinates covered by the graphic object. If this property is not
specified, the minimum and maximum data values are used. IDL converts, maintains,
and returns this data as double-precision floating-point.

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

YRANGE (Get, Set)

Set this keyword equal to a two-element vector of the form [ymin, ymax] specifying
the range of y data values covered by the graphic object. If this property is not
specified, the minimum and maximum data values are used. IDL converts, maintains,
and returns this data as double-precision floating-point.

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZVALUE (Get, Set)

Set this keyword equal to a two-element vector of the form [[xy]min, [xy]max]
specifying the range of [xy] data coordinates covered by the graphic object. If this
property is not specified, the minimum and maximum data values are used. IDL
converts, maintains, and returns this data as double-precision floating-point.

Note
The USE_ZVALUE keyword needs to be set in order for ZVALUEs to take affect.
IDLgrPlot IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2107
IDLgrPlot::SetProperty

The IDLgrPlot::SetProperty procedure method sets the value of the property or group
of properties for the plot.

Syntax

Obj -> [IDLgrPlot::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrPlot::Init followed by the word “Set” can be set using
IDLgrPlot::SetProperty.
IDL Reference Guide IDLgrPlot

2108 Appendix A: IDL Object Class & Method Reference
IDLgrPolygon

A polygon object represents one or more polygons that share a given set of vertices
and rendering attributes. All polygons must be convex—that is, a line connecting any
pair of vertices on the polygon cannot fall outside the polygon. Concave polygons
can be converted to a set of convex polygons using the IDLgrTessellator object.

An IDLgrPolygon object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See “IDLgrPolygon::Init” on page 2114.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrPolygon::Cleanup

• IDLgrPolygon::GetCTM

• IDLgrPolygon::GetProperty

• IDLgrPolygon::Init

• IDLgrPolygon::SetProperty
IDLgrPolygon IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2109
IDLgrPolygon::Cleanup

The IDLgrPolygon::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrPolygon::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrPolygon

2110 Appendix A: IDL Object Class & Method Reference
IDLgrPolygon::GetCTM

The IDLgrPolygon::GetCTM The IDLgrPolygon::GetCTM function method returns
the 4 x 4 double-precision floating-point graphics transform matrix from the current
object upward through the graphics tree.

Syntax

Result = Obj -> [IDLgrPolygon::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the polygon
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrPolygonl::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDLgrPolygon IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2111
TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.
IDL Reference Guide IDLgrPolygon

2112 Appendix A: IDL Object Class & Method Reference
IDLgrPolygon::GetProperty

The IDLgrPolygon::GetProperty procedure method retrieves the value of the
property or group of properties for the polygons.

Syntax

Obj -> [IDLgrPolygon::]GetProperty [, ALL=variable] [, PARENT=variable]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

There are no arguments for this methods.

Keywords

Any keyword to IDLgrPolygon::Init followed by the word “Get” can be retrieved
using IDLgrPolygon::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to the
object that contains this object.

XRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [xmin, xmax] that specifies the range of x data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.
IDLgrPolygon IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2113
YRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [ymin, ymax] that specifies the range of y data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [zmin, zmax] that specifies the range of z data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.
IDL Reference Guide IDLgrPolygon

2114 Appendix A: IDL Object Class & Method Reference
IDLgrPolygon::Init

The IDLgrPolygon::Init function method initializes the polygons object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrPolygon' [, X [, Y[, Z]]] [, BOTTOM{Get, Set}=index or
RGB vector] [, COLOR{Get, Set}=index or RGB vector | , VERT_COLORS{Get,
Set}=vector] [, DATA{Get, Set}=array] [, /DOUBLE{Get, Set}]
[, FILL_PATTERN{Get, Set}=objref to IDLgrPattern object] [, /HIDDEN_LINES]
[, /HIDE{Get, Set}] [, LINESTYLE{Get, Set}=value] [, NAME{Get, Set}=string]
[, NORMALS{Get, Set}=array] [, PALETTE=objref] [, POLYGONS{Get,
Set}=array of polygon descriptions] [, REJECT{Get, Set}={0 | 1 | 2}]
[, /RESET_DATA{Set}] [, SHADE_RANGE{Get, Set}=array] [, SHADING{Get,
Set}={0 | 1}] [, SHARE_DATA{Set}=objref] [, STYLE{Get, Set}={0 | 1 | 2}]
[, TEXTURE_COORD{Get, Set}=array] [, /TEXTURE_INTERP{Get, Set}]
[, TEXTURE_MAP{Get, Set}=objref to IDLgrImage object] [, THICK{Get,
Set}=points{1.0 to 10.0}] [, XCOORD_CONV{Get, Set}=vector]
[, YCOORD_CONV{Get, Set}=vector] [, ZCOORD_CONV{Get, Set}=vector]
[, ZERO_OPACITY_SKIP{Get, Set}={0 | 1}])

or

Result = Obj -> [IDLgrPolygon::]Init([X, [Y, [Z]]]) (Only in a subclass’ Init
method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.
IDLgrPolygon IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2115
Arguments

X

A vector argument providing the X coordinates of the vertices. The vector must
contain at least three elements. If the Y and Z arguments are not provided, X must be
an array of either two or three vectors (i.e., [2,*] or [3,*]), in which case, X[0,*]
specifies the X values, X[1,*] specifies the Y values, and X[2,*] specifies the Z
values.

This argument is stored as double precision floating point values if the argument
variable is of type DOUBLE or if the DOUBLE property is non-zero, otherwise it is
converted to single precision floating point.

Y

A vector argument providing the Y coordinates of the vertices. The vector must
contain at least three elements. This argument is stored as double precision floating
point values if the argument variable is of type DOUBLE or if the DOUBLE property
is non-zero, otherwise it is converted to single precision floating point.

Z

A vector argument providing the Z coordinates of the vertices. The vector must
contain at least three elements. This argument is stored as double precision floating
point values if the argument variable is of type DOUBLE or if the DOUBLE property
is non-zero, otherwise it is converted to single precision floating point.

Keywords

Properties retrievable via IDLgrPolygon::GetProperty are indicated by the word
“Get” following the keyword. Properties settable via IDLgrPolygon::SetProperty are
indicated by the word “Set” following the keyword.

BOTTOM (Get, Set)

Set this keyword to an RGB or Indexed color for drawing the backs of the polygons.
(The back of a polygon is the side opposite the normal direction). Setting a bottom
color is only supported when the destination device uses RGB color mode.

COLOR (Get, Set)

Set this keyword to an RGB or Indexed color for drawing polygons. The default color
is [0, 0, 0] (black). If the TEXTURE_MAP property is used, the final color is
modulated by the texture map pixel values. This keyword is ignored if the
VERT_COLORS keyword is provided.
IDL Reference Guide IDLgrPolygon

2116 Appendix A: IDL Object Class & Method Reference
DATA (Get, Set)

Set this keyword to a 2 x n or a 3 x n array which defines, respectively, the 2D or 3D
vertex data. DATA is equivalent to the optional arguments, X, Y, and Z. This
property is stored as double precision floating point values if the property variable is
of type DOUBLE or if the DOUBLE keyword parameter is also specified, otherwise
it is converted to single precision floating point.

DOUBLE (Get, Set)

Set this keyword to a non-zero value to indicate that data provided by any of the X,
Y, or Z arguments or DATA keyword should be stored in this object in double
precision floating point. Set this keyword to zero to indicate that the data should be
stored in single precision floating point. IDL converts any value data already stored
in the object to the requested precision, if necessary. Note that this keyword does not
need to be set if any of the X, Y, or Z arguments or the DATA parameters are of type
DOUBLE. However, setting this keyword may be desirable if the data consists of
large integers that cannot be accurately represented in single precision floating point.
This property is also automatically set to one if any of the X, Y or Z arguments or the
DATA parameter is stored using a variable of type DOUBLE.

FILL_PATTERN (Get, Set)

Set this keyword equal to an object reference to an IDLgrPattern object (or an array
of IDLgrPattern objects) to specify the fill pattern to use for filling the polygons. By
default, FILL_PATTERN is set to a null object reference, specifying a solid fill.

HIDDEN_LINES

Set this keyword to draw point and wireframe surfaces using hidden line (point)
removal. By default, hidden line removal is disabled.

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

LINESTYLE (Get, Set)

Set this keyword to indicate the line style that should be used to draw the polygon.
The value can be either an integer value specifying a pre-defined line style, or a two-
element vector specifying a stippling pattern.
IDLgrPolygon IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2117
To use a pre-defined line style, set the LINESTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this object.
The default is the null string, ' '.

NORMALS (Get, Set)

Set this keyword to a 3 x n array of unit polygon normals at each vertex. If this
keyword is not set, vertex normals are computed by averaging shared polygon
normals at each vertex. Normals are computed using the Right Hand Rule; that is, if
the polygon is facing the viewer, vertices are taken in counterclockwise order. To
remove previously specified normals, set NORMALS to a scalar.

Note
Computing normals is a computationally expensive operation. Rendering speed
increases significantly if you supply the surface normals explicitly. You can
compute the array of polygon normals used by this keyword automatically. See
“COMPUTE_MESH_NORMALS” on page 211 for details.
IDL Reference Guide IDLgrPolygon

2118 Appendix A: IDL Object Class & Method Reference
Once you use the NORMALS keyword in a call to IDLgrPolygon::Init or
IDLgrPolygon::SetProperty, you are responsible for that IDLgrPolygon’s normals
from then on. IDL will not calculate that IDLgrPolygon’s normals for you
automatically, even if you draw the IDLgrPolygon after vertices or connectivity have
been changed.

If you do not use the NORMALS keyword, IDL calculates normals the first time it
draws the IDLgrPolygon. IDL reuses those normals for subsequent draws unless it
determines that a fresh recalculation of normals is required, such as if the vertices of
the IDLgrPolygon are changed, or you supply new normals via the NORMALS
keyword.

PALETTE

Set this keyword equal to the object reference of a palette object (an instance of the
IDLgrPalette object class). This keyword is only used if the destination device is
using the RGB color model. If so, and a color value for the object is specified as a
color index value, the palette set by this keyword is used to translate the color to RGB
space. If the PALETTE property on this object is not set, the destination object
PALETTE property is used (which defaults to a grayscale ramp).

POLYGONS (Get, Set)

Set this keyword to an array of polygon descriptions. A polygon description is an
integer or longword array of the form: [n, i0, i1, ..., in-1], where n is the number of
vertices that define the polygon, and i0..in-1 are indices into the X, Y, and Z arguments
that represent the polygon vertices. To ignore an entry in the POLYGONS array, set
the vertex count, n, to 0. To end the drawing list, even if additional array space is
available, set n to -1. If this keyword is not specified, a single polygon will be
generated.

Note
The connectivity array described by POLYGONS allows an individual object to
contain more than one polygon. Vertex, normal, and color information can be
shared by the multiple polygons. Consequently, the polygon object can represent an
entire mesh and compute reasonable normal estimates in most cases.

REJECT (Get, Set)

Set this keyword to an integer value to reject polygons as being hidden depending on
the orientation of their normals. Select from one of the following values:

• 0 = No polygons are hidden
IDLgrPolygon IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2119
• 1 = Polygons whose normals point away from the viewer are hidden

• 2 = Polygons whose normals point toward the viewer are hidden

Set this keyword to zero to draw all polygons regardless of the direction of their
normals.

RESET_DATA (Set)

Set this keyword to treat the data provided via the DATA property as a new data set
unique to this object, rather than overwriting data that is shared by other objects.
There is no reason to use this keyword if the object on which the property is being set
does not currently share data with another object (that is, if the SHARE_DATA
property is not in use). This keyword has no effect if no new data is provided via the
DATA property.

SHADE_RANGE (Get, Set)

Set this keyword to a two-element array that specifies the range of pixel values (color
indices) to use for shading. The first element is the color index for the darkest pixel.
The second element is the color index for the brightest pixel. The default is [0, 255].
This keyword is ignored when the polygons are drawn to a graphics destination that
uses the RGB color model.

SHADING (Get, Set)

Set this keyword to an integer representing the type of shading to use:

• 0 = Flat (default): The color of the first vertex in each polygon is used to define
the color for the entire polygon. The color has a constant intensity based upon
the normal vector.

• 1 = Gouraud: The colors along each line are interpolated between vertex
colors, and then along scanlines from each of the edge intensities.

Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

SHARE_DATA (Set)

Set this keyword to an object with which data is to be shared by this polygon(s).
Polygons may only share data with another polygons object or a polyline. The
SHARE_DATA property is intended for use when data values are not set via an
argument to the object’s Init method or by setting the object’s DATA property.

STYLE (Get, Set)

Set this keyword to specify how the polygon should be drawn:
IDL Reference Guide IDLgrPolygon

2120 Appendix A: IDL Object Class & Method Reference
• 0 = Points: Only vertices are drawn, using either COLOR or VERT_COLORS.

• 1 = Lines: Each polygon is outlined by connecting vertices.

• 2 = Filled (default): The polygon faces are shaded.

Note
Texturing is in effect only when STYLE = 2 (Filled).

TEXTURE_COORD (Get, Set)

A 2 x n array containing the texture map coordinates for each of the n polygon
vertices. Use this keyword in conjunction with the TEXTURE_MAP keyword to
wrap images over 2D and 3D polygons. Default coordinates are not provided.

Texture coordinates are normalized. This means that the m x n image object specified
via the TEXTURE_MAP property is mapped into the range [0.0, 0.0] to [1.0, 1.0]. If
texture coordinates outside the range [0.0, 0.0] to [1.0, 1.0] are specified, the image
object is tiled into the larger range.

For example, suppose the image object specified via TEXTURE_MAP is a 256 x 256
array, and we want to map the image into a square two units on each side. To
completely fill the square with a single copy of the image:

TEXTURE_COORD = [[0,0], [1,0], [1,1], [0,1]]

To fill the square with four tiled copies of the image:

TEXTURE_COORD = [[0,0], [2,0], [2,2], [0,2]]

TEXTURE_INTERP (Get, Set)

Set this keyword to indicate that bilinear sampling is to be used for texture mapping
an image onto the polygon(s). The default is nearest neighbor sampling.

TEXTURE_MAP (Get, Set)

Set this keyword to the object reference of an IDLgrImage object to be texture
mapped onto the polygons. The tiling or mapping of the texture is defined expressly
by TEXTURE_COORD. If this keyword is omitted, polygons are filled with the
color specified by the COLOR or VERT_COLORS property. If both
TEXTURE_MAP and COLORS or VERT_COLORS properties exist, the color of
the texture is modulated by the base color of the object. (This means that for the
clearest display of the texture image, the COLOR property should be set equal to
[255,255,255].) To remove a texture map, set TEXTURE_MAP equal to a null object
reference.
IDLgrPolygon IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2121
Setting TEXTURE_MAP to the object reference of an IDLgrImage that contains an
Alpha channel allows you to create a transparent IDLgrPolygon object. For more on
the Alpha channel, see “Image Objects” in Chapter 25 of Using IDL. If an Alpha
channel is present in the IDLgrImage object, IDL blends the texture using the blend
function src=Alpha and dst=1 – Alpha, which corresponds to a BLEND_FUNCTION
of (3,4) as described for the IDLgrImage object.

If the width and/or height of the provided image is not an exact power of two, then
the texture map will consist of the given image pixel values resampled to the nearest
larger dimensions that are exact powers of two.

Note
Texture mapping is disabled when rendering to a destination object that uses
Indexed color mode.

THICK (Get, Set)

Set this keyword to a value between 1.0 and 10.0, specifying the size of the points or
the thickness of the lines to be drawn when STYLE is set to either 0 (Points) or 1
(Lines), in points. The default is 1.0 points.

VERT_COLORS (Get, Set)

Set this keyword to a vector of colors to be used to draw at each vertex. Color is
interpolated between vertices if SHADING is set to 1 (Gouraud). If there are more
vertices than elements in VERT_COLORS, the elements of VERT_COLORS are
cyclically repeated. By default, the polygons are all drawn in the single color
provided by the COLOR keyword. To remove vertex colors, set VERT_COLORS to
a scalar.

Note
If the polygon object is being rendered on a destination device that uses the Indexed
color model, and the view that contains the polygon also contains one or more light
objects, the VERT_COLORS property is ignored and the SHADE_RANGE
property is used instead.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX
IDL Reference Guide IDLgrPolygon

2122 Appendix A: IDL Object Class & Method Reference
Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZERO_OPACITY_SKIP (Get, Set)

Set this keyword to gain finer control over the rendering of textured polygon pixels
(texels) with an opacity of 0 in the texture map. Texels with zero opacity do not affect
the color of a screen pixel since they have no opacity. If this keyword is set to 1, any
texels are “skipped” and not rendered at all. If this keyword is set to zero, the Z-
buffer is updated for these pixels and the display image is not affected as noted
above. By updating the Z-buffer without updating the display image, the polygon can
be used as a clipping surface for other graphics primitives drawn after the current
graphics object. The default value for this keyword is 1.

Note
This keyword has no effect if no texture map is used or if the texture map in use
does not contain an opacity channel.
IDLgrPolygon IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2123
IDLgrPolygon::SetProperty

The IDLgrPolygon::SetProperty procedure method sets the value of the property or
group of properties for the polygons.

Syntax

Obj -> [IDLgrPolygon::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrPolygon::Init followed by the word “Set” can be set using
IDLgrPolygon::SetProperty.
IDL Reference Guide IDLgrPolygon

2124 Appendix A: IDL Object Class & Method Reference
IDLgrPolyline

A polyline object represents one or more polylines that share a set of vertices and
rendering attributes.

An IDLgrPolyline object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See “IDLgrPolyline::Init” on page 2130.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrPolyline::Cleanup

• IDLgrPolyline::GetCTM

• IDLgrPolyline::GetProperty

• IDLgrPolyline::Init

• IDLgrPolyline::SetProperty
IDLgrPolyline IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2125
IDLgrPolyline::Cleanup

The IDLgrPolyline::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrPolyline::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrPolyline

2126 Appendix A: IDL Object Class & Method Reference
IDLgrPolyline::GetCTM

The IDLgrPolyline::GetCTM function method returns the 4 x 4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrPolyline::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the polyline
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrPolyline::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDLgrPolyline IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2127
TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.
IDL Reference Guide IDLgrPolyline

2128 Appendix A: IDL Object Class & Method Reference
IDLgrPolyline::GetProperty

The IDLgrPolyline::GetProperty procedure method retrieves the value of a property
or group of properties for the polylines.

Syntax

Obj -> [IDLgrPolyline::]GetProperty [, ALL=variable] [, PARENT=variable]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

None

Keywords

Any keyword to IDLgrPolyline::Init followed by the word “Get” can be retrieved
using IDLgrPolyline::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to the
object that contains this object.

XRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [xmin, xmax] that specifies the range of x data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.
IDLgrPolyline IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2129
YRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [ymin, ymax] that specifies the range of y data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [zmin, zmax] that specifies the range of z data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.
IDL Reference Guide IDLgrPolyline

2130 Appendix A: IDL Object Class & Method Reference
IDLgrPolyline::Init

The IDLgrPolyline::Init function method initializes the polylines object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrPolyline' [, X [, Y[, Z]]] [, COLOR{Get, Set}=index or RGB
vector | , VERT_COLORS{Get, Set}=vector] [, DATA{Get, Set}=array]
[, /DOUBLE{Get, Set}] [, /HIDE{Get, Set}] [, LINESTYLE{Get, Set}=value]
[, NAME{Get, Set}=string] [, PALETTE{Get, Set}=objref] [, POLYLINES{Get,
Set}=array of polyline descriptions] [, /RESET_DATA{Set}] [, SHADING{Get,
Set}={0 | 1}] [, SHARE_DATA{Set}=objref] [, SYMBOL{Get, Set}=objref(s)]
[, THICK{Get, Set}=points{1.0 to 10.0}] [, UVALUE{Get, Set}=value]
[, XCOORD_CONV{Get, Set}=vector] [, YCOORD_CONV{Get, Set}=vector]
[, ZCOORD_CONV{Get, Set}=vector])

or

Result = Obj -> [IDLgrPolyline::]Init([X, [Y, [Z]]]) (Only in a subclass’ Init
method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

X

A vector providing the X components of the points to be connected. If the Y and Z
arguments are not provided, X must be an array of either two or three vectors (i.e.,
[2,*] or [3,*]), in which case, X[0,*] specifies the X values, X[1,*] specifies the Y
values, and X[2,*] specifies the Z values. This argument is stored as double precision
IDLgrPolyline IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2131
floating point values if the argument variable is of type DOUBLE or if the DOUBLE
property is non-zero, otherwise it is stored as single precision floating point.

Y

A vector providing the Y coordinates of the points to be connected. This argument is
stored as double precision floating point values if the argument variable is of type
DOUBLE or if the DOUBLE property is non-zero, otherwise it is stored as single
precision floating point.

Z

A vector providing the Z coordinates of the points to be connected. This argument is
stored as double precision floating point values if the argument variable is of type
DOUBLE or if the DOUBLE property is non-zero, otherwise it is stored as single
precision floating point.

Keywords

Properties retrievable via IDLgrPolyline::GetProperty are indicated by the word
“Get” following the keyword. Properties settable via IDLgrPolyline::SetProperty are
indicated by the word “Set” following the keyword.

COLOR (Get, Set)

Set this keyword to an RGB or Indexed color for drawing polylines. The default color
is [0, 0, 0] (black). This keyword is ignored if the VERT_COLORS keyword is
provided.

DATA (Get, Set)

Set this keyword to a 2 x n or a 3 x n array which defines, respectively, the 2D or 3D
vertex data. DATA is equivalent to the optional arguments, X, Y, and Z. This property
is converted to double-precision floating-point values if the DOUBLE keyword is set.
Otherwise, it is converted to single-precision floating-point.

DOUBLE (Get, Set)

Set this keyword to indicate that data provided by any of the X, Y, or Z arguments or
the DATA keyword will be stored in this object as double-precision floating-point. If
you set this keyword equal to 0, the data provided will be stored in this object as
single-precision floating-point. If you do not specify this keyword, the data is stored
as double-precision floating-point if the original data was of type DOUBLE or as
single-precision floating-point if the original data was not of type DOUBLE.
IDL Reference Guide IDLgrPolyline

2132 Appendix A: IDL Object Class & Method Reference
HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

LINESTYLE (Get, Set)

Set this keyword to indicate the line style that should be used to draw the polyline.
The value can be either an integer value specifying a pre-defined line style, or a two-
element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this object.
The default is the null string, ' '.
IDLgrPolyline IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2133
PALETTE (Get, Set)

Set this keyword equal to the object reference of a palette object (an instance of the
IDLgrPalette object class). This keyword is only used if the destination device is
using the RGB color model. If so, and a color value for the object is specified as a
color index value, the palette set by this keyword is used to translate the color to RGB
space. If the PALETTE property on this object is not set, the destination object
PALETTE property is used (which defaults to a grayscale ramp).

POLYLINES (Get, Set)

Set this keyword to an array of polyline descriptions. A polyline description is an
integer or longword array of the form: [n, i0, i1, ..., in-1], where n is the number of
vertices that define the polyline, and i0..in-1 are indices into the X, Y, and Z arguments
that represent the vertices of the polyline(s). To ignore an entry in the POLYLINES
array, set the vertex count, n, to 0. To end the drawing list, even if additional array
space is available, set n to -1. If this keyword is not specified, a single connected
polyline will be generated from the X, Y, and Z arguments.

Note
The connectivity array described by POLYLINES allows an individual object to
contain more than one polyline. Vertex, normal and color information can be shared
by the multiple polylines. Consequently, the polyline object can represent an entire
mesh and compute reasonable normal estimates in most cases.

RESET_DATA (Set)

Set this keyword to treat the data provided via one of the DATA property as a new
data set unique to this object, rather than overwriting data that is shared by other
objects. There is no reason to use this keyword if the object on which the property is
being set does not currently share data with another object (that is, if the
SHARE_DATA property is not in use). This keyword has no effect if no new data is
provided via the DATA property.

SHADING (Get, Set)

Set this keyword to an integer representing the type of shading to use:

• 0 = Flat (default): The color of the first vertex in a line segment is used to
define the color for the entire line segment. The color has a constant intensity
based upon the normal vector.

• 1 = Gouraud: The colors along each line are interpolated between vertex
colors.
IDL Reference Guide IDLgrPolyline

2134 Appendix A: IDL Object Class & Method Reference
Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

SHARE_DATA (Set)

Set this keyword to an object whose data is to be shared by this polyline. A polyline
may only share data with a polygon object or another polyline. The SHARE_DATA
property is intended for use when data values are not set via an argument to the
object’s Init method or by setting the object’s DATA property.

SYMBOL (Get, Set)

Set this keyword to a vector containing one or more instances of the IDLgrSymbol
object class to indicate the plotting symbols to be used at each vertex of the polyline.
If there are more vertices than elements in SYMBOL, the elements of the SYMBOL
vector are cyclically repeated. By default, no symbols are drawn. To remove symbols
from a polyline, set SYMBOL to a scalar.

THICK (Get, Set)

Set this keyword to a value between 1.0 and 10.0, specifying the line thickness to be
used to draw the polyline, in points. The default is 1.0 points.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object it is a user value of.

VERT_COLORS (Get, Set)

Set this keyword to a vector of colors to be used to draw at each vertex. Color is
interpolated between vertices if SHADING is set to 1 (Gouraud). If there are more
vertices than elements in VERT_COLORS, the elements of VERT_COLORS are
cyclically repeated. By default, the polyline is drawn in the single color provided by
the COLOR keyword. To remove vertex colors, set VERT_COLORS to a scalar.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]
IDLgrPolyline IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2135
The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.
IDL Reference Guide IDLgrPolyline

2136 Appendix A: IDL Object Class & Method Reference
IDLgrPolyline::SetProperty

The IDLgrPolylines::SetProperty procedure method sets the value of a property or
group of properties for the polylines.

Syntax

Obj -> [IDLgrPolyline::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrPolyline::Init followed by the word “Set” can be set using
IDLgrPolyline::SetProperty.
IDLgrPolyline IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2137
IDLgrPrinter

A printer object represents a hardcopy graphics destination. When a printer object is
created, the printer device to which it refers is the default system printer. To change
the printer, utilize the printer dialogs (see “DIALOG_PRINTJOB” on page 400 and
“DIALOG_PRINTERSETUP” on page 398.)

Note
Objects or subclasses of this type can not be saved or restored.

Superclasses

This class has no superclass.

Subclasses

This class has no subclasses.

Creation

See “IDLgrPrinter::Init” on page 2145.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrPrinter::Cleanup

• IDLgrPrinter::Draw

• IDLgrPrinter::GetContiguousPixels

• IDLgrPrinter::GetFontnames

• IDLgrPrinter::GetProperty

• IDLgrPrinter::GetTextDimensions

• IDLgrPrinter::Init

• IDLgrPrinter::NewDocument

• IDLgrPrinter::NewPage

• IDLgrPrinter::SetProperty

IDL Reference Guide IDLgrPrinter

2138 Appendix A: IDL Object Class & Method Reference
IDLgrPrinter::Cleanup

The IDLgrPrinter::Cleanup procedure method performs all cleanup on the object. If a
document is open (that is, if graphics have been draw to the printer), the document is
closed and the pending graphics are sent to the current printer.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrPrinter::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrPrinter IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2139
IDLgrPrinter::Draw

The IDLgrPrinter::Draw procedure method draws the given picture to this graphics
destination.

Note
Objects are drawn to the destination device in the order that they are added to the
model, view, viewgroup, or scene object that contains them.

Syntax

Obj -> [IDLgrPrinter::]Draw [, Picture] [, VECTOR={ 0 | 1 }]

Arguments

Picture

The view (an instance of an IDLgrView object), viewgroup (an instance of an
IDLgrViewgroup object), or scene (an instance of an IDLgrScene object) to be
drawn.

Keywords

VECTOR

Set this keyword to indicate the type of graphics primitives generated. Valid values
include:

0 = Bitmap (default)

1 = Vector

If VECTOR = 0 (Bitmap), the Draw method renders the scene to a buffer and then
copies the buffer to the printer in bitmap format. The bitmap retains the quality of the
original image.

If VECTOR = 1 (Vector), the Draw method renders the scene using simple vector
operations that result in a representation of the Scene that is scalable to the printer.
The vector representation does not retain all the attributes of the original image. The
vector representation is sent to the printer.
IDL Reference Guide IDLgrPrinter

2140 Appendix A: IDL Object Class & Method Reference
IDLgrPrinter::GetContiguousPixels

The IDLgrPrinter::GetContiguousPixels function method returns an array of long
integers whose length is equal to the number of colors available in the index color
mode (that is, the value of the N_COLORS property).

The returned array marks contiguous pixels with the ranking of the range’s size. This
means that within the array, the elements in the largest available range are set to zero,
the elements in the second-largest range are set to one, etc. Use this range to set an
appropriate colormap for use with the SHADE_RANGE property of the
IDLgrSurface and IDLgrPolygon object classes.

To get the largest contiguous range, you could use the following IDL command:

result = obj -> GetContiguousPixels()
Range0 = WHERE(result EQ 0)

A contiguous region in the colormap can be increasing or decreasing in values. The
following would be considered contiguous:

[0,1,2,3,4]

[4,3,2,1,0]

Syntax

Return = Obj -> [IDLgrPrinter::]GetContiguousPixels()

Arguments

None

Keywords

None
IDLgrPrinter IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2141
IDLgrPrinter::GetFontnames

The IDLgrPrinter::GetFontnames function method returns the list of available fonts
that can be used in IDLgrFont objects. This method will only return the names of the
available TrueType fonts. Hershey fonts will not be returned; see Appendix H,
“Fonts” for more information.

Syntax

Return = Obj -> [IDLgrPrinter::]GetFontnames(FamilyName [, IDL_FONTS={0 | 1
| 2}] [, STYLES=string])

Arguments

FamilyName

A string representing the name of the font family to which all of the returned fonts
must belong. The string may be a fully specified family name—such as “Helvetica”.
You can use both “*” and “?” as wildcard characters, matching any number of
characters or one character respectively. To return all available family names, use
“*”.

Keywords

IDL_FONTS

Set this keyword to specify where to search for fonts that IDL may use. Set
IDL_FONT to 1 to select only fonts installed by IDL and to 2 to select only fonts
detected in the host operating system. The default value is 0, specifying that both IDL
and operating system fonts should be returned.

STYLES

Set this keyword to a string specifying the styles that are to be matched by the
returned font names. You can set STYLES to a fully specified style string, such as
“Bold Italic”. If you set STYLES to the null string, ' ', only fontnames without style
modifiers will be returned. You can use both “*” and “?” as wildcard characters,
matching any number of characters or one character respectively. The default value is
the string, “*”, which returns all fontnames containing the FamilyName argument,
with or without style modifiers.
IDL Reference Guide IDLgrPrinter

2142 Appendix A: IDL Object Class & Method Reference
IDLgrPrinter::GetProperty

The IDLgrPrinter::GetProperty procedure method retrieves the value of a property or
group of properties for the printer.

Syntax

Obj -> [IDLgrPrinter::]GetProperty [, ALL=variable] [, DIMENSIONS=variable]
[, NAME=string] [, RESOLUTION=variable]

Arguments

None

Keywords

Any keyword to IDLgrPrinter::Init followed by the word “Get” can be retrieved
using IDLgrPrinter::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

DIMENSIONS

Set this keyword to a named variable that will contain a two-element vector of the
form [width, height] specifying the overall ‘drawable’ area that may be printed on a
page. By default, the dimensions are measured in device units (refer to the UNITS
(Get, Set) keyword).

NAME

A string containing the operating system-specific name of the print stream. e.g.
'\\BORG\HpJet'.
IDLgrPrinter IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2143
RESOLUTION

Set this keyword to a named variable that will contain a vector of the form [xres,
yres] defining the pixel resolution, measured in centimeters per pixel. This value is
stored in double precision.
IDL Reference Guide IDLgrPrinter

2144 Appendix A: IDL Object Class & Method Reference
IDLgrPrinter::GetTextDimensions

The IDLgrPrinter::GetTextDimensions function method retrieves the dimensions of a
text object that will be rendered in a window. The result is a 3-element double-
precision floating-point vector [xDim, yDim, zDim] representing the dimensions of
the text object, measured in data units.

Syntax

Result = Obj ->[IDLgrPrinter::]GetTextDimensions(TextObj
[, DESCENT=variable] [, PATH=objref(s)])

Arguments

TextObj

The object reference to a text or axis object for which the text dimensions are
requested.

Keywords

DESCENT

Set this keyword equal to a named variable that will contain an array of double-
precision floating-point values (one for each string in the IDLgrText object). The
values represent the distance to travel (parallel to the UPDIR vector) from the text
baseline to reach the bottom of the lowest descender in the string. All values will be
negative numbers, or zero. This keyword is valid only if TextObj is an IDLgrText
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the text dimensions.
Each path object reference specified with this keyword must contain an alias. The
text dimensions are computed for the version of the object falling within that path. If
this keyword is not set, the PARENT properties determine the path from the current
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrPrinter::GetTextDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw is
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDLgrPrinter IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2145
IDLgrPrinter::Init

The IDLgrPrinter::Init function method initializes the printer object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrPrinter' [, COLOR_MODEL{Get}={0 | 1}]
[, GRAPHICS_TREE{Get, Set}=objref of type IDLgrScene, IDLgrViewgroup, or
IDLgrView] [, /LANDSCAPE{Get, Set}] [, N_COLORS{Get}=integer{2 to 256}]
[, N_COPIES{Get, Set}=integer] [, PALETTE{Get, Set}=objref]
[, PRINT_QUALITY{Get, Set}={0 | 1 | 2}] [, QUALITY{Get, Set}={0 | 1 | 2}]
[, UNITS{Get, Set}={0 | 1 | 2 | 3}] [, UVALUE{Get, Set}=value])

or

Result = Obj -> [IDLgrPrinter::]Init() (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

None

Keywords

Properties retrievable via IDLgrPrinter::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrPrinter::SetProperty are
indicated by the word “Set” following the keyword.

COLOR_MODEL (Get)

Set this keyword to the color model to be used for the buffer:
IDL Reference Guide IDLgrPrinter

2146 Appendix A: IDL Object Class & Method Reference
• 0 = RGB (default)

• 1 = Color Index

GRAPHICS_TREE (Get, Set)

Set this keyword to an object reference of type IDLgrScene, IDLgrViewgroup, or
IDLgrView. If this property is set to a valid object reference, calling the Draw
method on the destination object with no arguments will cause the object reference
associated with this property to be drawn. If this object is valid and the destination
object is destroyed, this object reference will be destroyed as well. By default the
GRAPHICS_TREE property is set equal to the null-object.

LANDSCAPE (Get, Set)

Set this keyword to produce hardcopy output in landscape mode. The default value of
zero indicates Portrait mode.

Note
The printer driver may not support the LANDSCAPE option; in general, it is best to
use the printer dialogs to set orientation.

N_COLORS (Get)

Set this keyword to the number of colors (between 2 and 256) to be used if the
COLOR_MODEL is set to Indexed (1). This keyword is ignored if the
COLOR_MODEL is set to RGB (0).

N_COPIES (Get, Set)

Set this keyword equal to an integer that determines the number of copies of print
data to be generated. The default is 1 copy.

Note
Your specific printer driver may not support the N_COPIES option. You can also
use the printer dialogs to set the number of copies.

PALETTE (Get, Set)

Set this keyword equal to the object reference of a palette object (an instance of the
IDLgrPalette object class) to specify the red, green, and blue values that are to be
loaded into the graphics destination’s color lookup table if the Indexed color model is
used.
IDLgrPrinter IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2147
PRINT_QUALITY (Get, Set)

Set this keyword to an integer value indicating the print quality at which graphics are
to be drawn to the printer. Note that the print quality is independent of the rendering
quality (as set by the QUALITY keyword). Valid values are:

• 0 = Low

• 1 = Normal (this is the default)

• 2 = High

Generally, setting the print quality to a lower value will increase the speed of the
printing job, but decrease the resolution; setting it to a higher value will cause the
printing job to take more time, but will increase the resolution.

Note
Some printer drivers may not be able to support different printing qualities. In these
cases, the setting of the PRINT_QUALITY property will be quietly ignored.

QUALITY (Get, Set)

Set this keyword to an integer value indicating the rendering quality at which
graphics are to be drawn to this destination. Note that the rendering quality is
independent of the print quality (as set by the PRINT_QUALITY keyword). Valid
values are:

• 0 = Low

• 1 = Medium

• 2 = High (default)

UNITS (Get, Set)

Set this keyword to indicate the units of measure for the DIMENSIONS property.
Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to the drawable area on a page.
IDL Reference Guide IDLgrPrinter

2148 Appendix A: IDL Object Class & Method Reference
Note
If you change the value of the UNITS property (using the SetProperty method), IDL
will convert the current value of the DIMENSIONS property to the new units.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object it is a user value of.
IDLgrPrinter IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2149
IDLgrPrinter::NewDocument

The IDLgrPrinter::NewDocument procedure method closes the current document (a
page or group of pages), which causes any pending output to be sent to the printer,
finishing the printer job.

Syntax

Obj -> [IDLgrPrinter::]NewDocument

Arguments

None

Keywords

None
IDL Reference Guide IDLgrPrinter

2150 Appendix A: IDL Object Class & Method Reference
IDLgrPrinter::NewPage

The IDLgrPrinter::NewPage procedure method issues a new page command to the
printer.

Syntax

Obj -> [IDLgrPrinter::]NewPage

Arguments

None

Keywords

None
IDLgrPrinter IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2151
IDLgrPrinter::SetProperty

The IDLgrPrinter::SetProperty procedure method sets the value of a property or
group of properties for the printer.

Syntax

Obj -> [IDLgrPrinter::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrPrinter::Init followed by the word “Set” can be set using
IDLgrPrinter::SetProperty.
IDL Reference Guide IDLgrPrinter

2152 Appendix A: IDL Object Class & Method Reference
IDLgrROI

The IDLgrROI object class is an object graphics representation of a region of interest.

Superclasses

This class is a subclass of IDLanROI.

Subclasses

None.

Creation

See IDLgrROI::Init.

Methods

Intrinsic Methods

The IDLgrROI object class has the following methods:

• IDLgrROI::Cleanup

• IDLgrROI::GetProperty

• IDLgrROI::Init

• IDLgrROI::PickVertex

• IDLgrROI::SetProperty

Inherited Methods

This class inherits the following methods:

• IDLanROI::AppendData

• IDLanROI::ComputeGeometry

• IDLanROI::ComputeMask

• IDLanROI::ContainsPoints

• IDLanROI::RemoveData

• IDLanROI::ReplaceData
IDLgrROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2153
• IDLanROI::Rotate

• IDLanROI::Scale

• IDLanROI::Translate
IDL Reference Guide IDLgrROI

2154 Appendix A: IDL Object Class & Method Reference
IDLgrROI::Cleanup

The IDLgrROI::Cleanup procedure method performs all cleanup for a region of
interest object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you cannot
call the Cleanup method directly. There is one exception to this rule: If you write
your own subclass of this class, you can call the Cleanup method from within the
Cleanup method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj–>[IDLgrROI::]Cleanup (In a subclass’ Cleanup method only.)

Arguments

None.

Keywords

None.
IDLgrROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2155
IDLgrROI::GetProperty

The IDLgrROI::GetProperty procedure method retrieves the value of a property or
group of properties for the Object Graphics region.

Syntax

Obj–>[IDLgrROI::]GetProperty [, ALL=variable] [, XRANGE=variable]
[, YRANGE=variable] [, ZRANGE=variable]

Arguments

None.

Keywords

Note
All keywords accepted by IDLanROI::GetProperty are also accepted by this
method. Furthermore, any keyword to IDLgrROI::Init followed by the word (Get)
can be retrieved using IDLgrROI::GetProperty.

The following keywords are also accepted:

ALL

Set this keyword to a named variable to contain an anonymous structure with the
values of all of the properties associated with the state of this object. State
information about the object may include things like color, line style, etc., but not
vertex data or user values.

Note
The fields in this structure may change in subsequent releases of IDL.

XRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [xmin, xmax] that specifies the range of x data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.
IDL Reference Guide IDLgrROI

2156 Appendix A: IDL Object Class & Method Reference
YRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [ymin, ymax] that specifies the range of y data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [zmin, zmax] that specifies the range of z data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.
IDLgrROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2157
IDLgrROI::Init

The IDLgrROI::Init function method initializes an Object Graphics region of interest.

Note
Init methods are special life cycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrROI' [, X[, Y[, Z]]] [, COLOR{Get, Set}=vector]
[, /DOUBLE{Get, Set}] [, /HIDE{Get, Set}] [, LINESTYLE{Get, Set}=value]
[, NAME{Get, Set}=string] [, PALETTE{Get, Set}=objref]
[, STYLE{Get, Set}={ 0 | 1 | 2 }] [, SYMBOL{Get, Set}=objref]
[, THICK{Get, Set}=points{1.0 to 10.0}] [, UVALUE{Get, Set}=uvalue]
[, XCOORD_CONV{Get, Set}=[s0, s1]] [, YCOORD_CONV{Get, Set}=[s0, s1]]
[, ZCOORD_CONV{Get, Set}=[s0, s1]])

or

Result = Obj–>[IDLgrROI::]Init([X[, Y[, Z]]]) (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

X

A vector providing the X components of the vertices for the region. If the Y and Z
arguments are not specified, X must be a two-dimensional array with the leading
dimension either 2 or 3 ([2, *] or [3, *]), in which case, X[0, *] represents the X
values, X[1, *] represents the Y values, and X[2, *] represents the Z values. This
argument is stored as double precision floating point values if the argument variable
is of type DOUBLE or if the DOUBLE property is non-zero. Otherwise it is
converted and stored as single precision floating point.
IDL Reference Guide IDLgrROI

2158 Appendix A: IDL Object Class & Method Reference
Y

A vector providing the Y components of the vertices. This argument is stored as
double precision floating point values if the argument variable is of type DOUBLE or
if the DOUBLE property is non-zero. Otherwise it is converted and stored as single
precision floating point.

Z

A scalar or vector providing the Z components of the vertices. If not provided, Z
values default to 0.0. This argument is stored as double precision floating point
values if the argument variable is of type DOUBLE or if the DOUBLE property is
non-zero. Otherwise it is converted and stored as single precision floating point.

Keywords

Note
All keywords accepted by IDLanROI::Init are accepted by this method as well.

In addition, the following keywords are accepted:

COLOR (Get, Set)

Set this keyword to an RGB or indexed color for drawing the region. The default
color is [0, 0, 0].

DOUBLE (Get, Set)

Set this keyword to a non-zero value to indicate that data should be stored in this
object in double precision floating point. Set this keyword to zero to indicate that the
data should be stored in single precision floating point, which is the default. The
DOUBLE property controls the precision used for storing the data in the
(inherited)AppendData, Init, and (inherited)ReplaceData methods via the X, Y, and Z
arguments and in SetProperty method via the (inherited)DATA keyword. IDL
converts any data already stored in the object to the requested precision, if necessary.
Note that this keyword does not need to be set if any of the X, Y, or Z arguments or
the (inherited)DATA parameters are of type DOUBLE. However, setting this
keyword may be desirable if the data consists of large integers that cannot be
accurately represented in single precision floating point. This property is also
automatically set to one if any of the X, Y or Z arguments or the DATA parameter is
stored using a variable of type DOUBLE.
IDLgrROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2159
HIDE (Get, Set)

Set this keyword to a Boolean value indicating whether this region should be drawn:

• 0 = draw the region (the default)

• 1 = do not draw the region

LINESTYLE (Get, Set)

Set this keyword to the line style to be used to draw the region. The value can be
either an integer value specifying a pre-defined line style, or a two-element vector
specifying a stippling pattern.

The valid values for the pre-defined line styles are:

• 0 = solid (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

NAME (Get, Set)

Set this keyword to a string to use as the name for this region.

PALETTE (Get, Set)

Set this keyword to the object reference of a palette object (an instance of the
IDLgrPalette object class). This keyword is only used for Object Graphics
destinations using the RGB color model. In this case, if the color value for the region
is specified as a color index value, this palette is used to look up the color for the
region. If the PALETTE keyword is not set, the destination object PALETTE
property is used, which defaults to a gray scale ramp.

STYLE (Get, Set)

Set this keyword to indicate the geometrical primitive to use to represent the region
when displayed. Valid values include:

• 0 = points

• 1 = open polyline
IDL Reference Guide IDLgrROI

2160 Appendix A: IDL Object Class & Method Reference
• 2 = closed polyline (the default)

SYMBOL (Get, Set)

Set this keyword to reference an IDLgrSymbol object for the symbol used for display
when STYLE = 0 (points). By default, a dot is used.

THICK (Get, Set)

Set this keyword to a value between 1.0 and 10.0, specifying the size of the points, or
the thickness of the lines, measured in points. The default is 1.0 points.

UVALUE (Get, Set)

Set this keyword to a user value of any type to contain any information you wish.
Remember if you set this user value equal to a pointer or object reference, you must
destroy the pointer or object reference explicitly when destroying this region.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1*DataX

Recommended values are:

[(–Xmin)/(Xmax – Xmin), 1.0/(Xmax – Xmin)]

IDL converts, maintains, and returns this data as double-precision floating-point.

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1*DataY

Recommended values are:

[(–Ymin)/(Ymax – Ymin), 1.0/(Ymax – Ymin)]

IDL converts, maintains, and returns this data as double-precision floating-point.

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1*DataZ
IDLgrROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2161
Recommended values are:

[(–Zmin)/(Zmax – Zmin), 1.0/(Zmax – Zmin)]

IDL converts, maintains, and returns this data as double-precision floating-point.
IDL Reference Guide IDLgrROI

2162 Appendix A: IDL Object Class & Method Reference
IDLgrROI::PickVertex

The IDLgrROI::PickVertex function method picks a vertex of the region which,
when projected onto the given destination device, is nearest to the given 2D device
coordinate.

Syntax

Result = Obj–>[IDLgrROI::]PickVertex(Dest, View, Point [, PATH=objref])

Return Value

Result

The return value is the index of the nearest region vertex. If two or more vertices are
equally nearest to the point, the smallest index of those vertices is returned.

Arguments

Dest

An object reference to an IDLgrWindow or IDLgrBuffer for which the pick is to
occur.

View

An object reference to the IDLgrView containing this region.

Point

A two-element vector, [x, y], representing the device location used for picking a
nearest vertex.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to map the device position to a
location in the data space of the region. Each path object reference specified with this
keyword must contain an alias. The selected vertex is computed for the version of the
object falling within the specified path. If this keyword is not set, the parent
properties determine the path from the current object to the top of the graphics
hierarchy and no alias paths are pursued.
IDLgrROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2163
IDLgrROI::SetProperty

The IDLgrROI::SetProperty procedure method sets the value of a property or group
of properties for the Object Graphics region.

Syntax

Obj–>[IDLgrROI::]SetProperty

Arguments

None.

Keywords

Note
Any keywords accepted by IDLanROI::SetProperty are also accepted by this
method. Furthermore, any keywords to IDLgrROI::Init followed by the word (Set)
can be set using IDLgrROI::SetProperty as well.
IDL Reference Guide IDLgrROI

2164 Appendix A: IDL Object Class & Method Reference
IDLgrROIGroup

The IDLgrROIGroup object class is an Object Graphics representation of a group of
regions of interest.

Superclasses

This class is a subclass of IDLanROIGroup.

Subclasses

None.

Creation

See IDLgrROIGroup::Init.

Methods

Intrinsic Methods

The IDLgrROIGroup class has the following methods:

• IDLgrROIGroup::Add

• IDLgrROIGroup::Cleanup

• IDLgrROIGroup::GetProperty

• IDLgrROIGroup::Init

• IDLgrROIGroup::PickRegion

• IDLgrROIGroup::SetProperty

Inherited Methods

This class inherits the following methods:

• IDLanROIGroup::ContainsPoints

• IDLanROIGroup::ComputeMask

• IDLanROIGroup::GetProperty

• IDLanROIGroup::Rotate

• IDLanROIGroup::Scale
IDLgrROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2165
• IDLanROIGroup::Translate
IDL Reference Guide IDLgrROIGroup

2166 Appendix A: IDL Object Class & Method Reference
IDLgrROIGroup::Add

The IDLgrROIGroup::Add procedure method adds a region to the region group. Only
objects of the IDLgrROI class may be added to the group. The regions in the group
must all be of the same type: all points, all paths, or all polygons.

Syntax

Obj–>[IDLgrROIGroup::]Add, ROI

Arguments

ROI

A reference to an instance of the IDLgrROI object class representing the region of
interest to add to the group.

Keywords

Accepts all keywords accepted by the IDLanROIGroup::Add method.
IDLgrROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2167
IDLgrROIGroup::Cleanup

The IDLgrROIGroup::Cleanup procedure method performs all cleanup for an Object
Graphics region of interest group object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you cannot
call the Cleanup method directly. There is one exception to this rule: If you write
your own subclass of this class, you can call the Cleanup method from within the
Cleanup method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj–>[IDLgrROIGroup::]Cleanup (In a subclass’ Cleanup method only.)

Arguments

None.

Keywords

None.
IDL Reference Guide IDLgrROIGroup

2168 Appendix A: IDL Object Class & Method Reference
IDLgrROIGroup::GetProperty

The IDLgrROIGroup::Get Property procedure method retrieves the value of a
property or group of properties for the region group.

Syntax

Obj–>[IDLgrROIGroup::]GetProperty [, ALL=variable] [, PARENT=variable]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

None.

Keywords

Note
All keywords accepted by IDLanROIGroup::GetProperty are also accepted by this
method. Furthermore, any keyword to IDLgrROIGroup::Init followed by the word
(Get) can be retrieved using IDLgrROIGroup::GetProperty.

ALL

Set this keyword to a named variable. Upon return, ALL contains an anonymous
structure with the values of all of the properties associated with the state of this
object.

Note
The fields in this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to the
object that contains this object.

XRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [xmin, xmax] that specifies the range of x data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.
IDLgrROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2169
YRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [ymin, ymax] that specifies the range of y data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [zmin, zmax] that specifies the range of z data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.
IDL Reference Guide IDLgrROIGroup

2170 Appendix A: IDL Object Class & Method Reference
IDLgrROIGroup::Init

The IDLgrROIGroup::Init function method initializes an Object Graphics region of
interest group object.

Note
Init methods are special life cycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrROIGroup' [, COLOR{Get, Set}=vector]
[, /HIDE{Get, Set}] [, NAME{Get, Set}=string]
[, XCOORD_CONV{Get, Set}=[s0, s1]] [, YCOORD_CONV{Get, Set}=[s0, s1]]
[, ZCOORD_CONV{Get, Set}=[s0, s1]])

or

Result = Obj–>[IDLgrROIGroup::]Init() (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

None.

Keywords

COLOR (Get, Set)

Set this keyword to an RGB or indexed color for drawing the region group. The
default color is [0,0,0].

HIDE (Get, Set)

Set this keyword to a Boolean value indicating whether this region group should be
drawn:
IDLgrROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2171
• 0 = draw the region group (the default)

• 1 = do not draw the region group

NAME (Get, Set)

Set this keyword to a string to use as the name for this region group.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1*DataX

Recommended values are:

[(–Xmin)/(Xmax – Xmin), 1.0/(Xmax – Xmin)]

IDL converts, maintains, and returns this data as double-precision floating-point.

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1*DataY

Recommended values are:

[(–Ymin)/(Ymax – Ymin), 1.0/(Ymax – Ymin)]

IDL converts, maintains, and returns this data as double-precision floating-point.

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1*DataZ

Recommended values are:

[(–Zmin)/(Zmax – Zmin), 1.0/(Zmax – Zmin)]

IDL converts, maintains, and returns this data as double-precision floating-point.
IDL Reference Guide IDLgrROIGroup

2172 Appendix A: IDL Object Class & Method Reference
IDLgrROIGroup::PickRegion

The IDLgrROIGroup::PickRegion function method picks a region within the group
which, when projected onto the given destination device, is nearest to the given 2D
device coordinate.

Syntax

Result = Obj–>[IDLgrROIGroup::]PickRegion(Dest, View, Point [, PATH=objref])

Return Value

Result

The return value is the object reference of the nearest region. If two or more regions
are equally nearest to the point, the one that was added to the region group first is
returned.

Arguments

Dest

An object reference to an IDLgrWindow or IDLgrBuffer for which the pick is to
occur.

View

An object reference to the IDLgrView containing this region.

Point

A two-element vector, [x, y], representing the device location to use for picking a
nearest region.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to map the device position to a
location in the data space of the region. Each path object reference specified with this
keyword must contain an alias. The selected region is computed for the version of the
object falling within the specified path. If this keyword is not set, the parent
properties determine the path from the current object to the top of the graphics
hierarchy and no alias paths are pursued.
IDLgrROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2173
IDLgrROIGroup::SetProperty

The IDLgrROIGroup::Set Property procedure method sets the value of a property or
group of properties for the region group.

Syntax

Obj–>[IDLgrROIGroup::]SetProperty

Arguments

None.

Keywords

Note
Any keywords to IDLgrROIGroup::Init followed by the word (Set) can be set using
IDLgrROIGroup::SetProperty.
IDL Reference Guide IDLgrROIGroup

2174 Appendix A: IDL Object Class & Method Reference
IDLgrScene

A scene object represents the entire scene to be drawn and serves as a container of
IDLgrView or IDLgrViewgroup objects.

Superclasses

This class is a subclass of IDL_Container.

Subclasses

This class has no subclasses.

Creation

See “IDLgrScene::Init” on page 2179.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrScene::Add

• IDLgrScene::Cleanup

• IDLgrScene::GetByName

• IDLgrScene::GetProperty

• IDLgrScene::Init

• IDLgrScene::SetProperty

Inherited Methods

This class inherits the following methods:

• IDL_Container::Count

• IDL_Container::Get

• IDL_Container::IsContained

• IDL_Container::Move
IDLgrScene IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2175
IDLgrScene::Add

The IDLgrScene::Add function method verifies that the added item is an instance of
an IDLgrView or IDLgrViewgroup object. If it is, IDLgrScene:Add adds the view or
viewgroup to the specified scene.

Syntax

Obj -> [IDLgrScene::]Add, View [, POSITION=index]

Arguments

View

An instance of the IDLgrView or IDLgrViewgroup object class.

Keywords

POSITION

Set this keyword equal to the zero-based index of the position within the container at
which the new object should be placed.
IDL Reference Guide IDLgrScene

2176 Appendix A: IDL Object Class & Method Reference
IDLgrScene::Cleanup

The IDLgrScene::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrScene::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrScene IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2177
IDLgrScene::GetByName

The IDLgrScene::GetByName function method finds contained objects by name and
returns the object reference to the named object. If the named object is not found, the
GetByName function returns a null object reference.

Note
The GetByName function does not perform a recursive search through the object
hierarchy. If a fully qualified object name is not specified, only the contents of the
current container object are inspected for the named object.

Syntax

Result = Obj -> [IDLgrScene::]GetByName(Name)

Arguments

Name

A string containing the name of the object to be returned.

Object naming syntax is very much like the syntax of a UNIX filesystem. Objects
contained by other objects can include the name of their parent object; this allows
you to create a fully qualified name specification. For example, if object1 contains
object2, which in turn contains object3, the string specifying the fully qualified
object name of object3 would be 'object1/object2/object3'.

Object names are specified relative to the object on which the GetByName method is
called. If used at the beginning of the name string, the / character represents the top
of an object hierarchy. The string '..' represents the object one level “up” in the
hierarchy.

Keywords

None
IDL Reference Guide IDLgrScene

2178 Appendix A: IDL Object Class & Method Reference
IDLgrScene::GetProperty

The IDLgrScene::GetProperty procedure method retrieves the value of a property or
group of properties for the contour.

Syntax

Obj -> [IDLgrScene::]GetProperty [, ALL=variable]

Keywords

Any keyword to IDLgrScene::Init followed by the word “Get” can be retrieved using
IDLgrScene::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.
IDLgrScene IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2179
IDLgrScene::Init

The IDLgrScene::Init function method initializes the scene object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrScene' [, COLOR{Get, Set}=index or RGB vector]
[, /HIDE{Get, Set}] [, NAME{Get, Set}=string] [, /TRANSPARENT{Get, Set}]
[, UVALUE{Get, Set}=value])

or

Result = Obj -> [IDLgrScene::]Init() (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

None

Keywords

Properties retrievable via IDLgrScene::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrScene::SetProperty are indicated
by the word “Set” following the keyword.

HIDE

Set this keyword to a boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic
IDL Reference Guide IDLgrScene

2180 Appendix A: IDL Object Class & Method Reference
COLOR (Get, Set)

Set this keyword to the color to which the scene should be erased before drawing.
The color may be specified as a color lookup table index or an RGB vector.

NAME

Set this keyword equal to a string containing the name associated with this object.
The default is the null string, ' '.

TRANSPARENT (Get, Set)

Set this keyword to disable window clearing. If this keyword is not set, the
destination object in use by the scene is automatically erased when the scene is
initialized.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object it is a user value of.
IDLgrScene IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2181
IDLgrScene::SetProperty

The IDLgrScene::SetProperty procedure method sets the value of a property or group
of properties for the buffer.

Syntax

Obj -> [IDLgrScene::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrScene::Init followed by the word “Set” can be set using
IDLgrScene::SetProperty.
IDL Reference Guide IDLgrScene

2182 Appendix A: IDL Object Class & Method Reference
IDLgrSurface

A surface object represents a shaded or vector representation of a mesh grid.

An IDLgrSurface object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See “IDLgrSurface::Init” on page 2188.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrSurface::Cleanup

• IDLgrSurface::GetCTM

• IDLgrSurface::GetProperty

• IDLgrSurface::Init

• IDLgrSurface::SetProperty
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2183
IDLgrSurface::Cleanup

The IDLgrSurface::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrSurface::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrSurface

2184 Appendix A: IDL Object Class & Method Reference
IDLgrSurface::GetCTM

The IDLgrSurface::GetCTM function method returns the 4 x 4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrSurface::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the surface
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrSurface::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2185
TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.
IDL Reference Guide IDLgrSurface

2186 Appendix A: IDL Object Class & Method Reference
IDLgrSurface::GetProperty

The IDLgrSurface::GetProperty procedure method retrieves the value of a property
or group of properties for the surface.

Syntax

Obj -> [IDLgrSurface::]GetProperty [, ALL=variable] [, DATA=variable]
[, PARENT=variable] [, XRANGE=variable] [, YRANGE=variable]
[, ZRANGE=variable]

Arguments

None

Keywords

Any keyword to IDLgrSurface::Init followed by the word “Get” can be retrieved
using IDLgrSurface::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

DATA

Set this keyword to a named variable that upon return will contain the surface data.

PARENT

Set this keyword equal to a named variable that will contain an object reference to the
object that contains this object.

XRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [xmin, xmax] that specifies the range of x data coordinates covered by the
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2187
graphic object. IDL maintains and returns this property in double-precision floating-
point.

YRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [ymin, ymax] that specifies the range of y data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [zmin, zmax] that specifies the range of z data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.
IDL Reference Guide IDLgrSurface

2188 Appendix A: IDL Object Class & Method Reference
IDLgrSurface::Init

The IDLgrSurface::Init function method initializes the surface object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrSurface' [, Z [, X, Y]] [, BOTTOM{Get, Set}=index or RGB
vector] [, COLOR{Get, Set}=index or RGB vector] [, DATAX{Set}=vector or 2D
array] [, DATAY{Set}=vector or 2D array] [, DATAZ{Set}=2D array]
[, /DOUBLE{Get, Set}] [, /EXTENDED_LEGO{Get, Set}]
[, /HIDDEN_LINES{Get, Set}] [, /HIDE{Get, Set}] [, LINESTYLE{Get,
Set}=value] [, MAX_VALUE{Get, Set}=value] [, MIN_VALUE{Get, Set}=value]
[, NAME{Get, Set}=string] [, PALETTE{Get, Set}=objref]
[, /RESET_DATA{Set}] [, SHADE_RANGE{Get, Set}=[index of darkest pixel,
index of brightest pixel]] [, SHADING{Get, Set}={0 | 1}]
[, SHARE_DATA{Set}=objref] [, /SHOW_SKIRT{Get, Set}] [, SKIRT{Get,
Set}=Z value] [, STYLE{Get, Set}={0 | 1 | 2 | 3 | 4 | 5 | 6}]
[, TEXTURE_COORD{Get, Set}=array] [, /TEXTURE_INTERP{Get, Set}]
[, TEXTURE_MAP{Get, Set}=objref to IDLgrImage] [, THICK{Get,
Set}=points{1.0 to 10.0}] [, UVALUE{Get, Set}=value]
[, /USE_TRIANGLES{Get, Set}] [, VERT_COLORS{Get, Set}=vector]
[, XCOORD_CONV{Get, Set}=vector] [, YCOORD_CONV{Get, Set}=vector]
[, ZCOORD_CONV{Get, Set}=vector] [, ZERO_OPACITY_SKIP{Get, Set}={0 |
1}])

or

Result = Obj -> [IDLgrSurface::]Init([Z [, X, Y]]) (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2189
Arguments

X

A vector or two-dimensional array specifying the X coordinates of the grid. If this
argument is a vector, each element of X specifies the X coordinates for a column of Z
(e.g., X[0] specifies the X coordinate for Z[0, *]). If X is a two-dimensional array,
each element of X specifies the X coordinate of the corresponding point in Z (Xij
specifies the X coordinate of Zij). This argument is stored as double precision
floating point values if the argument variable is of type DOUBLE or if the DOUBLE
property is non-zero, otherwise it is stored as single precision floating point.

Y

A vector or two-dimensional array specifying the Y coordinates of the grid. If this
argument is a vector, each element of Y specifies the Y coordinates for a column of Z
(e.g., Y[0] specifies the Y coordinate for Z[0, *]). If Y is a two-dimensional array,
each element of Y specifies the Y coordinate of the corresponding point in Z (Yij
specifies the Y coordinate of Zij). This argument is stored as double precision
floating point values if the argument variable is of type DOUBLE or if the DOUBLE
property is non-zero, otherwise it is stored as single precision floating point.

Z

The two-dimensional array to be displayed. If X and Y are provided, the surface is
defined as a function of the (X, Y) locations specified by their contents. Otherwise,
the surface is generated as a function of the array indices of each element of Z. This
argument is stored as double precision floating point values if the argument variable
is of type DOUBLE or if the DOUBLE property is non-zero, otherwise it is stored as
single precision floating point.

Keywords

Properties retrievable via IDLgrSurface::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrSurface::SetProperty are
indicated by the word “Set” following the keyword.

BOTTOM (Get, Set)

The color value used to draw the bottom surface. If not specified, or set to a negative
scalar value, the bottom is drawn with the same color as the top. Setting a bottom
color is only supported when the destination device uses RGB color mode.
IDL Reference Guide IDLgrSurface

2190 Appendix A: IDL Object Class & Method Reference
COLOR (Get, Set)

Set this keyword to the color to be used as the foreground color for this model. The
color may be specified as a color lookup table index or as an RGB vector. The default
is [0, 0, 0].

DATAX (Set)

Set this keyword to a vector or a two-dimensional array specifying the X coordinates
of the surface grid. This keyword is the same as the X argument described above.
This property is stored as double precision floating point values if the property is of
type DOUBLE or if the DOUBLE property is non-zero, otherwise it is stored as
single precision floating point.

DATAY (Set)

Set this keyword to a vector or a two-dimensional array specifying the Y coordinates
of the surface grid. This keyword is the same as the Y argument described above.
This property is stored as double precision floating point values if the property is of
type DOUBLE or if the DOUBLE property is non-zero, otherwise it is stored as
single precision floating point.

DATAZ (Set)

Set this keyword to the two-dimensional array to display as a surface. This keyword
is the same as the Z argument described above. This property is stored as double
precision floating point values if the property is of type DOUBLE or if the DOUBLE
property is non-zero, otherwise it is stored as single precision floating point.

DOUBLE (Get, Set)

Set this keyword to a non-zero value to indicate that data provided by any of the X,
Y, or Z arguments or DATAX, DATAY, or DATAZ keywords should be stored in
this object in double precision floating point. Set this keyword to zero to indicate that
the data should be stored in single precision floating point, which is the default. IDL
converts any value data already stored in the object to the requested precision, if
necessary. Note that this keyword does not need to be set if any of the X, Y, or Z
arguments or the DATAX, DATAY, or DATAZ parameters are of type DOUBLE.
However, setting this keyword may be desirable if the data consists of large integers
that cannot be accurately represented in single precision floating point. This property
is also automatically set to one if any of the X, Y or Z arguments or the DATAX,
DATAY, or DATAZ parameters is stored using a variable of type DOUBLE.
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2191
EXTENDED_LEGO (Get, Set)

Set this keyword to force the IDLgrSurface object to display the last row and column
of data when lego display styles are selected.

HIDDEN_LINES (Get, Set)

Set this keyword to draw point and wireframe surfaces using hidden line (point)
removal. By default, hidden line removal is disabled.

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

LINESTYLE (Get, Set)

Set this keyword to indicate the line style that should be used to draw the surface
lines. The value can be either an integer value specifying a pre-defined line style, or a
two-element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.
IDL Reference Guide IDLgrSurface

2192 Appendix A: IDL Object Class & Method Reference
For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

MAX_VALUE (Get, Set)

The maximum value to be plotted. If this keyword is present, data values greater than
the value of MAX_VALUE are treated as missing data and are not plotted. Note that
the IEEE floating-point value NaN is also treated as missing data. IDL converts,
maintains, and returns this data as double-precision floating-point.

MIN_VALUE (Get, Set)

The minimum value to be plotted. If this keyword is present, data values less than the
value of MIN_VALUE are treated as missing data and are not plotted. Note that the
IEEE floating-point value NaN is also treated as missing data. IDL converts,
maintains, and returns this data as double-precision floating-point.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this object.
The default is the null string, ' '.

PALETTE (Get, Set)

Set this keyword equal to the object reference of a palette object (an instance of the
IDLgrPalette object class). This keyword is only used if the destination device is
using the RGB color model. If so, and a color value for the object is specified as a
color index value, the palette set by this keyword is used to translate the color to RGB
space. If the PALETTE property on this object is not set, the destination object
PALETTE property is used (which defaults to a grayscale ramp).

RESET_DATA (Set)

Set this keyword to treat the data provided via one of the DATA[XYZ] properties as
a new data set unique to this object, rather than overwriting data that is shared by
other objects. There is no reason to use this keyword if the object on which the
property is being set does not currently share data with another object (that is, if the
SHARE_DATA property is not in use). This keyword has no effect if no new data is
provided via a DATA property.

SHADE_RANGE (Get, Set)

Set this keyword to a two-element array that specifies the range of pixel values (color
indices) to use for shading. The first element is the color index for the darkest pixel.
The second element is the color element for the brightest pixel. This value is ignored
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2193
when the polygons are drawn to a graphics destination that uses the RGB color
model.

SHADING (Get, Set)

Set this keyword to an integer representing the type of shading to use if STYLE is set
to 2 (Filled) or 6 (LegoFilled).

• 0 = Flat (default): The color has a constant intensity for each face of the
surface, based on the normal vector.

• 1 = Gouraud: The colors are interpolated between vertices, and then along
scanlines from each of the edge intensities.

Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

SHARE_DATA (Set)

Set this keyword to an object whose data is to be shared by this surface. A surface
may only share data with another surface. The SHARE_DATA property is intended
for use when data values are not set via an argument to the object’s Init method or by
setting the object’s DATA property.

SHOW_SKIRT (Get, Set)

Set this keyword to enable skirt drawing. The default is to disable skirt drawing.

SKIRT (Get, Set)

Set this keyword to the Z value at which a skirt is to be defined around the array. The
Z value is expressed in data units; the default is 0.0. If a skirt is defined, each point on
the four edges of the surface is connected to a point on the skirt which has the given Z
value, and the same X and Y values as the edge point. In addition, each point on the
skirt is connected to its neighbor. The skirt value is ignored if skirt drawing is
disabled (see SHOW_SKIRT above). IDL converts, maintains, and returns this data
as double-precision floating-point.

STYLE (Get, Set)

Set this keyword to and integer value that indicates the style to be used to draw the
surface. Valid values are:

• 0 = Points

• 1 = Wire mesh (the default)

• 2 = Filled
IDL Reference Guide IDLgrSurface

2194 Appendix A: IDL Object Class & Method Reference
• 3 = RuledXZ

• 4 = RuledYZ

• 5 = Lego

• 6 = LegoFilled: for outline or shaded and stacked histogram-style plots.

TEXTURE_COORD (Get, Set)

A 2 x n array of surface coordinate-texturemap coordinate pairs [s, t] at each vertex.,
containing the fill pattern array subscripts of each of the n polygon vertices. Use this
keyword in conjunction with the TEXTURE_MAP keyword to warp images over the
surface. To stretch (or shrink) the texture map to cover the surface mesh completely,
set TEXTURE_COORD to a scalar. By default, TEXTURE_COORD is set equal to
[0.0, 0.0] to [1.0, 1.0] over the surface bounds.

Texture coordinates are normalized. This means that the m x n image object specified
via the TEXTURE_MAP property is mapped into the range [0.0, 0.0] to [1.0, 1.0]. If
texture coordinates outside the range [0.0, 0.0] to [1.0, 1.0] are specified, the image
object is tiled into the larger range.

For example, suppose the image object specified via TEXTURE_MAP is a 256 x 256
array, and we want to map the image into a square two units on each side. To
completely fill the square with a single copy of the image:

TEXTURE_COORD = [[0,0], [1,0], [1,1], [0,1]]

To fill the square with four tiled copies of the image:

TEXTURE_COORD = [[0,0], [2,0], [2,2], [0,2]]

TEXTURE_INTERP (Get, Set)

 Set this keyword to a nonzero value to indicate that bilinear sampling is to be used
with texture mapping. The default method is nearest-neighbor sampling.

TEXTURE_MAP (Get, Set)

Set this keyword to an instance of the IDLgrImage object class to be texture mapped
onto the surface. If this keyword is omitted or set to a null object reference, no texture
map is applied and the surface is filled with the color specified by the COLOR or
VERT_COLORS property. If both TEXTURE_MAP and COLORS or
VERT_COLORS properties exist, the color of the texture is modulated by the base
color of the object. (This means that for the clearest display of the texture image, the
COLOR property should be set equal to [255,255,255].) By default, the texture map
will be stretched (or shrunk) to cover the surface mesh completely.
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2195
Setting TEXTURE_MAP to the object reference of an IDLgrImage that contains an
Alpha channel allows you to create a transparent IDLgrSurface object. For more on
the Alpha channel, see “Image Objects” in Chapter 25 of Using IDL.

If the width and/or height of the provided image is not an exact power of two, then
the texture map will consist of the given image pixel values resampled to the nearest
larger dimensions that are exact powers of two.

Note
Texture mapping is disabled when rendering to a destination object that uses
Indexed color mode.

THICK (Get, Set)

Set this keyword to a value between 1.0 and 10.0, specifying the line thickness to use
to draw surface lines, in points. The default is 1.0 points.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object of which it is a user value.

USE_TRIANGLES (Get, Set)

Set this keyword to force the IDLgrSurface object to use triangles instead of quads to
draw the surface and skirt.

VERT_COLORS (Get, Set)

Set this keyword to a vector of colors to be used to draw at each vertex. Color is
interpolated between vertices if SHADING is set to 1 (Gouraud). If there are more
vertices than elements in VERT_COLORS, the elements of VERT_COLORS are
cyclically repeated. By default, the polygons are all drawn in the single color
provided by the COLOR keyword. If this keyword is omitted or set to a scalar, vertex
colors are removed and the surface is drawn in the color specified by the COLOR
keyword.

Note
If the surface object is being rendered on a destination device that uses the Indexed
color model, and the view that contains the surface also contains one or more light
IDL Reference Guide IDLgrSurface

2196 Appendix A: IDL Object Class & Method Reference
objects, the VERT_COLORS property is ignored and the SHADE_RANGE
property is used instead.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZERO_OPACITY_SKIP (Get, Set)

Set this keyword to gain finer control over the rendering of textured surface pixels
(texels) with an opacity of 0 in the texture map. Texels with zero opacity do not affect
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2197
the color of a screen pixel since they have no opacity. If this keyword is set to 1, any
texels are “skipped” and not rendered at all. If this keyword is set to zero, the Z-
buffer is updated for these pixels and the display image is not affected as noted
above. By updating the Z-buffer without updating the display image, the surface can
be used as a clipping surface for other graphics primitives drawn after the current
graphics object. The default value for this keyword is 1.

Note
This keyword has no effect if no texture map is used or if the texture map in use
does not contain an opacity channel.
IDL Reference Guide IDLgrSurface

2198 Appendix A: IDL Object Class & Method Reference
IDLgrSurface::SetProperty

The IDLgrSurface::SetProperty procedure method sets the value of a property or
group of properties for the surface.

Syntax

Obj -> [IDLgrSurface::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrSurface::Init followed by the word “Set” can be set using
IDLgrSurface::SetProperty.
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2199
IDLgrSymbol

A symbol object represents a graphical element that is plotted relative to a particular
position.

Note
Seven predefined symbols are provided by IDL.

Superclasses

This class has no superclass.

Subclasses

This class has no subclasses.

Creation

See “IDLgrSymbol::Init” on page 2202.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrSymbol::Cleanup

• IDLgrSymbol::GetProperty

• IDLgrSymbol::Init

• IDLgrSymbol::SetProperty
IDL Reference Guide IDLgrSymbol

2200 Appendix A: IDL Object Class & Method Reference
IDLgrSymbol::Cleanup

The IDLgrSymbol::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrSymbol::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrSymbol IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2201
IDLgrSymbol::GetProperty

The IDLgrSymbol::GetProperty procedure method retrieves the value of a property
or group of properties for the symbol.

Syntax

Obj -> [IDLgrSymbol::]GetProperty [, ALL=variable]

Arguments

None

Keywords

Any keyword to IDLgrSymbol::Init followed by the word “Get” can be retrieved
using IDLgrSymbol::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.
IDL Reference Guide IDLgrSymbol

2202 Appendix A: IDL Object Class & Method Reference
IDLgrSymbol::Init

The IDLgrSymbol::Init function method initializes the plot symbol.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrSymbol' [, Data] [, COLOR{Get, Set}=index or RGB
vector] [, DATA{Get, Set}=integer or objref] [, NAME{Get, Set}=string]
[, SIZE{Get, Set}=vector] [, THICK{Get, Set}=points{1.0 to 10.0}]
[, UVALUE{Get, Set}=value])

or

Result = Obj -> [IDLgrSymbol::]Init([Data]) (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

Data

Either an integer value from the list shown below, or an object reference to either an
IDLgrModel object or atomic graphic object.

Use one of the following scalar-represented internal default symbols:

• 0 = No symbol

• 1 = Plus sign, ‘+’ (default)

• 2 = Asterisk

• 3 = Period (Dot)

• 4 = Diamond
IDLgrSymbol IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2203
• 5 = Triangle

• 6 = Square

• 7 = X

If an instance of the IDLgrModel object class or an atomic graphic object is used, the
object tree is used as the symbol. For best results, the object should fill the domain
from -1 to +1 in all dimensions. The pre-defined symbols listed above are all defined
in the domain -1 to +1.

Keywords

Properties retrievable via IDLgrSymbol::GetProperty are indicated by the word
“Get” following the keyword. Properties settable via IDLgrSymbol::SetProperty are
indicated by the word “Set” following the keyword.

COLOR (Get, Set)

Set this keyword to the color used to draw the symbol. The color may be specified as
a color lookup table index or as an RGB vector. The default color is the color of the
object for which this symbol is being used.

DATA (Get, Set)

Set this keyword to specify a symbol. This keyword is equivalent to the Data
argument.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this object.
The default is the null string, ' '.

SIZE (Get, Set)

Set this keyword to a one-, two-, or three-element vector describing the X, Y, and Z
scaling factors to be applied to the symbol. The default is [1.0, 1.0, 1.0].

• If SIZE is specified as a scalar, then the X, Y, and Z scale factors are all equal
to the scalar value.

• If SIZE is specified as a 2-element vector, then the X and Y scale factors are as
specified by the vector, and the Z scale factor is 1.0.

• If SIZE is specified as a 3-element vector, then the X, Y, and Z scale factors
are as specified by the vector.

IDL converts, maintains, and returns this data as double-precision floating-point.
IDL Reference Guide IDLgrSymbol

2204 Appendix A: IDL Object Class & Method Reference
THICK (Get, Set)

Set this keyword to a value between 1.0 and 10.0, specifying the line thickness to
used to draw any lines that make up the symbol, in points. The default is 1.0 points.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object it is a user value of.
IDLgrSymbol IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2205
IDLgrSymbol::SetProperty

The IDLgrSymbol::SetProperty procedure method sets the value of a property or
group of properties for the symbol.

Syntax

Obj -> [IDLgrSymbol::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrSymbol::Init followed by the word “Set” can be set using
IDLgrSymbol::SetProperty.
IDL Reference Guide IDLgrSymbol

2206 Appendix A: IDL Object Class & Method Reference
IDLgrTessellator

A tessellator object converts a simple concave polygon (or a simple polygon with
“holes”) into a number of simple convex polygons (general triangles). A polygon is
simple if it includes no duplicate vertices, if the edges intersect only at vertices, and
exactly two edges meet at any vertex.

Each polygon can be marked as being either an interior or an exterior (default)
polygon. Interior polygons are treated as holes in the exterior polygons. Multiple
non-overlapping exterior polygons are allowed as well. All polygons should be
specified in the same orientation (either clockwise or counter-clockwise). Once all
the polygons have been passed into the tessellator object, the final triangulation is
accomplished by the IDLgrTessellator::Tessellate method. A list of vertices and a
connectivity array are returned. You may process these by hand, or pass them to an
IDLgrPolygon object. The tessellator object will not create any vertices in the
process, rather the output vertex list will include only those vertices passed into the
object originally.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See “IDLgrTessellator::Init” on page 2210.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrTessellator::AddPolygon

• IDLgrTessellator::Cleanup

• IDLgrTessellator::Init

• IDLgrTessellator::Reset

• IDLgrTessellator::Tessellate
IDLgrTessellator IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2207
IDLgrTessellator::AddPolygon

The IDLgrTessellator::AddPolygon procedure method adds a polygon to the
tessellator object.

Syntax

Obj -> [IDLgrTessellator::]AddPolygon, X [, Y[, Z]] [, POLYGON{Get, Set}=array
of polygon descriptions] [, /INTERIOR]

Arguments

X

A 1 x n, 2 x n, or 3 x n array of polygon vertices.

Y

A vector of Y values. If X and Y are both specified, they must be one-dimensional
vectors of the same length.

Z

A vector of Z values. If X, Y, and Z are all specified, they must all three be one-
dimensional vectors of the same length. If no Z values are specified, the Z value for
the polygon is set to 0.

Keywords

POLYGON (Get, Set)

Set this keyword to an array of polygon descriptions. A polygon description is an
integer or longword array of the form: [n, i0, i1, ..., in-1], where n is the number of
vertices that define the polygon, and i0..in-1 are indices into the X, Y, and Z arguments
that represent the polygon vertices. To ignore an entry in the POLYGON array, set
the vertex count, n, to 0. To end the drawing list, even if additional array space is
available, set n to -1. If this keyword is not specified, a single polygon will be
generated.

Note
The connectivity array described by POLYGONS allows you to add multiple
polygons to the tessellator object with a single AddPolygon operation.
IDL Reference Guide IDLgrTessellator

2208 Appendix A: IDL Object Class & Method Reference
INTERIOR

Set this keyword to set a polygon to be an interior polygon, which is treated as a hole
in the exterior polygons.
IDLgrTessellator IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2209
IDLgrTessellator::Cleanup

The IDLgrTessellator::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrTessellator::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrTessellator

2210 Appendix A: IDL Object Class & Method Reference
IDLgrTessellator::Init

The IDLgrTessellator::Init function method initializes the tessellator object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrTesselator')

or

Result = Obj -> [IDLgrTessellator::]Init() (Only in a subclass’ Init method.)

Arguments

None

Keywords

None
IDLgrTessellator IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2211
IDLgrTessellator::Reset

The IDLgrTessellator::Reset procedure method resets the object’s internal state. All
previously added polygons are removed from memory and the object is prepared for
a new tessellation task.

Syntax

Obj -> [IDLgrTessellator::]Reset

Arguments

None

Keywords

None
IDL Reference Guide IDLgrTessellator

2212 Appendix A: IDL Object Class & Method Reference
IDLgrTessellator::Tessellate

The IDLgrTessellator::Tessellate function method performs the actual tessellation.

Syntax

Result = Obj -> [IDLgrTessellator::]Tessellate(Vertices, Poly [, /QUIET])

Arguments

If the tessellation succeeds, IDLgrTessellator::Tessellate returns 1 and the contents of
Vertices and Poly are set to the results of the tessellation. If the tessellation fails, the
function returns 0.

Vertices

A 2 x n array if all the input polygons were 2D. A 3 x n array if all the input polygons
were 3D.

Poly

An array of polygon descriptions. A polygon description is an integer or longword
array of the form: [n, i0, i1, ..., in-1], where n is the number of vertices that define the
polygon, and i0..in-1 are indices into the X, Y, and Z arguments that represent the
polygon vertices.

Note
On output, the Vertices array can be used as the value of the DATA property, and
the Poly array can be used as the value of the POLYGON property, of a polygon
object.

Keywords

QUIET

Set this keyword to suppress warning and error message generation due to
tessellation errors. !ERROR_STATE is not updated in the case of the return value
being ‘0’ when the QUIET keyword is specified.
IDLgrTessellator IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2213
IDLgrText

A text object represents one or more text strings that share common rendering
attributes. An IDLgrText object is an atomic graphic object; it is one of the basic
drawable elements of the IDL Object Graphics system, and it is not a container for
other objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See “IDLgrText::Init” on page 2219.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrText::Cleanup

• IDLgrText::GetCTM

• IDLgrText::GetProperty

• IDLgrText::Init

• IDLgrText::SetProperty

Keywords

PALETTE

Set this keyword equal to the object reference of a palette object (an instance of the
IDLgrPalette object class). This keyword is only used if the destination device is
using the RGB color model. If so, and a color value for the object is specified as a
color index value, the palette set by this keyword is used to translate the color to RGB
space. If the PALETTE property on this object is not set, the destination object
PALETTE property is used (which defaults to a grayscale ramp).
IDL Reference Guide IDLgrText

2214 Appendix A: IDL Object Class & Method Reference
IDLgrText::Cleanup

The IDLgrText::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrText::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrText IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2215
IDLgrText::GetCTM

The IDLgrText::GetCTM function method returns the 4 x 4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrText::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the text
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrText::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDL Reference Guide IDLgrText

2216 Appendix A: IDL Object Class & Method Reference
TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.
IDLgrText IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2217
IDLgrText::GetProperty

The IDLgrText::GetProperty procedure method retrieves the value of a property or
group of properties for the text.

Syntax

Obj -> [IDLgrText::]GetProperty [, ALL=variable] [, PARENT=variable]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

None

Keywords

Any keyword to IDLgrText::Init followed by the word “Get” can be retrieved using
IDLgrText::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to the
object that contains this object.

XRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [xmin, xmax] that specifies the range of x data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.
IDL Reference Guide IDLgrText

2218 Appendix A: IDL Object Class & Method Reference
YRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [ymin, ymax] that specifies the range of y data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element vector of
the form [zmin, zmax] that specifies the range of z data coordinates covered by the
graphic object. IDL maintains and returns this property in double-precision floating-
point.

Note
Until the text is drawn to the destination object, the [XYZ]RANGE properties will
only report the locations of the text. Use the GetTextDimensions method of the
destination object to get the data dimensions of the text prior to a draw operation.
IDLgrText IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2219
IDLgrText::Init

The IDLgrText::Init function method initializes the text object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrText' [, String or vector of strings] [, ALIGNMENT{Get,
Set}=value{0.0 to 1.0}] [, BASELINE{Get, Set}=vector]
[, CHAR_DIMENSIONS{Get, Set}=[width, height]] [, COLOR{Get, Set}=index or
RGB vector] [, /ENABLE_FORMATTING{Get, Set}] [, FONT{Get, Set}=objref]
[, /HIDE{Get, Set}] [, LOCATIONS{Get, Set}=array] [, NAME{Get, Set}=string]
[, /ONGLASS{Get, Set}] [, PALETTE{Get, Set}=objref]
[, RECOMPUTE_DIMENSIONS{Get, Set}={0 | 1 | 2}] [, STRINGS{Get,
Set}=string or vector of strings] [, UPDIR{Get, Set}=vector] [, UVALUE{Get,
Set}=value] [, VERTICAL_ALIGNMENT{Get, Set}=value{0.0 to 1.0}]
[, XCOORD_CONV{Get, Set}=vector] [, YCOORD_CONV{Get, Set}=vector]
[, ZCOORD_CONV{Get, Set}=vector])

or

Result = Obj -> [IDLgrText::]Init([String or vector of strings]) (Only in a subclass’
Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

String

The string (or vector of strings) to be created. If this argument is not a string, it is
converted prior to using the default formatting rules.
IDL Reference Guide IDLgrText

2220 Appendix A: IDL Object Class & Method Reference
Keywords

Properties retrievable via IDLgrText::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrText::SetProperty are indicated
by the word “Set” following the keyword.

ALIGNMENT (Get, Set)

Set this keyword to a floating-point value between 0.0 and 1.0 to indicate the
requested horizontal alignment of the text baseline. An alignment of 0.0 (the default)
aligns the left-justifies the text at the given position; an alignment of 1.0 right-
justifies the text, and an alignment of 0.5 centers the text over the given position.

BASELINE (Get, Set)

Set this keyword to a two (or three) element vector describing the direction in which
the baseline is to be oriented. Use this keyword in conjunction with the UPDIR
keyword to specify the plane on which the text lies. The default BASELINE is
[1.0,0,0] (i.e., parallel to the x-axis).

CHAR_DIMENSIONS (Get, Set)

Set this keyword equal to a two-element vector [width, height] indicating the
dimensions (measured in data units) of a bounding box for each character, to be used
when scaling text projected in three dimensions. If either width or height is zero, the
text will be scaled such that if it were positioned halfway between the near and far
clipping planes, it will appear at the point size associated with this text object’s font.
The default value is [0, 0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

Note
If you set the CHAR_DIMENSIONS property to [0,0] (using the SetProperty
method), indicating that IDL should calculate the text size, the value (returned by
the GetProperty method) will not be updated to reflect the calculated size until you
call either the Draw method or the GetTextDimensions method.

For example, if the VIEWPLANE_RECT of the view the text object is being
rendered in is set equal to [0,0,10,10] (that is, it spans ten data units in each of the X
and Y directions), setting the CHAR_DIMENSIONS property equal to [2, 3] will
scale the text such that each character fills 20% of the X range and 30% of the Y
range.

This property has no effect if the ONGLASS property is set equal to one.
IDLgrText IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2221
COLOR (Get, Set)

Set this keyword to the color to be used as the foreground color for the text. The color
may be specified as a color lookup table index or as an RGB vector. The default is [0,
0, 0].

ENABLE_FORMATTING (Get, Set)

Set this keyword to indicate that the text object should honor embedded Hershey-
style formatting codes within the strings. (Formatting codes are described in
Appendix H, “Fonts”.) The default is not to honor the formatting codes.

FONT (Get, Set)

Set this keyword to an instance of an IDLgrFont object class to describe the font to
use to draw this string. The default is 12 point Helvetica. See IDLgrFont for details.

Note
If the default font is in use, retrieving the value of the FONT property (using the
GetProperty method) will return a null object.

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

LOCATIONS (Get, Set)

Set this keyword to an array of one or more two- or three-element vectors specifying
the coordinates (measured in data units) used to position the string(s). Each vector is
of the form [x, y] or [x, y, z]; if z is not provided, it is assumed to be zero. Each
location corresponds to the corresponding string in the String argument. If only one
location is provided, and the String argument is a vector of more than one strings, the
initial string is positioned at the given location, and each subsequent string is
positioned by cyclically reusing the location values. IDL converts, maintains, and
returns this data as double-precision floating-point.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this object.
The default is the null string, ' '.
IDL Reference Guide IDLgrText

2222 Appendix A: IDL Object Class & Method Reference
ONGLASS (Get, Set)

Set this keyword to indicate that the text should be displayed “on the glass”. The
default is projected 3D text.

PALETTE (Get, Set)

Set this keyword equal to the object reference of a palette object (an instance of the
IDLgrPalette object class). This keyword is only used if the destination device is
using the RGB color model. If so, and a color value for the object is specified as a
color index value, the palette set by this keyword is used to translate the color to RGB
space. If the PALETTE property on this object is not set, the destination object
PALETTE property is used (which defaults to a grayscale ramp).

RECOMPUTE_DIMENSIONS (Get, Set)

Set this keyword to one of the following values to indicate when this text object’s
character dimensions (refer to the CHAR_DIMENSIONS property) are to be
recomputed automatically:

• 0 = Never recompute. Always use the character dimensions provided via the
CHAR_DIMENSIONS property. If CHAR_DIMENSIONS is set to [0,0],
compute once and re-use the resulting dimensions until the
CHARACTER_DIMENSIONS are modified.

• 1 = Recompute, but reuse the current transformation matrix from the previous
draw of this text object. If this is the first time the text object is drawn,
compute the current transformation matrix. (This option is useful if the parent
model of this text object is scaled for zooming, and the text is supposed to
increase in size, rather having its data dimensions recomputed to ensure the
font size is matched.)

• 2 = Recompute always, including the current transformation matrix.

STRINGS (Get, Set)

Set this keyword to the string (or vector of strings) associated with the text object.
This keyword is the same as the String argument described above.

UPDIR (Get, Set)

Set this keyword to a two (or three) element vector describing the vertical direction
for the string. The upward direction is the direction defined by a vector pointing from
the origin to the point specified. Use this keyword in conjunction with the
BASELINE keyword to specify the plane on which the text lies; the direction
IDLgrText IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2223
specified by UPDIR should be orthogonal to the direction specified by BASELINE.
The default UPDIR is [0.0, 1.0, 0.0] (i.e., parallel to the Y axis).

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object it is a user value of.

VERTICAL_ALIGNMENT (Get, Set)

Set this keyword to a floating-point value between 0.0 and 1.0 to indicate the
requested vertical alignment of the text. An alignment of 0.0 (the default) bottom-
justifies the text at the given location; an alignment of 1.0 top-justifies the text at the
given location.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinates
from data units to normalized units. The formula for the conversion is as follows:
IDL Reference Guide IDLgrText

2224 Appendix A: IDL Object Class & Method Reference
NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.
IDLgrText IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2225
IDLgrText::SetProperty

The IDLgrText::SetProperty procedure method sets the value of a property or group
of properties for the text.

Syntax

Obj -> [IDLgrText::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrText::Init followed by the word “Set” can be set using
IDLgrText::SetProperty.
IDL Reference Guide IDLgrText

2226 Appendix A: IDL Object Class & Method Reference
IDLgrView IDL Reference Guide

IDLgrView

A view object represents a rectangular area in which graphics objects are drawn. It is
a container for objects of the IDLgrModel class.

Superclasses

This class is a subclass of IDL_Container.

Subclasses

This class has no subclasses.

Creation

See “IDLgrView::Init” on page 2231.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrView::Add

• IDLgrView::Cleanup

• IDLgrView::GetByName

• IDLgrView::GetProperty

• IDLgrView::Init

• IDLgrView::SetProperty

Inherited Methods

This class inherits the following methods:

• IDL_Container::Count

• IDL_Container::Get

• IDL_Container::IsContained

• IDL_Container::Move

Appendix A: IDL Object Class & Method Reference 2227
IDLgrView::Add

The IDLgrView::Add procedure method adds a child to this view.

Syntax

Obj -> [IDLgrView::]Add, Model [, POSITION=index]

Arguments

Model

An instance of the IDLgrModel object class.

Keywords

POSITION

Set this keyword equal to the zero-based index of the position within the container at
which the new object should be placed.
IDL Reference Guide IDLgrView

2228 Appendix A: IDL Object Class & Method Reference
IDLgrView::Cleanup

The IDLgrView::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrView::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrView IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2229
IDLgrView::GetByName

The IDLgrView::GetByName function method finds contained objects by name. If
the named object is not found, the GetByName function returns a null object
reference.

Note
The GetByName function does not perform a recursive search through the object
hierarchy. If a fully qualified object name is not specified, only the contents of the
current container object are inspected for the named object.

Syntax

Result = Obj -> [IDLgrView::]GetByName(Name)

Arguments

Name

A string containing the name of the object to be returned.

Object naming syntax is very much like the syntax of a UNIX filesystem. Objects
contained by other objects can include the name of their parent object; this allows
you to create a fully qualified name specification. For example, if object1 contains
object2, which in turn contains object3, the string specifying the fully qualified
object name of object3 would be 'object1/object2/object3'.

Object names are specified relative to the object on which the GetByName method is
called. If used at the beginning of the name string, the / character represents the top
of an object hierarchy. The string '..' represents the object one level “up” in the
hierarchy.

Keywords

None
IDL Reference Guide IDLgrView

2230 Appendix A: IDL Object Class & Method Reference
IDLgrView::GetProperty

The IDLgrView::GetProperty procedure method retrieves the value of the property or
group of properties for the view.

Syntax

Obj -> [IDLgrView::]GetProperty [, ALL=variable] [, PARENT=variable]

Arguments

None

Keywords

Any keyword to IDLgrView::Init followed by the word “Get” can be retrieved using
IDLgrView::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to the
object that contains this object.
IDLgrView IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2231
IDLgrView::Init

The IDLgrView::Init function method initializes the view object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrView' [, COLOR{Get, Set}=index or RGB vector]
[, DEPTH_CUE{Get, Set}=[zbright, zdim]] [, DIMENSIONS{Get, Set}=[width,
height]] [, /DOUBLE {Get, Set}] [, EYE{Get, Set}=distance] [, LOCATION{Get,
Set}=[x, y]] [, PROJECTION{Get, Set}={1 | 2}] [, /TRANSPARENT{Get, Set}]
[, UNITS{Get, Set}={0 | 1 | 2 | 3}] [, UVALUE{Get, Set}=value]
[, VIEWPLANE_RECT{Get, Set}=[x, y, width, height]] [, ZCLIP{Get, Set}=[near,
far]])

or

Result = Obj -> [IDLgrView::]Init() (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

None

Keywords

Properties retrievable via IDLgrView::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrView::SetProperty are indicated
by the word “Set” following the keyword.
IDL Reference Guide IDLgrView

2232 Appendix A: IDL Object Class & Method Reference
COLOR (Get, Set)

Set this keyword to the color for the view. This is the color to which the view area
will be erased before its contents are drawn. The color may be specified as a color
lookup table index or as an RGB vector. The default is [255, 255, 255] (white).

DEPTH_CUE (Get, Set)

Set this keyword to a two-element floating-point array [zbright, zdim] specifying the
near and far Z planes between which depth cueing is in effect. Depth cueing is only
honored when drawing to a destination object that uses the RGB color model.

Depth cueing causes an object to appear to fade into the background color of the view
object with changes in depth. If the depth of an object is further than zdim (that is, if
the object’s location in the Z direction is farther from the origin than the value
specified by zdim), the object will be painted in the background color. Similarly, if
the object is closer than the value of zbright, the object will appear in its “normal”
color. Anywhere in-between, the object will be a blend of the background color and
the object color. For example, if the DEPTH_CUE property is set to [-1,1], an object
at the depth of 0.0 will appear as a 50% blend of the object color and the view color.

The relationship between Zbright and Zdim determines the result of the rendering:

• Zbright < Zdim: Rendering darkens with depth.

• Zbright > Zdim: Rendering brightens with depth.

• Zbright = Zdim: Disables depth cueing.

You can disable depth cueing by setting zbright = zdim. The default is [0.0, 0.0].

DIMENSIONS (Get, Set)

Set this keyword to a two-element vector of the form [width, height] specifying the
dimensions of the viewport (the rectangle in which models are displayed on a
graphics destination). By default, the viewport dimensions are set to [0, 0], which
indicates that it will match the dimensions of the graphics destination to which it is
drawn. The dimensions are measured in the units specified by the UNITS keyword.

DOUBLE (Get, Set)

The DOUBLE keyword parameter controls the precision used for rendering the entire
contents of the view. If set, IDL calculates the transformations used for the modeling
and view transforms using double-precision floating-point arithmetic. This allows the
values specified for the VIEWPLANE_RECT, modeling transforms in IDLgrModel
objects, and coordinate data in atomic graphic objects to be used as double-precision
before mapping to device coordinates.
IDLgrView IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2233
Note
If this keyword is not specified, IDL uses single-precision floating-point arithmetic
for these values which can cause loss of significance and incorrect rendering of
data. Using this keyword may impact graphics performance and should only be
used when handling data requiring double-precision.

EYE (Get, Set)

Set this keyword to specify the distance from the eyepoint to the viewplane (Z=0).
The default is 4.0. The eyepoint is always centered within the viewplane rectangle.
(That is, if the VIEWPLANE_RECT property is set equal to [0,0,1,1], the eyepoint
will be at X=0.5, Y=0.5.) IDL converts, maintains, and returns this data as double-
precision floating-point.

LOCATION (Get, Set)

Set this keyword to a two-element vector of the form [x, y] specifying the position of
the lower left corner of the view. The default is [0, 0], measured in device units.

PROJECTION (Get, Set)

Set this keyword to and integer value indicating the type of projection to use within
this view. All models displayed within this view will be projected using this type of
projection. Valid values are described below.

• 1 = Orthogonal projection (default).

• 2 = Perspective: Indicates that all models are projected toward the eye (located
at the origin), which is the apex of the viewing frustum. With a perspective
projection, models that are farther away from the eye will appear smaller in the
view than models that are nearer to the eye.

TRANSPARENT (Get, Set)

Set this keyword to disable the viewport erase, making the viewport transparent.

UNITS (Get, Set)

Set this keyword to specify the units of measure for this view. Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to the graphics destination’s rect.
IDL Reference Guide IDLgrView

2234 Appendix A: IDL Object Class & Method Reference
Note
If you set the UNITS property (using the SetProperty method) of a view without
also setting the LOCATION and DIMENSIONS properties, IDL will use the
existing size and location values in the new units, without conversion. This means
that if your view’s location and dimensions were previously measured in
centimeters, and you change the value of UNITS to 1 (measurement in inches), the
actual size of the view object will change.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object to which the user value applies.

VIEWPLANE_RECT (Get, Set)

Set this keyword to a four-element vector of the form [x, y, width, height] to describe
the bounds in x and y of the view volume. Objects within the view volume are
projected into the viewport. These values are measured in normalized space. The
default is [-1.0, -1.0, 2.0, 2.0] IDL converts, maintains, and returns this data as
double-precision floating-point.

Note
The z bounds of the view volume are set via the ZCLIP keyword. The viewplane
rectangle is always located at Z=0.

ZCLIP (Get, Set)

Set this keyword to a two element vector representing the near and far clipping planes
to be applied to the objects in this view. The vector should take the form [near, far].
By default, these values are [1, -1]. IDL converts, maintains, and returns this data as
double-precision floating-point.
IDLgrView IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2235
IDLgrView::SetProperty

The IDLgrView::SetProperty procedure method sets the value of the property or
group of properties for the view.

Syntax

Obj -> [IDLgrView::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrView::Init followed by the word “Set” can be set using
IDLgrView::SetProperty.
IDL Reference Guide IDLgrView

2236 Appendix A: IDL Object Class & Method Reference
IDLgrViewgroup

The IDLgrViewgroup object is a simple container object, very similar to the
IDLgrScene object. It contains one or more IDLgrView objects and an IDLgrScene
can contain one or more of these objects. This object is special in that it can also
contain objects which do not have a Draw method (e.g. IDLgrPattern and
IDLgrFont). An IDLgrViewgroup object cannot be returned by a call to the
IDLgrWindow::Select method.

Superclasses

This class is a subclass of IDL_Container.

Subclasses

This class has no subclasses.

Creation

See IDLgrViewgroup::Init.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrViewgroup::Add

• IDLgrViewgroup::Cleanup

• IDLgrViewgroup::GetByName

• IDLgrViewgroup::GetProperty

• IDLgrViewgroup::Init

• IDLgrViewgroup::SetProperty

Inherited Methods

This class inherits the following methods:

• IDL_Container::Count

• IDL_Container::Get
IDLgrViewgroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2237
• IDL_Container::IsContained

• IDL_Container::Move
IDL Reference Guide IDLgrViewgroup

2238 Appendix A: IDL Object Class & Method Reference
IDLgrViewgroup::Add

The IDLgrViewgroup::Add function method verifies that the added item is not an
instance of the IDLgrScene or IDLgrViewgroup object. If it is not,
IDLgrViewgroup:Add adds the object to the specified viewgroup.

Syntax

Obj -> [IDLgrViewgroup::]Add, Object [, POSITION=index]

Arguments

Object

An instance of an object or a list of objects. Objects which subclass IDLgrScene or
IDLgrViewGroup can not be added (avoiding circularity constraints). All other
objects are allowed.

Keywords

POSITION

Set this keyword equal to the zero-based index of the position within the container at
which the new object should be placed.
IDLgrViewgroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2239
IDLgrViewgroup::Cleanup

The IDLgrViewgroup::Cleanup procedure method performs all cleanup on the
object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrViewgroup::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrViewgroup

2240 Appendix A: IDL Object Class & Method Reference
IDLgrViewgroup::GetByName

The IDLgrViewgroup::GetByName function method finds contained objects by
name. If the named object is not found, the GetByName function returns a null object
reference.

Note
The GetByName function does not perform a recursive search through the object
hierarchy. If a fully qualified object name is not specified, only the contents of the
current container object are inspected for the named object.

Syntax

Result = Obj -> [IDLgrViewgroup::]GetByName(Name)

Arguments

Name

A string containing the name of the object to be returned.

Object naming syntax is very much like the syntax of a UNIX filesystem. Objects
contained by other objects can include the name of their parent object; this allows
you to create a fully qualified name specification. For example, if object1 contains
object2, which in turn contains object3, the string specifying the fully qualified
object name of object3 would be 'object1/object2/object3'.

Object names are specified relative to the object on which the GetByName method is
called. If used at the beginning of the name string, the / character represents the top
of an object hierarchy. The string '..' represents the object one level “up” in the
hierarchy.

Keywords

None
IDLgrViewgroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2241
IDLgrViewgroup::GetProperty

The IDLgrViewgroup::GetProperty procedure method retrieves the value of a
property or group of properties for the viewgroup object.

Syntax

Obj -> [IDLgrViewgroup::]GetProperty [, ALL=variable] [, PARENT=variable]

Arguments

None

Keywords

Any keyword to IDLgrViewgroup::Init followed by the word “Get” can be retrieved
using IDLgrViewgroup::GetProperty. In addition, the following keywords are
available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the retrievable properties associated with this object.

PARENT

Set this keyword to a named variable that will contain an object reference to the
object that contains this viewgroup.
IDL Reference Guide IDLgrViewgroup

2242 Appendix A: IDL Object Class & Method Reference
IDLgrViewgroup::Init

The IDLgrViewgroup::Init function method initializes the viewgroup object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrViewgroup' [, /HIDE{Get, Set}] [, NAME{Get,
Set}=string] [, UVALUE{Get, Set}=value])

or

Result = Obj -> [IDLgrViewgroup::]Init() (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

None

Keywords

Properties retrievable via IDLgrViewgroup::GetProperty are indicated by the word
“Get” following the keyword. Properties settable via IDLgrViewgroup::SetProperty
are indicated by the word “Set” following the keyword.

HIDE (Get, Set)

Set this keyword to a boolean value to indicate whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic
IDLgrViewgroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2243
NAME (Get, Set)

Set this keyword to a string representing the name to be associated with this object.
The default is the null string, ''.

UVALUE (Get, Set)

Set this keyword to a value of any type. You may use this value to contain any
information you wish.
IDL Reference Guide IDLgrViewgroup

2244 Appendix A: IDL Object Class & Method Reference
IDLgrViewgroup::SetProperty

The IDLgrViewgroup::SetProperty procedure method sets the value of a property or
group of properties for the viewgroup.

Syntax

Obj -> [IDLgrViewgroup::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrViewgroup::Init followed by the word “Set” can be retrieved
using IDLgrViewgroup::SetProperty.
IDLgrViewgroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2245
IDLgrVolume

A volume object represents a mapping from a three-dimensional array of data to a
three-dimensional array of voxel colors, which, when drawn, are projected to two
dimensions.

An IDLgrVolume object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See “IDLgrVolume::Init” on page 2252.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrVolume::Cleanup

• IDLgrVolume::ComputeBounds

• IDLgrVolume::GetCTM

• IDLgrVolume::GetProperty

• IDLgrVolume::Init

• IDLgrVolume::PickVoxel

• IDLgrVolume::SetProperty
IDL Reference Guide IDLgrVolume

2246 Appendix A: IDL Object Class & Method Reference
IDLgrVolume::Cleanup

The IDLgrVolume::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrVolume::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2247
IDLgrVolume::ComputeBounds

The IDLgrVolume::ComputeBounds procedure method computes the smallest
bounding box that contains all voxels whose opacity lookup is greater than a given
opacity value. The BOUNDS property is updated to the computed bounding box.

Syntax

Obj -> [IDLgrVolume::]ComputeBounds [, OPACITY=value] [, /RESET]
[, VOLUMES=int array]

Arguments

None

Keywords

OPACITY

Set this keyword to the opacity value to be used to determine which voxels are
included within the bounding box. All voxels whose opacity lookup is greater than
this value will be included. The default value is zero.

RESET

Set this keyword to cause the BOUNDS keyword of IDLgrVolume::Init to be reset to
contain the entire volume.

VOLUMES

Set this keyword to an array of integers which select which volumes to consider when
computing the bounding box. A non-zero value selects a volume to be searched. The
default is to search all loaded volumes. For example: VOLUMES=[0,1] will cause
ComputeBounds to search only the volume loaded in DATA1.
IDL Reference Guide IDLgrVolume

2248 Appendix A: IDL Object Class & Method Reference
IDLgrVolume::GetCTM

The IDLgrVolume::GetCTM function method returns the 4 x 4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrVolume::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the volume
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrVolume::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2249
TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.
IDL Reference Guide IDLgrVolume

2250 Appendix A: IDL Object Class & Method Reference
IDLgrVolume::GetProperty

The IDLgrVolume::GetProperty procedure method retrieves the value of a property
or group of properties for the volume.

Syntax

Obj -> [IDLgrVolume::]GetProperty [, ALL=variable] [, PARENT=variable]
[, VALID_DATA=variable] [, XRANGE=variable] [, YRANGE=variable]
[, ZRANGE=variable]

Arguments

None

Keywords

Any keyword to IDLgrVolume::Init followed by the word “Get” can be retrieved
using IDLgrVolume::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to the
object that contains this object.

VALID_DATA

Set his keyword equal to a named variable that will contain an array of integers (one
per volume, DATA0, DATA1, etc.) which have the value 1 if volume data has been
loaded for that volume and 0 if that volume data is currently undefined.
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2251
XRANGE

Set this keyword equal to a named variable that will contain a two-element double-
precision floating-point vector of the form [xmin, xmax] that specifies the range of x
data coordinates covered by the graphic object.

YRANGE

Set this keyword equal to a named variable that will contain a two-element double-
precision floating-point vector of the form [ymin, ymax] that specifies the range of y
data coordinates covered by the graphic object.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element double-
precision floating-point vector of the form [zmin, zmax] that specifies the range of z
data coordinates covered by the graphic object.
IDL Reference Guide IDLgrVolume

2252 Appendix A: IDL Object Class & Method Reference
IDLgrVolume::Init

The IDLgrVolume::Init function method initializes the volume object. At least one
volume method must be specified, via arguments or keywords.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrVolume' [, vol0 [, vol1 [, vol2 [, vol3]]]] [, AMBIENT{Get,
Set}=RGB vector] [, BOUNDS{Get, Set}=[xmin, ymin, zmin, xmax, ymax, zmax]]
[, COMPOSITE_FUNCTION{Get, Set}={0 | 1 | 2 | 3}] [, CUTTING_PLANES{Get,
Set}=array] [, DATA0{Get, Set}=[dx, dy, dz]] [, DATA1{Get, Set}=[dx, dy, dz]]
[, DATA2{Get, Set}=[dx, dy, dz]] [, DATA3{Get, Set}=[dx, dy, dz]]
[, DEPTH_CUE{Get, Set}=[zbright, zdim]] [, /HIDE{Get, Set}] [, HINTS{Get,
Set}={0 | 1 | 2 | 3}] [, /INTERPOLATE{Get, Set}] [, /LIGHTING_MODEL{Get,
Set}] [, NAME{Get, Set}=string] [, /NO_COPY{Get, Set}]
[, OPACITY_TABLE0{Get, Set}=256-element byte array]
[, OPACITY_TABLE1{Get, Set}=256-element byte array] [, RENDER_STEP{Get,
Set}=[x, y, z]] [, RGB_TABLE0{Get, Set}=256 x 3-element byte array]
[, RGB_TABLE1{Get, Set}=256 x 3-element byte array] [, /TWO_SIDED{Get,
Set}] [, UVALUE{Get, Set}=value] [, VOLUME_SELECT{Get, Set}={0 | 1 | 2}]
[, XCOORD_CONV{Get, Set}=vector] [, YCOORD_CONV{Get, Set}=vector]
[, /ZBUFFER{Get, Set}] [, ZCOORD_CONV{Get, Set}=vector]
[, ZERO_OPACITY_SKIP{Get, Set}={0 | 1}])

or

Result = Obj -> [IDLgrVolume::]Init([vol0 [, vol1 [, vol2 [, vol3]]]]) (Only in a
subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2253
Arguments

vol0
A three-element array (dx, dy, dz) which specifies a data volume.

vol1
A three-element array (dx, dy, dz) which specifies a data volume.

vol2
A three-element array (dx, dy, dz) which specifies a data volume.

vol3
A three-element array (dx, dy, dz) which specifies a data volume.

Note
If two or more of the above arguments are specified, they must have matching
dimensions.

Keywords

Properties retrievable via IDLgrVolume::GetProperty are indicated by the word
“Get” following the keyword. Properties settable via IDLgrVolume::SetProperty are
indicated by the word “Set” following the keyword.

AMBIENT (Get, Set)

Use this keyword to set the color and intensity of the volume’s base ambient lighting.
Color is specified as an RGB vector. The default is [255, 255, 255]. AMBIENT is
applicable only when LIGHTING_MODEL is set.

BOUNDS (Get, Set)

Set this keyword to a six-element vector of the form [xmin, ymin, zmin, xmax, ymax,
zmax], which represents the sub-volume to be rendered.

COMPOSITE_FUNCTION (Get, Set)

The composite function determines the value of a pixel on the viewing plane by
analyzing the voxels falling along the corresponding ray, according to one of the
following compositing functions:

• 0 = Alpha (default): Alpha-blending. The recursive equation
IDL Reference Guide IDLgrVolume

2254 Appendix A: IDL Object Class & Method Reference
dest' = src * srcalpha + dest * (1 - srcalpha)

is used to compute the final pixel color.

• 1 = MIP: Maximum intensity projection. The value of each pixel on the
viewing plane is set to the brightest voxel, as determined by its opacity. The
most opaque voxel’s color appropriation is then reflected by the pixel on the
viewing plane.

• 2 = Alpha sum: Alpha-blending. The recursive equation

dest' = src + dest * (1 - srcalpha)

is used to compute the final pixel color. This equation assumes that the color
tables have been pre-multiplied by the opacity tables. The accumulated values
can be no greater than 255.

• 3 = Average: Average-intensity projection. The resulting image is the average
of all voxels along the corresponding ray.

CUTTING_PLANES (Get, Set)

Set this keyword to a floating-point array with dimensions (4, n) specifying the
coefficients of n cutting planes. The cutting plane coefficients are in the form {{nx,
ny, nz, D}, ...} where (nx)X+(ny)Y+(nz)Z+ D > 0, and (X, Y, Z) are the voxel
coordinates. To clear the cutting planes, set this property to any scalar value (e.g.
CUTTING_PLANES = 0). By default, no cutting planes are defined.

DATA0 (Get, Set)

Set this keyword to a three-element array of the format (dx, dy, dz), which specifies a
data volume. Setting this property is the same as including the vol0 argument at
creation time. If the data volume dimensions do not match those of any pre-existing
data in DATA1, DATA2, or DATA3, all existing data is removed from the object.

DATA1 (Get, Set)

Set this keyword to a three-element array of the format (dx, dy, dz), which specifies a
data volume. Setting this property is the same as including the vol1 argument at
creation time. If the data volume dimensions do not match those of any pre-existing
data in DATA0, DATA2, or DATA3, all existing data is removed from the object.

DATA2 (Get, Set)

Set this keyword to a three-element array of the format (dx, dy, dz), which specifies a
data volume. Setting this property is the same as including the vol2 argument at
creation time. If the data volume dimensions do not match those of any pre-existing
data in DATA0, DATA1, or DATA3, all existing data is removed from the object.
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2255
DATA3 (Get, Set)

Set this keyword to a three-element array of the format (dx, dy, dz), which specifies a
data volume. Setting this property is the same as including the vol3 argument at
creation time. If the data volume dimensions do not match those of any pre-existing
data in DATA0, DATA1, or DATA2, all existing data is removed from the object.

Note
DATA0, DATA1, DATA2, and DATA3 sizes are dynamic.

DEPTH_CUE (Get, Set)

Set this keyword to a two-element floating-point array [zbright, zdim] specifying the
near and far Z planes between which depth cueing is in effect. Depth cueing is only
honored when drawing to a destination object that uses the RGB color model.

Depth cueing causes an object to appear to fade into the background color of the view
object with changes in depth. If the depth of an object is further than zdim (that is, if
the object’s location in the Z direction is farther from the origin than the value
specified by zdim), the object will be painted in the background color. Similarly, if
the object is closer than the value of zbright, the object will appear in its “normal”
color. Anywhere in-between, the object will be a blend of the background color and
the object color. For example, if the DEPTH_CUE property is set to [-1,1], an object
at the depth of 0.0 will appear as a 50% blend of the object color and the view color.

The relationship between Zbright and Zdim determines the result of the rendering:

• Zbright < Zdim: Rendering darkens with depth.

• Zbright > Zdim: Rendering brightens with depth.

• Zbright = Zdim: Disables depth cueing.

You can disable depth cueing by setting zbright = zdim. The default is [0.0, 0.0].

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

HINTS (Get, Set)

Set this keyword to specify one of the following acceleration hints:
IDL Reference Guide IDLgrVolume

2256 Appendix A: IDL Object Class & Method Reference
• 0 = Disables all acceleration hints (default).

• 1 = Enables Euclidean distance map (EDM) acceleration. This option
generates a volume map containing the distance from any voxel to the nearest
non-zero opacity voxel. The map is used to speed ray casting by allowing the
ray to jump over open spaces. It is most useful with sparse volumes. After
setting the EDM hint, the draw operation generates the volume map; this
process can take some time. Subsequent draw operations will reuse the
generated map and may be much faster, depending on the volume’s
sparseness. A new map is not automatically generated to match changes in
opacity tables or volume data (for performance reasons). The user may force
recomputation of the EDM map by setting the HINTS property to 1 again.

• 2 = Enables the use of multiple CPUs for volume rendering if the platforms
used support such use. If HINTS is set to 2, IDL will use all the available (up
to 8) CPUs to render portions of the volume in parallel.

• 3 = Selects the two acceleration options described above.

INTERPOLATE (Get, Set)

Set this keyword to indicate that Trilinear interpolation is to be used to determine the
data value for each step on a ray. Setting this keyword improves the quality of images
produced, at the cost of more computing time. especially when the volume has low
resolution with respect to the size of the viewing plane. Nearest neighbor sampling is
used by default.

LIGHTING_MODEL (Get, Set)

Set this keyword to use the current lighting model during rendering in conjunction
with a local gradient evaluation.

Note
Only DIRECTIONAL light sources are honored by the volume object. Because
normals must be computed for all voxels in a lighted view, enabling light sources
increases the rendering time.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this object.
The default is the null string, ' '.
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2257
NO_COPY (Get, Set)

Set this keyword to relocate volume data from the input variables to the volume
object, leaving the input variables undefined. Only the DATA0 keyword and the vol0
argument are affected. If this keyword is omitted, the input volume data will be
duplicated and a copy will be stored in the object.

OPACITY_TABLE0 (Get, Set)

Set this keyword to a 256-element byte array to specify an opacity table for DATA0.
The default table is the linear ramp.

OPACITY_TABLE1 (Get, Set)

Set this keyword to a 256-element byte array to specify an opacity table for DATA1.
The default table is the linear ramp. This table is used only when
VOLUME_SELECT is set equal to 1.

RENDER_STEP (Get, Set)

Set this keyword to a three element vector of the form [x, y, z] to specify the stepping
factor through the voxel matrix.

RGB_TABLE0 (Get, Set)

Set this keyword to a 256 x 3-element byte array to specify an RGB color table for
DATA0. The default table is the linear ramp.

RGB_TABLE1 (Get, Set)

Set this keyword to a 256 x 3-element byte array to specify an RGB color table for
DATA1. The default table is the linear ramp. This table is used only when
VOLUME_SELECT is set equal to 1.

TWO_SIDED (Get, Set)

Set this keyword to force the lighting model to use a two-sided voxel gradient. The
two-sided gradient is different from the one-sided gradient (default) in that the
absolute value of the inner product of the light direction and the surface gradient is
used instead of clamping to 0.0 for negative values.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object it is a user value of.
IDL Reference Guide IDLgrVolume

2258 Appendix A: IDL Object Class & Method Reference
VOLUME_SELECT (Get, Set)

Set this keyword to an integer value to select the form of the volume to be rendered.
The VOLUME_SELECT keyword is used to modify the src and srcalpha
parameters for the COMPOSITE_FUNCTION keyword.

• 0 = render voxels from the 8bit DATA0 volume (the default)

src = RGB_TABLE0[DATA0]
srcalpha = OPACITY_TABLE0[DATA0]

• 1 = render voxels formed by modulating the RGBA components from DATA0
and DATA1 (after RGB and OPACITY table lookups).

src = (RGB_TABLE0[DATA0]*RGB_TABLE1[DATA1])/256
srcalpha=(OPACITY_TABLE0[DATA0]*OPACITY_TABLE1[DATA1])/256

• 2 = render voxels formed using a byte from DATA0 (red), DATA1 (green),
DATA2(blue) and DATA3(alpha). The keywords OPACITY_TABLE0 and
RGB_TABLE0, described above, are used to indirect the data from each
volume before forming the RGBA pixel.

src=(RGB_TABLE[DATA0,0],RGB_TABLE[DATA1,1],RGB_TABLE[DATA2,2])/256
srcalpha = (OPACITY_TABLE0[DATA3])/256

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2259
The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZBUFFER (Get, Set)

Set this keyword to clip the rendering to the current Z-buffer and then update the
buffer. The default is to not modify the current Z-buffer.

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]IDL converts, maintains, and returns this data as double-
precision floating-point.

ZERO_OPACITY_SKIP (Get, Set)

Set this keyword to skip voxels with an opacity of 0. This keyword can increase the
output contrast of MIP (MAXIMUM_INTENSITY) projections by allowing the
background to show through. If this keyword is set, voxels with an opacity of zero
will not modify the Z-buffer. The default (not setting the keyword) continues to
render voxels with an opacity of zero.
IDL Reference Guide IDLgrVolume

2260 Appendix A: IDL Object Class & Method Reference
IDLgrVolume::PickVoxel

The IDLgrVolume::PickVoxel function method computes the coordinates of the
voxel projected to a location specified by the 2D device coordinates point, [xi, yi], and
the current Z-buffer. The function returns the volume indices as a a vector of three
long integers. If the selected point is not within the volume, this function returns [-1,-
1,-1].

Syntax

Result = Obj -> [IDLgrVolume::]PickVoxel (Win, View, Point [, PATH=objref(s)])

Arguments

Win

The IDLgrWindow object from which the Z-buffer is to be used.

View

The IDLgrView object that contains the volume.

Point

The [x, y] viewport coordinates of the point chosen.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to map the device position to a
voxel coordinate. Each path object reference specified with this keyword must
contain an alias. The voxel coordinate is computed for the version of the object
falling within the specified path. If this keyword is not set, the PARENT properties
determine the path from the current object to the top of the graphics hierarchy and no
alias paths are pursued.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2261
IDLgrVolume::SetProperty

The IDLgrVolume::SetProperty procedure method sets the value of a property or
group of properties for the volume.

Syntax

Obj -> [IDLgrVolume::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrVolume::Init followed by the word “Set” can be set using
IDLgrVolume::SetProperty.
IDL Reference Guide IDLgrVolume

2262 Appendix A: IDL Object Class & Method Reference
IDLgrVRML

The IDLgrVRML object allows you to save the contents of an Object Graphics
hierarchy into a VRML 2.0 format file. The graphics tree can only contain a single
view due to limitations in the VRML specification. The resulting VRML file is
interactive and allows you to explore the geometry interactively using a VRML
browser.

Note
Objects or subclasses of this type can not be saved or restored.

Aspect ratios are difficult to duplicate as they can be browser dependent. The object
is limited to the primitives supported by VRML. Texture maps (and images) will be
inlined into the output file. While this will generate large VRML files, the files are
fully self-contained.

Several entities cannot be translated perfectly. These include:

IDLgrImage objects

Rotation and Z buffer behavior are not completely supported. Image objects will be
converted into texture mapped polygons. BLEND_FUNCTION is not completely
supported (only binary srcAlpha,1-srcAlpha) This function is applied automatically if
an Alpha channel is present. It is also very browser dependent. Channel masks are not
supported.

IDLgrPolygon and IDLgrSurface objects

Hidden line/hidden point display, color and vertex color blending with texture colors,
and bottom color are not supported. Shading may be browser dependent. Front face
culling is not supported and back face culling is only supported at the browser’s
discretion.

IDLgrLight objects

Lighting scope and intensity may be browser dependent.

IDLgrText objects

Text using the ONGLASS property is only supported for the initial view.

IDLgrViewgroup, IDLgrScene, IDLgrVolume objects

These objects are not supported.
IDLgrVRML IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2263
IDLgrPalette objects

Palette objects are simulated using an RGB color model.

IDLgrPattern objects

Only solid or clear patterns are supported.

IDLgrFont, IDLgrSymbol objects

The THICK property is not supported.

IDLgrPolyline, IDLgrSymbol, IDLgrSurface, IDLgrPolygon and
IDLgrPlot objects

Line attributes (thickness, linestyle) are not supported.

IDLgrView objects

Z-clipping control, aspect ratio preservation, the LOCATION property, and
orthographic projections are not supported.

Destination objects

The COLOR_MODEL property is not fully supported in Indexed Color mode, when
using a SHADER_RANGE (an RGB model will be substituted instead). The
QUALITY property is not supported.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See “IDLgrVRML::Init” on page 2272.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrVRML::Cleanup
IDL Reference Guide IDLgrVRML

2264 Appendix A: IDL Object Class & Method Reference
• IDLgrVRML::Draw

• IDLgrVRML::GetDeviceInfo

• IDLgrVRML::GetFontnames

• IDLgrVRML::GetProperty

• IDLgrVRML::GetTextDimensions

• IDLgrVRML::Init

• IDLgrVRML::SetProperty
IDLgrVRML IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2265
IDLgrVRML::Cleanup

The IDLgrVRML::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrVRML::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrVRML

2266 Appendix A: IDL Object Class & Method Reference
IDLgrVRML::Draw

The IDLgrVRML::Draw procedure method draws the given picture to this graphics
destination.

Syntax

Obj -> [IDLgrVRML::]Draw [, Picture]

Arguments

Picture

The view (an instance of an IDLgrView object) to be drawn. If the view has a
LOCATION property, it is ignored.

Keywords

None
IDLgrVRML IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2267
IDLgrVRML::GetDeviceInfo

The IDLgrVRML::GetDeviceInfo procedure method returns information which
allows IDL applications to intelligently make decisions for optimal performance. For
example, it allows an application to determine if RENDERER=1 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Obj–>[IDLgrVRML::]GetDeviceInfo [, ALL=variable]
[, MAX_TEXTURE_DIMENSIONS=variable]
[, MAX_VIEWPORT_DIMENSIONS=variable] [, NAME=variable]
[, NUM_CPUS=variable] [, VENDOR=variable] [, VERSION=variable]

Arguments

None.

Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure with
the values of all the device information keywords as fields.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two element integer array that specifies
the maximum texture size supported by the device.

MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two element integer array that specifies
the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the name of
the rendering device as a string.
IDL Reference Guide IDLgrVRML

2268 Appendix A: IDL Object Class & Method Reference
NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains an
integer that specifies the number of CPUs that are known to, and available to IDL.

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI Irix,
SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in the
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains the
version of the rendering device driver as a string.
IDLgrVRML IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2269
IDLgrVRML::GetFontnames

The IDLgrVRML::GetFontnames function method returns the list of available fonts
that can be used in IDLgrFont objects. This method will only return the names of the
available TrueType fonts. Hershey fonts will not be returned; see Appendix H,
“Fonts” for more information.

Syntax

Return = Obj ->[IDLgrVRML::]GetFontnames(FamilyName [, IDL_FONTS={0 | 1
| 2}] [, STYLES=string])

Arguments

FamilyName

A string representing the name of the font family to which all of the returned fonts
must belong. The string may be a fully specified family name, such as “Helvetica”.
You can use both “*” and “?” as wildcard characters, matching any number of
characters or one character respectively. To return all available family names, use
“*”.

Keywords

IDL_FONTS

Set this keyword to specify where to search for fonts that IDL may use. Set
IDL_FONT to 1 to select only fonts installed by IDL and to 2 to select only fonts
detected in the host operating system. The default value is 0, specifying that both IDL
and operating system fonts should be returned.

STYLES

Set this keyword to a string specifying the styles that are to be matched by the
returned font names. You can set STYLES to a fully specified style string, such as
“Bold Italic”. If you set STYLES to the null string, ' ', only fontnames without style
modifiers will be returned. You can use both “*” and “?” as wildcard characters,
matching any number of characters or one character respectively. The default value is
the string, “*”, which returns all fontnames containing the FamilyName argument,
with or without style modifiers.
IDL Reference Guide IDLgrVRML

2270 Appendix A: IDL Object Class & Method Reference
IDLgrVRML::GetProperty

The IDLgrVRML::GetProperty procedure method retrieves the value of a property or
group of properties for the VRML object.

Syntax

Obj -> [IDLgrVRML::]GetProperty [, ALL=variable]
[, SCREEN_DIMENSIONS=variable]

Arguments

None

Keywords

Any keyword to IDLgrVRML::Init followed by the word “Get” can be retrieved
using IDLgrVRML::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the retrievable properties associated with this object.

SCREEN_DIMENSIONS

Set this keyword to a named variable that will contain a two-element vector of the
form [width, height] specifying the dimensions of the overall screen dimensions for
the screen with which this object associated. The screen dimensions are measured in
device units.
IDLgrVRML IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2271
IDLgrVRML::GetTextDimensions

The IDLgrVRML::GetTextDimensions function method retrieves the dimensions of
a text object that will be rendered in a window. The result is a 3-element double-
precision floating-point vector [xDim, yDim, zDim] representing the dimensions of
the text object, measured in data units.

Syntax

Result = Obj ->[IDLgrVRML::]GetTextDimensions(TextObj
[, DESCENT=variable] [, PATH=objref(s)])

Arguments

TextObj

The object reference to a text or axis object for which the text dimensions are
requested.

Keywords

DESCENT

Set this keyword equal to a named variable that will contain an array of double-
precision floating-point values (one for each string in the IDLgrText object). The
values represent the distance to travel (parallel to the UPDIR vector) from the text
baseline to reach the bottom of the lowest descender in the string. All values will be
negative numbers, or zero. This keyword is valid only if TextObj is an IDLgrText
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the text dimensions.
Each path object reference specified with this keyword must contain an alias. The
text dimensions are computed for the version of the object falling within that path. If
this keyword is not set, the PARENT properties determine the path from the current
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrVRML::GetTextDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw is
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDL Reference Guide IDLgrVRML

2272 Appendix A: IDL Object Class & Method Reference
IDLgrVRML::Init

The IDLgrVRML::Init function method initializes the VRML object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrVRML' [, COLOR_MODEL{Get}={0 | 1}]
[, DIMENSIONS{Get, Set}=[width, height]] [, FILENAME{Get, Set}=string]
[, GRAPHICS_TREE{Get, Set}=objref] [, N_COLORS{Get}=integer{2 to 256}]
[, PALETTE{Get, Set}=objref] [, QUALITY{Get, Set}={0 | 1 | 2}]
[, RESOLUTION{Get, Set}=[xres, yres]] [, UNITS{Get, Set}={0 | 1 | 2 | 3}]
[, UVALUE{Get, Set}=value] [, WORLDINFO=string array]
[, WOLRDTITLE=string])

or

Result = Obj -> [IDLgrVRML::]Init() (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

None

Keywords

Properties retrievable via IDLgrVRML::GetProperty are indicated by the word “Get”
following the keyword. Properties settable via IDLgrVRML::SetProperty are
indicated by the word “Set” following the keyword.

COLOR_MODEL (Get)

Set this keyword to the color model to be used for the buffer:
IDLgrVRML IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2273
• 0=RGB (the default)

• 1=Color indexed.

DIMENSIONS (Get, Set)

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the window in units specified by the UNITS property. The default is
[640,480].

Note
The only use of this property is to support the use of normalized coordinates for the
dimensions of the IDLgrView object passed to the IDLgrVRML::Draw method.

FILENAME (Get, Set)

Set this keyword to the name of a file into which the vector data will be saved. The
default is idl.wrl.

GRAPHICS_TREE (Get, Set)

Set this keyword to an object reference of type IDLgrView. If this property is set to a
valid object reference, calling the Draw method on the destination object with no
arguments will cause the object reference associated with this property to be drawn.
If this object is valid and the destination object is destroyed, this object reference will
be destroyed as well. By default the GRAPHICS_TREE property is set equal to the
null-object.

N_COLORS (Get)

Set this keyword to the number of colors (between 2 and 256) to be used if
COLOR_MODEL is set to indexed.

PALETTE (Get, Set)

Set this keyword to the object reference of a palette object (an instance of the
IDLgrPalette object class) to specify the red, green, and blue values that are to be
loaded into the buffer’s color lookup table.

QUALITY (Get, Set)

Set this keyword to an integer indicating the rendering quality at which graphics are
to be drawn to the buffer. Valid values are:

• 0=Low

• 1=Medium
IDL Reference Guide IDLgrVRML

2274 Appendix A: IDL Object Class & Method Reference
• 2=High (the default)

RESOLUTION (Get, Set)

Set this keyword to a two-element vector of the form [xres, yres] specifying the
device resolution in centimeters per pixel.

Note
This keyword is used for text scaling and partial aspect ratio preservation only. The
default value is [0.0352778, 0.0352778] (72 DPI).

UNITS (Get, Set)

Set this keyword to indicate the units of measure for the DIMENSIONS property.
Valid values are:

• 0=Device (the default)

• 1=Inches

• 2=Centimeters

• 3=Normalized (relative to 1600 x 1200).

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this user value to contain any
information you wish.

WORLDINFO

Set this keyword to a list of strings for the info field of the VRML WorldInfo node.
The default is the null string, ''.

WOLRDTITLE

Set this keyword to a string containing the title for the VRML WorldInfo node,
TITLE field. The default is 'IDL VRML file'.
IDLgrVRML IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2275
IDLgrVRML::SetProperty

The IDLgrVRML::SetProperty procedure method sets the value of a property or
group of properties for the VRML world.

Syntax

Obj -> [IDLgrVRML::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrVRML::Init followed by the word “Set” can be retrieved
using IDLgrVRML::SetProperty.
IDL Reference Guide IDLgrVRML

2276 Appendix A: IDL Object Class & Method Reference
IDLgrWindow

A window object is a representation of an on-screen area on a display device that
serves as a graphics destination.

Note
Objects or subclasses of this type can not be saved or restored.

Note on Window Size Limits

The OpenGL libraries IDL uses impose limits on the maximum size of a drawable
area. The limits are device-dependent — they depend both on your graphics hardware
and the setting of the RENDERER property. Currently, the smallest maximum
drawable area on any IDL platform is 1280 x 1024 pixels; the limit on your system
may be larger.

Superclasses

This class has no superclass.

Subclasses

This class has no subclasses.

Creation

See “IDLgrWindow::Init” on page 2289.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrWindow::Cleanup

• IDLgrWindow::Draw

• IDLgrWindow::Erase

• IDLgrWindow::GetContiguousPixels

• IDLgrWindow::GetDeviceInfo
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2277
• IDLgrWindow::GetFontnames

• IDLgrWindow::GetProperty

• IDLgrWindow::GetTextDimensions

• IDLgrWindow::Iconify

• IDLgrWindow::Init

• IDLgrWindow::Pickdata

• IDLgrWindow::Read

• IDLgrWindow::Select

• IDLgrWindow::SetCurrentCursor

• IDLgrWindow::SetProperty

• IDLgrWindow::Show
IDL Reference Guide IDLgrWindow

2278 Appendix A: IDL Object Class & Method Reference
IDLgrWindow::Cleanup

The IDLgrWindow::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrWindow::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2279
IDLgrWindow::Draw

The IDLgrWindow::Draw procedure method draws the specified scene or view
object to this graphics destination.

Note
Objects are drawn to the destination device in the order that they are added to the
model, view, viewgroup, or scene object that contains them.

Syntax

Obj -> [IDLgrWindow::]Draw [, Picture] [, CREATE_INSTANCE={1 | 2}]
[, /DRAW_INSTANCE]

Arguments

Picture

The view (an instance of an IDLgrView object), viewgroup (an instance of an
IDLgrViewgroup object), or scene (an instance of an IDLgrScene object) to be
drawn.

Keywords

CREATE_INSTANCE

Set this keyword equal to one specify that this scene or view is the unchanging part of
a drawing. Some destinations can make an instance from the current window contents
without having to perform a complete redraw. If the view or scene to be drawn is
identical to the previously drawn view or scene, this keyword can be set equal to 2 to
hint the destination to create the instance from the current window contents if it can.

DRAW_INSTANCE

Set this keyword to specify that this scene or view is the changing part of a drawing.
It is overlaid on the result of the most recent CREATE_INSTANCE draw.
IDL Reference Guide IDLgrWindow

2280 Appendix A: IDL Object Class & Method Reference
IDLgrWindow::Erase

The IDLgrWindow::Erase procedure method erases the entire contents of the
window.

Syntax

Obj -> [IDLgrWindow::]Erase [, COLOR=index or RGB vector]

Arguments

None

Keywords

COLOR

Set this keyword to the color to be used for the erase. The color may be specified as a
color lookup table index or as an RGB vector. The default erase color is white.
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2281
IDLgrWindow::GetContiguousPixels

The IDLgrWindow::GetContiguousPixels function method returns an array of long
integers whose length is equal to the number of colors available in the index color
mode (that is, the value of the N_COLORS property).

The returned array marks contiguous pixels with the ranking of the range’s size. This
means that within the array, the elements in the largest available range are set to zero,
the elements in the second-largest range are set to one, etc. Use this range to set an
appropriate colormap for use with the SHADE_RANGE property of the
IDLgrSurface and IDLgrPolygon object classes.

To get the largest contiguous range, you could use the following IDL command:

result = obj -> GetContiguousPixels()
Range0 = WHERE(result EQ 0)

A contiguous region in the colormap can be increasing or decreasing in values. The
following would be considered contiguous:

[0,1,2,3,4]

[4,3,2,1,0]

Syntax

Return = Obj -> [IDLgrWindow::]GetContiguousPixels()

Arguments

None

Keywords

None
IDL Reference Guide IDLgrWindow

2282 Appendix A: IDL Object Class & Method Reference
IDLgrWindow::GetDeviceInfo

The IDLgrWindow::GetDeviceInfo procedure method returns information which
allows IDL applications to intelligently make decisions for optimal performance. For
example, it allows an application to determine if RENDERER=0 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Obj–>[IDLgrWindow::]GetDeviceInfo [, ALL=variable]
[, MAX_TEXTURE_DIMENSIONS=variable]
[, MAX_VIEWPORT_DIMENSIONS=variable] [, NAME=variable]
[, NUM_CPUS=variable] [, VENDOR=variable] [, VERSION=variable]

Arguments

None.

Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure with
the values of all the device information keywords as fields.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two element integer array that
specifies the maximum texture size supported by the device.

MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two element integer array that
specifies the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the name
of the rendering device as a string.
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2283
NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains an
integer that specifies the number of CPUs that are known to, and available to IDL.

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI Irix,
SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in the
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains the
version of the rendering device driver as a string.
IDL Reference Guide IDLgrWindow

2284 Appendix A: IDL Object Class & Method Reference
IDLgrWindow::GetFontnames

The IDLgrWindow::GetFontnames function method returns the list of available fonts
that can be used in IDLgrFont objects. This method will only return the names of the
available TrueType fonts. Hershey fonts will not be returned; see Appendix H,
“Fonts” for more information.

Syntax

Return = Obj -> [IDLgrWindow::]GetFontnames(FamilyName [, IDL_FONTS={0 |
1 | 2}] [, STYLES=string])

Arguments

FamilyName

A string representing the name of the font family to which all of the returned fonts
must belong. The string may be a fully specified family name—such as “Helvetica”.
You can use both “*” and “?” as wildcard characters, matching any number of
characters or one character respectively. To return all available family names, use
“*”.

Keywords

IDL_FONTS

Set this keyword to specify where to search for fonts that IDL may use. Set
IDL_FONT to 1 to select only fonts installed by IDL and to 2 to select only fonts
detected in the host operating system. The default value is 0, specifying that both IDL
and operating system fonts should be returned.

STYLES

Set this keyword to a string specifying the styles that are to be matched by the
returned font names. You can set STYLES to a fully specified style string, such as
“Bold Italic”. If you set STYLES to the null string, ' ', only fontnames without style
modifiers will be returned. You can use both “*” and “?” as wildcard characters,
matching any number of characters or one character respectively. The default value is
the string, “*”, which returns all fontnames containing the FamilyName argument,
with or without style modifiers.
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2285
IDLgrWindow::GetProperty

The IDLgrWindow::GetProperty procedure method retrieves the value of a property
or group of properties for the window.

Syntax

Obj -> [IDLgrWindow::]GetProperty [, ALL=variable]
[, IMAGE_DATA=variable] [, RESOLUTION=variable]
[, SCREEN_DIMENSIONS=variable] [, ZBUFFER_DATA=variable]

Arguments

None

Keywords

Any keyword to IDLgrWindow::Init followed by the word “Get” can be retrieved
using IDLgrWindow::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like color, range, tick direction,
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

IMAGE_DATA

Set this keyword to a named variable that will contain a byte array representing the
image that is currently displayed in the window. If the window object uses an RGB
color model, the returned array will have dimensions (3, winXSize, winYSize), or (4,
winXSize, winYSize) if an alpha channel is included. If the window object uses an
Indexed color model, the returned array will have dimensions (winXSize, winYSize).
See “IDLgrWindow::Read” on page 2296 for more information.
IDL Reference Guide IDLgrWindow

2286 Appendix A: IDL Object Class & Method Reference
RESOLUTION

Set this keyword to a named variable that will contain a vector of the form [xres,
yres] reporting the pixel resolution, measured in centimeters per pixel. This value is
stored in double precision.

SCREEN_DIMENSIONS

Set this keyword to a named variable that will contain a two-element vector of the
form [width, height] specifying the dimensions of the overall screen dimensions for
the screen with which this window is associated. The screen dimensions are
measured in device units.

ZBUFFER_DATA

Set this keyword to a named variable that will contain a float array representing the
zbuffer that is currently within the buffer. The returned array will have dimensions
(xdim, ydim).
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2287
IDL Reference Guide IDLgrWindow

IDLgrWindow::GetTextDimensions

The IDLgrWindow::GetTextDimensions function method retrieves the dimensions of
a text object that will be rendered in a window. The result is a 3-element double-
precision floating-point vector [xDim, yDim, zDim] representing the dimensions of
the text object, measured in data units.

Syntax

Result = Obj ->[IDLgrWindow::]GetTextDimensions(TextObj
[, DESCENT=variable] [, PATH=objref(s)])

Arguments

TextObj

The object reference to a text or axis object for which the text dimensions are
requested.

Keywords

DESCENT

Set this keyword equal to a named variable that will contain an array of double-
precision floating-point values (one for each string in the IDLgrText object). The
values are the distance to travel (parallel to the UPDIR direction) from the baseline to
reach the bottom of all the descenders for the string; the values will be negative or 0.
This keyword is only valid if TextObj is of the class IDLgrText.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the text dimensions.
Each path object reference specified with this keyword must contain an alias. The
text dimensions are computed for the version of the object falling within that path. If
this keyword is not set, the PARENT properties determine the path from the current
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrWindow::GetTextDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw is
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

2288 Appendix A: IDL Object Class & Method Reference
IDLgrWindow::Iconify

The IDLgrWindow::Iconify procedure method iconifies or de-iconifies the window.

Note
Iconification under window systems is solely handled by the window manager;
client applications, such as IDL, do not have the capability to manage icons. The
Iconify method provides a hint to the window manager, which applies the
information as it sees fit. (On the Macintosh, for example, iconfication is not a
standard option; the Iconify method is ignored on the Mac.)

Syntax

Obj -> [IDLgrWindow::]Iconify, IconFlag

Arguments

IconFlag

Set IconFlag to 1 (one) to iconify the window or to 0 (zero) to restore the window. If
the window is already restored, it is brought to the front of the window stack.

Keywords

None
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2289
IDLgrWindow::Init

The IDLgrWindow::Init function method initializes the window object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrWindow' [, COLOR_MODEL{Get}={0 | 1}]
[, DIMENSIONS{Get, Set} =[width, height]] [, GRAPHICS_TREE{Get,
Set}=objref of type IDLgrScene, IDLgrViewgroup, or IDLgrView]
[, LOCATION{Get, Set}=[x, y]] [, N_COLORS{Get}=integer{2 to 256}]
[, PALETTE{Get, Set}=objref] [, QUALITY{Get, Set}={0 | 1 | 2}]
[, RENDERER{Get}={0 | 1}] [, RETAIN{Get}={0 | 1 | 2}] [, TITLE{Get,
Set}=string] [, UNITS{Get, Set}={0 | 1 | 2 | 3}] [, UVALUE{Get, Set}=value])

or

Result = Obj -> [IDLgrWindow::]Init() (Only in a subclass’ Init method.)

X Windows Keywords: [, DISPLAY_NAME{Get}=string]

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

None

Keywords

Properties retrievable via IDLgrWindow::GetProperty are indicated by the word
“Get” following the keyword. Properties settable via IDLgrWindow::SetProperty are
indicated by the word “Set” following the keyword.
IDL Reference Guide IDLgrWindow

2290 Appendix A: IDL Object Class & Method Reference
COLOR_MODEL (Get)

Set this keyword to the color model to be used for the window:

• 0 = RGB (default)

• 1 = Color Index

Note
For some X11 display situations, IDL may not be able to support a color index
model destination object in object graphics. We do, however, guarantee that an
RGB color model destination will be available for all display situations.

DIMENSIONS (Get, Set)

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the window in units specified by the UNITS property. By default, if no
value is specified for DIMENSIONS, IDL uses the value of the “Default Window
Width” and “Default Window Height” preferences set in the IDL Development
Environment’s (IDLDE) Preferences dialog. If there is no preference file for the
IDLDE, the DIMENSIONS property is set equal to one quarter of the screen size.
There are limits on the maximum size of an IDLgrWindow object; see “Note on
Window Size Limits” on page 2276 for details.

Note
Changing DIMENSIONS properties is merely a request and may be ignored for
various reasons.

DISPLAY_NAME (Get) (X Only)

Set this keyword to the name of the X Windows display on which the window is to
appear.

GRAPHICS_TREE (Get, Set)

Set this keyword to an object reference of type IDLgrScene, IDLgrViewgroup, or
IDLgrView. If this property is set to a valid object reference, calling the Draw
method on the destination object with no arguments will cause the object reference
associated with this property to be drawn. If this object is valid and the destination
object is destroyed, this object reference will be destroyed as well. By default the
GRAPHICS_TREE property is set equal to the null-object.
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2291
LOCATION (Get, Set)

Set this keyword to a two-element vector of the form [x, y] to specify the location of
the upper lefthand corner of the window relative to the display screen, in units
specified by the UNITS property. By default, the window is positioned at one of four
quadrants on the display screen, and the location is measured in device units.

Note
Changing LOCATION properties is merely a request and may be ignored for
various reasons. LOCATION may be adjusted to take into account window
decorations.

N_COLORS (Get)

Set this keyword to the number of colors (between 2 and 256) to be used if
COLOR_MODEL is set to Indexed (1). This keyword is ignored if
COLOR_MODEL is set to RGB (0).

Note
If COLOR_MODEL is set to Color Index (1), setting N_COLORS is treated as a
request to your operating system. You should always check the actual number of
available colors for any Color Indexed destination with the
IDLgrWindow::GetProperty method. The actual number of available colors
depends on your system and also on how you have used IDL.

PALETTE (Get, Set)

Set this keyword to the object reference of a palette object (an instance of the
IDLgrPalette object class) to specify the red, green, and blue values that are to be
loaded into the graphics destination’s color lookup table, applicable if the Indexed
color model is used.

QUALITY (Get, Set)

Set this keyword to an integer indicating the rendering quality at which graphics are
to be drawn to this destination. Valid values are:

• 0 = Low

• 1 = Medium

• 2 = High (default).
IDL Reference Guide IDLgrWindow

2292 Appendix A: IDL Object Class & Method Reference
RENDERER (Get)

Set this keyword to an integer value indicating which graphics renderer to use when
drawing objects within the window. Valid values are:

• 0 = Platform native OpenGL

• 1 = IDL’s software implementation

By default, your platform’s native OpenGL implementation is used. If your platform
does not have a native OpenGL implementation, IDL’s software implementation is
used regardless of the value of this property. See “Hardware vs. Software Rendering”
in Chapter 28 of Using IDL for details. Your choice of renderer may also affect the
maximum size of an IDLgrWindow object; see “Note on Window Size Limits” on
page 2276 for details.

RETAIN (Get)

Set this keyword to 0, 1, or 2 to specify how backing store should be handled for the
window. By default, if no value is specified for RETAIN, IDL uses the value of the
“Backing Store” preference set in the IDL Development Environment’s (IDLDE)
Preferences dialog. If there is no preference file for the IDLDE (that is, if you always
use IDL in plain tty mode), the RETAIN property is set equal to 0 by default.

• 0 = No backing store.

• 1 = The server or window system is requested to provide the backing store.
Note that requesting backing store from the server is only a request; backing
store may not be provided in all situations.

• 2 = Requests that IDL provide the backing store directly. In some situations,
IDL can not provide this backing store in Object Graphics. To see if IDL
provided backing store, query the RETAIN keyword of
IDLgrWindow::GetProperty. IDL may also alter the RENDERER keyword
while attempting to provide backing store.

In IDL Object Graphics, it is almost always best to disable backing store (that is, set
the RETAIN property equal to zero). This is because drawing to an off-screen
pixmap (which is what happens when backing store is enabled) almost always
bypasses any hardware graphics acceleration that may be available, causing all
rendering to be done in software. To ensure that windows are redrawn properly,
enable the generation of expose events on the WIDGET_DRAW window and redraw
the window explicitly when an expose event is received.

TITLE (Get, Set)

Set this keyword equal to a string that represents the title of the window.
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2293
UNITS (Get, Set)

Set this keyword to indicate the units of measure for the LOCATION and
DIMENSIONS properties. Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to the dimensions of the screen.

Note
If you set the value of the UNITS property (using the SetProperty method) without
also setting the value of the LOCATION and DIMENSIONS properties, IDL will
convert the current size and location values into the new units.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain any
information you wish. Remember that if you set the user value equal to a pointer or
object reference, you should destroy the pointer or object reference explicitly when
destroying the object it is a user value of.
IDL Reference Guide IDLgrWindow

2294 Appendix A: IDL Object Class & Method Reference
IDLgrWindow::Pickdata

The IDLgrWindow::Pickdata function method maps a point in the two-dimensional
device space of the window to a point in the three-dimensional data space of an
object tree. The resulting 3D data space coordinates are returned in a user-specified
variable. The Pickdata function returns one if the specified location in the window’s
device space “hits” a graphic object, or zero if no object was “hit”. Pickdata returns -
1 if the point selected falls outside of the specified view or window.

Syntax

Result = Obj -> [IDLgrWindow::]Pickdata(View, Object, Location, XYZLocation
[, PATH=objref(s)])

Arguments

View

The object reference of an IDLgrView object that contains the object being picked.

Object

The object reference of a model or atomic graphic object from which the data space
coordinates are being requested.

Location

A two-element vector [x, y] specifying the location in the window’s device space of
the point to pick data from.

XYZLocation

A named variable that will contain the three-dimensional double-precision floating-
point data space coordinates of the picked point. Note that the value returned in this
variable is a location, not a data value.

Note
If the atomic graphic object specified as the target has been transformed using either
the LOCATION or DIMENSIONS properties (this is only possible with
IDLgrAxis, IDLgrImage, and IDLgrText objects), these transformations will not be
included in the data coordinates returned by the Pickdata function. This means that
you may need to re-apply the transformation accomplished by specifying
LOCATION or DIMENSIONS once you have retrieved the data coordinates with
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2295
Pickdata. This situation does not occur if you transform the axis, text, or image
object using the [XYZ]COORD_CONV properties.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to map the device position to a
data space coordinate. Each path object reference specified with this keyword must
contain an alias. The data space coordinate is computed for the version of the object
falling within that path. If this keyword is not set, the PARENT properties determine
the path from the current object to the top of the graphics hierarchy and no alias paths
are pursued.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDL Reference Guide IDLgrWindow

2296 Appendix A: IDL Object Class & Method Reference
IDLgrWindow::Read

The IDLgrWindow::Read function method reads an image from a window. The
returned value is an instance of the IDLgrImage object class.

Syntax

Result = Obj -> [IDLgrWindow::]Read()

Arguments

None

Keywords

None
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2297
IDLgrWindow::Select

The IDLgrWindow::Select function method returns a list of objects selected at a
specified location. If no objects are selected, the Select function returns -1.

Note
IDL returns a maximum of 512 objects. This maximum may be smaller if any of the
objects are contained in deep model hierarchies. Because of this limit, it is possible
that not all objects eligible for selection will appear in the list.

Syntax

Result = Obj -> [IDLgrWindow::]Select(Picture, XY [, DIMENSIONS=[width,
height]] [, UNITS={0 | 1 | 2 | 3}])

Arguments

Picture

The view or scene (an instance of the IDLgrView, IDLgrViewgroup, or IDLgrScene
class) whose children are among the candidates for selection.

If the first argument is a scene, then the returned object list will contain one or more
views. If the first argument is a view, the list will contain atomic graphic objects (or
model objects which have their SELECT_TARGET property set). Objects are
returned in order, according to their distance from the viewer. The closer an object is
to the viewer, the lower its index in the returned object list. If multiple objects are at
the same distance from the viewer (views in a scene or 2D geometry), the last object
drawn will appear at a lower index in the list.

XY

A two-element array defining the center of the selection box in device space. By
default, the selection box is 3 pixels by 3 pixels.

Keywords

DIMENSIONS

Set this keyword to a two-element array [w, h] to specify that the selection box will
have a width w and a height h, and will be centered about the coordinates [x, y]
specified in the XY argument. The box occupies the rectangle defined by:

(x-(w/2), y-(h/2)) - (x+(w/1), y+(h/2))
IDL Reference Guide IDLgrWindow

2298 Appendix A: IDL Object Class & Method Reference
Any object that intersects this box is considered to be selected. By default, the
selection box is 3 pixels by 3 pixels.

UNITS

Set this keyword to indicate the units of measure. Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to the dimensions of the graphics destination.
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2299
IDLgrWindow::SetCurrentCursor

The IDLgrWindow::SetCurrentCursor procedure method sets the current cursor
image to be used while positioned over a drawing area.

Syntax

Obj-> [IDLgrWindow::]SetCurrentCursor [, CursorName] [, IMAGE=16 x 16
bitmap] [, MASK=16 x 16 bitmap] [, HOTSPOT=[x, y]]

X Windows Keywords: [, STANDARD=index]

Arguments

CursorName

A string that specifies which built-in cursor to use. This argument is ignored if one of
the keywords to this routine is set. This string can be one of the following:

Keywords

IMAGE

Set this keyword to a 16x16 column bitmap, contained in a 16-element short integer
vector, specifying the cursor pattern. The offset from the upper-left pixel to the point
that is considered the “hot spot” can be provided via the HOTSPOT keyword.

MASK

When the IMAGE keyword is set, the MASK keyword can be used to simultaneously
specify the mask that should be used. In the mask, bits that are set indicate bits in the
IMAGE that should be seen and bits that are not are “masked out”.

• ARROW • CROSSHAIR

• ICON • IBEAM

• MOVE • ORIGINAL

• SIZE_NE • SIZE_NW

• SIZE_SE • SIZE_SW

• SIZE_NS • SIZE_EW

• UP_ARROW
IDL Reference Guide IDLgrWindow

2300 Appendix A: IDL Object Class & Method Reference
HOTSPOT

Set this keyword to a two-element vector specifying the [x, y] pixel offset of the
cursor “hot spot”, the point which is considered to be the mouse position, from the
upper left corner of the cursor image. This parameter is only applicable if IMAGE is
provided. The cursor image is displayed top-down (the first row is displayed at the
top).

STANDARD (X Only)

Set this keyword to an X11 cursor font index to change the appearance of the cursor
in the IDL graphics window to a glyph in this font. On non-X platforms, setting this
keyword displays the crosshair cursor.
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2301
IDLgrWindow::SetProperty

The IDLgrWindow::SetProperty procedure method sets the value of a property or
group of properties for the window.

Syntax

Obj -> [IDLgrWindow::]SetProperty

Arguments

None

Keywords

Any keyword to IDLgrWindow::Init followed by the word “Set” can be set using
IDLgrWindow::SetProperty.
IDL Reference Guide IDLgrWindow

2302 Appendix A: IDL Object Class & Method Reference
IDLgrWindow::Show

The IDLgrWindow::Show procedure method exposes or hides a window.

Syntax

Obj -> [IDLgrWindow::]Show, Position

Arguments

Position

Set this argument equal to a non-zero value to expose the window, or to 0 to hide the
window.

Keywords

None
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2303
TrackBall

A TrackBall object translates widget events from a draw widget (created with the
WIDGET_DRAW function) into transformations that emulate a virtual trackball (for
transforming object graphics in three dimensions).

This object class is implemented in the IDL language. Its source code can be found in
the file trackball_ _define.pro in the lib subdirectory of the IDL distribution.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See “TrackBall::Init” on page 2304.

Methods

Intrinsic Methods

This class has the following methods:

• TrackBall::Init

• Trackball::Reset

• TrackBall::Update
IDL Reference Guide TrackBall

2304 Appendix A: IDL Object Class & Method Reference
TrackBall::Init

The TrackBall::Init function method initializes the TrackBall object.

Syntax

Obj = OBJ_NEW('TrackBall', Center, Radius [, AXIS={0 | 1 | 2}] [, /CONSTRAIN]
[, MOUSE=bitmask])

or

Result = Obj -> [TrackBall::]Init(Center, Radius) (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

Center

A two-dimensional vector, [X, Y], specifying the center coordinates of the trackball.
X and Y should be specified in device units.

Radius

The radius of the trackball, specified in device units.

Keywords

AXIS

Set this keyword to an integer value to indicate the axis about which rotations are to
be constrained if the CONSTRAIN keyword is set. Valid values include:

• 0 = Rotate only around the X axis.

• 1 = Rotate only around the Y axis.

• 2 = Rotate only around the Z axis (this is the default).

CONSTRAIN

Set this keyword to indicate that the trackball transformations are to be constrained
about the axis specified by the AXIS keyword. The default is not to constrain the
transformations.
TrackBall IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2305
MOUSE

Set this keyword to a bitmask to indicate which mouse button to honor for trackball
events. The least significant bit represents the leftmost button, the next highest bit
represents the middle button, and the next highest bit represents the right button. The
default is 1b, for the left mouse button.
IDL Reference Guide TrackBall

2306 Appendix A: IDL Object Class & Method Reference
Trackball::Reset

The TrackBall::Reset procedure method resets the state of the TrackBall object.

Syntax

Obj -> [TrackBall::]Reset, Center, Radius [, AXIS={0 | 1 | 2}] [, /CONSTRAIN]
[, MOUSE=bitmask]

Arguments

Center

A two-dimensional vector, [X, Y], specifying the center coordinates of the trackball.
X and Y should be specified in device units.

Radius

The radius of the trackball, specified in device units.

Keywords

AXIS

Set this keyword to an integer value to indicate the axis about which rotations are to
be constrained if the CONSTRAIN keyword is set. Valid values include:

• 0 = Rotate only around the X axis.

• 1 = Rotate only around the Y axis.s

• 2 = Rotate only around the Z axis (this is the default).

CONSTRAIN

Set this keyword to indicate that the trackball transformations are to be constrained
about the axis specified by the AXIS keyword. The default is not to constrain the
transformations.

MOUSE

Set this keyword to a bitmask to indicate which mouse button to honor for trackball
events. The least significant bit represents the leftmost button, the next highest bit
represents the middle button, and the next highest bit represents the right button. The
default is 1b, for the left mouse button.
TrackBall IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2307
TrackBall::Update

The TrackBall::Update function method updates the state of the TrackBall object
based on the information contained in the input widget event structure. The return
value is nonzero if a transformation matrix is calculated as a result of the event, or
zero otherwise.

Syntax

Result = Obj -> [TrackBall::]Update(sEvent [, MOUSE=bitmask]
[, TRANSFORM=variable] [, /TRANSLATE])

Arguments

sEvent

The widget event structure.

Keywords

MOUSE

Set this keyword to a bitmask to indicate which mouse button to honor for trackball
events. The least significant bit represents the leftmost button, the next highest bit
represents the middle button, and the next highest bit represents the right button. The
default is 1b, for the left mouse button.

TRANSFORM

Set this keyword to a named variable that will contain a 4 x 4 element floating-point
array if a new transformations matrix is calculated as a result of the widget event.

TRANSLATE

Set this keyword to indicate that the trackball movement should be constrained to
translation in the X-Y plane rather than rotation about an axis.

Example

The example code below provides a skeleton for a widget-based application that uses
the TrackBall object to interactively change the orientation of graphics.

Create a trackball centered on a 512x512 pixel drawable area, and a view containing
the model to be manipulated:

xdim = 512
IDL Reference Guide TrackBall

2308 Appendix A: IDL Object Class & Method Reference
ydim = 512
wBase = WIDGET_BASE()
wDraw = WIDGET_DRAW(wBase, XSIZE=xdim, YSIZE=ydim, $

GRAPHICS_LEVEL=2, /BUTTON_EVENTS, $
/MOTION_EVENTS, /EXPOSE_EVENTS, RETAIN=0)

WIDGET_CONTROL, wBase, /REALIZE
WIDGET_CONTROL, wDraw, GET_VALUE=oWindow

oTrackball = OBJ_NEW('Trackball', [xdim/2.,ydim/2.], xdim/2.)
oView = OBJ_NEW('IDLgrView')
oModel = OBJ_NEW('IDLgrModel')
oView->Add, oModel
XMANAGER, 'TrackEx', wBase

You must handle the trackball updates in the widget event-handling code. As the
trackball transformation changes, update the transformation for the model object, and
redraw the view:

PRO TrackEx_Event, sEvent
...
bHaveXform = oTrackball->Update(sEvent, TRANSFORM=TrackXform)
IF (bHaveXform) THEN BEGIN
oModel->GetProperty, TRANSFORM=ModelXform
oModel->SetProperty, TRANSFORM=ModelXform # TrackXform
oWindow->Draw, oView
ENDIF
...
END

For a complete example, see the file surf_track.pro, located in the
examples/visual subdirectory of the IDL distribution. The SURF_TRACK
procedure uses IDL widgets to create a graphical user interface to an object tree,
creates a surface object from user-specified data (or from default data, if none is
specified), and places the surface object in an IDL draw widget. The SURF_TRACK
interface allows the user to specify several attributes of the object hierarchy via
pulldown menus.
TrackBall IDL Reference Guide

Appendix B:

IDL Graphics
Devices

The following topics are covered in this appendix:
Supported Devices 2310
Keywords Accepted by the IDL Devices 2311
Window Systems 2351
Printing Graphics Output Files 2354
The CGM Device 2357
The HP-GL Device 2359
The LJ Device . 2361
The Macintosh Display Device 2364
The Metafile Display Device 2365

The Null Display Device 2367
The PCL Device . 2368
The Printer Device 2370
The PostScript Device 2371
The Regis Terminal Device 2383
The Tektronix Device 2384
The Microsoft Windows Device 2386
The X Windows Device 2387
The Z-Buffer Device 2395
IDL Reference Guide 2309

2310 Appendix B: IDL Graphics Devices
Supported Devices

IDL Direct Graphics support graphic output to the devices listed below:

Each of these devices is described in a section of this chapter. The SET_PLOT
procedure can be used to select the graphic device to which IDL directs its output.
IDL Object Graphics does not rely on the concept of a current graphics device; see
Using IDL for details about IDL Object Graphics.

The DEVICE procedure controls the graphic device-specific functions. An attempt
has been made to isolate all device-specific functions in this procedure. DEVICE
controls the graphics device currently selected by SET_PLOT. When using DEVICE,
it is important to make sure that the current graphics device is the one you intend to
use. This is because most of the devices have different keywords—you will most
likely get a ‘‘Keyword not allowed in call to: Device’’ error if
you call DEVICE when the wrong device is selected.

Device Name Description

CGM Computer Graphics Metafile

HP Hewlett-Packard Graphics Language (HP-GL)

LJ Digital Equipment LJ250 (VMS Only)

MAC Macintosh display

METAFILE Windows Metafile Format (WMF)

NULL No graphics output

PCL Hewlett-Packard Printer Control Language (PCL)

PRINTER System printer

PS PostScript

REGIS Regis graphics protocol (DEC systems only)

TEK Tektronix compatible terminal

WIN Microsoft Windows

X X Window System

Z Z-buffer pseudo device

Table B-1: IDL Graphics Output Devices
Supported Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2311
Keywords Accepted by the IDL Devices

The following table indicates which keywords are accepted by the DEVICE
procedure. The NULL device is not listed as it accepts no keywords. Details of the
various keywords can be found on the page indicated in the table.

Note
Most keywords to the DEVICE procedure are sticky — that is, once you set them,
they remain in effect until you explicitly change them again, or end your IDL
session. The exceptions are keywords used to return a value from the system
(GET_FONTNAMES, for example) and those that perform a one-time-only
operation (CLOSE_FILE, for example).

Keywords

Devices
C

G
M

H
P

L
J

M
A

C

M
E

TA
F

IL
E

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

AVANTGARDE •

AVERAGE_LINES •

BINARY •

BITS_PER_PIXEL •

BKMAN •

BOLD •

BOOK •

BYPASS_TRANSLATION • • •

CLOSE •

CLOSE_DOCUMENT •

CLOSE_FILE • • • • • • • •

Table B-2: Keywords accepted by the IDL devices
IDL Reference Guide Keywords Accepted by the IDL Devices

2312 Appendix B: IDL Graphics Devices
COLOR • •

COLORS • •

COPY • • •

COURIER •

CURSOR_CROSSHAIR • •

CURSOR_IMAGE • • •

CURSOR_MASK • • •

CURSOR_ORIGINAL • • •

CURSOR_STANDARD • • •

CURSOR_XY • • •

DECOMPOSED • • •

DEMI •

DEPTH •

DIRECT_COLOR •

EJECT •

ENCAPSULATED •

ENCODING •

FILENAME • • • • • • • •

FLOYD • • • •

FONT_INDEX •

FONT_SIZE •

GET_CURRENT_FONT • • • • •

Keywords

Devices

C
G

M

H
P

L
J

M
A

C

M
E

TA
F

IL
E

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

Table B-2: Keywords accepted by the IDL devices
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2313
GET_DECOMPOSED • • •

GET_FONTNAMES • • • • •

GET_FONTNUM • • • • •

GET_GRAPHICS_FUNCTION • • • •

GET_PAGE_SIZE •

GET_SCREEN_SIZE • • •

GET_VISUAL_DEPTH • • •

GET_VISUAL_NAME • • •

GET_WINDOW_POSITION • • •

GET_WRITE_MASK • •

GIN_CHARS •

GLYPH_CACHE • • • • • •

HELVETICA •

INCHES • • • • • •

INDEX_COLOR • •

ISOLATIN1 •

ITALIC •

LANDSCAPE • • • • •

LIGHT •

MEDIUM •

NARROW •

NCAR •

Keywords

Devices

C
G

M

H
P

L
J

M
A

C

M
E

TA
F

IL
E

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

Table B-2: Keywords accepted by the IDL devices
IDL Reference Guide Keywords Accepted by the IDL Devices

2314 Appendix B: IDL Graphics Devices
OBLIQUE •

OPTIMIZE •

ORDERED • • • •

OUTPUT • •

PALATINO •

PIXELS • •

PLOT_TO • •

PLOTTER_ON_OFF •

POLYFILL •

PORTRAIT • • • • •

PRE_DEPTH •

PRE_XSIZE •

PRE_YSIZE •

PREVIEW •

PRINT_FILE •

PSEUDO_COLOR • •

RESET_STRING •

RESOLUTION • •

RETAIN • • •

SCALE_FACTOR • •

SCHOOLBOOK •

SET_CHARACTER_SIZE • • • • • • • • • • • • •

Keywords

Devices

C
G

M

H
P

L
J

M
A

C

M
E

TA
F

IL
E

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

Table B-2: Keywords accepted by the IDL devices
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2315
SET_COLORMAP •

SET_COLORS •

SET_FONT • • • • • • •

SET_GRAPHICS_FUNCTION • • • •

SET_RESOLUTION •

SET_STRING •

SET_TRANSLATION •

SET_WRITE_MASK • •

STATIC_COLOR •

STATIC_GRAY •

SYMBOL •

TEK4014 •

TEK4100 •

TEXT •

THRESHOLD • • • •

TIMES •

TRANSLATION • • •

TRUE_COLOR • • • •

TT_FONT • • • • • •

TTY • •

USER_FONT •

VT240, VT241 •

Keywords

Devices

C
G

M

H
P

L
J

M
A

C

M
E

TA
F

IL
E

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

Table B-2: Keywords accepted by the IDL devices
IDL Reference Guide Keywords Accepted by the IDL Devices

2316 Appendix B: IDL Graphics Devices
Keywords accepted by the DEVICE command are described below. A list of devices
that accept the keyword is included in parentheses below the keyword name.

AVANTGARDE

(PS)

Set this keyword to select the ITC Avant Garde PostScript font.

AVERAGE_LINES

(REGIS)

Controls the method of writing images to the VT240. If this keyword is set, (default
setting), even and odd pairs of image lines are averaged and written to a single line. If
clear, each image line is written to the screen. See the discussion below. This
keyword has no effect when using a VT300 series terminal.

VT340, VT341 •

WINDOW_STATE • • •

XOFFSET • • • • •

XON_XOFF •

XSIZE • • • • • •

YOFFSET • • • • •

YSIZE • • • • • •

ZAPFCHANCERY •

ZAPFDINGBATS •

Z_BUFFERING •

Keywords

Devices

C
G

M

H
P

L
J

M
A

C

M
E

TA
F

IL
E

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

Table B-2: Keywords accepted by the IDL devices
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2317
BINARY

(CGM)

Set this keyword to set the encoding type for the CGM output file to binary.

BITS_PER_PIXEL

(PS)

IDL is capable of producing PostScript images with 1, 2, 4, or 8 bits per pixel. Using
more bits per pixel gives higher resolution at the cost of generating larger files.
BITS_PER_PIXEL is used to specify the number of bits to use. If you do not specify
a value for BITS_PER_PIXEL, a default value of 4 is used.

It should be noted that many laser printers, including the original Apple Laserwriter
are capable of only 32 different shades of gray (which can be represented by 5 bits).
Thus, specifying 8 bits per pixel does not give 256 apparent shades of grey as might
be expected, only 32, at a cost of sending twice the number of bits to the printer.
Often, 4 bits (16 levels of gray) will give acceptable results with a large savings in
file size.

BKMAN

(PS)

Set this keyword to select the ITC Bookman PostScript font.

BOLD

(PS)

Set this keyword to specify that the bold version of the current PostScript font should
be used.

BOOK

(PS)

Set this keyword to specify that the book version of the current PostScript font should
be used.

BYPASS_TRANSLATION

(MAC, WIN, X)

Set this keyword to bypass the translation tables, allowing direct specification of
color indices. See “Color Translation” on page 2392 Pixel values read via the TVRD
IDL Reference Guide Keywords Accepted by the IDL Devices

2318 Appendix B: IDL Graphics Devices
function are not translated if this keyword is set, and the result contains the byte value
of the actual pixel values present in the display.

By default, the translation tables are used with shared and static color tables. When
using displays with private color tables, the translation tables are bypassed.

This keyword is accepted by the WIN device (for compatibility with the X device),
but has no effect when set.

CLOSE

(Z)

Set this keyword to deallocate the memory used by the Z-buffer. The Z-buffer device
is reinitialized if subsequent graphics operations are directed to the device.

CLOSE_DOCUMENT

(PRINTER)

Set this keyword to have IDL send any buffered output to the currently selected
printer. This keyword is applicable only when the printer device is selected. See “The
Printer Device” on page 2370 for details.

CLOSE_FILE

(CGM, HP, LJ, METAFILE, PCL, PS, REGIS, TEK)

Set this keyword to have IDL output any buffered commands and close the current
graphics file.

Caution: Under operating systems other than VMS, if you close the output file and
then cause IDL to produce more output (e.g., by executing a new PLOT command),
IDL will open the file again, causing the contents of the recently closed file to be lost.
To avoid this, use the FILENAME keyword to specify a different file name or use
SET_PLOT to disable the graphics driver, or be sure to print the closed output file
before creating more output.

See the discussion of printing output files in “Printing Graphics Output Files” on
page 2354

COLOR

(PCL, PS)

Set this keyword to enable color PCL or PostScript output. See “The PCL Device” on
page 2368 or “The PostScript Device” on page 2371.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2319
COLORS

(CGM, TEK)

This keyword specifies the maximum number of colors and the size of the color table
used for output. The value of the system variable fields !D.N_COLORS and
!D.TABLE_SIZE are set to this value and !P.COLOR is set to one less than this
value.

For Tektronix Terminals Only

This keyword sets the number of colors supported by a 4100 series terminal. For
example, if your terminal has 4-bit planes, the number of colors is 24 = 16:

DEVICE, COLORS = 16

Valid values of this parameter are: 2, 4, 8, 16, or 64; other values will cause
problems. Some Tektronix terminals will not operate properly if this parameter does
not exactly match the number of colors available in the terminal hardware.

This parameter sets the field !D.N_COLORS, which affects the loading of color
tables, the scaling used by the TVSCL procedure, and the number of bits output by
the TV procedure to the terminal. It also changes the default color, !P.COLOR to the
number of colors minus one.

COPY

(MAC, WIN, X)

Use this keyword to copy a rectangular area of pixels from one region of a window to
another. COPY should be set a six or seven element array: [Xs, Ys, Nx, Ny, Xd, Yd, W],
where: (Xs, Ys) is the lower left corner of the source rectangle, (Nx, Ny) are the number
of columns and rows in the rectangle, and (Xd, Yd) is the coordinate of the destination
rectangle. Optionally, W is the index of the window from which the pixels should

be copied to the current window. If it is not supplied, the current window is used as
both the source and destination.

COURIER

(PS)

Set this keyword to select the Courier PostScript font.

CURSOR_CROSSHAIR

(WIN, X)

Set this keyword to selects the crosshair cursor type. This is the IDL default.
IDL Reference Guide Keywords Accepted by the IDL Devices

2320 Appendix B: IDL Graphics Devices
CURSOR_IMAGE

(MAC, WIN, X)

Specifies the cursor pattern. The value of this keyword must be a 16-line by 16-
column bitmap, contained in a 16-element short integer vector. The offset from the
upper left pixel to the point that is considered the hot spot can be provided via the
CURSOR_XY keyword.

CURSOR_MASK

(MAC, WIN, X)

When the CURSOR_IMAGE keyword is used to specify a cursor bitmap, the
CURSOR_MASK keyword can be used to simultaneously specify the mask that
should be used. In the mask, bits that are set indicate bits in the CURSOR_IMAGE
that should be seen and bits that are not set are masked out.

By default, the CURSOR_IMAGE bitmap is used for both the image and the mask.
This can cause the cursor to be invisible on a black background (because only black
pixels are allowed to be displayed).

CURSOR_ORIGINAL

(MAC, WIN, X)

Set this keyword to select the window system’s default cursor. Under X Windows, it
is the cursor in use by the root window when IDL starts. For the Macintosh and
Microsoft Windows devices, it is the arrow pointer.

CURSOR_STANDARD

(MAC, WIN, X)

This keyword can be used to change the cursor appearance in IDL graphics windows.

For X Windows

This keyword selects one of the predefined cursors provided by the X Window
system. The available cursors shapes are defined in the file cursorfont.h in the
directory /usr/include/X11 (UNIX), or DECW$INCLUDE: (VMS). In order to use
one of these cursors, you select the number of the cursor and provide it as the value of
the CURSOR_STANDARD keyword. For example, the file gives the value of
XC_CROSS as being 30. In order to make that the current cursor, use the statement:

DEVICE, CURSOR_STANDARD=30
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2321
For Microsoft Windows

The table below shows the values for CURSOR_STANDARD that result in different
cursor shapes. For example, to change the cursor to an “I-beam” when the cursor is in
an IDL graphics window, use the command:

DEVICE, CURSOR_STANDARD = 32513

For Macintosh

Setting the CURSOR_STANDARD keyword changes the cursor to a crosshair in
IDL graphics windows.

CURSOR_XY

(MAC, WIN, X)

A two element integer vector giving the (X, Y) pixel offset of the cursor hot spot, the
point which is considered to be the mouse position, from the lower left corner of the
cursor image. This parameter is only applicable if CURSOR_IMAGE is provided.
The cursor image is displayed top-down—the first row is displayed at the top.

Cursor Shape Value

Arrow 32512

I-Beam 32513

Hourglass 32514

Black Crosshair 32515

Up Arrow 32516

Size (Windows NT only) 32640

Icon (Windows NT only) 32641

Size NW-SE 32642

Size NE-SW 32643

Size E-W 32644

Size N-S 32645

Table B-3: Values for the WIN device CURSOR_STANDARD keyword
IDL Reference Guide Keywords Accepted by the IDL Devices

2322 Appendix B: IDL Graphics Devices
DECOMPOSED

(MAC, WIN, X)

This keyword is used to control the way in which graphics color index values are
interpreted when using displays with decomposed color (TrueColor or DirectColor
visuals). This keyword has no effect with other types of visuals.

Set this keyword to 1 to cause color indices to be interpreted as 3, 8-bit color indices
where the least-significant 8 bits contain the red value, the next 8 bits contain the
green value, and the most-significant 8 bits contain the blue value. This is the way
IDL has always interpreted pixels when using visual classes with decomposed color.

Set this keyword to 0 to cause the least-significant 8 bits of the color index value to
be interpreted as a PseudoColor index. This setting allows users with DirectColor and
TrueColor displays to use IDL programs written for standard, PseudoColor displays
without modification.

In older versions of IDL, color index values higher than !D.N_COLORS-1 were
clipped to !D.N_COLORS-1 in the higher level graphics routines. In some cases, this
clipping caused the exclusive-OR graphics mode to malfunction with raster displays.
This clipping has been removed. Programs that incorrectly specified color indices
higher than !D.N_COLORS-1 will now probably exhibit different behavior.

DEMI

(PS)

Set this keyword to specify that the demi version of the current PostScript font should
be used.

DEPTH

(LJ)

The DEPTH keyword specifies the number of significant bits in a pixel. The LJ250
can support between 1 and 4 significant bits (known also as planes). The number of
available colors is related to the number of significant planes by the equation:

Colors = 2#planes

Therefore, the LJ250 can support 2, 4, 8, or 16 separate colors on a single page of
output. The default is to use a single plane, producing monochrome output.

Since IDL is based around 8-bit pixels, it is necessary to define which bits in a 8-bit
pixel are used by the LJ250 driver, and which are ignored. When using a depth of 1
(monochrome), dithering techniques are used to render images. In this case, all 8 bits
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2323
are used. If more than a single plane is used, the least significant n bits of a 8-bit pixel
are used, where n is the selected depth. For example, using a depth of 4, pixel values
of 15, 31, and 47 are all considered to have the value 15 because all three values have
the same binary representation in their 4 least significant digits.

When the depth is changed, the standard color map given in Table 7-5 of the
LJ250/LJ252 Companion Color Printer Programmer Reference Manual is
automatically loaded. Therefore, color maps should be loaded with TVLCT after
changing the depth.

DIRECT_COLOR

(X)

Set this keyword to select the DirectColor visual. The value of the keyword
represents the number of bits per pixel. This keyword has effect only if no windows
have been created. Visual classes are discussed in more detail in “X Windows
Visuals” on page 2387.

EJECT

(HP)

In order to perform an erase operation on a plotter, it is necessary to remove the
current sheet of paper and load a fresh sheet. The ability of various plotters to do this
varies, so the EJECT keyword allows you to specify what should be done. The
following table describes the possible values.

Many HP-GL plotters lack a sheet feeder, and require the user to load the next page
manually. Therefore, the default action is for IDL to not issue any page eject
instructions. In this case, you must restrict yourself to generating only a single plot at
a time. If your plotter has a sheet feeder, you will want to issue the command:

DEVICE, /EJECT

Value Meaning

0 Do nothing. Note that this is likely to cause one page to plot over
the previous one, so you should limit yourself to one page of output
per file. This is the default.

1 Use the sheet feeder to load the next page.

2 Put the plotter off-line at the beginning of each page after the first.

Table B-4: Values for the HP-GL Eject Keyword
IDL Reference Guide Keywords Accepted by the IDL Devices

2324 Appendix B: IDL Graphics Devices
to tell IDL that it should use the sheet feeder instead of placing the plotter off-line.

If your plotter does not have a sheet feeder, but it does understand the HP-GL NR
command, use the command:

DEVICE, EJECT=2

to place the plotter off-line at the start of every plot except the first one. This causes
the plotter to wait between plots for the user to replace the paper. When the user puts
the plotter back on-line, the graphics commands for the new page are executed by the
plotter. Consult the programming manual for your plotter to determine if this
instruction is provided.

ENCAPSULATED

(PS)

Set this keyword to create an encapsulated PostScript file, suitable for importing into
another document (e.g., a LaTeX or FrameMaker document).

Note
You must explicitly set this keyword to zero to create “regular” PostScript output
after creating encapsulated output. (That is, like most keyword settings to the
DEVICE procedure, the setting “sticks” until you change it, or until you quit IDL.)

Normally, IDL assumes that its PostScript-generated output will be sent directly to a
printer. It therefore includes PostScript commands to position the plot on the page
and to eject the page from the printer. These commands are undesirable if the output
is going to be inserted into the middle of another PostScript document. If
ENCAPSULATED is present and non-zero, IDL does not generate these commands.

IDL follows the standard PostScript convention for encapsulated files. It assumes the
standard PostScript scaling is in effect (72 points per inch), In addition, it declares the
size, or bounding box of the plotting region at the top of the output file. This size is
determined when the output file is opened (when the first graphics command is
given), by multiplying the size of the plotting region (as specified with the XSIZE
and YSIZE keywords) by the current scale factor (as specified by the
SCALE_FACTOR keyword).

Changing the size of the plotting region or scale factor once graphics have been
output will not be reflected in the declared bounding box, and will confuse programs
that attempt to import the resulting graphics. Therefore, when generating
encapsulated PostScript, do not change the plot region size or scaling factor once any
graphics commands have been issued. If you need to change these parameters, use
the FILENAME keyword to start a new file.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2325
ENCODING

(CGM)

Set this keyword to set the CGM encoding type for the output file. Valid values are: 1
(binary encoding, the default), 2 (text encoding), and 3 (NCAR binary encoding).
The encoding type can only be changed when there is no CGM file open.

FILENAME

(CGM, HP, LJ, METAFILE, PCL, PS, REGIS, TEK)

Normally, all generated output is sent to a file named idl.xxx, where xxx is the
lowercase name of the device shown in the table under “Supported Devices” on
page 2310. The FILENAME keyword can be used to change these defaults. If
FILENAME is specified:

1. If the file is already open (as happens if plotting commands have been directed
to the file since the call to SET_PLOT), then the file is completed and closed
as if CLOSE_FILE had been specified.

2. The specified file is opened for subsequent graphics output.

HP-GL Only

Under UNIX, if you wish to send HP-GL output directly to a plotter without
generating an intermediate file, you should specify the device special file for the
plotter as the argument to FILENAME. For example, if your plotter is connected to a
serial input/output port known on your system as /dev/ttya, you would issue the
command:

DEVICE, FILENAME='/dev/ttya'

All subsequent HP-GL output is sent directly to the plotter connected to serial port
/dev/ttya.

FLOYD

(LJ, MAC, PCL, X)

Set this keyword to select the Floyd-Steinberg method of dithering. This algorithm
distributes the error, due to displaying intermediate shades in either black or white, to
surrounding pixels. This method generally gives the most pleasing results but
requires the most computer time.
IDL Reference Guide Keywords Accepted by the IDL Devices

2326 Appendix B: IDL Graphics Devices
FONT

(MAC, WIN, X)

This keyword is now obsolete and has been replaced by the SET_FONT keyword.
Code that uses the FONT keyword will continue to function as before, but we suggest
that all new code use SET_FONT.

FONT_INDEX

(PS)

An integer representing the font index to be mapped to the current PostScript font.

Normally the font specification keywords (AVANTGARDE, etc.) take effect
immediately to change the current font. The FONT_INDEX keyword alters this
behavior. The current font is not changed. Instead, the specified font is mapped to the
specified font index. This mapping can then be used within text strings to change the
font in the middle of the string. See “Using PostScript Fonts” on page 2372

FONT_SIZE

(PS)

The default height used for displayed text. FONT_SIZE is given in points (a common
typesetting unit of measure). The default size is 12 point text.

GET_CURRENT_FONT

(MAC, METAFILE, PRINTER, WIN, X)

Set this keyword to a named variable in which the name of the current font is returned
as a scalar string. A null string is returned if the Windows font is the default font. If
the current device is PRINTER or METAFILE, the current font is returned.

GET_DECOMPOSED

(MAC, WIN, X)

Set this keyword to a named variable in which is returned the current state of the
decomposed flag in the current direct graphics device.

GET_FONTNAMES

(MAC, METAFILE, PRINTER, WIN, X)

Set this keyword to a named variable in which a string array containing the names of
available fonts is returned. If no fonts are found, a null scalar string is returned. This
keyword must be used in conjunction with the SET_FONT keyword. Set the
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2327
SET_FONT keyword to a scalar string containing the name of the desired font or to a
wildcard. For example, the following command will return in the variable fnames
the names of all available fonts:

DEVICE, GET_FONTNAMES=fnames, SET_FONT='*'

GET_FONTNUM

(MAC, METAFILE, PRINTER, WIN, X)

Set this keyword to a named variable in which the number of fonts available to your
installation is returned. This keyword must be used in conjunction with the
SET_FONT keyword. Set the SET_FONT keyword to a scalar string containing the
name of the desired font or a wildcard. For example, the following command will
return in the variable numfonts the number of available fonts:

DEVICE, GET_FONTNUM=numfonts, SET_FONT='*'

GET_GRAPHICS_FUNCTION

(MAC, WIN, X, Z)

Set this keyword to a named variable that returns the value of the current graphics
function (which is set with the SET_GRAPHICS_FUNCTION keyword). This can
be used to remember the current graphics function, change it temporarily, and then
restore it. See “SET_GRAPHICS_FUNCTION” on page 2343 keyword for an
example.

GET_PAGE_SIZE

(PRINTER)

Set this keyword to a named variable in which to return a two-element vector that
contains the width and height of the page size in pixels.

GET_SCREEN_SIZE

(MAC, WIN, X)

Set this keyword to a named variable in which to return a two-word array that
contains the width and height of the server’s screen, in pixels.

Note
For the Macintosh, anchoring the Command Input Line reduces the amount of
available screen space.
IDL Reference Guide Keywords Accepted by the IDL Devices

2328 Appendix B: IDL Graphics Devices
GET_VISUAL_DEPTH

(MAC, WIN, X)

Set this keyword to a named variable into which a long integer is returned containing
the depth of the visual associated with this device. Under X, if the X server is not
connected when you call the DEVICE procedure with this keyword set, a new
connection is made.

GET_VISUAL_NAME

(MAC, WIN, X)

Set this keyword equal to a named variable in which a string containing the name of
the current visual class IDL is using is returned. Possible return values are:

• StaticGray (X only)

• GrayScale (X only)

• StaticColor (X only)

• PseudoColor

• TrueColor

• DirectColor (X only)

Under X, if no connection to the X server has been established when the DEVICE
procedure is called with this keyword set, a new connection is made.

GET_WINDOW_POSITION

(MAC, WIN, X)

Set this keyword to a named variable that returns a two-element array containing the
(X,Y) position of the lower left corner of the current window on the screen. The
origin is also in the lower left corner of the screen.

GET_WRITE_MASK

(WIN, X)

Specifies the name of a variable to receive the current value of the write mask.

GIN_CHARS

(TEK)

The number of characters IDL is to read when accepting a GIN (Graphics INput)
report. The default is 5. If your terminal is configured to send a carriage return at the
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2329
end of each GIN report, set this parameter to 6. If the number of GIN characters is too
large, the IDL CURSOR procedure will not respond until two or more keys are
struck. If it is too small, the extra characters sent by the terminal will appear as input
to the next IDL prompt.

GLYPH_CACHE

(MAC, METAFILE, PRINTER, PS, WIN, Z)

Set this keyword to a scalar specifying the maximum number of glyphs to cache at
any given time. The first time a glyph from a TrueType font is used, it is tessellated
into triangles. These triangles are cached so that the tessellation step is not repeated
for each use of that glyph. If the glyph cache fills, the least used glyph will be
released before a new glyph is generated and cached. The default is 256.

HELVETICA

(PS)

Set this keyword to select the Helvetica PostScript font.

INCHES

(HP, LJ, METAFILE, PCL, PRINTER, PS)

Normally, the XOFFSET, XSIZE, YOFFSET, and YSIZE keywords are specified in
centimeters. However, if INCHES is present and non-zero, they are taken to be in
inches instead.

INDEX_COLOR

(METAFILE, PRINTER)

Set this keyword to place the printer or MetaFile device in index color mode. This is
the default. This keyword is applicable only when the printer or MetaFile device is
selected.

ISOLATIN1

(PS)

Set this keyword to use Adobe ISO Latin 1 font encoding with any font that supports
such coding. Use of this keyword allows access to many commonly-used foreign
characters.
IDL Reference Guide Keywords Accepted by the IDL Devices

2330 Appendix B: IDL Graphics Devices
ITALIC

(PS)

Set this keyword to specify that the italic version of the current PostScript font should
be used.

LANDSCAPE

(HP, LJ, PCL, PRINTER, PS)

IDL normally generates plots with portrait orientation (the abscissa is along the short
dimension of the page). If the LANDSCAPE keyword is set, landscape orientation
(abscissa along the long dimension of the page) is used instead. Note that explicitly
setting LANDSCAPE=0 is the same as setting the PORTRAIT keyword.

If the current device is PRINTER, and a page is open in the printer, it is closed and a
new page set to landscape layout is started.

Note
The ability to set a printer to landscape mode is printer-driver dependent. Your
printer may not support this functionality; use the system native print setup dialog
to set the orientation of the print job.

LIGHT

(PS)

Set this keyword to specify that the light version of the current PostScript font should
be used.

MEDIUM

(PS)

Set this keyword to specify that the medium version of the current PostScript font
should be used.

NARROW

(PS)

Set this keyword to specify that the narrow version of the current PostScript font
should be used.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2331
NCAR

(CGM)

Set this keyword to set the encoding type for the CGM output file to NCAR binary.

The NCAR Binary Encoding

The NCAR binary encoding is used exclusively by the NCAR graphics package.
Version 3.01 of NCAR View (ctrans, ictrans, and cgm2ncgm) does not correctly
handle the following graphic elements:

• Cell arrays (raster images) with an odd number of pixels in the X dimension.
Solution: specify an even number of pixels for the X dimension or make the
image one column wider and fill with zeros.

• Raster images drawn in top down order. Solution: invert the image prior to
using TV or TVSCL and do not use the /ORDER keyword. For example:

TV, image
; Draw image top to bottom:
TV, ROTATE(image, 7)

OBLIQUE

(PS)

Set this keyword to specify that the oblique version of the current PostScript font
should be used.

OPTIMIZE

(PCL)

It is desirable, though not always possible, to compress the size of the PCL output
file. Such optimization reduces the size of the output file, and improves I/O speed to
the printer. There are three levels of optimization:

• 0 = No optimization is performed. This is the default because it will work with
any PCL device. However, users of devices which can support optimization
should use one of the other optimization levels.

• 1 = Optimization is performed using PCL optimization primitives. This gives
the best output compression and printing speed. Unfortunately, not all PCL
devices support it. On those that can’t, the result will be garbage printed on the
page.

Consult the programmers manual for your printer to determine if it supports
the required escape sequences. The required sequences are: <ESC>*b0M
IDL Reference Guide Keywords Accepted by the IDL Devices

2332 Appendix B: IDL Graphics Devices
(select full graphics mode), <ESC>*b1M (select compacted graphics mode 1),
and <ESC>*b2M (select compacted graphics mode 2). The HP LaserJet II does
not support this optimization level. The DeskJet PLUS does.

• 2 = IDL attempts to optimize the output by explicitly moving the left margin
and then outputting non-blank sections of the page. This is primarily intended
for use with the LaserJet II, which does not support optimization level 1. Note:
This optimization can be very slow on some devices (such as the DeskJet
PLUS). On such devices, it is best to avoid this optimization level.

ORDERED

(LJ, MAC, PCL, X)

Set this keyword to select the ordered dither method. This introduces a pseudo-
random error into the display by using a 4 by 4 “dither” matrix, yielding 16 apparent
intensities. This is the default method.

Macintosh Only

This keyword is identical to the THRESHOLD keyword.

OUTPUT

(HP, PS)

Specifies a scalar string that is sent directly to the graphics output file without any
processing, allowing the user to send arbitrary commands to the file. Since IDL does
not examine the string, it is the user’s responsibility to ensure that the string is correct
for the target device.

PALATINO

(PS)

Set this keyword to select the Palatino PostScript font.

PIXELS

(LJ, PCL)

Normally, the XOFFSET, XSIZE, YOFFSET, and YSIZE keywords are specified in
centimeters. However, if the PIXELS keyword is set, they are taken to be in pixels
instead. Note that the selected resolution will determine how large a region is actually
written on the page.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2333
PLOT_TO

(REGIS, TEK)

Directs the Tektronix graphic output that would normally go to the user’s terminal to
the specified I/O unit. The logical unit specified should be open with write access to a
device or file. Graphic output may be saved in files for later playback, redirected to
other terminals, or to devices that can accept Textronix graphic commands.

Do not use the interactive graphics cursor when graphic output is not directed to your
terminal.

To direct the graphic data to both the terminal and the file, set the unit to the negative
of the actual unit number. Alternatively, you can use the TTY keyword, described
below.

If the specified unit number is zero then Tektronix output to the file is stopped.

PLOTTER_ON_OFF

(HP)

There are some configurations in which a HP-GL plotter is connected between the
computer and a terminal. In this mode (known as eavesdrop mode), the plotter
ignores everything it is sent and passes it through to the terminal—the plotter is
logically off. This state continues until an escape sequence is sent that turns the
plotter logically on. At this point the plotter interprets and executes all input as HP-
GL commands. Another escape sequence is sent at the end of the HP-GL commands
to return the plotter to the logically off state.

Most configurations do not use eavesdrop mode, and the plotter is always logically
on. However, if you are using this style of connection, you must use
PLOTTER_ON_OFF to instruct IDL to generate the necessary on/off commands. If
present and non-zero, PLOTTER_ON_OFF causes each output page to be bracketed
by device control commands that turn the plotter logically on and off. Specifying a
value of zero stops the issuing of such commands. You should only use this keyword
before any output has been generated.

POLYFILL

(HP)

Some plotters (e.g., HP7550A) can perform polygon filling in hardware, while others
(e.g., HP7475) cannot. IDL therefore assumes that the plotter cannot, and generates
all polygon operations in software using line drawing. Specifying a non-zero value
for the POLYFILL keyword causes IDL to use the hardware polygon filling. Setting
it to zero reverts to software filling.
IDL Reference Guide Keywords Accepted by the IDL Devices

2334 Appendix B: IDL Graphics Devices
Different implementations of HP-GL plotters may have different limits for the
number of vertices that can be specified for a polygon region before the plotter runs
out of internal memory. Since this limit can vary, the HP-GL driver cannot check for
calls to POLYFILL that specify too many points. Therefore, it is possible for the user
to produce HP-GL output that causes an error when sent to the plotter. To avoid this
situation, minimize the number of points used. On the HP7550A, the limit is about
127 points. If you do generate output that exceeds the limit imposed by your plotter,
you will have to break that polygon filling operation into multiple smaller operations.

PORTRAIT

(HP, LJ, PCL, PRINTER, PS)

Set the PORTRAIT keyword to generate plots using portrait orientation. Portrait
orientation is the default. Note that explicitly setting PORTRAIT=0 is the same as
setting the LANDSCAPE keyword.

If the current device is PRINTER, and a page is open in the printer, it is closed and a
new page set to portrait layout is started.

Note
The ability to set a printer to portrait mode is printer-driver dependent. Your printer
may not support this functionality; use the system native print setup dialog to set the
orientation of the print job.

PRE_DEPTH

(PS)

Set this keyword to a value indicating the bit depth to be used for the preview in the
PostScript file. Valid values are 1 (for black and white preview) and 8 (for 8-bit
grayscale preview). This keyword applies only if the PREVIEW keyword is nonzero.
The default depth is 8.

PRE_XSIZE

(PS)

Set this keyword to the width to be used for the preview in the PostScript file.
PRE_XSIZE is specified in centimeters, unless the INCHES keyword is set. This
keyword applies only if the PREVIEW keyword value is nonzero. The default is
1.77778 inches (128 pixels at 72dpi).

Also see the note below, “A Note About Preview Dimensions”.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2335
PRE_YSIZE

(PS)

Set this keyword to the height to be used for the preview in the PostScript file.
PRE_YSIZE is specified in centimeters, unless the INCHES keyword is set. This
keyword applies only if the PREVIEW keyword value is nonzero. The default is
1.77778 inches (128 pixels at 72dpi).

Also see the note below, “A Note About Preview Dimensions”.

PREVIEW

(PS)

Set this keyword to 1 to add a platform-independent preview to the PostScript output
file in encapsulated PostScript interchange format (EPSI). EPSI is an ASCII format.
Set this keyword to 2 to write the EPS file in EPSF format, including an on-screen
preview that is supported by many Windows applications, e.g. MSWord. The default
(0) is to not include a preview.

Note
EPSF is not an ASCII format and cannot be sent directly to a Postscript printer,
unlike the EPSI format. It must be imported into an application for printing.

A Note About Preview Dimensions

Different applications may utilize the information within a PostScript file in different
ways when displaying a screen preview. Some applications will ignore the preview
contents entirely, and simply use the primary PostScript contents to generate a screen
preview. Other applications will use the preview data and its corresponding
dimensions for screen display. Still others will use the preview data and stretch it to
the dimensions of the primary PostScript contents. It is therefore recommended that
the target application (into which the encapsulated PostScript file is to be loaded) be
considered when selecting an appropriate XSIZE, YSIZE, PRE_XSIZE, and
PRE_YSIZE.

PRINT_FILE

(WIN)

Set this keyword to the name of a file (e.g., PostScript or PCL) to be sent to the
currently-selected Windows printer. IDL performs no type checking on this file
before sending it to the printer. Therefore, if you have a PostScript printer selected
IDL Reference Guide Keywords Accepted by the IDL Devices

2336 Appendix B: IDL Graphics Devices
and you send a file that contains no valid PostScript information, you’ll simply get
text output.

To send the file myfile.ps to the currently-selected Windows printer, enter:

DEVICE, PRINT_FILE='myfile.ps'

PSEUDO_COLOR

(MAC, X)

If this keyword is present, the PseudoColor visual is used. The value of the keyword
represents the number of bits per pixel to be used. This keyword has effect only if no
windows have been created. Visual classes are discussed in more detail in “X
Windows Visuals” on page 2387.

Macintosh Only

Setting this keyword causes all screen manipulations to be done in 8-bit mode. The
value of the keyword is ignored, as is the current bit-depth of the monitor.

RESET_STRING

(TEK)

The string used to place the terminal back into the normal interactive mode after
drawing graphics. Use this parameter, in conjunction with the SET_STRING
keyword, to control the mode switching of your terminal.

For example, the GraphON 200 series terminals require the string <ESC>2 to activate
the alphanumeric window after drawing graphics. The call to set this is:

DEVICE, RESET = string(27b) + '2'

If the 4100 series mode switch is set, using the keyword TEK4100, the default mode
resetting string is <ESC>%!1, which selects the ANSI code mode.

RESOLUTION

(LJ, PCL)

PCL Only

The resolution at which the PCL printer will work. PCL supports resolutions of 75,
100, 150, and 300 dots per inch. The default is 300 dpi. Lower resolution gives
smaller output files, while higher resolution gives superior quality.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2337
LJ250 Only

The resolution at which the LJ printer will work. LJ supports resolutions of 90 and
180 dots per inch. The default is 180 dpi. Lower resolution gives smaller output files
and a larger selection of colors, while higher resolution gives superior quality.

RETAIN

(MAC, WIN, X)

Use this keyword to specify the default method used for backing store when creating
new windows. This is the method used when the RETAIN keyword is not specified
with the WINDOW procedure. Backing store is discussed in more detail under
“Backing Store” on page 2351, along with the possible values for this keyword. If
RETAIN is not used to specify the default method, method 1 (server-supplied
backing store) is used.

Microsoft Windows Only

The initial value of this parameter can be set by selecting File-Preferences from the
menu bar. See “Backing Store” on page 2351.

A Note on Reading Data from Windows

On some systems, when backing store is provided by the window system
(RETAIN=1), reading data from a window using TVRD may cause unexpected
results. For example, data may be improperly read from the window even when the
image displayed on screen is correct. Having IDL provide the backing store
(RETAIN=2) ensures that the window contents will be read properly. These types of
problems are described in more detail in the documentation for TVRD. See
“Unexpected Results Using TVRD with X Windows” on page 1465.

SCALE_FACTOR

(PRINTER, PS)

Specifies a scale factor applied to the entire plot. The default value is 1.0, allowing
output to appear at its normal size. SCALE_FACTOR is used to magnify or shrink
the resulting output.

The SCALE_FACTOR keyword behaves slightly differently in the context of the
PRINTER device than it does in the context of the PS device.

When the current device is PRINTER, the SCALE_FACTOR keyword is designed to
emulate a scalable resolution setting on the printer. For example, if you have a 300 x
300 pixel image—stored in the variable image—the following IDL commands will
print image in a 0.5 inch square on a 600 dpi printer:
IDL Reference Guide Keywords Accepted by the IDL Devices

2338 Appendix B: IDL Graphics Devices
SET_PLOT, 'printer'
TV, image

Setting SCALE_FACTOR to 2 will scale the image to a 1 inch square on the same
600 dpi printer:

SET_PLOT, 'printer'
DEVICE, SCALE_FACTOR=2
TV, image

The output of IDL’s Direct Graphics routines (CONTOUR, PLOT, SURFACE, etc.)
is automatically scaled to fill the available drawing area. As a result, the following
IDL commands will produce two identical copies of the same output on any printer:

SET_PLOT, 'printer'
PLOT, data
DEVICE, SCALE_FACTOR=2
PLOT, data

SCHOOLBOOK

(PS)

Set this keyword to select the New Century Schoolbook PostScript font.

SET_CHARACTER_SIZE

(CGM, HP, LJ, MAC, METAFILE, PCL, PRINTER, PS, REGIS, TEK, WIN, X, Z)

Set this keyword equal to a two-element vector to specify the font size and line
spacing (leading) of vector and TrueType fonts, and the line spacing of device fonts.
The way that the value of this vector determines character size is not completely
intuitive.

The vector specified to the SET_CHARACTER_SIZE keyword sets the values of the
X_CH_SIZE and Y_CH_SIZE fields in the !D System Variable structure. These
values describe the size of the rectangle that contains the “average” character in the
current font. (It is not important what the “average” character is; it is used only to
calculate a scaling factor that will be applied to all of the characters in the font.) The
first element specifies the width of the rectangle in device units (usually pixels), and
the second element specifies the height.

For vector and TrueType fonts, the height of the “average” character is determined by
the width of the rectangle. The aspect ratio of the “average” character remains fixed;
the character is scaled so that its width fits in the specified rectangle. The resulting
scale factor is then applied to all of the characters in the font. The amount of spacing
between lines (baseline to baseline) is determined explicitly by the height of the
rectangle.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2339
For device fonts, the character size is fixed. When the device font system is in use,
the first element of the vector specified to SET_CHARACTER_SIZE is silently
ignored, and only the line-spacing value is used.

Note
Changing between font systems (and sometimes changing from one font to another
within the same font system) can also change the !D structure, so do not assume that
the character size you have set is preserved when you change fonts.

SET_COLORMAP

(PCL)

Set this keyword to a 14,739 (= 3 ⋅ 173) element byte vector containing the RGB-to-
printer color translation table for a color PCL printer. The default table is for an HP
Deskjet 500C printer.

The translation table is divided into red, green, and blue planes of 4913 (=173)
elements each. For a given RGB triple, the offset into each plane is calculated as
follows:

Offset = (Red/16)*289 + (Green/16)*17 + (Blue/16)

Thus, if the RGB triple is [16,32,160], the offset into each plane is 333. The printer
will use the value at element 332 of the translation table as the red value, the value at
element 5245 (=4913+332) as the green value, and the value at element 10158
(=9826+332) as the blue value.

The following example shows how to scale an existing colortable for use by a PCL
printer.

; Set the plot window to the X device:
SET_PLOT, 'X'
; Create a window:
WINDOW,0,XS=300,YS=300
; Load a color table:
LOADCT,13
; Read color table values into variables:
TVLCT,r,g,b,/GET
; Re-size color table variables:
r2=CONGRID(r,4913)
g2=CONGRID(g,4913)
b2=CONGRID(b,4913)
; Create 14,739-element color map:
colormap=[r2,g2,b2]
; Change to the PCL device:
IDL Reference Guide Keywords Accepted by the IDL Devices

2340 Appendix B: IDL Graphics Devices
SET_PLOT, 'PCL'
; Set file name, resolution, color, and color map:
DEVICE, FILE = 'pcl.pcl', RESOLUTION = 300, $

/COLOR, SET_COLORMAP = colormap
; Display an image:
TVSCL,DIST(900)
; Close the device:
DEVICE,/CLOSE

Note
The color table used need not be one of IDL’s predefined tables.

SET_COLORS

(Z)

Sets the number of pixel values, !D.N_COLORS and !D.TABLE_SIZE. This value is
used by a number of IDL routines to determine the scaling of pixel data and the
default drawing index. Allowable values range from 2 to 256, and the default value is
256. Use this parameter to make the Z-buffer device compatible with devices with
fewer than 256 colors indices.

SET_FONT

(MAC, METAFILE, PRINTER, PS, WIN, X, Z)

Set this keyword to a scalar string specifying the name of the font used when a
hardware or TrueType font is selected. Note that hardware fonts cannot be rotated,
scaled, or projected, and that the “!” commands for formatting may not work. When
generating three-dimensional plots, it is best to use the vector-drawn or TrueType
characters. Note that for the PS device, only one hardware font (other than the
predefined fonts set via the fontname keywords, such as /AVANTEGARDE) may be
loaded at a time.

Note on the FONT Keyword

The SET_FONT keyword was introduced with IDL version 5.1 and replaces the
FONT and USER_FONT keywords used in previous versions.

Using TrueType Fonts

For TrueType fonts, the specified font name must exactly match one of the names in
the first column of the ttfont.map file in the resource/fonts/tt directory or
(on Macintosh and Windows platforms) the name of an installed font. See “About
TrueType Fonts” on page 2477 for details on the ttfont.map file and for a listing of
TrueType fonts distributed with IDL. Note that you must include the TT_FONT
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2341
keyword to indicate that the font specified is a TrueType font. For example, the
following sets the font to the font to the TrueType font Helvetica Bold Italic:

DEVICE, SET_FONT='Helvetica-BoldItalic', /TT_FONT

Note
You can append additional TrueType fonts to the ttfont.map file if desired; on
Macintosh and Windows platforms, additional fonts can also be added via the
normal font installation procedures for your system. Research Systems cannot
guarantee that TrueType fonts you add will be satisfactorily tessellated or
displayed. See “About TrueType Fonts” on page 2477 for details.

Using Hardware Fonts

Because device fonts are specified differently on different platforms, the syntax of
the fontname string depends on which platform you are using.

UNIX and VMS

Usually, the window system provides a directory of font files that can be used by all
applications. List the contents of that directory to find the fonts available on your
system. The size of the font selected also affects the size of vector drawn text. X
Windows users can use the xlsfonts command to list available X Windows fonts.

On some machines, fonts are kept in subdirectories of /usr/lib/X11/fonts.

For example, to select the font 8X13:

!P.FONT = 0
DEVICE, SET_FONT = '8X13'

Microsoft Windows

The SET_FONT keyword should be set to a string with the following form:

DEVICE, SET_FONT='font*modifier1*modifier2*...modifiern'

where the asterisk (*) acts as a delimiter between the font’s name (font) and any
modifiers. The string is not case sensitive. Modifiers are simply “keywords” that
change aspects of the selected font. Valid modifiers are:

• For font weight: THIN, LIGHT, BOLD, HEAVY

• For font quality: DRAFT, PROOF

• For font pitch: FIXED, VARIABLE

• For font angle: ITALIC
IDL Reference Guide Keywords Accepted by the IDL Devices

2342 Appendix B: IDL Graphics Devices
• For strikeout text: STRIKEOUT

• For underlined text: UNDERLINE

• For font size: Any number is interpreted as the font height in pixels.

For example, if you have Garamond installed as one of your Windows fonts, you
could select 24-pixel cell height Garamond italic as the font to use in plotting. The
following commands tell IDL to use hardware fonts, change the font, and then make
a simple plot:

!P.FONT = 0
DEVICE, SET_FONT = 'GARAMOND*ITALIC*24'
PLOT, FINDGEN(10), TITLE = 'IDL Plot'

This feature is compatible with TrueType and Adobe Type Manager (and, possibly,
other type scaling programs for Windows). If you have TrueType or ATM installed,
the TrueType or PostScript outline fonts are used so that text looks good at any size.

Macintosh

The SET_FONT keyword should be set to a string with the following form:

DEVICE, SET_FONT='font*modifier1*modifier2*...modifiern'

where the asterisk (*) acts as a delimiter between the font’s name (font) and any
modifiers. The string is not case sensitive. Modifiers are simply “keywords” that
change aspects of the selected font. Valid modifiers are:

• For font weight: BOLD

• For font angle: ITALIC

• For font width: CONDENSED, EXTENDED

• For outlined text: OUTLINE, SHADOW

• For underlined text: UNDERLINE

• For font size: Any number is interpreted as the font size, in points.

For example, if you have Garamond installed, you could select 24-point Garamond
italic as the font to use in plotting. The following commands tell IDL to use hardware
fonts, change the font, and then make a simple plot:

IDL> !P.FONT = 0
IDL> DEVICE, SET_FONT = 'GARAMOND*ITALIC*24'
IDL> PLOT, FINDGEN(10), TITLE = 'IDL Plot'
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2343
SET_GRAPHICS_FUNCTION

(MAC, WIN, X, Z)

Most window systems allow applications to specify the graphics function. This is a
logical function which specifies how the source pixel values generated by a graphics
operation are combined with the pixel values already present on the screen. The
complete list of possible values is given in the following table:

The default graphics function is GXcopy, which causes new pixels to completely
overwrite any previous pixels. Not all functions are available on all window systems.

For example, the following code segment inverts the bottom bit in the rectangle
defined by its diagonal corners (x0, y0) and (x1, y1):

Logical Function Code Definition

GXclear 0 0

GXand 1 source AND destination

GXandReverse 2 source AND (NOT destination)

GXcopy 3 source

GXandInverted 4 (NOT source) AND destination

GXnoop 5 destination

GXxor 6 source XOR destination

GXor 7 source OR destination

GXnor 8 (NOT source) AND (NOT destination)

GXequiv 9 (NOT source) XOR destination

GXinvert 10 (NOT destination)

GXorReverse 11 source OR (NOT destination)

GXcopyInverted 12 (NOT source)

GXorInverted 13 (NOT source) OR destination

GXnand 14 (NOT source) OR (NOT destination)

GXset 15 1

Table B-5: Graphic Function Codes
IDL Reference Guide Keywords Accepted by the IDL Devices

2344 Appendix B: IDL Graphics Devices
; Set graphics function to exclusive or (GXor), and save the
; old function:
DEVICE, GET_GRAPHICS_FUNCTION = oldg, SET_GRAPHICS_FUNCTION = 6
; Use POLYFILL to select the area to be inverted. The source
; pixel value is 1:
POLYFILL, [[x0,y0], [x0,y1], [x1,y1], [x1,y0]], $

/DEVICE, COLOR=1
; Restore the previous graphics function:
DEVICE, SET_GRAPHICS_FUNCTION=oldg

SET_RESOLUTION

(Z)

Set this keyword to a two-element vector that specifies the width and height of the Z-
buffers. The default size is 640 by 480. If this size is not the same as the existing
buffers, the current buffers are destroyed and the device is reinitialized.

SET_STRING

(TEK)

The string used to place the terminal into the graphics mode from the normal
interactive terminal mode. If the 4100 series mode switch is set, using the keyword
TEK4100, the default graphic mode setting string is <ESC>%!0, which selects the
Tektronix code mode.

SET_TRANSLATION

(X)

This keyword can be used to allow multiple, simultaneous IDL sessions to use the
same colors from a shared colormap. Use this keyword before the X connection is
established (i.e., before a window is created), IDL will use the shared color map
without allocating any additional colors, and will not load a grayscale ramp as is
usually done when the X server starts up. The following example shows two
cooperating IDL processes sharing the same colormap:

Execute the following commands in the first IDL session:

WINDOW, GET_X_ID = a
DEVICE, TRANSLATION = t
OPENW, 1, 'junk.dat'
WRITEU, 1, a, !D.N_COLORS, t[0:!D.N_COLORS-1]
CLOSE, 1
LOADCT, 3

Execute the following commands in the second IDL session:
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2345
OPENR, 1, 'junk.dat'
a=0L
n=0L
READU,1, a, n
t = BYTARR(n)
READU, 1, t
CLOSE, 1
DEVICE, SET_TRANSLATION = t
WINDOW, COLORS=n, SET_X_ID=a
TV, DIST(256)

SET_WRITE_MASK

(X, Z)

Sets the write mask to the specified value. For an n-bit system, the write mask can
range from 0 to 2n-1.

STATIC_COLOR

(X)

Use this keyword to select the X Windows StaticColor visual. The value of the
keyword represents the number of bits per pixel to be used. This keyword has effect
only if no windows have been created. Visual classes are discussed in more detail in
“X Windows Visuals” on page 2387.

STATIC_GRAY

(X)

Use this keyword to select the X Windows StaticGray visual. The value of the
keyword represents the number of bits per pixel to be used. This keyword has effect
only if no windows have been created. Visual classes are discussed in more detail in
“X Windows Visuals” on page 2387.

SYMBOL

(PS)

Set this keyword to select the Symbol PostScript font.

TEK4014

(TEK)

Set this keyword to specify that coordinates are to be output with full 12-bit
resolution. If this keyword is not present or is zero, 10-bit coordinates are output.
IDL Reference Guide Keywords Accepted by the IDL Devices

2346 Appendix B: IDL Graphics Devices
Normally, IDL sends 10-bit coordinates. 12-bit coordinates are compatible with most
terminals, even those without the full resolution, but require more characters to send.

Note
The 4014 and the 4100 modes can be used together. The coordinate system IDL
uses for the Tektronix is 0 to 4095 in the X direction and 0 to 3120 in the Y
direction, even when not in the 4014 mode. In the 10-bit case the internal
coordinates are divided by 4 prior to output.

TEK4100

(TEK)

Set this keyword to indicate that the terminal is a 4100 or 4200 series terminal. The
use of color, ANSI and Tektronix mode switching, hardware line styles, and pixel
output with the TV procedure is supported with these terminals. Also, text is output
differently.

TEXT

(CGM)

Set this keyword to set the encoding type for the CGM output file to text.

THRESHOLD

(LJ, MAC, PCL, X)

Set this keyword to select the threshold algorithm—the simplest dithering method.
The value of this keyword is the threshold to be used. This algorithm simply
compares each pixel against the given threshold, usually 128. If the pixel equals or
exceeds the threshold the display pixel is set to white, otherwise it is black.

Macintosh Only

Set this keyword to use the Macintosh’s default thresholding. Values greater than one
cause the keyword to be set but are otherwise ignored.

TIMES

(PS)

Set this keyword to select the Times-Roman PostScript font.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2347
TRANSLATION

(MAC, WIN, X)

As discussed in “Shared Colormaps” on page 2390, using the shared colormap
(normally recommended) causes IDL to translate between IDL color indices (which
always start with zero and are contiguous) and the pixel values actually present in the
display. The TRANSLATION keyword specifies the name of a variable to receive
the translation vector. To read the translation table, use the command:

DEVICE, TRANSLATION=TRANSARR

where TRANSARR is a named variable into which the translation array is stored.
The result is a 256-element byte vector. Element zero of the vector contains the pixel
value allocated for the first color in the IDL colormap, and so forth.

Microsoft Windows Only

This keyword is accepted by the WIN device, for compatibility with the X Windows
driver, but simply returns a 256-element vector where each element has the value of
its subscript (0 to 255).

TRUE_COLOR

(MAC, METAFILE, PRINTER, X)

Use this keyword to select TrueColor visuals. The value of the keyword represents
the number of bits per pixel to be used. This keyword has effect only if no windows
have been created. Visual classes are discussed in more detail in “X Windows
Visuals” on page 2387. If the current device is PRINTER or METAFILE, the printer
is placed in RGB or TrueColor mode if the value of the TRUE_COLOR keyword is
greater than zero (the number of bits per pixel specified is ignored.)

Macintosh Only

For best results, set TRUE_COLOR equal to 24 after setting the Color Depth to
Millions from the Monitors Control Panel in the Apple menu.

TT_FONT

(MAC, METAFILE, PRINTER, WIN, X, Z)

Set this keyword to indicate that the font set via the SET_FONT keyword (either to
set the fontname or to retrieve fontnames in conjunction with the
GET_FONTNAMES or GET_FONTNUM keywords) should be treated as a
TrueType font.
IDL Reference Guide Keywords Accepted by the IDL Devices

2348 Appendix B: IDL Graphics Devices
TTY

(REGIS, TEK)

Set this keyword to specify that output should be sent to the terminal at the same time
that it is being sent to a file due to the FILENAME or PLOT_TO keywords. A zero
value causes output to go only to the file. If no output file is in use, this keyword has
no effect.

USER_FONT

(PS)

This keyword is now obsolete and has been replaced by the SET_FONT keyword.
Code that uses the USER_FONT keyword will continue to function as before, but we
suggest that all new code use SET_FONT.

VT240, VT241

(REGIS)

Set this keyword to configure the REGIS device for VT240 series terminals.

VT340, VT341

(REGIS)

Set this keyword to configure the REGIS device for VT340 series terminals.

WINDOW_STATE

(MAC, WIN, X)

Set this keyword to a named variable that returns an array containing one element for
each possible window. Array element i contains a 1 if window i is open, otherwise it
contains a 0.

XOFFSET

(HP, LJ, PCL, PRINTER, PS)

Specifies the X position, on the page, of the lower left corner of output generated by
IDL. XOFFSET is specified in centimeters, unless INCHES is specified. See
“Positioning Graphics Output” on page 2356.

PostScript Only

SCALE does not affect the value of XOFFSET.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2349
XON_XOFF

(HP)

If present and non-zero, XON_XOFF causes each output page to start with device
control commands that instruct the plotter to obey xon/xoff (^S/^Q) style flow
control. Specifying a value of zero stops the issuing of such commands. You should
only use this keyword before any output has been generated.

Such handshaking is the default. To turn it off, use the command

DEVICE, XON_XOFF=0

Often, it is not necessary to tell the plotter to obey flow control because the printing
facilities on the system handle such details for you, but it is usually harmless.

XSIZE

(HP, LJ, METAFILE, PCL, PRINTER, PS)

Specifies the width of output generated by IDL. XSIZE is specified in centimeters,
unless INCHES is specified.

PostScript Only

SCALE modifies the value of XSIZE. Hence, the following statement:

DEVICE,/INCHES,XSIZE=7.0,SCALE_FACTOR=0.5

results in a real width of 3.5 inches.

Also see “A Note About Preview Dimensions” on page 2335.

YOFFSET

(HP, LJ, PCL, PRINTER, PS)

Specifies the Y position, on the page, of the lower left corner of output generated by
IDL. YOFFSET is specified in centimeters, unless INCHES is specified. See
“Positioning Graphics Output” on page 2356.

Note
The corner of the page from which the Y offset is measured (lower or upper left)
differs on various devices. Read the device specific information in the following
sections to determine how this is handled for your device.
IDL Reference Guide Keywords Accepted by the IDL Devices

2350 Appendix B: IDL Graphics Devices
PostScript Only

SCALE does not affect the value of YOFFSET.

YSIZE

(HP, LJ, METAFILE, PCL, PRINTER, PS)

Specifies the height of output generated by IDL. YSIZE is specified in centimeters,
unless INCHES is specified.

PostScript Only

SCALE modifies the value of YSIZE. Hence, the following statement:

DEVICE,/INCHES,YSIZE=5.0,SCALE_FACTOR=0.5

results in a real width of 2.5 inches.

Also see “A Note About Preview Dimensions” on page 2335.

LJ250 Only

Changing the size, depth, or orientation of the output causes the current page to be
sent to the file. The effect is identical to calling the ERASE procedure.

ZAPFCHANCERY

(PS)

Set this keyword to select the ITC Zapf Chancery PostScript font.

ZAPFDINGBATS

(PS)

Set this keyword to select the ITC Zapf Dingbats PostScript font.

Z_BUFFERING

(Z)

This keyword enables and disables the Z-buffering. If this keyword is specified with
a zero value, the driver operates as a standard 2D device, the Z-buffering is disabled,
and the Z-buffer (if any) is deallocated. Setting this keyword to one (the default
value), enables the Z-buffering.

To disable Z-buffering enter:

DEVICE, Z_BUFFERING = 0
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2351
Window Systems

The different window systems supported by IDL have many features in common.
This section describes those features. See the individual descriptions of each system
later in this chapter for additional information about each one.

IDL utilizes the window system by creating and using one or more largely
independent windows, each of which can be used for the display of graphics and/or
images. One color map table is shared among all these windows. Multiple windows
can be active simultaneously. Windows are referenced using their index which is a
non-negative integer.

“Dithering” or halftoning techniques are used to display images with multiple shades
of gray on monochrome displays—displays that can only display white or black. This
topic is discussed in “Image Display On Monochrome Devices” on page 2353.

Graphic and image output is always directed to the current window. When a window
system is selected as the current IDL graphics device, the index number of the current
window is found in the !D.WINDOW system variable. This variable contains -1 if no
window is open or selected. The WSET procedure is used to change the current
window. WSHOW hides, displays, and iconifies windows. WDELETE deletes a
window.

The WINDOW procedure creates a new window with a given index. If a window
already exists with the same index, it is first deleted. The size, position, title, and
number of colors, may also be specified. If you access the display before creating the
first window, IDL automatically creates a window with an index number of 0 and
with the default attributes.

Backing Store

One of the features that distinguishes various window systems is how they handle the
issue of backing store. When part of a window that was previously not visible is
exposed, there are two basic approaches that a window system can take. Some keep
track of the current contents of all windows and automatically repair any damage to
their visible regions (retained windows). This saved information is known as the
backing store. Others simply report the damage to the program that created the
IDL Reference Guide Window Systems

2352 Appendix B: IDL Graphics Devices
window and leave repairing the visible region to the program (non-retained
windows).

There are convincing arguments for and against both approaches. It is generally more
convenient for IDL if the window system handles this problem automatically, but this
often comes at a performance penalty. The actual cost of retained windows varies
between systems and depends partially on the application.

The X Window system does not by default keep track of window contents. Therefore,
when a window on the display is obscured by another window, the contents of its
obscured portion is lost. Re-exposing the window causes the X server to fill the
missing data with the default background color for that window, and request the
application to redraw the missing data. Applications can request a backing store for
their windows, but servers are not required to provide it. Many X servers do not
provide backing store, and even those that do cannot necessarily provide it for all
requesting windows. Therefore, requesting backing store from the server might help,
but there is no certainty.

The IDL window system drivers allow you to control the issue of backing store using
the RETAIN keyword to the DEVICE and WINDOW procedures. Using it with
DEVICE allows you to set the default action for all windows, while using it with
WINDOW lets you override the default for the new window. The possible values for
this keyword are summarized under “Backing Store” on page 2351, and are described
below:

• Setting the RETAIN keyword to 0 specifies that no backing store is kept. In
this case, exposing a previously obscured window leaves the missing portion
of the window blank. Although this behavior can be inconvenient, it usually
has the highest performance because there is no need to keep a copy of the
window contents.

• Setting the RETAIN keyword to 1 causes IDL to request that a backing store
be maintained. If the window system decides to accept the request, it will
automatically repair the missing portions when the window is exposed. X

Value Description

0 No backing store.

1 Request the server or window system to perform backing store.

2 Make IDL perform backing store.

Table B-6: Allowed Values for the RETAIN Keyword
Window Systems IDL Reference Guide

Appendix B: IDL Graphics Devices 2353
Windows may or may not provide backing store when requested, depending on
the capabilities of the server and the resources available to it.

• Setting the RETAIN keyword to 2 specifies that IDL should keep a backing
store for the window itself, and repair any window damage when the window
system requests it. This option exists for X Windows. In this case, a pixmap
(off-screen display memory) the same size as the window is created at the
same time the window is created, and all graphics operations sent to the
window are also sent to the pixmap. When the server requests IDL to repair
freshly exposed windows, this pixmap is used to fill in the missing contents.
Pixmaps are a precious resource in the X server, so backing pixmaps should
only be requested for windows with contents that must absolutely be
preserved.

If the type of backing store to use is not explicitly specified using the RETAIN
keyword, IDL assumes option 1 and requests the window system to keep a backing
store.

A Note on Reading Data from Windows

On some systems, when backing store is provided by the window system
(RETAIN=1), reading data from a window using TVRD may cause unexpected
results. For example, data may be improperly read from the window even when the
image displayed on screen is correct. Having IDL provide the backing store
(RETAIN=2) ensures that the window contents will be read properly. These types of
problems are described in more detail in the documentation for TVRD. See
“Unexpected Results Using TVRD with X Windows” on page 1465.

Image Display On Monochrome Devices

Images are automatically dithered when sent to some monochrome devices.
Dithering is a technique which increases the number of apparent brightness levels at
the expense of spatial resolution. Images with 256 gray levels are displayed on a
display with only two colors, black and white, using halftoning techniques.
PostScript handles dithering directly. IDL supports dithering for other devices if their
DEVICE procedures accept the FLOYD, ORDERED, or THRESHOLD keywords.
IDL Reference Guide Window Systems

2354 Appendix B: IDL Graphics Devices
Printing Graphics Output Files

For printer and plotter devices (e.g., PCL, PostScript, and HP-GL), IDL creates a file
containing output commands. This file can be sent to the printer via the normal
methods provided by the local operating system. When attempting to output the file
before exiting IDL, the user must be sure that the graphics output file is complete. For
example, the following IDL commands (executed under UNIX) will not produce the
desired result:

SET_PLOT,'PS'
PLOT,x,y
SPAWN,'lpr idl.ps'

These commands fail because the attempt to print the file is premature—the file is
still open within IDL and is not yet complete.

The following lines of code are an IDL procedure called OUTPUT_PLOT which
closes the current graphics file and sends it to the printer. This routine assumes that
the graphics output file is named idl.xxx, where xxx represents the name of the
graphics driver. For example, PostScript output file is assumed to be idl.ps. It also
assumes that the graphics output to be printed is from the current graphics device, as
selected with SET_PLOT.

; Close the current graphics file, and print it. If the
; New_file parameter is present, rename the file to the given
; name so it won’t be overwritten:
Pro OUTPUT_PLOT, New_file
; Close current graphics file:
DEVICE,/CLOSE
; Build the default output file name by using the idl name for
; the current device (!D.NAME):
file = 'idl.' + STRLOWCASE(!D.NAME)
; Build shell commands to send file to the printer.
; You will probably have to change this command in accordance
; with local usage:
cmd = 'lpr ' + file
; Concatenate rename command if new file specified:
IF N_ELEMENTS(New_file) GT 0 THEN $

cmd = cmd + '; mv' + file + ' ' + New_file
; Issue shell commands to print/rename file:
SPAWN, cmd
END

The call to DEVICE causes IDL to finish the file and close it, which makes it
available for printing.
Printing Graphics Output Files IDL Reference Guide

Appendix B: IDL Graphics Devices 2355
Setting Up The Printer

In order for IDL generated output files to work properly with printers and plotters, it
is necessary for the device to be configured properly. This usually involves
configuring both the device hardware and the operating system printing software.
When setting up your system, keep the following points in mind:

• The device and computer must use some form of flow control to prevent the
computer from sending data faster than the printing device can handle it. The
most common form of flow control is known as XON/XOFF, and involves the
sending of Control-S (off) and Control-Q (on) characters from the device to
the printer to manage the flow of data.

Many printers have a large buffer into which they store incoming data they
haven’t yet processed. This reduces the need to invoke flow control. When
testing your configuration to ensure flow control is actually enabled, you must
be sure to print a document long enough to fill any such buffer, or flow control
may never occur, giving a false impression that the setup is correct. A common
source of problems stem from attempting to print long IDL generated output
files without proper flow control.

• Some devices (such as PCL) require an eight-bit data path, while others (such
as PostScript) do not. For devices that do, it is important to ensure that the
printer port and system printing software provide such a connection.

If you are having problems printing on a PostScript printer, the ehandler.ps
file in the resource/fonts/ps subdirectory of the IDL distribution can help
you to debug your problem. Sending this file to your PostScript Printer causes
it to print any subsequent errors it encounters on a sheet of paper and eject it.
The effect of this file lasts until the printer is reset.

Setting Up Printers Under UNIX

Printers are configured in the /etc/printcap file. This file describes to the system
which printers are connected to it, the characteristics of each printer, and how the
printer port should be configured. Managing the printcap file is usually discussed in
the system management documentation supplied with the system by the
manufacturer.

Setting Up Printers Under VMS

Printer queue configuration under VMS is a large topic. However, it is often
sufficient to set the printer port up properly using the DCL_SET_TERMINAL
command, and set up a printer queue using the standard printer form. Users can send
eight-bit data to such a printer using the DCL PRINT/PASSALL command (On very
IDL Reference Guide Printing Graphics Output Files

2356 Appendix B: IDL Graphics Devices
small systems, it is even possible to dispense with the printer queue entirely and
simply use the COPY command to send data to the printer port directly).

However, much more sophisticated arrangements are possible including the
definition of specialized printer forms, placing printers on the local area network for
use by more than one machine, and so forth. For information on these topics, refer to
the relevant VMS documentation.

Positioning Graphics Output

The difference between the XOFFSET and YOFFSET keywords to the DEVICE
procedure, and the higher level plot positioning keywords and system variables
(discussed in Appendix C, “Graphics Keywords” and Using IDL, Chapter 11, “Direct
Graphics Plotting”) can lead to confusion. A common misunderstanding is to attempt
to use the DEVICE procedure “offset” and “size” keywords multiple times in an
attempt to produce multiple plots on a single output page.

The DEVICE keywords are intended to specify the size and position of the entire
output area on the page, not to move the plotting region for multiple plots. The driver
does not monitor their values continuously, but only when initializing a new page or
ejecting the current one.

The proper way to produce multiple plots is to use the high level positioning abilities.
The !P.MULTI, !P.POSITION, and !P.REGION system variables can be used to
position individual plots on the page. The plotting routines also accept the
POSITION, MARGIN and REGION keywords.

Image Background Color

Graphical output that is displayed with a black background on a monitor frequently
look better if the background is changed to white when printed on white paper. This
is easily done with the statement:

a(WHERE(a EQ 0B)) = 255B
Printing Graphics Output Files IDL Reference Guide

Appendix B: IDL Graphics Devices 2357
The CGM Device

Device Keywords Accepted by the CGM Device:

BINARY, CLOSE_FILE, COLORS, ENCODING, FILENAME, NCAR,
SET_CHARACTER_SIZE, TEXT

The CGM, Computer Graphics Metafile, standard describes a device independent file
format used for the exchange of graphic information. The IDL CGM driver produces
CGM files encoded in one of three methods: Text, Binary or NCAR Binary. To direct
graphics output to a CGM file, issue the command:

SET_PLOT,'CGM'

This causes IDL to use the CGM driver for producing graphical output. Once the
CGM driver is selected, the DEVICE procedure controls its actions, as described
below. Typing HELP, /DEVICE displays the current state of the CGM driver. The
CGM driver defaults to the binary encoding using 256 colors.

Abilities and Limitations

This section describes details specific to IDL’s CGM implementation:

• IDL uses the CGM default integer encoding for graphic primitives. Coordinate
values range from 0 to 32767. It is advisable to use the values stored in
!D.X_SIZE and !D.Y_SIZE instead of assuming a fixed coordinate range.

• Color information is output with a resolution of 8 bits (color indices and
intensity values range from 0 to 255).

• The definition of background color in the CGM standard is somewhat
ambiguous. According to the standard, color index 0 and the background color
are the same. Because background color is specified in the metafile as a color
value (RGB triple), not an index, it is possible to have the background color
not correspond with the color value of index 0.

• The CGM BACKGROUND_COLOUR attribute is explicitly set by IDL only
during an erase operation: changing the value of the color map at index 0 does
not cause IDL to generate a BACKGROUND_COLOUR attribute until the
next ERASE occurs. An ERASE command sets the background color to the
value in the color map at index 0. The command ERASE, INDEX (where
INDEX is not 0) generates the message “Value of background color is
out of allowed range.” For consistent results, modify the color table
before any graphics are output.
IDL Reference Guide The CGM Device

2358 Appendix B: IDL Graphics Devices
• The CGM standard uses scalable (variable size) pixels for raster images. By
default, the TV and TVSCL procedures output images, regardless of size,
using the entire graphics output area. To output an image smaller than the
graphics output area, specify the XSIZE and YSIZE keywords with the TV and
TVSCL procedures. For example:

; Select the CGM driver:
SET_PLOT, 'CGM'
; Create a 64 x 64 element array:
X = DIST(64)
; Display the image (fills entire screen):
TVSCL, X
; Now display 4 images on the screen:
ERASE
XS = !D.X_SIZE / 2 ; Size of each image, X dimension
YS = !D.Y_SIZE / 2 ; Size of each image, Y dimension
TVSCL, X, 0, XSIZE=XS, YSIZE=YS ; Upper left
TVSCL, X, 1, XSIZE=XS, YSIZE=YS ; Upper right
TVSCL, X, 2, XSIZE=XS, YSIZE=YS; Lower left
TVSCL, X, 3, XSIZE=XS, YSIZE=YS; Lower right
The CGM Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2359
The HP-GL Device

Device Keywords Accepted by the HP-GL Device:

CLOSE_FILE, EJECT, FILENAME, INCHES, LANDSCAPE, OUTPUT,
PLOTTER_ON_OFF, POLYFILL, PORTRAIT, SET_CHARACTER_SIZE,
XOFFSET, XON_XOFF, XSIZE, YOFFSET, YSIZE

HP-GL (Hewlett-Packard Graphics Language) is a plotter control language used to
produce graphics on a wide family of pen plotters. To use HP-GL as the current
graphics device, issue the IDL command:

SET_PLOT,'HP'

This causes IDL to use HP-GL for producing graphical output. Once the HP-GL
driver is enabled via SET_PLOT, the DEVICE procedure is used to control its
actions, as described below. The default settings for the HP-GL driver are shown in
the following table. Use the statement:

HELP, /DEVICE

to view the current state of the HP-GL driver.

Feature Value

File idl.hp

Orientation Portrait

Erase No action

Polygon filling Software

Turn plotter logically on/off No

Specify xon/xoff flow control Yes

Horizontal offset 3/4 in.

Vertical offset 5 in.

Width 7 in.

Height 5 in.

Table B-7: Default HP-GL Driver Settings
IDL Reference Guide The HP-GL Device

2360 Appendix B: IDL Graphics Devices
Abilities And Limitations

IDL is able to produce a wide variety of graphical output using HP-GL. The
following is a list of what is and is not supported:

• All types of vector graphics can be generated, including line plots, contours,
surfaces, etc.

• HP-GL plotters can draw lines in different colors selected from the pen
carousel. It should be noted that color tables are not used with HP-GL. Instead,
each color index refers directly to one of the pens in the carousel.

• Some HP-GL plotters can do polygon filling in hardware. Others can rely on
the software polygon filling provided by IDL.

• It is possible to generate graphics using the hardware generated text characters,
although such characters do not give much improvement over the standard
vector fonts. To use hardware characters, set the !P.FONT system variable to
zero, or set the FONT keyword to the plotting routines to zero.

• Since HP-GL is designed to drive pen plotters, it does not support the output of
raster images. Therefore, TV and TVSCL do not work with HP-GL.

• Since pen plotters are not interactive devices, they cannot support such
operations as cursors and windows.

HP-GL Linestyles

The LINESTYLE graphics keyword allows specifying any of 6 linestyles. HP-GL
does not support all of these linestyles, and styles 3 and 4 differ from the definition in
Appendix C, “Graphics Keywords”. The following table summarizes the differences:

Index Normal Line Style HP-GL Line Style

0 Solid same

1 Dotted same

2 Dashed same

3 Dash Dot Relative size of dash and dot are different.

4 Dash Dot Dot Dot Dash Dot Dot

5 Long Dashes same

Table B-8: Linestyles for the HP-GL Device
The HP-GL Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2361
The LJ Device

Device Keywords Accepted by the LJ Device:

CLOSE_FILE, DEPTH, FILENAME, FLOYD, INCHES, LANDSCAPE,
ORDERED, PIXELS, PORTRAIT, RESOLUTION, SET_CHARACTER_SIZE,
THRESHOLD, XOFFSET, XSIZE, YOFFSET, YSIZE

The LJ250 and LJ252 are color printers sold by Digital Equipment Corporation
(DEC). To direct graphics output to a picture description file compatible with these
printers, issue the command:

SET_PLOT, 'LJ'

This causes IDL to use the LJ driver for producing graphical output. To actually print
the generated graphics, send the file to the printer using the normal printing facilities
supplied by the operating system. Once the LJ driver is enabled via SET_PLOT, the
DEVICE procedure is used to control its actions, as described below. The default
settings for the LJ driver are given in the following table. Use the HELP, /DEVICE
command to view the current font, file, and other options currently set for LJ output.

Feature Value

File idl.lj

Mode Portrait

Dither method Floyd-Steinberg

Resolution 180 dpi

Number of planes 1 (monochrome)

Horizontal offset 1/2 in.

Vertical offset 1 in.

Width 7 in.

Height 5 in.

Table B-9: Default LJ Driver Settings
IDL Reference Guide The LJ Device

2362 Appendix B: IDL Graphics Devices
LJ Driver Strengths

The LJ250 produces color graphics at a low cost. It is capable of producing good
quality monochrome output, and is also good at color vector graphics and simple
color imaging using a small number of predefined solid colors.

LJ Driver Limitations

The LJ250 is intended to be used as a low cost printer for business color graphics.
Although it can be used to print color images, it is limited in its ability to produce
satisfactory images of the sort commonly encountered in science and engineering.
These limitations make it a poor choice for such work.

• Although color is specified via the usual RGB triples using the TVLCT
procedure, the LJ250 is only capable of generating a fixed set of colors. The
number of possible colors depends on the resolution in use. When producing
180 dpi graphics, only the colors given in the following table are possible. In
90 dpi mode, 256 colors are available.

If a color is specified that the printer cannot produce, it substitutes the closest
color it can. However, the results of such substitutions can give unexpected
results. The fixed set of possible colors means that the LOADCT procedure is
of limited use with the LJ250. It also means that it is difficult to produce
satisfactory grayscale images.

Color Red
Value

Green
Value

Blue
Value

Black 10 10 10

Yellow 227 212 33

Magenta 135 13 64

Cyan 5 56 163

Red 135 20 36

Green 8 66 56

Blue 10 10 74

White 229 224 217

Table B-10: LJ250 Colors Available at 180 dpi
The LJ Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2363
• The number of simultaneous colors possible on an output page is limited.
Although images are specified in 8-bit bytes, the number of significant bits
used ranges from 1 to 4 (as specified via the DEPTH keyword to the DEVICE
procedure), allowing from 2 to 16 colors. Coupled with the above limitation on
the colors that are possible, it is difficult to produce high quality image output.

LJ Suggestions

The following suggestions are intended to help you get the most out of the LJ250,
taking its limitations into account:

• Use monochrome output when possible. This results in considerably smaller
output files, and provides most of the abilities the LJ250 handles well. When
producing monochrome output, the LJ250 driver dithers images. This can
often produce more satisfying grayscale output than is possible using the
printer in color mode.

• The table under “LJ Driver Limitations” above gives the RGB values to use
when specifying colors at 180 dpi. To make more colors available, use 90 dpi
resolution. The RGB values for the possible colors at 90 dpi are given in Table
7-6 of the LJ250/LJ252 Companion Color Printer Programmer Reference

Manual. You can cause the printer to display the complete 256 color palette as
follows: With the power off, press and hold the READY and DEC/PCL
switches while momentarily pressing the power switch. Wait approximately 2
seconds and release the READY and DEC/PCL switches. The printer will take
a few minutes to print all 256 colors. The output fits on a single page.

Use the table in the programmers manual with this display to select the colors
to use. Note that the RGB values in the programmers manual are scaled from 1
to 100, while IDL scales such values from 0 to 255. Therefore, multiply the
values obtained from the manual by 2.55 to properly scale them for use in IDL.

• Unlike most devices, IDL does not initialize the LJ250 color map to a
grayscale ramp because the printer cannot produce a satisfactory grayscale
image. Instead, the default palettes given in Table 7-5 of the LJ250/LJ252

Companion Color Printer Programmer Reference Manual are used. If you
modify the color map, the LJLCT procedure can be used to reset the color table
to these defaults. LJLCT examines the !D.N_COLORS system variable to
determine the number of output planes in use, then loads the appropriate
default color map.

• When producing images, stick to images with small amounts of detail and
large sections of uniform color. Complicated images do not reproduce well on
this printer.
IDL Reference Guide The LJ Device

2364 Appendix B: IDL Graphics Devices
The Macintosh Display Device

Device Keywords Accepted by the MAC Device:

BYPASS_TRANSLATION, COPY, CURSOR_ORIGINAL,
CURSOR_STANDARD, DECOMPOSED, FLOYD, GET_CURRENT_FONT,
GET_FONTNAMES, GET_FONTNUM, GET_GRAPHICS_FUNCTION,
GET_SCREEN_SIZE, GET_WINDOW_POSITION, ORDERED,
PSEUDO_COLOR, RETAIN, SET_CHARACTER_SIZE, SET_FONT,
SET_GRAPHICS_FUNCTION, THRESHOLD, TRANSLATION, TRUE_COLOR

The Macintosh version of IDL uses the “MAC” device by default. This device is
similar to The X Windows Device. The “MAC” device is only available in IDL for
Macintosh.

To set plotting to the Macintosh device, use the command:

SET_PLOT, 'MAC'
The Macintosh Display Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2365
The Metafile Display Device

Device Keywords Accepted by the Null Device:

CLOSE_FILE, FILENAME, GET_CURRENT_FONT, GET_FONTNAMES,
GET_FONTNUM, GLYPH_CACHE, INCHES, INDEX_COLOR,
SET_CHARACTER_SIZE, SET_FONT, TRUE_COLOR, TT_FONT, XSIZE,
YSIZE

The Windows Metafile Format (WMF) is used by Windows to store vector graphics
in order to exchange graphics information between applications. This format is only
available on the Windows platforms. To direct graphics to a file in the WMF format,
use the SET_PLOT procedure:

SET_PLOT, 'METAFILE'

This causes IDL to use the Metafile driver for producing graphical output. Once the
Metafile driver is enabled via SET_PLOT, the DEVICE procedure is used to control
its actions. The default settings are given in the following table:

For example, the following will create a WMF file for a simple plot:

;Create X and Y Axis data
x=findgen(10)
y=findgen(10)

;Save current device name
mydevice=!D.NAME

Feature Value

File idl.emf

Mode N/A

Horizontal offset N/A

Vertical offset N/A

Width 7 in.

Height 5 in.

Resolution Screen

Table B-11: Default Metafile Driver Settings
IDL Reference Guide The Metafile Display Device

2366 Appendix B: IDL Graphics Devices
;Set the device to Metafile
SET_PLOT, 'METAFILE'

;Name the file to be created
DEVICE, FILE='test.emf'

;Create the plot
PLOT, x, y

;Close the device which creates the Metafile
DEVICE, /CLOSE

;Set the device back to the original
SET_PLOT, mydevice
The Metafile Display Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2367
The Null Display Device

Device Keywords Accepted by the Null Device:

No keywords are accepted by the DEVICE procedure when the NULL device is
selected.

To suppress graphics output entirely, use the null device:

SET_PLOT, 'NULL'
IDL Reference Guide The Null Display Device

2368 Appendix B: IDL Graphics Devices
The PCL Device

Device Keywords Accepted by the PCL Device:

CLOSE_FILE, COLOR, FILENAME, FLOYD, INCHES, LANDSCAPE,
OPTIMIZE, ORDERED, PIXELS, PORTRAIT, RESOLUTION,
SET_CHARACTER_SIZE, SET_COLORMAP, THRESHOLD, XOFFSET, XSIZE,
YOFFSET, YSIZE

PCL (Printer Control Language) is used by Hewlett-Packard laser and ink jet printers
to produce graphics output. To direct graphics output to a PCL file, issue the
command:

SET_PLOT,'PCL'

This causes IDL to use the PCL driver for producing graphical output. Once the PCL
driver is enabled via SET_PLOT, the DEVICE procedure is used to control its
actions, as described below. The default settings for the PCL driver are listed in the
following table:

The PCL device draws into a memory buffer of the specified size (or the default size,
if the XSIZE and YSIZE keywords to DEVICE are not specified). Anything drawn
outside this buffer will be silently discarded.

Feature Value

File idl.pcl

Mode Portrait

Optimization level 0 (None)

Dither method Floyd-Steinberg

Resolution 300 dpi

Horizontal offset 1/2 in.

Vertical offset 1 in.

Width 7 in.

Height 5 in.

Table B-12: Default PCL Driver Settings
The PCL Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2369
Note
Unlike monitors where white is the most visible color, PCL writes black on white
paper. Setting the output color index to 0, the default when PCL output is selected,
writes in black. A color index of 255 writes white which is invisible on white paper.

Color tables are not used with PCL unless the color mode has been enabled using the
COLOR keyword to the DEVICE procedure. For images, color dithering produces
realistic color image output even though PCL printers only produce eight output
colors. In most cases, simply choosing an appropriate color table (using LOADCT or
XLOADCT), or creating a color table from an image (via TVLCT) will work fine. If
you need finer control over the colors used, see the SET_COLORMAP keyword for
additional information. For vector graphics, only eight colors are supported—no line
dithering is implemented. Any RGB component that is not zero is treated as 255. The
correct RGB definitions for each color are shown in the following table. Use the
HELP, /DEVICE command to view the current options for PCL output.

Color Red Value Green Value Blue Value

Red 255 0 0

Green 0 255 0

Blue 0 0 255

Cyan 0 255 255

Magenta 255 0 255

Yellow 255 255 0

Black 0 0 0

White 255 255 255

Table B-13: PCL RGB Color Definitions
IDL Reference Guide The PCL Device

2370 Appendix B: IDL Graphics Devices
The Printer Device

Device Keywords Accepted by the PRINTER Device:

CLOSE_DOCUMENT, GET_CURRENT_FONT, GET_FONTNAMES,
GET_FONTNUM, GET_PAGE_SIZE, INDEX_COLOR, PORTRAIT,
SCALE_FACTOR, SET_CHARACTER_SIZE, TRUE_COLOR, XOFFSET,
XSIZE, YOFFSET, YSIZE

The PRINTER device allows IDL Direct Graphics to be output to a system printer.
To direct graphics output to a printer, issue the command:

SET_PLOT, 'printer'

This causes IDL to use a printer driver to produce graphical output. By default, the
default system printer is used for output. Use the DIALOG_PRINTERSETUP
function to define the printing parameters for the printer device. Use the
DIALOG_PRINTJOB function to control the print job itself.

Note that the printer device is an IDL Direct Graphics device. Like other Direct
Graphics devices, you must change to the new device and then issue the IDL
commands that send output to that device. With the printer device, you must use the
CLOSE_DOCUMENT keyword to the DEVICE routine to actually initiate the print
job and make something come out of your printer.
The Printer Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2371
The PostScript Device

Device Keywords Accepted by the PS Device:

AVANTGARDE, BITS_PER_PIXEL, BKMAN, BOLD, BOOK, CLOSE_FILE,
COLOR, COURIER, DEMI, ENCAPSULATED, FILENAME, FONT_INDEX,
FONT_SIZE, HELVETICA, INCHES, ISOLATIN1, ITALIC, LANDSCAPE,
LIGHT, MEDIUM, NARROW, OBLIQUE, OUTPUT, PALATINO, PORTRAIT,
PREVIEW, SCALE_FACTOR, SCHOOLBOOK, SET_CHARACTER_SIZE,
SET_FONT, SYMBOL, TIMES, TT_FONT, XOFFSET, XSIZE, YOFFSET,
YSIZE, ZAPFCHANCERY, ZAPFDINGBATS

PostScript is a programming language designed to convey a description of a page
containing text and graphics. Many laser printers and high-resolution, high-quality
photo typesetters support PostScript. Color output or direct color separations can be
produced with color PostScript. To direct graphics output to a PostScript file, issue
the command:

SET_PLOT, 'PS'

This causes IDL to use the PostScript driver for producing graphical output. Once the
PostScript driver is enabled via SET_PLOT, the DEVICE procedure is used to
control its actions, as described below. The default settings are given in the following
table:

Feature Value

File idl.ps

Mode Portrait, non-encapsulated, no color

Horizontal offset 3/4 in.

Vertical offset 5 in.

Width 7 in.

Height 5 in.

Scale factor 1.0

Font size 12 points

Table B-14: Default PostScript Driver Settings
IDL Reference Guide The PostScript Device

2372 Appendix B: IDL Graphics Devices
Note
Unlike monitors where white is the most visible color, PostScript writes black on
white paper. Setting the output color index to 0, the default when PostScript output
is selected, writes black. A color index of 255 writes white which is invisible on
white paper. Color tables are not used with PostScript unless the color mode has
been enabled using the DEVICE procedure. See “Color Images” on page 2373

To obtain adequate resolution, the device coordinate system used for PostScript
output is expressed in units of 0.001 centimeter (i.e., 1000 pixels/cm).

Use the HELP, /DEVICE call to view the current font, file, and other options set for
PostScript output.

Using PostScript Fonts

Information necessary for rendering a set of 35 standard PostScript fonts are included
with IDL. (The standard 35 fonts are the fonts found on the Apple Laserwriter II
PostScript printer; the same fonts are found on almost any PostScript printer made in
the time since the LaserWriter II appeared.) Use of PostScript fonts is discussed in
detail in “About Device Fonts” on page 2482.

Color PostScript

If you have a color PostScript device you can enable the use of color with the
statement:

DEVICE, /COLOR

Enabling color also enables the color tables. Text and graphic color indices are
translated to RGB by dividing the red, green and blue color table values by 255. As
with most display devices, color indices range from 0 to 255. Zero is normally black
and white is normally represented by an index of 255. For example, to create and load
a color table with four elements, black, red, green and blue:

TVLCT, [0,255,0,0], [0,0,255,0], [0,0,0,255]

Font Helvetica

Bits / Image Pixel 4

Feature Value

Table B-14: Default PostScript Driver Settings
The PostScript Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2373
Drawing text or graphics with a color index of 0 results in black, 1 in red, 2 in green,
and 3 in blue.

Color Images

As with black and white PostScript, images may be output with 1, 2, 4, or 8 bits,
yielding 1, 2, 16, or 256 possible colors. In addition, images are either pseudo-color
or TrueColor. A pseudo-color image is a two dimensional image, each pixel of which
is used to index the color table, thereby obtaining an RGB value for each possible
pixel value. Pseudo-color images are similar to those displayed using the workstation
monitor.

Note: in the case of pseudo-color images of fewer than 8 bits, the number of columns
in the image should be an exact multiple of the number of pixels per byte (i.e., when
displaying 4 bit images the number of columns should be even, and 2 bit images
should have a column size that is a multiple of 4). If the image column size is not an
exact multiple, extra pixels with a value of 255 are output at the end of each row. This
causes no problems if the color white is loaded into the last color table entry,
otherwise a stripe of the last (index number 255) color is drawn to the right of the
image.

TrueColor Images

A TrueColor image consists of an array with three dimensions, one of which has a
size of three, containing the three color components. It may be considered as three
two dimensional images, one each for the red, green and blue components. For
example a TrueColor n by m element image can be ordered in three ways: pixel
interleaved (3, n, m), row interleaved (n, 3, m), or image interleaved (n, m, 3). By
convention the first color is always red, the second green, and the last is blue.

TrueColor images are also routed through the color tables. The red color table array
contains the intensity translation table for the red image, and so forth. Assuming that
the color tables have been loaded with the vectors R, G, and B, a pixel with a color
value of (r, g, b) is displayed with a color of (Rr, Gg, Bb). As with other devices, a
color table value of 255 represents maximum intensity, while 0 indicates an absence
of the color. To pass the RGB pixel values without change, load the red, green and
blue color tables with a ramp with a slope of 1.0:

TVLCT, INDGEN(256), INDGEN(256), INDGEN(256)

or with the LOADCT procedure:

; Load standard black/white table:
LOADCT, 0
IDL Reference Guide The PostScript Device

2374 Appendix B: IDL Graphics Devices
Use the TRUE keyword to the TV and TVSCL procedures to indicate that the image
is a TrueColor image and to specify the dimension over which color is interleaved. A
value of 1 specifies pixel interleaving, 2 is row interleaving, and 3 is image
interleaving. The following example writes a 24-bit image, interleaved over the 3rd
dimension, to a PostScript file:

SET_PLOT, 'PS'
;Set the PostScript device to *8* bits per color, not 24:
DEVICE, FILE='24bit.ps', /COLOR, BITS=8
TV, [[[r]], [[g]], [[b]]], TRUE=3
DEVICE, /CLOSE
; Return plotting to Macintosh windows:
SET_PLOT, 'mac'

Note
Currently, the PostScript device does not support TrueColor plots. Only TrueColor
images are supported.

Image Background Color

Images that are displayed with a black background on a monitor frequently look
better if the background is changed to white when displayed with PostScript. This is
easily done with the statement:

a(WHERE(a EQ 0B)) = 255B

PostScript Positioning

Using the XOFFSET and YOFFSET Keywords

Often, IDL users are confused by the use of the XOFFSET and YOFFSET keywords
to the PostScript DEVICE routine. These keywords control the position of IDL plots
on the page. XOFFSET specifies the “X” position of the lower left corner of the
output generated by IDL. This offset is always taken relative to the lower left-hand
corner of the page when viewed in portrait orientation. YOFFSET specifies the “Y”
position of the lower left corner of the output generated by IDL. This offset is also
taken relative to the lower left-hand corner of the page when viewed in portrait
orientation.
The PostScript Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2375
The following figure shows how the XOFFSET and YOFFSET keywords are
interpreted

The page on the left shows an IDL plot printed in “portrait” orientation. Note that the
X and Y offsets work just as we expect them to—increasing the XOFFSET moves
the plot to the right and increasing the YOFFSET moves the plot up the page. The
page on the right shows an IDL plot printed in “landscape” orientation. Here, the X
and Y offsets are still taken relative to the same points even though the orientation of
the plot has changed. This happens because IDL moves the origin of the plot before
rotating the PostScript coordinate system 270 degrees clockwise for the landscape
plot.

Note
The XOFFSET and YOFFSET keywords have no effect when you generate
ENCAPSULATED PostScript output.

Figure B-1: This diagram shows how the XOFFSET and YOFFSET keywords
are interpreted by the PostScript device in the Portrait (left) and Landscape

(right) modes. Note that the landscape plot uses the same origin for determining
the effect of the XOFFSET and YOFFSET keywords, but that the output is

rotated 270 degrees clockwise

XOFFSET

Y
O

FF
SE

T

X
O

FF
SE

T

YOFFSET

Portrait Plot
Landscape Plot
IDL Reference Guide The PostScript Device

2376 Appendix B: IDL Graphics Devices
Encapsulated PostScript Output

Another form of PostScript output is Encapsulated PostScript. This is the format used
to import PostScript files into page layout and desktop publishing programs. An
Encapsulated PostScript (EPS) file is similar to a regular PostScript file except that it
contains only one page of PostScript output contained in a “bounding box” that is
used to tell other programs about the size and aspect ratio of the encapsulated image.

Most of the time, output from IDL to an EPS file is properly scaled into the EPS
bounding box because commands such as PLOT take full advantage of the plotting
area made available to them. Sometimes, however, the default bounding box is
inappropriate for the image being displayed.

As an example, suppose you have an image that is narrow and tall that, when TV’ed
to an IDL window, fills only a small portion of the plotting window. Similarly, when
output to an EPS file, this image will only fill a small portion of the bounding box.
When the resulting EPS file is brought into a desktop publishing program, it becomes
very hard to properly scale the image since the aspect ratio of the bounding box bears
no relation to the aspect ratio of the image itself.

To solve this problem, use the XSIZE and YSIZE keywords to the DEVICE
procedure to make the bounding box just large enough to contain the image. Since
IDL uses a resolution of 1000 dots per centimeter with the PostScript device, the
correct XSIZE and YSIZE (in centimeters) can be computed as:

• XSIZE = Width of image in pixels/1000.0 pixels per cm

• YSIZE = Height of image in pixels/1000.0 pixels per cm

The following IDL procedure demonstrates this technique. This procedure reads an X
Windows Dump file and writes it back out as a properly-sized, 8-bit-color
Encapsulated PostScript file:

PRO XWDTOEPS, filename
; Read the XWD file. Pixel intensity information is stored
; in the variable 'array'. Values to reconstruct the color
; table are stored in 'r', 'g', and 'b':
array = READ_XWD(filename, r, g, b)
; Reconstruct the color table:
TVLCT, r,g,b
; Display the image in an IDL window:
TV, array
; Find the size of the picture. The width of the picture
; (in pixels) is stored in s[1]. The height of the picture
; is stored in s[2]:
s = SIZE(array)

; Take the 'xwd' (for X Windows Dump) extension off of
The PostScript Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2377
; the old filename and replace it with 'eps':
fl = STRLEN(filename)
filename = STRMID(filename, 0, fl-4)
filename = filename + '.eps'
PRINT, 'Making file: ', filename
PRINT, s
; Set the plotting device to PostScript:
SET_PLOT, 'ps'
; Use the DEVICE procedure to make the output encapsulated,
; 8 bits, color, and only as wide and high as it needs to
; be to contain the XWD image:
DEVICE, /ENCAPSUL, BITS_PER_PIXEL=8, /COLOR, $

FILENAME=filename, XSIZE=S[1]/1000., $
YSIZE=S[2]/1000.

; Write the image to the file:
TV, array
; Close the file:
DEVICE, /CLOSE
; Return plotting to X Windows:
SET_PLOT, 'x'
END

Multiple Plots on the Same Page

To put multiple plots on the same PostScript page, use the !P.MULTI system variable
(described in more detail in “!P System Variable” on page 2440). !P.MULTI is a 5-
element integer array that controls the number of rows and columns of plots to make
on a page or in a graphics window.

The first element of !P.MULTI is a counter that reports how many plots remain on
the page. The second element of !P.MULTI is the number of columns per page. The
third element is the number of rows per page.

For example, the following lines of code create a PostScript file, multi.ps, with 6
different plots arranged as 2 columns and 3 rows:

; Set plotting to PostScript:
SET_PLOT, 'PS'
; Set the filename:
DEVICE, FILENAME='multi.ps'
; Make IDL’s plotting area hold 2 columns and 3 rows of plots:
!P.MULTI = [0, 2, 3]
; Create a simple dataset:
A = FINDGEN(10)
; Make 6 different plots:
PLOT, A
PLOT, SIN(A)
PLOT, COS(A)
PLOT, TAN(A)
IDL Reference Guide The PostScript Device

2378 Appendix B: IDL Graphics Devices
PLOT, TANH(A)
PLOT, SINH(A)
; Close the file:
DEVICE, /CLOSE
; Return plotting to Windows:
SET_PLOT, 'win'
; Reset plotting to 1 plot per page:
!P.MULTI = 0

The resulting file produces a set of plots as shown in the following figure:

Importing IDL Plots into Other Documents

This section shows how to generate IDL PostScript graphics so that they can be
inserted into other documents. It also provides several examples of how the
PostScript graphics device is used. Simply omit the ENCAPSULATED keyword
from the calls to DEVICE if you wish to produce plots that can be printed directly.

Figure B-2: Multiple plots on a single page produced by setting the !P.MULTI
system variable.
The PostScript Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2379
The following figure is an encapsulated PostScript file suitable for inclusion in other
documents. The figure was produced with the following IDL statements. Note the use
of the ENCAPSULATED keyword in the call to DEVICE:

; Select the PostScript driver:
SET_PLOT, 'PS'
; Note use of ENCAPSULATED keyword:
DEVICE, /ENCAPSULATED, FILENAME = 'pic1.ps'
x = FINDGEN(200)
; Plot the sine wave:
PLOT, 10000 * SIN(x/5) / EXP(x/100), $

LINESTYLE = 2, TITLE = 'IDL PostScript Plot', $
XTITLE = 'Point Number', YTITLE='Y Axis Title', $
FONT = 0

; Add the cosine:
OPLOT, 10000 * COS(x/5) / EXP(x/100), LINESTYLE = 4
; Annotate the plot:
XYOUTS, 100, -6000, 'Sine', FONT = 0
OPLOT, [120, 180], [-6000, -6000], LINESTYLE = 2
XYOUTS, 100, -8000, 'Cosine', FONT = 0
OPLOT, [120, 180], [-8000, -8000], LINESTYLE = 4

The following figure is a more complicated plot. It demonstrates some of the three-
dimensional plotting capabilities of IDL. It was produced with the following IDL
statements:

Figure B-3: Sample PostScript plot using Helvetica font.
IDL Reference Guide The PostScript Device

2380 Appendix B: IDL Graphics Devices
; Select the PostScript driver:
SET_PLOT, 'PS'
; Note use of ENCAPSULATED keyword:
DEVICE, /ENCAPSULATED, FILENAME = 'pic2.ps'
; Access the data:
OPENR, 1, !DIR+'/images/abnorm.dat'
aa = ASSOC(1, BYTARR(64, 64))
; Get a smoothed version:
a = SMOOTH(aa[0], 3)
; Generate the surface:
SURFACE, a, /SAVE, ZAXIS = 1, XSTYLE = 1, YSTYLE = 1
; Add the contour:
CONTOUR, a, /T3D, /NOERASE, ZVALUE = 1, $

XSTYLE = 1, YSTYLE = 1, C_LINESTYLE = [0,1,2], $
TITLE = 'IDL PostScript Plot'

CLOSE, 1

The following figure illustrates polygon filling. It was produced with the following
IDL statements:

SET_PLOT, 'PS'
DEVICE, /ENCAPSULATED, FILENAME = 'pic3.ps'
x = FINDGEN(200)
; Upper sine wave:
a = 10000 * sin(x / 5) / exp(x / 100)
PLOT, a, /NODATA, TITLE = 'IDL PostScript Plot', $

Figure B-4: Three-Dimensional Plot with Vector-Drawn Characters
The PostScript Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2381
XTITLE='Point Number', YTITLE='Y Axis Title', $
FONT = 0

; Vector of X vertices for polygon filling. Note that the
; ROTATE(V,2) function call returns the vector V in reverse order:
C = [X, ROTATE(X, 2)]
; Vector of Y vertices for polygon filling:
D = [A, ROTATE(A-2000, 2)]
; Fill the region using an intensity of about 75% white:
POLYFILL, C, D, COLOR=192

The following figure illustrates IDL PostScript images. In this case, the same image
is reproduced four times. In each case, a different number of bits are used per image
pixel. It was produced with the following IDL statements:

SET_PLOT, 'PS'
DEVICE, /ENCAPSULATED, FILENAME = 'pic4.ps'
; Open image file:
OPENR, 1, FILEPATH('people.dat', SUBDIR = ['examples','data'])
; Variable to hold image:
a = BYTARR(192, 192, /NOZERO)
; Input the image:
READU, 1, a
; Done with the file:
CLOSE, 1
; Add a color table ramp to the bottom of the image:
A[0,0] = BYTSCL(INDGEN(192))#REPLICATE(1,16)
; Output the image four times:
FOR i = 0,3 DO BEGIN

Figure B-5: Polygon Filling Example
IDL Reference Guide The PostScript Device

2382 Appendix B: IDL Graphics Devices
;Use 1, 2, 4, and 8 bits per pixel:
DEVICE, BITS_PER_PIXEL=2^i
; Output using TV with position numbers 0, 1, 2, and 3:
TV, a, i, XSIZE=2.5, YSIZE=2.5, /INCHES

ENDFOR

Figure B-6: 1, 2, 4, and 8-bit PostScript Images
The PostScript Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2383
The Regis Terminal Device

Device Keywords Accepted by the REGIS Device:

AVERAGE_LINES, CLOSE_FILE, FILENAME, PLOTTER_ON_OFF,
SET_CHARACTER_SIZE, TTY, VT240, VT241, VT340, VT341

IDL provides Regis graphics output for the DEC VT240, VT330, and VT340 series
of terminals. To output graphics to such terminals, issue the IDL command:

SET_PLOT, 'REGIS'

This causes IDL to use the Regis driver for producing graphical output.

Defaults for Regis Devices

The default setting for Regis output is: VT340, 16 colors, 4 bits per pixel.

Regis Limitations

• Four colors are available with VT240 and VT241 terminals, sixteen colors are
available with the VT330 and VT340.

• Thick lines are emulated by filling polygons. There may be a difference in
linestyle appearance between thick and normal lines.

• Image output is slow and is of poor quality, especially on the VT240 series.
The VT240 is only able to write pixels on even numbered screen lines. IDL
offers two methods of writing images to the 240:

• Even and odd pairs of rows are averaged and written to the screen. An n, m
image will occupy n columns and m screen rows. If this method is selected,
graphics and image coordinates coincide. This method is the default
(AVERAGE_LINES = 1). Routines that rely on a uniform graphics and image
coordinate system, such as SHADE_SURF, work only in this mode.

• Each line of the image is written to the screen, displaying every image pixel.
An n, m image occupies 2m lines on the screen. (AVERAGE_LINES = 0).
Graphics and image coordinates coincide only at the lower left corner of the
image.

• Pixel values cannot be read back from the terminal, rendering the TVRD
function inoperable.
IDL Reference Guide The Regis Terminal Device

2384 Appendix B: IDL Graphics Devices
The Tektronix Device

Device Keywords Accepted by the REGIS Device:

CLOSE_FILE, COLORS, FILENAME, GIN_CHARS, PLOT_TO,
RESET_STRING, SET_CHARACTER_SIZE, SET_STRING, TEK4014, TEK4100,
TTY

The Tektronix 4000 (4010, 4014, etc.), 4100 and 4200 series of graphics terminals
(and the multitude of terminals and microcomputers that emulate them) are among
the most common graphics devices available. To use IDL graphics with such
terminals, issue the command:

SET_PLOT,'TEK'

This causes IDL to use the Tektronix driver for producing graphical output. Once the
Tektronix driver is enabled via SET_PLOT, the DEVICE procedure is used to control
its actions, and to configure IDL for the specific features of your terminal. If you
never call the DEVICE procedure, IDL assumes a plain vanilla Tektronix 4000 series
compatible terminal. The 4200 series is upwardly compatible with the 4100 series; all
references to the 4100 series also include the 4200 series. To set up IDL for use with
a 4100 series compatible terminal with n colors, enter the following commands:

SET_PLOT, 'TEK'
DEVICE, /TEK4100, COLORS = n

The number of colors should be set to 2B where B is the number of bit planes in your
terminal. If you use a Tektronix compatible terminal that requires calling the
DEVICE procedure for configuration, you should probably create and use a start-up
procedure the calls the DEVICE procedure, as described in Chapter 2. Because of the
tremendous variation among the requirements and abilities of these terminals, it is
crucial that you configure IDL properly for your terminal. In particular, the mode
switching character sequences, set by the keyword parameters SET_STRING and
RESET_STRING must be set correctly.

The DEVICE Procedure For Tektronix Terminals

The default setting for Tektronix output is: 10-bit coordinates, 4000 series terminals,
and no use of color. The DEVICE keywords can be used to modify these defaults.

Tektronix Limitations

• The line drawing procedures work with all models. Line style and color
capabilities vary greatly among terminal models and/or emulation programs.
The Tektronix Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2385
• Color and the display of images (albeit very slowly and frequently of a poor
quality because of the small number of colors) is usable only with 4100 series
terminals. Hardware polygon fill and thick lines do not work with the 4000
series.

• The image coordinate system does not match the graphics coordinate system.
The graphics coordinates range from 0 to 3071 in Y, and from 0 to 4095 in X.
Image coordinates vary according to terminal model. A typical range is from 0
to 479 in Y, and 0 to 639 in X. Because of this, the SHADE_SURF procedure
does not work with Tektronix terminals.

Warning
Not all 4100 series terminals are capable of displaying images—the Tektronix pixel
operations option is required. Many terminal emulators do not emulate this option.
The Tektronix commands used to output images are: RU, begin pixel operations,
RS, set pixel viewport, and RP, raster write. If your terminal or emulator does not
accept these commands, you will not be able to display images.

• The Tektronix graphics protocol does not allow the specification of line
thickness. Lines with a thickness more than 1.0 are drawn using polygon
filling in the case of 4100 series terminals. With 4000 series terminals, thick
lines are emulated by drawing multiple thin lines. This scheme will produce
artifacts on some Tektronix emulating devices because of differing resolutions,
normal line thicknesses and inexact coordinate conversions.

Tektronix Device Limitations

Usage of Tektronix and Tektronix-compatible terminals with IDL has the following
limitations:

• Image coordinates do not match the coordinates used by the rest of the graphic
procedures. This is because no two models of Tektronix terminals are
compatible. The graphics procedures utilize the default coordinate system of
1024 by 780, or 4096 by 3120 in the 12-bit mode. The size of the pixel
memory and coordinate system vary widely between models. The Position
parameter of the TV and TVSCL procedures does not work.

• The cursor can not be positioned from the computer meaning that the TVCRS
procedure cannot be used with the Tektronix driver.

• Pixel values may not be read back from the terminal, rendering the TVRD
function inoperable.
IDL Reference Guide The Tektronix Device

2386 Appendix B: IDL Graphics Devices
The Microsoft Windows Device

Device Keywords Accepted by the WIN Device:

BYPASS_TRANSLATION, COPY, CURSOR_CROSSHAIR,
CURSOR_ORIGINAL, CURSOR_STANDARD, DECOMPOSED,
GET_CURRENT_FONT, GET_FONTNAMES, GET_FONTNUM,
GET_GRAPHICS_FUNCTION, GET_SCREEN_SIZE,
GET_WINDOW_POSITION, PRINT_FILE, RETAIN, SET_CHARACTER_SIZE,
SET_FONT, SET_GRAPHICS_FUNCTION, TRANSLATION,
WINDOW_STATE

The Microsoft Windows version of IDL uses the “WIN” device by default. This
device is similar to the X Windows device described below. The “WIN” device is
only available in IDL for Windows.

To set plotting to the Microsoft Windows device, use the command:

SET_PLOT, 'WIN'
The Microsoft Windows Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2387
The X Windows Device

Device Keywords Accepted by the X Device:

BYPASS_TRANSLATION, COPY, CURSOR_CROSSHAIR, CURSOR_IMAGE,
CURSOR_MASK, CURSOR_ORIGINAL, CURSOR_STANDARD,
CURSOR_XY, DECOMPOSED, DIRECT_COLOR, FLOYD,
GET_CURRENT_FONT, GET_FONTNAMES, GET_FONTNUM,
GET_GRAPHICS_FUNCTION, GET_SCREEN_SIZE, GET_VISUAL_NAME,
GET_WINDOW_POSITION, GET_WRITE_MASK, ORDERED,
PSEUDO_COLOR, RETAIN, SET_CHARACTER_SIZE, SET_FONT,
SET_GRAPHICS_FUNCTION, SET_TRANSLATION, SET_WRITE_MASK,
STATIC_COLOR, STATIC_GRAY, THRESHOLD, TRUE_COLOR, TTY,
WINDOW_STATE

X Windows is a network-based windowing system developed by MIT’s project
Athena. IDL uses the X System (often referred to simply as “X”), to provide an
environment in which the user can create one or more independent windows, each of
which can be used for the display of graphics and/or images.

In the X system, there are two basic cooperating processes: clients and servers. A
server consists of a display, keyboard, and pointer (such as a mouse) as well as the
software that controls them. Client processes (such as IDL) display graphics and text
on the screen of a server by sending X protocol requests across the network to the
server. Although in the most common case, the server and client reside on the same
machine, this network based design allows much more elaborate configurations.

To use X Windows as the current graphics device, issue the IDL command:

SET_PLOT, 'X'

This causes IDL to use the X Window System for producing graphical output. Once
the X driver is enabled via SET_PLOT, the DEVICE procedure is used to control its
actions, as described below.

Use the statement:

HELP, /DEVICE

to view the current state of the X Windows driver.

X Windows Visuals

Visuals specify how the hardware deals with color. The X Window server (your
display) may provide colors or only gray scale (black and white), or both. The color
IDL Reference Guide The X Windows Device

2388 Appendix B: IDL Graphics Devices
tables may be changeable from within IDL (read-write), or may be fixed (read-only).
The value of each pixel value may be mapped to any color (Un-decomposed
Colormap), or certain bits of each pixel are dedicated to the red, green, and blue
primary colors (Decomposed Colormap).

There are six X Windows visual classes—read-write and read-only visuals for three
types of displays: Gray Scale, Pseudo Color, and Decomposed Color. The names of
the visuals are shown in the following table:

IDL supports all six types of visuals, although not at all possible depths. UNIX X
Window System users can use the command xdpyinfo to determine which visuals
are supported by their systems.

Each X Window server has a default visual class. Many servers may provide multiple
visual classes. For example, a server with display hardware that supports an 8-bit-
deep, un-decomposed, writable color map (PseudoColor), may also easily provide
StaticColor, StaticGray, and GrayScale visuals.

You can select the visual used by IDL using the DEVICE procedure before a window
is created, or by including the resource idl.gr_visual in your X defaults file, as
explained in “Setting the X Window Defaults” on page 2394.

How IDL Selects a Visual Class

When opening the display, IDL asks the display for the following visuals, in order,
until a supported visual class is found:

1. DirectColor, 24-bit

2. TrueColor, 24-bit

Visual Name Writable Description

StaticGray no Gray scale

GrayScale yes Gray scale

StaticColor no Undecomposed color

PseudoColor yes Undecomposed color

TrueColor no Decomposed color

DirectColor yes Decomposed color

Table B-15: X Windows Visual Classes
The X Windows Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2389
3. PseudoColor, 8-bit, then 4-bit

4. StaticColor, 8-bit, then 4-bit

5. GrayScale, any depth

6. StaticGray, any depth

You can override this behavior by using the DEVICE routine to specify the desired
visual class and depth before you create a window. For example, if you are using a
display that supports both the DirectColor, 24-bit-deep visual, and an 8-bit-deep
PseudoColor visual, IDL will select the 24-bit-deep DirectColor visual. To instead
use PseudoColor, issue the following command before creating a window:

DEVICE, PSEUDO_COLOR = 8

The colormap/visual class combination is chosen when IDL first connects with the X
Window server. Note that if you connect with the X server by creating a window or
using the DEVICE keyword to the HELP procedure, the visual class will be set; it
then cannot be changed until IDL is restarted. If you wish to use a visual class other
than the default, be sure to set it with a call to the DEVICE procedure before creating
windows or otherwise connecting with the X Window server.

Windows are created in two ways:

1. Using the WINDOW procedure. WINDOW allows you to explicitly control
many aspects of how the window is created.

2. If no windows exist and a graphics operation requiring a window is executed,
IDL implicitly creates window 0 with the default characteristics.

Once the visual class is selected, all subsequently-created windows share the same
class and colormap. The number of simultaneous colors available is stored in the
system variable !D.N_COLORS. The visual class and number of colors, once
initialized, cannot be changed without first exiting IDL.

How IDL Obtains a Colormap

IDL chooses the type of colormap in the following manner:

• By default, the shared colormap is used whenever possible (i.e., whenever IDL
is using the default visual for the system). All available colors from the shared
colormap are allocated for use by IDL. This is what happens when no window
currently exists and a graphics operation causes IDL to implicitly create one.

• If the number of colors to use is explicitly specified using the COLORS
keyword with the WINDOW procedure, IDL attempts to allocate the number
of colors specified from the shared colormap using the default visual of the
IDL Reference Guide The X Windows Device

2390 Appendix B: IDL Graphics Devices
screen. If there aren’t enough colors available, a private colormap with that
number of colors is used instead.

• Specifying a negative value for the COLORS keyword to the WINDOW
procedure causes IDL to attempt to use the shared colormap, allocating all but
the specified number of colors. For example:

WINDOW, COLORS = -8

allocates all but 8 of the currently available colors. This allows other
applications that might need their own colors to run in tandem with IDL.

• If a visual type and depth is specified, via the DEVICE procedure, which does
not match the default visual of the screen, a new, private, colormap is created.

Using Color Under X

Colormaps define the mapping from color index to screen color. Two attributes of
colormaps are important to the IDL user: they may be private or shared; and they
may be static or writable. These different types of colormaps are described below.

Shared Colormaps

The window manager creates a colormap when it is started. This is known as the
default colormap, and can be shared by most applications using the display. When
each application requires a colormap entry (i.e., a mapping from a color index to a
color), it allocates one from this shared table. Advantages and disadvantages of
shared colormaps include:

• Using the shared colormap ensures that all applications share the available
colors without conflict. A given application will not change a color that is
allocated to a different application. In the case of IDL it means that IDL can
change the colors it has allocated without changing the colors in use by the
window manager or other applications.

• The window system interface routines must translate between the actual and
allocated pixel values, significantly slowing the transfer of images.

• The shared colormap might not have enough colors available to perform the
desired operations with IDL.

• The number of available colors in the shared colormap depends on the window
manager in use and the demands of other applications. Thus, the number of
available colors can vary.
The X Windows Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2391
• The allocated colors in a shared colormap do not generally start at zero and
they are not necessarily contiguous. This makes it difficult to use the write
mask for certain operations.

Private Colormaps

An application can create its own private color map. Most hardware can only display
a single colormap at a time, so these private colormaps are called virtual color maps,
and only one at a time is actually in use and visible. When the window manager gives
the color focus to a window with a private colormap, the X window system loads its
virtual colormap into the hardware colormap.

• Every color index supported by the hardware is available to IDL, improving
the quality of images.

• Allocated colors always start at zero and are contiguous. This simplifies using
the write mask.

• No translation between internal pixel values and the values required by the
server is required, making the transfer of images more efficient.

• When the IDL colormap is loaded, other applications are displayed using the
wrong colors. Furthermore, colors from the shared colormap are usually
allocated from the lower end of the map first. These are the colors allocated by
the window manager for such things as window borders, the color of text, and
so forth. Since most IDL colormaps have very dark colors in the lower entries,
the end effect with the IDL colormap loaded is that the non-IDL portions of the
screen go blank.

Static Colormaps

As mentioned above, the contents of static colormaps are determined outside of IDL
and cannot be changed. When using a static colormap, the TVLCT procedure
simulates writable colormaps by finding the closest RGB color entry in the colormap
to the requested color. The colormap translation table is then set to map IDL color
indices to those of the closest colors in the colormap.

The colors present in the colormap may, and probably will, not match the requested
colors exactly. For example, with a typical static color map, loading the IDL standard
color table number 0, which consists of 256 intensities of gray, results in only 8 or 16
distinct intensities.

With static colormaps, loading a new color table does not affect the appearance of
previously written objects. The internal translation tables are modified, which only
affects objects that are subsequently written.
IDL Reference Guide The X Windows Device

2392 Appendix B: IDL Graphics Devices
Color Translation

As mentioned above, colors from the shared colormap do not necessarily start from
index zero, and are not necessarily contiguous. IDL preserves the illusion of a zero
based contiguous colormap by maintaining a translation table between user color
indices, which range from 0 to !D.TABLE_SIZE, and the actual pixel values
allocated from the X server. Normally, the user need not be concerned with this
translation table, but it is available using the statement:

DEVICE, TRANSLATION=T

This statement stores the current translation table, a 256 element byte vector, in the
variable T. Element zero of the vector contains the value pixel allocated for the zeroth
color in the IDL colormap, and so forth. In the case of a private colormap, each
element of the translation vector contains it’s own index value, because private
colormaps start at zero and are contiguous.

The translation table may be bypassed, allowing direct access to the display’s color
indices, by setting the BYPASS_TRANSLATION keyword in the DEVICE
procedure.

DEVICE, /BYPASS_TRANSLATION

Translation can be reestablished by setting the keyword to zero:

DEVICE, BYPASS_TRANSLATION=0

When a private or static (read-only) color table is initialized, the bypass flag is
cleared. It is set when initializing a shared color table.

Using Pixmaps

X Windows can direct graphics to windows or pixmaps. Windows are the usual
windows that appear on the screen and contain graphics. Pixmaps are invisible
graphics memory contained in the server. Drawing to a window produces a viewable
result, while drawing to a pixmap simply updates the pixmap memory.

Pixmaps are useful because it is possible to write graphics to a pixmap and then copy
the contents of the pixmap to a window where it can be viewed. Furthermore, this
copy operation is very fast because it happens entirely within the server. Provided
enough pixmap memory is available, this technique works very well for animating a
series of images by placing the images into pixmap memory and then sequentially
copying them to a visible window.

To create a pixmap, use the PIXMAP keyword with the WINDOW procedure. For
example, to create a square pixmap with 128 pixels per side as IDL window 1, use the
command:
The X Windows Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2393
WINDOW, 1, /PIXMAP, XSIZE=128, YSIZE=128

Once they are created, pixmaps are treated just like normal windows, although some
operations (WSHOW for instance) don’t do anything useful when applied to a
pixmap.

The following procedure shows how animation can be done using pixmap memory. It
uses a series of 15 heart images taken from the file abnorm.dat. This file is supplied
with all IDL distributions in the examples/data subdirectory of the main IDL
directory. It creates a pixmap and writes the heart images to it. It then uses the COPY
keyword of the DEVICE procedure to copy the images to a visible window. Pressing
any key causes the display process to halt:

; Animate heart series:
PRO animate_heart
; Open the file containing the images:
OPENR, u, FILEPATH('abnorm.dat', SUBDIR = ['examples','data']), $

/GET_LUN
; Associate a file variable with the file. Each heart image
; is 64x64 pixels:
frame = ASSOC(u, BYTARR(64,64))
; Window pixwin is a pixmap which is 4 images tall and 4
; images wide. The images will be placed in this pixmap:
WINDOW, pixwin, /PIXMAP, XSIZE = 512, YSIZE = 512, /FREE
; Write each image to the pixmap. SMOOTH is used to improve
; the appearance of each image and REBIN is used to
; enlarge/shrink each image to the final display size:
FOR i=0, 15-1 DO TV, REBIN(SMOOTH(frame[i],3), 128, 128),i
; Close the image file and free the file unit:
FREE_LUN, u
; Window win is a visible window. It will be used to display
; the animated heart cycle:
WINDOW, win, XSIZE = 128, YSIZE=128, TITLE='Heart', /FREE
; Current frame number:
i = 0L
; Display frames until any key is pressed:
WHILE GET_KBRD(0) EQ '' DO BEGIN
; Compute x and y locations of pixmap image’s lower left corner:

x = (i mod 4) * 128 & y = 384 - (i/4) * 128
; Copy the next image from the pixmap to the visible window:
DEVICE, COPY = [x, y, 128, 128, 0, 0, pixwin]
; Keep track of total frame count:
i = (i + 1) MOD 15
ENDWHILE
END
IDL Reference Guide The X Windows Device

2394 Appendix B: IDL Graphics Devices
Animation sequences with more and/or larger images can be made. See the
documentation for the XANIMATE procedure, which is a more generalized
embodiment of the above procedure.

Note: Some X Windows servers will refuse to create a pixmap that is larger than the
physical screen in either dimension.

Setting the X Window Defaults

You can set the initial default value of the following parameters by setting resources
in the file .Xdefaults (UNIX), or DECW$SM_GENERAL.DAT (VMS) in your home
directory as follows:

For example, to set the default visual to PseudoColor, and to allocate 100 colors,
insert the following lines in your defaults file:

idl.gr_visual: PseudoColor
idl.colors: 100

Resource Name Description

idl.colors The number of colors used by IDL.

idl.gr_depth The depth, in bits, of the visual used by IDL.

idl.retain The default setting for the retain parameter: 0=none,
1= by server, 2=by IDL.

idl.gr_visual The type of visual: StaticGray, GrayScale, StaticColor,
PseudoColor, TrueColor, or DirectColor.

idl.olh_text_width The width for the online help window.

idl.olh_text_height The height for the online help window.

Table B-16: IDL/ X Window Defaults
The X Windows Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2395
The Z-Buffer Device

Device Keywords Accepted by the Z Device:

CLOSE, GET_GRAPHICS_FUNCTION, GET_WRITE_MASK,
SET_CHARACTER_SIZE, SET_COLORS, SET_FONT,
SET_GRAPHICS_FUNCTION, SET_RESOLUTION, Z_BUFFERING

The IDL Z-buffer device is a pseudo device that draws 2D or 3D graphics in a buffer
contained in memory. This driver implements the classic Z buffer algorithm for
hidden surface removal. Although primarily used for 3D graphics, the Z-buffer driver
can be used to create 2D objects in a frame buffer in memory. The resolution of this
device can be set by the user.

All of the IDL plotting and graphics routines work with the Z-buffer device driver. In
addition, the POLYFILL procedure has a few keyword parameters, allowing
Gouraud shading and warping images over 3D polygons, that are only effective when
used with the Z-buffer.

When used for 3D graphics, two buffers are present: an 8-bit-deep frame buffer that
contains the picture; and a 16-bit-deep Z-buffer of the same resolution, containing the
z-value of the visible surface of each pixel. The Z-buffer is initialized to the depth at
the back of the viewing volume. When objects are drawn, the z-value of each pixel is
compared with the value at the same location in the Z-buffer, and if the z-value is
greater (closer to the viewer), the new pixel is written in the frame buffer and the Z-
buffer is updated with the new z-value.

The Z-buffer device is a “pseudo device” in that drawing commands update buffers
in memory rather than sending commands to a physical device or file. The TVRD
function reads the contents of either buffer to an IDL array. This array may then be
further processed, written to a file, or output to a raster-based graphics output device.

The Z-buffer driver can be used for 2D graphics by disabling the depth computations.

To use the Z-buffer as the current graphics device, issue the IDL command:

SET_PLOT, 'Z'

Once the Z-buffer driver is enabled the DEVICE procedure is used to control its
actions, as described below.

Use the statement:

HELP, /DEVICE
IDL Reference Guide The Z-Buffer Device

2396 Appendix B: IDL Graphics Devices
to view the current state of the Z-buffer driver and the amount of memory used for
the buffers.

Reading and Writing Buffers

The contents of both buffers are directly accessed by the TV and TVRD routines. The
frame buffer that contains the picture is 8 bits deep and is accessed as channel 0. The
Z depth buffer contains 16 bit integers and is accessed as channel 1. Always use
CHANNEL=1 and set the keyword WORDS when reading or writing the depth buffer.

The normal procedure is to set the graphics device to “Z”, draw the objects, read the
frame buffer, and then select another graphics device and write the image. For
example, to create an image with the Z-buffer driver and then display it on an X-
Window display:

; Select Z-buffer device:
SET_PLOT,'Z'
; Write objects to the frame buffer using normal graphics
; routines, e.g. PLOT, SURFACE, POLYFILL
...
; Read back the entire frame buffer:
a=TVRD()
; Select X Windows:
SET_PLOT,'X'
; Display the contents of the frame buffer:
TV, a

To read the depth values in the Z-buffer, use the command:

a = TVRD(CHANNEL=1, /WORDS)

To write the depth values, use the command:

TV, a, /WORDS, CHANNEL=1

The TV, TVSCL, and TVRD routines write or read pixels directly to a rectangular
area of the designated buffer without affecting the other buffer.

Z-Axis Scaling

The values in the depth buffer are short integers, scaled from -32765 to +32765,
corresponding to normalized Z-coordinate values of 0.0 to 1.0.

Polyfill Procedure

The following POLYFILL keywords are active only with the Z-buffer device:
IMAGE_COORDINATES, IMAGE_INTERPOLATE, and TRANSPARENT. These
The Z-Buffer Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2397
parameters allow images, specified via the PATTERN keyword, to be warped over
2D and 3D polygons.

The IMAGE_COORDINATES keyword contains a 2 by N array containing the image
space coordinates that correspond to each of the N vertices of the polygon. The
IMAGE_INTERPOLATE keyword indicates that bilinear interpolation is to be used,
rather than the default nearest neighbor sampling. Pixels less than the value of
TRANSPARENT are not drawn, simulating transparency. For Gouraud shading of
polygons, the COLOR keyword can contain an array specifying the color index for
each polygon vertex.

Examples Using the Z-Buffer

This example forms a Bessel function, draws its shaded surface and overlays its
contour, using the Z-buffer as shown in the following figure.The final output is
directed to PostScript.

; Select the Z-buffer:
SET_PLOT, 'Z'
n = 50 ; Size of array for Bessel
; Make the Bessel function:
a = BESELJ(SHIFT(DIST(n), n/2, n/2)/2, 0)
; Draw the surface, label axes in black, background in white:
SHADE_SURF, a, /SAVE, COLOR=1, BACKGROUND=255
nlev = 8 ; Number of contour levels
; Make the Contour at normalized Z=.6:
CONTOUR, a, /OVERPLOT, ZVALUE=.6, /T3D, $

LEVELS=FINDGEN(nlev)*1.5/nlev-.5, COLOR=1
; Read image:
b=TVRD()
; Select PostScript output:
SET_PLOT, 'PS'
; Output the image:
TV, b
; Close the new PostScript file:
DEVICE, /CLOSE
IDL Reference Guide The Z-Buffer Device

2398 Appendix B: IDL Graphics Devices
The following example warps an image to a cube as shown in the figure below. The
lower two quadrants of the image are warped to the front two faces of the cube. The
upper-right quadrant is warped to the top face of the cube. The image is held in the
array a, with dimensions nx by ny. The image is then output to PostScript as in the
previous example.

; Select the Z-buffer:
SET_PLOT, 'Z'
; Make a white background for final output to PostScript:
ERASE, 255
; Establish 3D scaling as (0,1) cube:
SCALE3, XRANGE=[0,1], YRANGE=[0,1], ZRANGE=[0,1]
; Define vertices of cube. Vertices 0-3 are bottom, 4-7 are top:
verts = [[0,0,0], [1,0,0], [1,1,0], [0,1,0], $

[0,0,1], [1,0,1], [1,1,1], [0,1,1]]
; Fill lower left face:
POLYFILL, verts[*, [3,0,4,7]], /T3D, PATTERN=a, $

IMAGE_COORD=[[0,0], [nx/2,0], [nx/2,ny/2], [0,ny/2]]
; Fill lower right face:
POLYFILL, verts[*, [0,1,5,4]], /T3D, PATTERN=a, $

IMAGE_COORD=[[nx/2,0], [nx-1,0], $
[nx-1,ny/2], [nx/2,ny/2]]

; Fill top face:
POLYFILL, verts[*, [4,5,6,7]], /T3D, PATTERN=a, $

IMAGE_COORD = [[nx/2,ny/2], [nx-1,ny/2], $
[nx-1,ny-1], [nx/2,ny-1]]

; Draw edges of cube in black:
PLOTS, verts[*, [0,4]], /T3D, COLOR=0
; Edges of top face:

Figure B-7: Combined Shaded Surface and Contour Plot
The Z-Buffer Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2399
PLOTS, verts[*, [4,5,6,7,4]], /T3D, COLOR=0

Figure B-8: Image Warped to a Cube Using the Z-Buffer
IDL Reference Guide The Z-Buffer Device

2400 Appendix B: IDL Graphics Devices
The Z-Buffer Device IDL Reference Guide

Appendix C:

Graphics Keywords
The IDL Direct Graphics routines, CURSOR, ERASE, PLOTS, POLYFILL, TV
(and TVSCL), TVCRS, TVRD, and XYOUTS, and the plotting procedures, AXIS,
CONTOUR, PLOT, OPLOT, SHADE_SURF, and SURFACE, accept a number of
common keywords. Therefore, instead of describing each keyword along with the
description of each routine, this section contains a brief summary of each graphics
keyword. Routine-specific keywords are documented in the description of the
routine.

The graphics keywords are described below. The name of each keyword is followed
by a list of routines that accept that keyword. Keywords that have a direct
correspondence to fields in a system variable (usually !P) are also indicated.

The keywords that control the plot axes are prefixed with the character ‘X’, ‘Y’, or
‘Z’ depending on the axis in question. These keywords correspond to fields in the
axis system variables: !X, !Y, and !Z, and are described in more detail in “Graphics
System Variables” on page 2437 The axis keywords are shown in the form
[XYZ]NAME. For example, [XYZ]CHARSIZE refers to the three keywords
XCHARSIZE, YCHARSIZE, and ZCHARSIZE, which control the size of the
characters annotating the three axes.
IDL Reference Guide 2401

2402 Appendix C: Graphics Keywords
The system variable fields that control this are !X.CHARSIZE, !Y.CHARSIZE, and
!Z.CHARSIZE.

The following graphics keywords are discussed in this appendix:

BACKGROUND

Accepted by: CONTOUR, PLOT, SURFACE.

System variable equivalent: !P.BACKGROUND.

The background color index to which all pixels are set when erasing the screen or
page. The default is 0 (black). Not all devices support erasing the background to a
specified color index.

For example, to produce a black plot with a white background on a color display:

PLOT, Y, BACKGROUND = 255, COLOR = 0

CHANNEL

Accepted by: ERASE, TV, TVRD. System variable equivalent: !P.CHANNEL.

BACKGROUND ORIENTATION [XYZ]STYLE

CHANNEL POSITION [XYZ]THICK

CHARSIZE PSYM [XYZ]TICK_GET

CHARTHICK SUBTITLE [XYZ]TICKFORMAT

CLIP SYMSIZE [XYZ]TICKINTERVAL

COLOR T3D [XYZ]TICKLAYOUT

DATA THICK [XYZ]TICKLEN

DEVICE TICKLEN [XYZ]TICKNAME

FONT TITLE [XYZ]TICKS

LINESTYLE [XYZ]CHARSIZE [XYZ]TICKUNITS

NOCLIP [XYZ]GRIDSTYLE [XYZ]TICKV

NODATA [XYZ]MARGIN [XYZ]TITLE

NOERASE [XYZ]MINOR Z

NORMAL [XYZ]RANGE ZVALUE
IDL Reference Guide

Appendix C: Graphics Keywords 2403
This keyword specifies the memory channel for the operation. This parameter is
ignored on display systems that have only one memory channel. When using a
“decomposed” display system, the red channel is 1, the green channel is 2, and the
blue channel is 3. Channel 0 indicates all channels. If omitted, !P.CHANNEL
contains the default channel value.

Note
CONTOUR, PLOT, SHADE_SURF, and SURFACE also accept the CHANNEL
keyword, but simply pass it to ERASE.

CHARSIZE

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE, XYOUTS.
System variable equivalent: !P.CHARSIZE.

The overall character size for the annotation when Hershey fonts are selected. This
keyword does not apply when hardware (i.e. PostScript) fonts are selected. A
CHARSIZE of 1.0 is normal. The size of the annotation on the axes may be set,
relative to CHARSIZE, with xCHARSIZE, where x is X, Y, or Z. The main title is
written with a character size of 1.25 times this parameter.

CHARTHICK

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE, XYOUTS.
System variable equivalent: !P.CHARTHICK.

An integer value specifying the line thickness of the vector drawn font
characters.This keyword has no effect when used with the hardware drawn fonts. The
default value is 1.

CLIP

Accepted by: CONTOUR, DRAW_ROI, OPLOT, PLOT, PLOTS, POLYFILL,
SURFACE, XYOUTS. System variable equivalent: !P.CLIP.

The coordinates of a rectangle used to clip the graphics output. The rectangle is
specified as a vector of the form [X0, Y0, X1, Y1], giving coordinates of the lower left
and upper right corners, respectively. The default clipping rectangle is the plot
window, the area enclosed within the axes of the most recent plot. Coordinates are
specified in data units unless an overriding coordinate unit specification keyword is
present (i.e., NORMAL or DEVICE). If the clipping is provided in data or
IDL Reference Guide

2404 Appendix C: Graphics Keywords
normalized units, the actual clipping rectangle is computed by converting those
values to device units. The clipping itself always occurs in device space.

Note
The default is not to clip the output of PLOTS and XYOUTS. To enable clipping
include the keyword parameter NOCLIP = 0. With PLOTS, POLYFILL, and
XYOUTS, this keyword controls the clipping of vectors and vector-drawn text.

For example, to draw a vector using normalized coordinates with its contents clipped
within a rectangle covering the upper left quadrant of the display:

PLOTS, X, Y, CLIP=[0.,.5,.5,1.0], /NORM, NOCLIP=0

COLOR

Accepted by: AXIS, CONTOUR, DRAW_ROI, ERASE, OPLOT, PLOT, PLOTS,
POLYFILL, SHADE_SURF, SURFACE, XYOUTS. System variable equivalent:
!P.COLOR.

The color index of the data, text, line, or solid polygon fill to be drawn. If this
keyword is omitted, !P.COLOR specifies the color index.

When used with the PLOTS, POLYFILL, or XYOUTS procedure, this keyword
parameter can be set to a vector to specify multiple color indices.

Gouraud shading of polygons is performed with the Z-buffer graphics output device
and POLYFILL procedure when COLOR contains an array of color indices, one for
each vertex.

DATA

Accepted by: AXIS, CONTOUR, CURSOR, DRAW_ROI, PLOT, PLOTS,
POLYFILL, SHADE_SURF, SURFACE, TV, TVCRS, XYOUTS.

Set this keyword to indicate that the clipping and/or positioning coordinates supplied
are specified in the data coordinate system. The default coordinate system is DATA if
no other coordinate-system specifications are present.

DEVICE

AXIS, CONTOUR, CURSOR, DRAW_ROI, PLOT, PLOTS, POLYFILL,
SHADE_SURF, SURFACE, TV, TVCRS, XYOUTS.
IDL Reference Guide

Appendix C: Graphics Keywords 2405
Set this keyword to indicate that the clipping and/or positioning coordinates supplied
are specified in the device coordinate system. The default coordinate system is
DATA if no other coordinate-system specifications are present.

For example, the following code displays an image contained in the variable A and
then draws a contour plot of pixels [100:499, 100:399] over the correct section of the
image:

;Display the image.
TV,A

;Draw the contour plot, specify the coordinates of the plot, in
;device coordinates, do not erase, set the X and Y axis styles to
;EXACT.
CONTOUR, A[100:499, 100:399], $

POS = [100,100, 499,399], /DEVICE, $
/NOERASE, XSTYLE=1, YSTYLE=1

Note that in the above example, the keyword specification /DEVICE is equivalent to
DEVICE = 1.

FONT

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE, XYOUTS.
System variable equivalent: !P.FONT.

An integer that specifies the graphics text font system to use. Set FONT equal to -1 to
selects the Hershey character fonts, which are drawn using vectors. Set FONT equal
to 0 (zero) to select the device font of the output device. Set FONT equal to 1 (one) to
select the TrueType font system. See Appendix H, “Fonts” for a complete description
of IDL’s font systems.

LINESTYLE

Accepted by: DRAW_ROI, OPLOT, PLOT, PLOTS, SURFACE. System variable
equivalent: !P.LINESTYLE.
IDL Reference Guide

2406 Appendix C: Graphics Keywords
This keyword indicates the line style used to draw lines; it indicates the line style of
the lines used to connect the data points. This keyword should be set to the
appropriate index for the desired linestyle as described in the following table.

NOCLIP

Accepted by: CONTOUR, DRAW_ROI, OPLOT, PLOT, PLOTS, POLYFILL,
SURFACE, XYOUTS. System variable equivalent: !P.NOCLIP.

Set this keyword to suppress clipping of the plot. The clipping rectangle is contained
in !P.CLIP. By default, the plot is clipped within the plotting window.

Note
The default value is clipping-disabled for PLOTS, POLYFILL, and XYOUTS. For
all other routines, the default is to enable clipping.

With PLOTS, POLYFILL, and XYOUTS, this keyword controls the clipping of
vectors and vector-drawn text. The default is to disable clipping, so to enable clipping
include the parameter NOCLIP = 0. To explicitly disable clipping set this parameter
to one.

NODATA

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE.

If this keyword is set, only the axes, titles, and annotation are drawn. No data points
are plotted.

For example, to draw an empty set of axes between some given values:

Index Linestyle

0 Solid

1 Dotted

2 Dashed

3 Dash Dot

4 Dash Dot Dot

5 Long Dashes

Table C-1: IDL Linestyles
IDL Reference Guide

Appendix C: Graphics Keywords 2407
PLOT, [XMIN, XMAX],[YMIN, YMAX], /NODATA

NOERASE

Accepted by: AXIS, CONTOUR, PLOT, SURFACE. System variable equivalent:
!P.NOERASE.

Specifies that the screen or page is not to be erased. By default, the screen is erased,
or a new page is begun, before a plot is produced.

NORMAL

Accepted by: AXIS, CONTOUR, CURSOR, DRAW_ROI, PLOT, PLOTS,
POLYFILL, SHADE_SURF, SURFACE, TV, TVCRS, XYOUTS.

Set this keyword to indicate that the clipping and/or positioning coordinates supplied
are specified in the normalized coordinate system, and range from 0.0 to 1.0. The
default coordinate system is DATA if no other coordinate-system specifications are
present.

ORIENTATION

Accepted by: DRAW_ROI, POLYFILL, XYOUTS.

Specifies the counterclockwise angle in degrees from horizontal of the text baseline
and the lines used to fill polygons.When used with the POLYFILL procedure, this
keyword forces the “linestyle” type of fill, rather than solid or patterned fill.

POSITION

Accepted by: CONTOUR, MAP_SET, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: !P.POSITION.

Allows direct specification of the plot window. POSITION is a 4-element vector
giving, in order, the coordinates [(X0, Y0), (X1, Y1)], of the lower left and upper right
corners of the data window. Coordinates are expressed in normalized units ranging
from 0.0 to 1.0, unless the DEVICE keyword is present, in which case they are in
actual device units. The value of POSITION is never specified in data units, even if
the DATA keyword is present.

When setting the position of the window, be sure to allow space for the annotation,
which resides outside the window. IDL outputs the message “% Warning: Plot
truncated.” if the plot region is larger than the screen or page size. The plot region is
the rectangle enclosing the plot window and the annotation.
IDL Reference Guide

2408 Appendix C: Graphics Keywords
When plotting in three dimensions, the POSITION keyword is a 6-element vector
with the first four elements describing, as above, the XY position, and with the last
two elements giving the minimum and maximum Z coordinates. The Z specification
is always in normalized coordinate units.

When making more than one plot per page it is more convenient to set !P.MULTI
than to manipulate the position of the plot directly with the POSITION keyword.

For example, the following statement produces a contour plot with data plotted in
only the upper left quarter of the screen:

CONTOUR, Z, POS=[0., 0.5, 0.5, 1.0]

Because no space on the left or top edges was allowed for the axes or their
annotation, the above described warning message results.

PSYM

Accepted by: DRAW_ROI, OPLOT, PLOT, PLOTS. System variable equivalent:
!P.PSYM.

The symbol used to mark each data point. Normally, PSYM is 0, data points are
connected by lines, and no symbols are drawn to mark the points. Set this keyword,
or the system variable !P.PSYM, to the symbol index as shown in the table below to
mark data points with symbols. The keyword SYMSIZE is used to set the size of the
symbols.

PSYM
Value Plotting Symbol

1 Plus sign (+)

2 Asterisk (*)

3 Period (.)

4 Diamond

5 Triangle

6 Square

7 X

8 User-defined. See USERSYM procedure.

Table C-2: Values for the PSYM Keyword
IDL Reference Guide

Appendix C: Graphics Keywords 2409
Negative values of PSYM cause the symbol designated by PSYM to be plotted at
each point with solid lines connecting the symbols. For example, a value of -5 plots
triangles at each data point and connects the points with lines.

The following IDL code plots an array using points, and then overplots the smoothed
array, connecting the points with lines:

;Plot using points.
PLOT, A, PSYM=3

;Overplot smoothed data.
OPLOT, SMOOTH(A,7)

SUBTITLE

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: !P.SUBTITLE.

A text string to be used as a subtitle for the plot. Subtitles appear below the X axis.

SYMSIZE

Accepted by: DRAW_ROI, OPLOT, PLOT, PLOTS.

Specifies the size of the symbols drawn when PSYM is set. The default size of 1.0
produces symbols approximately the same size as a character.

T3D

Accepted by: AXIS, CONTOUR, DRAW_ROI, MAP_SET, OPLOT, PLOT,
PLOTS, POLYFILL, SHADE_SURF, SURFACE, TV, TVCRS, XYOUTS. System
variable equivalent: !P.T3D.

9 Undefined

10 Histogram mode. Horizontal and vertical lines connect the
plotted points, as opposed to the normal method of
connecting points with straight lines.

PSYM
Value Plotting Symbol

Table C-2: Values for the PSYM Keyword
IDL Reference Guide

2410 Appendix C: Graphics Keywords
Set this keyword to indicate that the generalized transformation matrix in !P.T is to be
used. If not present, the user-supplied coordinates are simply scaled to screen
coordinates. See the examples in the description of the SAVE keyword.

Note
Since T3D uses the transformation matrix in !P.T, it is important that !P.T contain a
valid transformation matrix. This can be achieved in several ways:

• Use the SAVE keyword to save the transformation matrix from an earlier
graphics operation.

• Establish a transformation matrix using the T3D, SURFR, or, SCALE3
procedures.

• Set the value of !P.T directly.

THICK

Accepted by: AXIS, DRAW_ROI, OPLOT, PLOT, PLOTS, POLYFILL,
SHADE_SURF, SURFACE. System variable equivalent: !P.THICK.

Indicates the line thickness. THICK overrides the setting of !P.THICK.

TICKLEN

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: !P.TICKLEN.

Controls the length of the axis tick marks, expressed as a fraction of the window size.
The default value is 0.02. TICKLEN of 1.0 produces a grid, while a negative
TICKLEN makes tick marks that extend outside the window, rather than inwards.

For example, to produce outward-going tick marks of the normal length:

PLOT, X, Y, TICKLEN = -0.02

To provide a new default tick length, set !P.TICKLEN.

TITLE

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: !P.TITLE.

Produces a main title centered above the plot window. The text size of this main title
is larger than the other text by a factor of 1.25. For example:

PLOT, X, Y, TITLE = 'Final Results'
IDL Reference Guide

Appendix C: Graphics Keywords 2411
[XYZ]CHARSIZE

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalents: ![XYZ].CHARSIZE.

The size of the characters used to annotate the axis and its title when Hershey fonts
are selected. This keyword does not apply when hardware (i.e. PostScript) fonts are
selected. This field is a scale factor applied to the global scale factor set by
!P.CHARSIZE or the keyword CHARSIZE.

[XYZ]GRIDSTYLE

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE

The index of the linestyle to be used for plot tickmarks and grids (i.e., when
[XYZ]TICKLEN is set to 1.0). See LINESTYLE for a list of linestyles.

[XYZ]MARGIN

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].MARGIN.

A 2-element array specifying the margin on the left (bottom) and right (top) sides of
the plot window, in units of character size. Default margins are 10 and 3 for the X
axis, and 4 and 2 for the Y axis. The ZMARGIN keyword is present for consistency
and is currently ignored.

[XYZ]MINOR

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].MINOR.

The number of minor tick marks.

[XYZ]RANGE

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].RANGE.

The desired data range of the axis, a 2-element vector. The first element is the axis
minimum, and the second is the maximum. IDL will frequently round this range. This
override can be defeated using the [XYZ]STYLE keywords.
IDL Reference Guide

2412 Appendix C: Graphics Keywords
[XYZ]STYLE

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].STYLE.

This keyword allows specification of axis options such as rounding of tick values and
selection of a box axis. Each option is described in the following table:

Note that this keyword is set bitwise, so multiple effects can be set by adding values
together. For example, to make an X axis that is both exact (value 1) and suppresses
the box style (setting 8), set the XAXIS keyword to 1+8, or 9.

[XYZ]THICK

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].THICK.

This keyword controls the thickness of the lines forming the axis and tick marks. A
value of 1.0 is the default.

[XYZ]TICK_GET

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE.

A named variable in which to return the values of the tick marks for the designated
axis. The result is a double precision floating-point array with the same number of
elements as ticks.

For example, to retrieve in the variable V the values of the tick marks selected by IDL
for the Y axis:

PLOT, X, Y, YTICK_GET = V

Value Description

1 Force exact axis range.

2 Extend axis range.

4 Suppress entire axis

8 Suppress box style axis (i.e., draw axis on only one side of plot)

16 Inhibit setting the Y axis minimum value to 0 (Y axis only)

Table C-3: Values for the [XYZ]STYLE Keyword
IDL Reference Guide

Appendix C: Graphics Keywords 2413
[XYZ]TICKFORMAT

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKFORMAT.

Set this keyword to a string or a vector of strings. If a vector is provided, each string
corresponds to a level of the axis. The [XYZ]TICKUNITS keyword determines the
number of levels for an axis.

Each string is one of the following:

A format code:

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes” in Chapter 8 of Building IDL Applications for more information
on format codes.

Example 1: Display the X axis tick values using a format of F6.2 (six characters,
with 2 places after the decimal point):

PLOT, X, Y, XTICKFORMAT='(F6.2)'

Example 2: Display the Y tick values using the “dollars and cents” format $dddd.dd:

PLOT, X, Y, YTICKFORMAT='("$", F7.2)'

The string 'LABEL_DATE' :

Set [XYZ]TICKFORMAT to the string 'LABEL_DATE' to create axes with date
labels. The formatting of the labels is specified by first calling LABEL_DATE with
the DATE_FORMAT keyword. See LABEL_DATE for more information.

Example: Use the LABEL_DATE function as the callback function to display the X
tick values in a date/time format:

dummy = LABEL_DATE(DATE_FORMAT='%M %Z')
mytimes = TIMEGEN(12, UNITS='MONTHS', START=JULDAY(1,1,2000))
y = FINDGEN(12)
PLOT, mytimes, y, XTICKUNITS='Time', XTICKFORMAT='LABEL_DATE'

The name of a user-defined function:

If the string does not begin with an open parenthesis, it is interpreted as the name of a
callback function to be used to generate tick mark labels. This function is defined
with either three or four parameters, depending on whether [XYZ]TICKUNITS is
specified:
IDL Reference Guide

2414 Appendix C: Graphics Keywords
If [XYZ]TICKUNITS is not specified, the callback function is called with three
parameters, Axis, Index, and Value, where:

• Axis is the axis number: 0 for X axis, 1 for Y axis, 2 for Z axis.

• Index is the tick mark index (indices start at 0).

• Value is the data value at the tick mark (a double-precision floating point
value).

Note
Value is a double-precision floating-point value that represents the Julian date. The
Julian date follows the astronomical convention, where Julian date 0.0d
corresponds to 1 Jan 4713 B.C.E. at 12 pm.

If [XYZ]TICKUNITS is specified, the callback function is called with four
parameters, Axis, Index, Value, and Level, where:

• Axis, Index, and Value are the same as described above.

• Level is the index of the axis level for the current tick value to be labeled (level
indices start at 0).

Example 1: Use a callback function to display the Y tick values as a percentage of a
fixed value. Note that because we don’t specify [XYZ]TICKUNITS, we do not
include the Level parameter in our function definition:

FUNCTION YTICKS, axis, index, value
 fixvalue = 389.0d
 pvalue = (value/fixvalue) * 100.0d
 RETURN, STRING(pvalue, FORMAT='(D5.2,"%")')
END

PRO use_callback

Y = FINDGEN(10)
PLOT, Y, YTICKFORMAT='YTICKS'

END

Example 2: Create a two-level X axis. Display the X tick values in a customized
date/time format that shows the number of days open for business for each month on
one level, and marks leap years with an asterisk on another level:

FUNCTION XTICKS, axis, index, value, level

 CASE level OF
IDL Reference Guide

Appendix C: Graphics Keywords 2415
 0: BEGIN ; months
 ; Number of days open for business in given month:
 CALDAT, value, month
 open = [18,19,23,20,22,22,19,10,20,21,22,14]
 nbdays = open[month]
 ; Return a string containing the month name plus
 ; the number of business days in parentheses:
 RETURN, STRING(value, nbdays, $
 FORMAT='(C(CMoA), "(", I2, ")")')
 END
 1: BEGIN ; years
 ; Generate a string for the year.
 yrStr = STRING(value, FORMAT='(C(CYI))')
 ; Determine if a leap year. If so,
 ; append an asterisk to the string.
 CALDAT, value, mo, da, yr
 IF (yr MOD 4 EQ 0) THEN BEGIN
 IF (yr MOD 100 EQ 0) THEN $
 isLeap = (yr MOD 400) EQ 0 $
 ELSE $
 IsLeap = 1b
 ENDIF ELSE $
 isLeap = 0b
 IF (isLeap NE 0b) THEN $
 yrStr = yrStr + '*'
 RETURN, yrStr
 END
 ENDCASE

END

PRO plot_sales

 myDates = TIMEGEN(12, UNITS='Months', START=JULDAY(1,1,2000))
 sales = [180,190,230,200,220,220,190,100,200,210,220,140]
 PLOT, myDates, sales, XTICKUNITS=['Months', 'Years'], $
 XTICKFORMAT='XTICKS', XTITLE = 'Date (* = Leap Year)', $
 YTITLE='Sales (units)', POSITION = [0.2, 0.2, 0.9, 0.9]

END

[XYZ]TICKINTERVAL

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE

variable equivalent: ![XYZ].TICKINTERVAL

Set this keyword to a scalar indicating the interval between major tick marks for the
first axis level. The default value is computed according to the axis range
IDL Reference Guide

2416 Appendix C: Graphics Keywords
([XYZ]RANGE) and the number of major tick intervals ([XYZ]TICKS). This
keyword takes precedence over [XYZ]TICKS.

For example, if TICKUNITS=[“Seconds”, “Hours”, “Days”], and
XTICKINTERVAL=30, then the interval between major ticks for the first axis level
will be 30 seconds.

[XYZ]TICKLAYOUT

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKLAYOUT.

Set this keyword to a scalar that indicates the tick layout style to be used to draw each
level of the axis.

Valid values include:

• 0 = The axis line, major tick marks and tick labels are all included. Minor tick
marks only appear on the first level of the axis. This is the default tick layout
style.

• 1 = Only the labels for the major tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

• 2 = Each major tick interval is outlined by a box. The tick labels are
positioned within that box (left-aligned). For the first axis level only, the
major and minor tick marks will also be drawn.

Note
For all tick layout styles, at least one tick label will appear on each level of the axis
(even if no major tick marks fall along the axis line). If there are no major tick
marks, the single tick label will be centered along the axis.

[XYZ]TICKLEN

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKLEN.

This keyword controls the lengths of tick marks (expressed in normal coordinates)
for the individual axes. This keyword, if nonzero, overrides the global tick length
specified in !P.TICKLEN, and/or the TICKLEN keyword parameter, which is
expressed in terms of the window size.
IDL Reference Guide

Appendix C: Graphics Keywords 2417
[XYZ]TICKNAME

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKNAME.

A string array of up to 30 elements that controls the annotation of each tick mark.

[XYZ]TICKS

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKS.

The number of major tick intervals to draw for the axis. If this keyword is omitted,
IDL selects from three to six tick intervals. Setting this field to n, where n > 1,
produces exactly n tick intervals, and n+1 tick marks. Setting this field equal to 1
suppresses tick marks.

[XYZ]TICKUNITS

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKUNITS.

Set this keyword to a string or a vector of strings indicating the units to be used for
axis tick labeling. If a vector of strings is provided, the axis will be drawn in multiple
levels, where each string represents one level in the specified units.

Note
When creating multiple-level axes, you may need to adjust the plot positioning
using the POSITION or [XYZ]MARGIN keywords in order to ensure that axis
labels and titles are visible in the plot window.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).

Valid unit strings include:

• 'Numeric'

• 'Years'

• 'Months'

• 'Days'
IDL Reference Guide

2418 Appendix C: Graphics Keywords
• 'Hours'

• 'Minutes'

• 'Seconds'

• 'Time' - Use this value to indicate that the tick values are time values; IDL will
determine the appropriate time intervals and tick label formats based upon the
range of values covered by the axis.

• ''- Use the empty string to indicate that no tick units are being explicitly set.
This implies that a single axis level will be drawn using the 'Numeric' unit.
This is the default setting.

If any of the time units are utilized, the tick values are interpreted as Julian date/time
values.

Note that the singular form of each of the time value strings is also acceptable (e.g,
TICKUNITS='Day' is equivalent to TICKUNITS='Days').

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

[XYZ]TICKV

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKV.

The data values for each tick mark, an array of up to 60 elements.

Note
To specify the number of ticks and their values exactly, set [XYZ]TICKS=N(where
N > 1) and [XYZ]TICKV=Values, where Values has N+1 elements.

[XYZ]TITLE

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TITLE.

A string that contains a title for the specified axis.
IDL Reference Guide

Appendix C: Graphics Keywords 2419
Z

Accepted by: PLOTS, POLYFILL, TV, TVCRS, XYOUTS.

Provides the Z coordinate if a Z parameter is not present in the call. This is of use
only if the three-dimensional transformation is in effect (i.e., the T3D keyword is
set).

ZVALUE

Accepted by: AXIS, CONTOUR, MAP_SET, OPLOT, PLOT, SHADE_SURF,
SURFACE.

Sets the Z coordinate, in normalized coordinates in the range of 0 to 1, of the axis and
data output from PLOT, OPLOT, and CONTOUR.

This keyword has effect only if !P.T3D is set and the three-dimensional to two-
dimensional transformation is stored in !P.T. If ZVALUE is not specified,
CONTOUR will output each contour at its Z coordinate, and the axes and title at a Z
coordinate of 0.0.
IDL Reference Guide

2420 Appendix C: Graphics Keywords
IDL Reference Guide

Appendix D:

System Variables
The following topics are included in this appendix:
What Are System Variables? 2422
Constant System Variables 2423
Error Handling System Variables 2425

IDL Environment System Variables 2429
Graphics System Variables 2437
IDL Reference Guide 2421

2422 Appendix D: System Variables
What Are System Variables?

System variables are a special class of predefined variables available to all program
units. Their names always begin with the exclamation mark character (!). System
variables are used to set the options for plotting, to set various internal modes, to
return error status, etc.

System variables have a predefined type and structure that cannot be changed. When
an expression is stored into a system variable, it is converted to the variable type, if
necessary and possible. Certain system variables are read only, and their values
cannot be changed. The user can define new system variables with the DEFSYSV
procedure.
What Are System Variables? IDL Reference Guide

Appendix D: System Variables 2423
Constant System Variables

The following system variables contain pre-defined constants or values for use by
IDL routines. System variables can be used just like other variables. For example, the
command:

PRINT, ACOS(A) * !RADEG

converts a result expressed in radians to one expressed in degrees.

!DPI

A read-only variable containing the double-precision value of pi (π).

!DTOR

A read-only variable containing the floating-point value used to convert degrees to
radians (π/180 ≅ 0.01745).

!MAP

An array variable containing the information needed to effect coordinate conversions
between points of latitude and longitude and map coordinates. The values in this
array are established by the MAP_SET procedure; the user should not change them
directly.

!PI

A read-only variable containing the single-precision value of pi (π).

!RADEG

A read-only variable containing the floating-point value used to convert radians to
degrees (180/π ≅ 57.2958).

!VALUES

A read-only variable containing the IEEE single- and double-precision floating-point
values Infinity and NaN (Not A Number). !VALUES is a structure variable with the
following fields:

** Structure !VALUES, 4 tags, length=24:
F_INFINITY FLOAT Infinity
F_NAN FLOAT NaN
IDL Reference Guide Constant System Variables

2424 Appendix D: System Variables
D_INFINITY DOUBLE Infinity
D_NAN DOUBLE NaN

where Infinity is the value Infinity and NaN is the value Not A Number. (For more
information on these special floating-point values, see “Special Floating-Point
Values” in Chapter 17 of Building IDL Applications.)
Constant System Variables IDL Reference Guide

Appendix D: System Variables 2425
Error Handling System Variables

The following system variables are either set by IDL when an error condition occurs
or used by IDL when displaying information about errors.

!ERR

This system variable is now obsolete and has been replaced by the !ERROR_STATE
system variable. Code that uses the !ERR system variable will continue to function as
before, but all new code should use !ERROR_STATE.CODE.

!ERROR_STATE

A structure variable which contains the status of the last error message.
!ERROR_STATE includes the following fields:

** Structure !ERROR_STATE, 7tags, length=52:
NAME STRING 'M_SUCCESS'
BLOCK STRING 'IDL_MBLK_CORE'
CODE LONG 0
SYS_CODE LONG Array[2]
MSG STRING ''
SYS_MSG STRING ''
MSG_PREFIX STRING '%'

• NAME: A read-only string variable containing the error name of the IDL-
generated component of the last error message.

• BLOCK: A read-only string variable containing the name of the message
block for the last error message’s IDL-generated component.

• See the External Development Guide for more information about blocks.

• CODE: A long-integer variable containing the error code of the last error’s
IDL-generated component.

• SYS_CODE: A long-integer variable containing the error code of the last
error’s operating system-generated component, if it exists.

• MSG: A read-only string variable containing the text of the last IDL-generated
error message.

• SYS_MSG: A read-only string variable containing the text of the last error’s
operating system-generated component, if it exists.
IDL Reference Guide Error Handling System Variables

2426 Appendix D: System Variables
• MSG_PREFIX: A string variable containing the prefix string used for error
messages.

This system variable replaces !ERROR, !ERR_STRING, !MSG_PREFIX,
!SYSERR_STRING, and !SYSERROR, and includes two new fields: error name and
block name. For a more detailed explanation of !ERROR_STATE, see “Error
Handling” in Chapter 17 of Building IDL Applications.

!ERROR

This system variable is now obsolete and has been replaced by the !ERROR_STATE
system variable. Code that uses the !ERROR system variable will continue to function
as before, but we suggest that all new code use !ERROR_STATE.CODE.

!ERR_STRING

This system variable is now obsolete and has been replaced by the !ERROR_STATE
system variable. Code that uses the !ERR_STRING system variable will continue to
function as before, but we suggest that all new code use !ERROR_STATE.MSG.

!EXCEPT

An integer variable that controls when IDL checks for invalid mathematical
computations (exceptions), such as division by zero. The three allowed values are:

For more information on invalid mathematical computations and error reporting, see
“Math Errors” in Chapter 17 of Building IDL Applications.

The value of !EXCEPT is used by the CHECK_MATH function to determine when
to return errors. See “CHECK_MATH” on page 172 for details.

Value Description

0 Never report exceptions.

1 Report exceptions when the interpreter is returning to an
interactive prompt (the default).

2 Report exceptions at the end of each IDL statement. Note that
this slows IDL by roughly 5% compared to setting
!EXCEPT=1.

Table D-1: EXCEPT Values
Error Handling System Variables IDL Reference Guide

Appendix D: System Variables 2427
Note
In versions of IDL up to and including IDL 4.0.1, the default exception handling
was functionally identical to setting !EXCEPT=2.

!MOUSE

A structure variable that contains the status from the last cursor read operation.
!MOUSE has the following fields:

** Structure !MOUSE, 4 tags, length=16:
X LONG 511
Y LONG 252
BUTTON LONG 4
TIME LONG 1428829775

• X and Y: Contain the location (in device coordinates) of the cursor when the
mouse button was pressed.

• BUTTON: Contains

• - 1 (one) if the left mouse button was pressed,

• - 2 (two) if the middle mouse button was pressed

• - 4 (four) if the right mouse button was pressed.

• TIME: Contains the number of milliseconds since a base time.

See “CURSOR” on page 265 for details on reading the cursor position.

!MSG_PREFIX

This keyword is now obsolete and has been replaced by the !ERROR_STATE system
variable. Code that uses the !MSG_PREFIX system variable will continue to function
as before, but we suggest that all new code use !ERROR_STATE.MSG_PREFIX.

!SYSERROR

This keyword is now obsolete and has been replaced by the !ERROR_STATE system
variable. Code that uses the !SYSERROR system variable will continue to function as
before, but we suggest that all new code use !ERROR_STATE.SYS_CODE.
IDL Reference Guide Error Handling System Variables

2428 Appendix D: System Variables
!SYSERR_STRING

This keyword is now obsolete and has been replaced by the !ERROR_STATE system
variable. Code that uses the !SYSERR_STRING system variable will continue to
function as before, but we suggest that all new code use !ERROR_STATE.SYS_MSG.

!WARN

A structure variable that causes IDL to print warnings to the console or command log
when obsolete IDL features are found at compile time. !WARN has the following
fields:

** Structure !WARN, 3 tags, length=3:
OBS_ROUTINES BYTE 0
OBS_SYSVARS BYTE 0
PARENS BYTE 0
TRUNCATED_FILENAME BYTE 0

Setting each of the four fields to 1 (one) generates a warning for a different type of
obsolete code. If the OBS_ROUTINES field is set equal to one, IDL generates
warnings when it encounters references to obsolete internal or library routines. If the
OBS_SYSVARS field is set equal to one, IDL generates warnings when it encounters
references to obsolete system variables. If the PARENS field is set equal to one, IDL
generates warnings when it encounters a use of parentheses to specify an index into
an array. If the TRUNCATED_FILENAME field is set equal to one, IDL generates
warnings whenever a file can only be found by truncating its full name.

Warning
IDL version 5.1 is the last version of IDL that will support DOS 8.3 filename
limitations. All future IDL releases will not truncate filenames. You can use
!WARN.TRUNCATE_FILENAME to locate and rename truncated filenames.
Please rename the file upon being warned that a filename has been truncated to
avoid future problems.

No warnings are generated when the fields of the !WARN structure are set equal to
zero (the default).
Error Handling System Variables IDL Reference Guide

Appendix D: System Variables 2429
IDL Environment System Variables

The following system variables contain information about IDL’s configuration.

!DIR

A string variable containing the path to the main IDL directory.

!DLM_PATH

Significant portions of IDL’s built in functionality are packaged in the form of
Dynamically Loadable Modules (DLMs). DLMs correspond to Macintosh code
fragments, UNIX sharable libraries, VMS sharable executables, or Windows DLLs,
depending on the operating system in use. At startup, IDL searches for DLM
definition files (which end in the .dlm suffix) and makes note of the routines supplied
by each DLM. If such are routine is called, IDL loads the DLM that supplies it into
memory. To see a list of the DLMs that IDL knows about, use HELP, /DLM_PATH (see
“HELP” on page 571 for more information).

!DLM_PATH is initialized from the environment variable IDL_DLM_PATH at
startup. If the IDL_DLM_PATH environment variable is not defined, IDL supplies a
default that contains the directory in the IDL distribution where the RSI supplied
DLMs reside. This initialization is similar to that performed for IDL_PATH, (see
“!PATH” on page 2433), including recursive path expansion denoted with a leading
“+”. Once !DLM_PATH is expanded, IDL uses it as the list of places to look for
DLM definition files.

Since all DLM searching happens once at startup time, it would be meaningless to
change the value of !DLM_PATH afterwards. For this reason, it is a read-only
system variable and cannot be assigned to. The value of !DLM_PATH is useful
because it shows you where IDL looked for DLMs when it started.

!EDIT_INPUT

An integer variable indicating whether keyboard line editing is enabled (when set to a
non-zero value) or disabled (when set to zero). By default, !EDIT_INPUT is set equal
to one, and line editing is enabled.

By default, IDL saves the last 20 command lines. You can change the number of
command lines saved in the recall buffer by setting !EDIT_INPUT equal to the
number of lines you would like to save. In order for the change to take effect, IDL
must be able to process the assignment statement before providing a command
IDL Reference Guide IDL Environment System Variables

2430 Appendix D: System Variables
prompt. This means that you must put the assignment statement in the IDL startup
file. (See “Startup File” in Chapter 2 of Using IDL for more information on startup
files.)

!HELP_PATH

A string variable listing the directories IDL will search for online help files. The
default is the help subdirectory of the main IDL directory. The default can be
changed by setting the IDL_HELP_PATH environment variable or logical name
under UNIX or VMS, or by specifying the desired help path using the DEFSYSV
command under Microsoft Windows or the Macintosh OS.

!JOURNAL

A read-only long-integer variable containing the logical unit number of the file used
for journal output.

!MAKE_DLL

The MAKE_DLL procedure and CALL_EXTERNAL function’s AUTO_GLUE
keyword use the standard system C compiler and linker to generate sharable libraries
that can be used by IDL in various contexts (CALL_EXTERNAL, DLMs,
LINKIMAGE). There is a great deal of variation possible in the use of these tools
between different platforms, operating system versions, and compiler releases. The
!MAKE_DLL system variable is used to configure how IDL uses them for the
current platform.

The !MAKE_DLL structure is defined as follows:

{ !MAKE_DLL, COMPILE_DIRECTORY:’’, COMPILER_NAME:’’, CC:’’, LD:’’}

The meaning of the fields of !MAKE_DLL are given in Table D-2. When expanding
!MAKE_DLL.CC and !MAKE_DLL.LD, IDL substitutes text in place of the
PRINTF style codes described in the following table. These codes are case-
insensitive, and can be either upper or lower case.

Note
It is possible to use C compilers other than the one assumed by RSI in
!MAKE_DLL to build sharable libraries. To do so, you can alter the contents of
!MAKE_DLL or use the CC and/or LD keyword to MAKE_DLL and
CALL_EXTERNAL. Please understand that RSI cannot and does not maintain a
list of all possible compilers and the necessary compiler options. This information
IDL Environment System Variables IDL Reference Guide

Appendix D: System Variables 2431
is available in your compiler and system documentation. It is the programmers
responsibility to understand the rules for their chosen compiler.

Field Meaning

COMPILE_DIRECTORY IDL requires a place to create the intermediate files
necessary to build a sharable library, and possibly the
final library itself. Unless told to use an explicit directory,
it uses the directory given by the
COMPILE_DIRECTORY field of !MAKE_DLL. If the
IDL_MAKE_DLL_COMPILE_DIRECTORY
environment variable is set, IDL uses its value to initialize
the COMPILE_DIRECTORY field. Otherwise, IDL
supplies a standard location.

Note - Note that if the directory given by
!MAKE_DLL.COMPILE_DIRECTORY does not exist
when IDL needs it, IDL automatically creates it for you.

COMPILER_NAME A string containing the name of the C compiler used by
RSI to build the currently running IDL. This field is not
used by IDL, and exists solely for informational purposes
and to help the end user decide which C compiler to
install on their system.

CC A string used by IDL as a template to construct the
command for using the C compiler. This template uses
PRINTF style substitution codes, as described in the
following table.

LD A string used by IDL as a template to construct the
command for using the linker. This template uses
PRINTF style substitution codes, as described in the
following table.

Table D-2: Meaning of !MAKE_DLL fields
IDL Reference Guide IDL Environment System Variables

2432 Appendix D: System Variables
The following table describes the substitution codes for the CC and LD fields:

!MORE

An integer variable indicating whether IDL should paginate help output sent to a tty
device. Setting !MORE to zero (0) prevents IDL from paginating the output text. A
non-zero value (the default) causes IDL to display output text one screen at a time.

Code Meaning

%B %b The base name of a C file to compile. For example, if the C
file is moose.c, then %B substitutes moose.

%C %c The name of the C file.

%E %e The name of the linker options file. This file, which is
automatically generated by IDL as needed, is used to control
the linker. Under UNIX, the system documentation refers to
this as an export file, or a linker map file. VMS calls it a linker
options file (.OPT). Microsoft Windows calls it a .DEF file.

%F %f A floating point switch to C compiler. This is only meaningful
under VMS, and corresponds to the VAX_FLOAT keyword to
MAKE_DLL and CALL_EXTERNAL.

%L %l The name of the resulting sharable library. IDL constructs this
name by using the base name (%B) and adding the appropriate
suffix for the current platform (.dll, .so, .sl, .exe, ...).

%O %o An object file name. IDL constructs this name by using the
base name (%B) and adding the appropriate suffix for the
current platform (.o, .obj).

%X %x When expanding !MAKE_DLL.CC, any text supplied via the
EXTRA_CFLAGS keyword to MAKE_DLL or
CALL_EXTERNAL is inserted in place of %X. IDL does not
interpret this text. It is the users responsibility to ensure that it
is meaningful in the command. When expanding
!MAKE_DLL.LD, the text from the EXTRA_LFLAGS
keyword is substituted. The primary use for this code is to
include necessary header include directories and link libraries.

%% Replaced with a single % character.

Table D-3: Description of CC and LD Field Codes
IDL Environment System Variables IDL Reference Guide

Appendix D: System Variables 2433
!PATH

A string variable listing the directories IDL will search for libraries, include files, and
executive commands.

UNIX

!PATH is a colon-separated list of directories, similar in concept to the PATH
environment variable which UNIX uses to locate commands.

!PATH is initialized from the environment variable IDL_PATH when IDL starts.
Note that directories that do not contain at least one .pro or .sav file will not be
included in !PATH, even if they are specified by the IDL_PATH environment
variable. This initial value can be changed, as desired, once in IDL. For example, the
following statement adds the directory /usr2/project/idl_files to the
beginning of the search path:

!path = '/usr2/project/idl_files:' + !path

To specify a directory tree that includes all of that directory’s subdirectories, use the
EXPAND_PATH function.

Each user can assign IDL_PATH to a series of directories that are searched for IDL
programs, procedures, functions, and “include” files. It is convenient to set up this
variable in your ~/.cshrc:

setenv IDL_PATH ~/idl_lib:/usr/local/rsi/idl/lib
or ~/.profile:
IDL_PATH=~/idl_lib:/usr/local/rsi/idl/lib ; export IDL_PATH

This causes IDL to search for programs first in the current directory, then in your
idl/lib directory, and then in the system-wide directory /usr/local/rsi/
idl/lib.

If IDL_PATH is not defined, IDL initializes !PATH to the default value +/usr/
local/rsi/idl. Note that the current directory is always searched before
consulting !PATH.

VMS

!PATH is a comma-separated list of directories and text libraries. Text libraries are
distinguished by prepending a “@” character to their name.

!PATH is initialized from the logical name IDL_PATH when IDL starts. Note that
directories that do not contain at least one .pro or .sav file will not be included in
!PATH, even if they are specified by the IDL_PATH logical. This initial value can be
IDL Reference Guide IDL Environment System Variables

2434 Appendix D: System Variables
changed once in IDL as desired. For example, the following statement adds the
directory DISKA:[PROJECTLIB] to the beginning of the search path:

path = 'diska:[projectlib],' + !path

To specify a directory tree that includes all of that directory’s subdirectories, use the
EXPAND_PATH function.

Each user can assign IDL_PATH to a series of directories and text libraries that are
searched in order for IDL programs, procedures, functions, and “include” files. It is
convenient to set up this variable in your LOGIN.COM file. For example,

DEFINE IDL_PATH "DISKA:[USER.IDLLIB],@IDL_DIR:[LIB]USERLIB.TLB"

causes IDL to search for programs first in the current directory, then in the directory
DISKA:[USER.IDLLIB], and finally in the library of routines written in IDL and
included in the standard IDL distribution, which is supplied as a VMS text library.
Note that the current directory is always searched before consulting !PATH.

The logical IDL_PATH also can be defined as a multi-valued logical name (e.g., a
search list logical). Therefore, the above example also can be written as follows:

DEFINE IDL_PATH DISKA:[USER.IDLLIB],"@IDL_DIR:[LIB]USERLIB.TLB"

IDL simply takes the various translations and concatenates them together into a
comma-separated list. Note that the quotes around the second translation in this
example are necessary to keep DCL from seeing the “@” character as an invitation to
execute a command file.

Windows

!PATH is a semicolon-separated list of directories, similar in concept to the PATH
environment variable DOS uses to locate commands. !PATH is initialized from the
saved IDL for Windows preferences data, or from a DOS environment variable
IDL_PATH, when IDL starts. Note that directories that do not contain at least one
.pro or .sav file will not be included in !PATH, even if they are specified by the
preferences data or the IDL_PATH environment variable. Change the path settings
by adding to or altering the list of directories in the “Path” dialog, found under the
“Preferences” selection of the IDL for Windows File menu, or by changing the value
of !PATH from the IDL command prompt.

To specify a directory tree that includes all of that directory’s subdirectories, use the
EXPAND_PATH function.

Macintosh

!PATH is a comma-separated list of folders. !PATH is initialized from the saved IDL
for Macintosh preferences data when IDL starts. Note that folders that do not contain
IDL Environment System Variables IDL Reference Guide

Appendix D: System Variables 2435
at least one .pro or .sav file will not be included in !PATH, even if they are
specified by the preferences data. Change the path settings by adding to or altering
the list of directories in the “Search Path” dialog, found in the IDL for Macintosh File
menu, or by changing the value of !PATH from the IDL command prompt.

Use the following syntax is used to specify Macintosh path locations:

• Filenames are specified as a colon-separated list of drive names and folders.

• Folder and file names can contain spaces and/or commas.

Thus, the file myprogram.pro, located in the folder named Programs which
resides on the drive named Macintosh HD would be specified:

'Macintosh HD:Programs:myprogram.pro'

To specify a directory tree that includes all of that directory’s subdirectories, use the
EXPAND_PATH function.

A Note on Order within !PATH

IDL ensures only that all directories containing IDL files are placed in !PATH. The
order in which they appear is completely unspecified, and does not necessarily
correspond to any specific order (such as top-down alphabetized). This allows IDL to
construct the path in the fastest possible way and speeds startup. This is only a
problem if two subdirectories in such a hierarchy contain a file with the same name.
Such hierarchies usually are a collection of cooperative routines designed to work
together, so such duplication is rare.

If the order in which “+” expands directories is a problem for your application, you
should add the directories to the path explicitly and not use “+”. Only the order of the
files within a given “+” entry are determined by IDL. It never reorders !PATH in any
other way. You can therefore obtain any search order you desire by writing the path
explicitly.

!PROMPT

A string variable containing the text string used by IDL to prompt the user for input.
The default is IDL>.

!QUIET

A long-integer variable indicating whether informational messages should be printed
(0) or suppressed (nonzero). By default, !QUIET is set to zero.
IDL Reference Guide IDL Environment System Variables

2436 Appendix D: System Variables
!VERSION

A structure variable containing information about the version of IDL in use. The
structure is defined as follows:

{!VERSION, ARCH:'', OS:'', OS_FAMILY:'', RELEASE:'', $
BUILD_DATE:'', MEMORY_BITS:0, FILE_OFFSET_BITS:0 }}

The meaning of the fields of !VERSION are given in the following table.

If you need to differentiate between different IDL versions in your code, use
!VERSION.OS_FAMILY. At present, four operating system families are supported:
MacOS, UNIX, VMS, Windows. For even more detail, you can use !VERSION.OS.

Field Meaning

ARCH CPU hardware architecture of the system.

OS The vendor name of the operating system (for example:
AIX, HP-UX, IRIX, linux, MacOS, OSF, sunos, VMS,
Win32). RSI recommends that you first consider using
the OS_FAMILY field before using the OS field, as
most programs are mainly concerned with high level
platform differences.

OS_FAMILY The generic name of the operating system (MacOS,
UNIX, VMS, Windows).

RELEASE IDL version number.

BUILD_DATE The date the IDL executable was compiled, in the
format dictated by ANSI C for the __DATE__ macro.

MEMORY_BITS The number of bits used to address memory. Possible
values are 32 or 64. The number of bits used to address
memory places a theoretical upper limit on the amount
of memory available to IDL.

FILE_OFFSET_BITS The number of bits used to position file offsets.
Possible values are 32 or 64. The number of bits used to
position files places a theoretical upper limit on the
largest file IDL can access.

Table D-4: Meaning of the !VERSION Fields
IDL Environment System Variables IDL Reference Guide

Appendix D: System Variables 2437
Graphics System Variables

The following system variables control various IDL Direct Graphics functions. These
system variables are structures that contain many tags. For example, the command

!P.TITLE = 'Cross Section'

sets the default plot title.

Many of the functions of the graphics keywords described in Appendix C, “Graphics
Keywords”, are also controlled by the system variables !P, !X, !Y, and !Z.

You can change the default style of plots, fonts, etc., by setting the corresponding
field in the appropriate system variable. Also, some effects that persist longer than
one call are controlled only by system variables. The field !P.MULTI is one example.

!C System Variable

The cursor system variable. Currently, the only function of this system variable is to
contain the subscript of the largest or smallest element found by the MAX and MIN
functions. That information is better obtained through the optional output arguments
to those routines. !C is included only for compatibility with old versions of IDL.

!D System Variable

This system variable is a structure that contains information about the current
graphics output device (or window, on a windowing system). Fields, in alphabetical
order, are:

FILL_DIST

The line interval, in device coordinates, required to obtain a solid fill.
IDL Reference Guide Graphics System Variables

2438 Appendix D: System Variables
FLAGS

A longword of flags that provide information about the current device. Each bit is a
flag encoded as shown in the following table.

To test whether a particular bit is set on your system, use an IDL command like the
following:

Bit Value Function

0 1 Device has scalable pixel size (e.g., PostScript).

1 2 Device can output text at an arbitrary angle using hardware.

2 4 Device can control line thickness with hardware.

3 8 Device can display images.

4 16 Device supports color.

5 32 Device supports polygon filling with hardware.

6 64 Device hardware characters are monospace.

7 128 Device can read pixels (i.e., it supports TVRD).

8 256 Device supports windows.

9 512 Device prints black on a white background (e.g., printers are
plotters).

10 1024 Device has no hardware characters.

11 2048 Device does line-fill style polygon filling in hardware.

12 4096 Device will apply Hershey-style embedded formatting
commands to device fonts.

13 8192 Device is a pen plotter.

14 16384 Device can transfer 16-bit pixels.

15 32768 Device supports Kanji characters.

16 65536 Device supports widgets.

17 131072 Device has Z-buffer.

18 262144 Device supports TrueType fonts.

Table D-5: !D.FLAGS Bit Definitions
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 2439
IF (!D.FLAGS AND value) NE 0 THEN PRINT, 'Bit is set.'

where value is the value associated with the bit you wish to examine. For example, to
check whether the device supports color, use:

IF (!D.FLAGS AND 16) NE 0 THEN PRINT, 'Bit is set.'

N_COLORS

The number of allowed color values. In the case of devices with windows, this field is
set after the window system is initialized. For a monochrome system,
!D.N_COLORS is 2. For TrueColor displays, !D.N_COLORS is 2^24-1 (roughly
16.7 million colors).

NAME

A string containing the name of the device.

ORIGIN

A two-element integer array containing the current pan/scroll offset. An offset of (0,
0) is normal. Positive offsets shift the display memory to the right and upwards. This
field has relevance only with devices with hardware pan and scroll abilities.

TABLE_SIZE

The number of color table indices.

UNIT

The logical number of the file open for output by the current graphics device. This
field only has meaning for devices that write to a file if the file is accessible to the
user from IDL, and is 0 if no file is open.

For example, the PostScript driver fills this field with the unit number of the file open
for PostScript output. In the case of Tektronix output to a file, !D.UNIT may be set to
either + or – the logical unit number.

WINDOW

The index of the currently open window. This field is set to -1 if no window is
currently open. This field is used only with devices that support windows.

X_CH_SIZE, Y_CH_SIZE

The width and height of the rectangle that encloses the “average” character in the
current font, in device units (usually pixels).
IDL Reference Guide Graphics System Variables

2440 Appendix D: System Variables
These values describe the size of the rectangle that contains the “average” character
in the current font. (It is not important what the “average” character is; it is used only
to calculate a scaling factor that will be applied to all of the characters in the font.)
The first element specifies the width of the rectangle in device units (usually pixels),
and the second element specifies the height.

For vector and TrueType fonts, the height of the “average” character is determined by
the width of the rectangle. The aspect ratio of the “average” character remains fixed;
the character is scaled so that its width is the value of X_CH_SIZE. The resulting
scale factor is then applied to all of the characters in the font. The amount of spacing
between lines is determined explicitly by the value of Y_CH_SIZE.

For device fonts, the character size is fixed. When the device font system is in use,
the value of X_CH_SIZE is silently ignored, and only the Y_CH_SIZE value is used.

X_PX_CM, Y_PX_CM

The approximate number of pixels per centimeter in the X and Y directions.

X_SIZE, Y_SIZE

The total size of the display or window in the X and Y directions, in device units.

X_VSIZE, Y_VSIZE

The size of the visible area of the display or window. This area can be smaller than
the total size fields.

ZOOM

This field contains the current X and Y zoom factors for the display or window. This
field has relevance only with devices equipped with hardware zoom. A zoom factor
of [1, 1] is normal.

!ORDER System Variable

Controls the direction of image transfers when using the TV, TVSCL, and TVRD
procedures. If !ORDER is 0, images are transferred from bottom to top, i.e. the row
with a 0 subscript is written on the bottom. Setting !ORDER to 1, transfers images
from top to bottom.

!P System Variable

The main plotting system variable structure. All fields, except !P.MULTI, have a
directly corresponding keyword parameter in the plot procedures: PLOT, OPLOT,
CONTOUR, and SURFACE. Fields, in alphabetical order, are:
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 2441
BACKGROUND

The background color index. When erasing the screen or page, all pixels are set to
this color. The default value is 0. Not all devices support this feature.

CHANNEL

The default source or destination channel. This field has meaning only on graphics
devices that contain multiple display channels, and is device dependent. It may
contain either a channel mask or index.

CHARSIZE

The overall character size of all annotation when Hershey fonts are selected. This
field has no effect on the character size when hardware (device) fonts are selected,
except for devices that support scalable pixel sizes (i.e., Postscript). Note, however,
that !P.CHARSIZE always affects the layout and scaling of a plot, regardless of the
font system being used. The default size is 1.0.

CHARTHICK

An integer specifying the thickness of the lines used to draw the characters when
using the vector drawn fonts. This field has no effect on the appearance of characters
drawn with the hardware fonts. Normal thickness is 1.

CLIP

The device coordinates of the clipping window, a 6-element vector of the form
[x0, y0, x1, y1, z0, z1], specifying two opposite corners of the volume to be displayed.
In the case of two-dimensional displays, the Z coordinates can be omitted. Normally,
the clipping window coordinates are implicitly set by PLOT, CONTOUR,
SHADE_SURF, and SURFACE to correspond to the plot window. You may also
manually set !P.CLIP if you want to specify a different rectangular clipping window
or if the clipping coordinates have not yet been set in the current IDL session.

COLOR

The default color index.

FONT

An integer that specifies the graphics text font system to use. Set FONT equal to -1 to
selects the Hershey character fonts, which are drawn using vectors. Set FONT equal
to 0 (zero) to select the device font of the output device. Set FONT equal to 1 (one) to
select the TrueType font system. See Appendix H, “Fonts”, for a complete
description of IDL’s font systems.
IDL Reference Guide Graphics System Variables

2442 Appendix D: System Variables
LINESTYLE

The default style of the lines used to connect points. A line style index of 0 yields a
solid line. See “LINESTYLE” on page 2405 for a description of the linestyles.

MULTI

!P.MULTI allows making multiple plots on a page or screen. It is a 5-element integer
array defined as follows:

!P.MULTI[0] contains the number of plots remaining on the page. If !P.MULTI[0] is
less than or equal to 0, the page is cleared, the next plot is placed in the upper left
hand corner, and !P.MULTI[0] is reset to the number of plots per page.

Setting !P.MULTI[0] to a value greater than zero can be used to manually set the
plotting area to a specific row and column. For example, to plot in the lower left
corner of a window of two rows and two columns, set !P.MULTI as follows:

!P.MULTI=[2,2,2]
PLOT, X, Y

!P.MULTI[1] is the number of plot columns per page. If this value is less than or
equal to 0, one is assumed. If more than two plots are ganged in either the X or Y
direction, the character size is halved.

!P.MULTI[2] is the number of rows of plots per page. If this value is less than or
equal to 0, one is assumed.

!P.MULTI[3] contains the number of plots stacked in the Z dimension.

!P.MULTI[4] is 0 to make plots from left to right (column major), and top to bottom,
and is 1 to make plots from top to bottom, left to right (row major).

Note
If !P.MULTI[0] is zero, an erase will occur before the current plot is displayed
(unless the /NOERASE keyword is set). This is true no matter whether
!P.POSITION and/or !P.REGION are set.

For example, to gang two plots across the page:

!P.MULTI = [0, 2, 0, 0, 0]
PLOT, X0, Y0 ;Make left plot.
PLOT, X1, Y1 ;Right plot.

To gang two plots vertically:

!P.MULTI = [0, 0, 2, 0, 0]
PLOT, X0, Y0 ;Make top plot.
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 2443
PLOT, X1, Y1 ;Bottom plot.

To make four plots per page, two across and two up and down:

!P.MULTI = [0, 2, 2, 0, 0]

and then call plot four times.

To reset !P.MULTI back to the normal one plot per page:

!P.MULTI = 0

NOCLIP

A field which, if set, inhibits the clipping of the graphic vectors and vector-drawn
text. By default, most routines clip to the plotting window, with the exception of
PLOTS and XYOUTS. !P.CLIP contains the clipping rectangle.

NOERASE

Set this field to a non-zero value to inhibit erasing the screen before plotting.

NSUM

The number of adjacent points to average to obtain a plotted point.

POSITION

Specifies the normalized coordinates of the rectangular plot window. This is a four
element floating point vector (x0, y0, x1, y1), where (x0, y0) is the origin, and (x1, y1) is
the upper right corner.

!P.POSITION determines the plotting window if x0 does not equal x1, and the
POSITION keyword is not present. If set, it overrides the effect of the MARGIN and
!P.MULTI variables and keywords.

Note
If !P.POSITION (or the POSITION keyword) or !P.REGION is set, all but the first
element of !P.MULTI are ignored.

PSYM

The default plotting symbol index. Each point drawn by PLOT, PLOTS, and OPLOT
is marked with a symbol if this field is non-zero. The possible symbols are given in
“PSYM” on page 2408.
IDL Reference Guide Graphics System Variables

2444 Appendix D: System Variables
REGION

A four element vector that specifies the normalized coordinates of the rectangle
enclosing the plot region, which includes the plot data window and its surrounding
annotation area. It is in the same form as !P.POSITION, (x0, y0, x1, y1), where (x0, y0)
is the origin, and (x1, y1) is the upper right corner. It is ignored if !P.REGION[0] is
equal to !P.REGION[2].

Note
!P.POSITION (or the POSITION keyword) takes precedence over !P.REGION.

SUBTITLE

The plot subtitle, placed under the X axis label.

T

Contains the homogeneous 4 x 4 transformation matrix. This field is a two-
dimensional array of double-precision floating-point values. For more information
about transformations, refer to: “Three-Dimensional Graphics” on page 323, of
Using IDL.

T3D

Enables the three-dimensional to two-dimensional transformation contained in the
homogeneous 4 by 4 matrix !P.T. Note that if T3D is set, !P.T must contain a valid
transformation matrix.

THICK

The thickness of the lines connecting points. 1.0 is normal.

TITLE

The main plot title.

TICKLEN

The length of the tick marks, expressed as a fraction of the plot size (from 0.0 to 1.0).
The default is 0.02. A value of 0.5 makes a grid. Negative values make the tick marks
point outward.

!X, !Y, !Z System Variables

The system variables !X, !Y, and !Z, are structures of type AXIS, that affect the
appearance and scaling of the three axes. The fields for !X, !Y, and !Z have identical
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 2445
fields with identical meanings and usage. In addition, almost all fields have
corresponding keyword parameters, with identical function, but with temporary
effect. For example, to suppress the minor tick marks on the X axis using the !X
system variable, you could use the command:

!X.MINOR = -1

To suppress the tick marks for just one call to plot, you could use the command:

PLOT, X, Y, XMINOR = -1

The name of the keyword parameter is simply the name of the system variable field,
prefixed with the letter X, Y, or Z.

The fields for these system variables, in alphabetical order are:

CHARSIZE

The size of the characters used to annotate the axis and its title when Hershey fonts
are selected. This field has no meaning when hardware (i.e. PostScript) fonts are
selected. This field is a scale factor applied to the global scale factor. For example,
setting !P.CHARSIZE to 2.0, and !X.CHARSIZE to 0.5 results in a character size of
1.0 for the X axis.

CRANGE

The output axis range. Setting this variable has no effect; set ![XYZ].RANGE to
change the range. ![XYZ].CRANGE[0]) always contains the minimum axis value,
and ![XYZ].CRANGE[1] contains the maximum axis value of the last plot before
extending the axes.

Note
If the axis is logarithmic, the CRANGE field reports the log (base 10) of the
minimum and maximum axis values.

Example 1:

;Create a 10-element array.
a = INDGEN(10)

;Plot the straight line.
PLOT, a

;Print the minimum and maximum axis values.
PRINT, !X.CRANGE

IDL prints:

0.00000 10.0000
IDL Reference Guide Graphics System Variables

2446 Appendix D: System Variables
Example 2:

;Plot a with logarithmic scaling on the X axis.
PLOT, a, /XLOG

;Print the minimum and maximum axis values.
PRINT, !X.CRANGE

The axis is scaled from 10-12 to 102.IDL prints:

-12.0000 2.00000

GRIDSTYLE

The index of the linestyle to be used for tick marks and grids. See “LINESTYLE” on
page 2405 for a description of the linestyles

MARGIN

A 2-element array specifying the margin on the left (bottom) and right (top) sides of
the plot window, in units of character size. The plot window is the rectangular area
that contains the plot data, i.e. the area enclosed by the axes.

The default values for !X.MARGIN are [10, 3] yielding a 10-character wide left
margin and a 3-character wide right margin. The values for !Y.MARGIN are [4, 2],
for a 4-character high bottom margin and a 2-character high top margin. While
specifying !Z.MARGIN will not cause an error, Z margins are currently ignored.

When calculating the size and position of the plot window, IDL first determines the
plot region, the area enclosing the window plus the axis annotation and titles. It then
subtracts the appropriate margin from each side, obtaining the window.

Setting !P.POSITION, or specification of the POSITION parameter overrides the
effect of this field.

MINOR

The number of minor tick marks. If !X.MINOR is 0, the default, the number of minor
ticks is automatically determined from the tick mark increment. You can force a
given number of minor ticks by setting this field to the desired number. To suppress
minor tick marks, set !X.MINOR to -1.

OMARGIN

A 2-element array specifying the “outer” margin on the left (bottom) and right (top)
sides of a multi-plot window, in units of character size. A multi-plot window is
created by setting the !P.MULTI system variable field. OMARGIN controls the
amount of space around the entire plot area, including individual plot margins set
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 2447
with !X.MARGIN and !Y.MARGIN. The default values for !X.OMARGIN and
!Y.OMARGIN are [0, 0].

When calculating the size and position of the individual plots, IDL first determines
the plot region, the area enclosing the window plus the axis annotation and titles. It
then subtracts the appropriate margin from each side, obtaining the window.

Setting !P.POSITION, or specification of the POSITION parameter overrides the
effect of this field.

RANGE

The input axis range, a 2-element vector. The first element is the axis minimum, and
the second is the maximum. Set this field, or use the corresponding keyword
parameter, to specify the data range to plot. If axis end point rounding is selected (see
STYLE above), the final axis range may not be equal to this input range. The field
!X.CRANGE contains the axis range used for the plot before extending the axes. Set
both elements equal to 0 for automatic axis ranges:

!X.RANGE = 0

For example, to force the X axis to run from 5.5 to 8.3:

!X.RANGE = [5.5, 8.3]
PLOT, X, Y

Alternatively, by using keywords:

PLOT, X, Y, XRANGE=[5.5, 8.3]

Note that even though the range was set to (5.5, 8.3), the resulting plot has a range of
(5.5, 8.5), because axis rounding is the default.

REGION

Contains the normalized coordinates of the region. This field is similar to WINDOW,
in that it is set by the graphics procedures and is a 2-element floating point array. To
change the default plotting region, set !P.REGION.

S

The scaling factors for converting between data coordinates and normalized
coordinates (a 2-element array). The formula for conversion from data (Xd) to
normalized (Xn) coordinates is Xn = S1Xd + S0

If logarithmic scaling is in effect, substitute log10(Xd) for Xd.
IDL Reference Guide Graphics System Variables

2448 Appendix D: System Variables
The CONVERT_COORD function can be used to convert between coordinate
systems. The user should save and restore these fields when switching between
windows or devices with different sizes and/or scaling.

STYLE

The style of the axis encoded as bits in a longword. The axis style can be set to exact,
extended, none, or no box using this field. The following table lists the axis style bit
values:

Note that this system variable field is set bitwise, so multiple effects can be set by
adding values together. For example, to make an X axis that is both exact (value 1)
and suppresses the box style (setting 8), set the !X.STYLE system variable to 1+8, or
9.

For example, to set the Y axis style to exact using the !Y system variable:

!Y.STYLE = 1

or by using a keyword parameter:

PLOT, X, Y, YSTYLE = 1

THICK

The thickness of the axis line. 1.0 is normal.

Bit Value Function

0 1 Exact. By default, the end points of the axis are rounded in
order to obtain even tick increments. Setting this bit inhibits
rounding, making the axis fit the data range exactly.

1 2 Extend. If this bit is set, the axes are extended by 5% in each
direction, leaving a border around the data.

2 4 None. If this bit is set, the axis and its annotation are not
drawn.

3 8 No box. Normally, PLOT and CONTOUR draw a box-style
axis with the data window surrounded by axes.

4 16 Inhibits setting the Y axis minimum value to zero when the
data are all greater than 0. The keyword YNOZERO sets this
bit temporarily.

Table D-6: Axis Style Bit Values
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 2449
TICKFORMAT

Set this field to a format string or a string containing the name of a function that
returns a string to be used to format the axis tick mark labels.

See “[XYZ]TICKFORMAT” on page 2413 for more information.

TICKINTERVAL

A scalar indicating the interval between major tick marks for the first axis level. This
setting takes precedence over ![XYZ].TICKS.

For example, if !X.TICKUNITS=[“Seconds”, “Hours”, “Days”], and
!X.TICKINTERVAL=30, then the interval between major ticks for the first axis level
will be 30 seconds.

See “[XYZ]TICKINTERVAL” on page 2415 for more information.

TICKLAYOUT

Set this keyword to a scalar that indicates the tick layout style to be used to draw each
level of the axis.

See “[XYZ]TICKLAYOUT” on page 2416 for more information.

TICKLEN

The lengths of tick marks (expressed in normal coordinates) for the individual axes.

TICKNAME

The annotation for each tick. A string array of up to 60 elements. Setting elements of
this array allows direct specification of the tick label. If this element contains a null
string, the default value, IDL annotates the thick with its numeric value. Setting the
element to a 1-blank string suppresses the tick annotation.

For example, to produce a plot with an abscissa labeled with the days of the week:

;Set up X axis tick labels.
!X.TICKNAME = ['SUN', 'MON', 'TUE', 'WED', $

'THU', 'FRI', 'SAT']

;Use six tick intervals, requiring seven tick labels.
!X.TICKS = 6

;Plot the data, this assumes that Y contains 7 elements.
PLOT, Y

The same plot can be produced, using keyword parameters, with:
IDL Reference Guide Graphics System Variables

2450 Appendix D: System Variables
;Set fields, as above, only temporarily.
PLOT, Y, XTICKN = ['SUN', 'MON', 'TUE', 'WED',$

'THU', 'FRI', 'SAT'], XTICKS = 6

TICKS

The number of major tick intervals to draw for the axis. If !X.TICKS is set to 0, the
default, IDL will select from three to six tick intervals. Setting this field to n, where n
> 1, produces exactly n tick intervals, and n+1 tick marks. Setting this field equal to 1
suppresses tick marks.

TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axis tick labeling.

Note
The singular form of each of the time value strings is also acceptable (e.g,
!X.TICKUNITS='Day' is equivalent to !X.TICKUNITS='Days').

Note
To set the ![XYZ].TICKUNITS field to a single string, the following approach is
recommended:

!X.TICKUNITS = '' ; Clear all previous tick unit strings.

!X.TICKUNITS = ['Days'] ;Single unit string in array.

The following:

!X.TICKUNITS = 'Days'

will copy the 'Days' string to all levels, resulting in a multi-level axis.

See “[XYZ]TICKUNITS” on page 2417 for more information.

TICKV

An array of up to 60 elements containing the data values for each tick mark. You can
directly specify the location of each tick by setting !X.TICKS to the number of tick
marks (the number of intervals plus 1) and storing the data values of the tick marks in
!X.TICKV. If, as is true by default, !X.TICKV[0] is equal to !X.TICKV[1], IDL
automatically determines the value of the tick marks.
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 2451
TITLE

A string containing the axis title.

TYPE

The type of axis, 0 for linear, 1 for logarithmic.

WINDOW

Contains the normalized coordinates of the axis end points, the plot data window.
This field is set by PLOT, CONTOUR, SHADE_SURF, and SURFACE. Changing
its value has no effect. A 2-element floating point array. To change the default
plotting window, set !P.POSITION. The keyword parameter POSITION sets the plot
data window on a per call basis.
IDL Reference Guide Graphics System Variables

2452 Appendix D: System Variables
Graphics System Variables IDL Reference Guide

Appendix E:

IDL Operators
This appendix lists all IDL operators and provides brief examples of their usage. For more
information on the usage of IDL operators, see Chapter 2, “Expressions and Operators” in
Building IDL Applications. The following topics are covered in this appendix:
Mathematical Operators 2454
Minimum and Maximum Operators 2455
Matrix Operators 2456
Boolean Operators 2457

Relational Operators 2459
Other Operators . 2460
Operator Precedence 2461
IDL Reference Guide 2453

2454 Appendix E: IDL Operators
Mathematical Operators

Operator Description Example

+ Addition ;Store the sum of 3 and 6 in B:
B = 3 + 6

String Concatenation ;Store the string value of "John Doe" in B:
B = 'John' + ' ' + 'Doe'

– Subtraction ;Store the value of 5 subtracted from 9 in C:
C = 9 - 5

Negation ;Change the sign of C:
C = -C

* Multiplication ;Store the product of 2 and 5 in variable C:
C = 2 * 5

Pointer dereference If ptr is a valid pointer (created via the PTR_NEW
function), then *ptr is the value held by the heap
variable that ptr points to. For more information on
IDL pointers, see Chapter 7, “Pointers” in Building IDL
Applications.

/ Division ;Store result of 10.0 divided by 3.2 in
;variable D:
D = 10.0/3.2

^ Exponentiation ;Store result of 2 raised to the 3rd power in
;variable B:
B = 2^3

MOD Modulo ;Print the value of 9 modulo 5:
PRINT, 9 MOD 5

IDL Prints:

4

Table E-1: Mathematical Operators
Mathematical Operators IDL Reference Guide

Appendix E: IDL Operators 2455
Minimum and Maximum Operators

Operator Description Example

< Minimum operator.
The value of “A < B”
is equal to the
smaller of A or B.

;Set A equal to 3.
A = 5 < 3

;Set all points in array ARR that are larger
;than 100 to 100:
ARR = ARR < 100

;Set X to the smallest of the three operands:
X = X0 < X1 < X2

> Maximum operator.
“A > B” is equal to
the larger of A or B.

;‘>’ is used to avoid taking the log of zero
;or negative numbers:
C = ALOG(D > 1E - 6)

;Plot positive points only. Negative points
;are plotted as zero:
PLOT, ARR > 0

Table E-2: Minimum and Maximum Operators
IDL Reference Guide Minimum and Maximum Operators

2456 Appendix E: IDL Operators
Matrix Operators

Operator Description Example

Computes array elements
by multiplying the
columns of the first array
by the rows of the second
array.

;A 3-column by 2-row array:
array1 = [[1, 2, 1], [2, -1, 2]]
;A 2-column by 3-row array:
array2 = [[1, 3], [0, 1], [1, 1]]
PRINT, array1#array2

IDL prints:

7 -1 7
2 -1 2
3 1 3

Computes array elements
by multiplying the rows of
the first array by the
columns of the second
array.

;A 3-column by 2-row array:
array1 = [[1, 2, 1], [2, -1, 2]]
;A 2-column by 3-row array:
array2 = [[1, 3], [0, 1], [1, 1]]
PRINT, array1##array2

IDL prints:

2 6
4 7

Table E-3: Matrix Operators
Matrix Operators IDL Reference Guide

Appendix E: IDL Operators 2457
Boolean Operators

Operator Description Example

AND Boolean AND. Returns
“true” whenever both
of its operands are true;
otherwise, the result is
“false.” Any odd
integer is considered
true, and any even
integer is considered
false. For integer,
longword, and byte
operands, a bitwise
AND operation is
performed. For
operations on other
types, the result is
equal to the second
operand if the first
operand is not equal to
zero or the null string;
otherwise, the result is
zero or the null string.

PRINT, (5 GT 2) AND (4 GT 2)

IDL Prints: 1

PRINT, (5 GT 2) AND (4 GT 5)

IDL Prints: 0

PRINT, 5 AND 3

IDL Prints: 1

PRINT, 5 AND 2

IDL Prints: 0

PRINT, 4 AND 2

IDL Prints: 0

NOT Boolean complement.
“NOT true” is equal to
“false” and “NOT
false” is equal to
“true.” For floating-
point operands, the
result is 1.0 if the
operand is zero;
otherwise, the result is
zero. Not valid for
string or complex
operands.

IF (NOT (5 GT 6)) THEN PRINT, 'True'

IDL Prints:

True

Table E-4: Boolean Operators
IDL Reference Guide Boolean Operators

2458 Appendix E: IDL Operators
OR Boolean OR. For
integer or byte
operands, a bitwise
inclusive OR is
performed. For
example, 3 OR 5
equals 7. For floating-
point operands, the OR
operator returns the
first operand if it is
non-zero, or the 2nd
operand otherwise.

IF ((5 GT 3) OR (4 GT 5)) THEN PRINT, 'True'

XOR Boolean exclusive OR.
XOR is only valid for
byte, integer, and
longword operands. A
bit in the result is set to
1 if the corresponding
bits in the operands are
different; if they are
equal, it is set to zero.

IF ((5 GT 3) XOR (4 GT 5)) THEN $
PRINT, 'Different' ELSE PRINT, 'Same'

IDL Prints:

Different

Operator Description Example

Table E-4: Boolean Operators
Boolean Operators IDL Reference Guide

Appendix E: IDL Operators 2459
Relational Operators

Operator Description Example

EQ Equal to ;Determine if A equals B:
IF (A EQ B) THEN PRINT, 'True'

GE Greater than or equal to ;Determine if A is greater than or equal
;to B:
IF (A GE B) THEN PRINT, 'True'

GT Greater than ;Determine if A is greater than B:
IF (A GT B) THEN PRINT, 'True'

LE Less than or equal to ;Determine if A is less than or equal
;to B:
IF (A LE B) THEN PRINT, 'True'

LT Less than ; Determine if A is less than B:
IF (A LT B) THEN PRINT, 'True'

NE Not equal to ; Determine if A does not equal B:
IF (A NE B) THEN PRINT, 'True'

Table E-5: Relational Operators
IDL Reference Guide Relational Operators

2460 Appendix E: IDL Operators
Other Operators

Operator Description Example

[] Array concatenation. The
expression [A,B] is an array
formed by concatenating A
and B.

;Define C as three-point vector:
C = [0, 1, 3]

;Add 5 to the end of C:
PRINT, [C, 5]

IDL Prints: 0 1 3 5

;Insert -1 at the beginning of C:
PRINT, [-1, C]

IDL Prints: -1 0 1 3

Enclose array subscripts A = [2, 1, 5]
;Print the 3rd element in A:
PRINT, A[2]

IDL Prints: 5

() Group expressions to control
order of evaluation

PRINT, 3 + 4 * 2 ^ 2 /2

IDL Prints: 11

PRINT, (3 + (4 * 2) ^ 2 / 2)

IDL Prints: 35

= Assignment ;Assign 5 to variable A:
A = 5

Assign "Hello World" to variable B:
B='Hello World'

?: Conditional expression. For

value=expr1 ? expr2 : expr3

expr1 is evaluated first. If
expr1 is true, then
value=expr2. If expr1 is
false, value=expr3.

A=6 & B=4
;Set Z to the greater of A and B:
Z = (A GT B) ? A : B
PRINT, Z

IDL Prints: 6

Table E-6: Other Operators
Other Operators IDL Reference Guide

Appendix E: IDL Operators 2461
Operator Precedence

The following table lists IDL’s operator precedence. Operators with the highest
precedence are evaluated first. Operators with equal precedence are evaluated from
left to right.

Priority Operator

First (highest) () (parentheses, to group expressions)

Second * (pointer dereference)

^ (exponentiation)

Third * (multiplication)

and ## (matrix multiplication)

/(division)

MOD (modulus)

Fourth + (addition)

- (subtraction and negation)

< (minimum)

> (maximum)

NOT (Boolean negation)

Fifth EQ (equality)

NE (not equal)

LE (less than or equal)

LT (less than)

GE (greater than or equal)

GT (greater than)

Sixth AND (Boolean AND)

OR (Boolean OR)

XOR (Boolean exclusive OR)

Seventh ?: (conditional expression)

Table 0-1: Operator Precedence
IDL Reference Guide Operator Precedence

2462 Appendix E: IDL Operators
Operator Precedence IDL Reference Guide

Appendix F:

Special Characters
Within the IDL environment, a number of characters have special meanings. The
following table lists characters with special interpretations and states their functions
in IDL. These characters are discussed further in the descriptions following the table.

Character Function

! First character of system variable names

' • Delimit string constants

• Indicate part of octal or hex constant

; Begin comment field

Table F-1: Special Characters
IDL Reference Guide 2463

2464 Appendix F: Special Characters
Exclamation Point (!)

The exclamation point is the first character of names of IDL system-defined
variables. System variables are predefined scalar variables of a fixed type. Their
purpose is to override defaults for system procedures, to return status information,
and to control the action of IDL.

Apostrophe (')

The apostrophe delimits string literals and indicates part of an octal or hex constant.

$ • Continue current command on the next line

• Issue operating system command if entered on a line by
itself.

" Delimit string constants or precede octal constants

. • Indicate constant is floating point

• Start executive command

& Separate multiple statements on one line

: End label identifiers

* • Multiplication operator

• Array subscript range

• Pointer dereference (if in front of a valid pointer)

@ • Include file

• Execute IDL batch file

? • Invokes online help when entered at the IDL command
line.

• Part of the ?: ternary operator used in conditional
expressions.

Character Function

Table F-1: Special Characters
IDL Reference Guide

Appendix F: Special Characters 2465
Semicolon (;)

The semicolon is the first character of the optional comment field of an IDL
statement. All text on a line following a semicolon is ignored by IDL. A line can
consist of a comment only or both a valid statement and a comment.

Dollar Sign ($)

The dollar sign at the end of a line indicates that the current statement is continued on
the following line. The dollar sign character can appear anywhere a space is legal
except within a string constant or between a function name and the first open
parenthesis. Any number of continuation lines are allowed.

When the $ character is entered as the first character after the IDL prompt, the rest of
the line is sent to the operating system as a command. If $ is the only character
present, an interactive subprocess is started. Under UNIX and VMS, IDL execution
suspends until the new shell process terminates. Note that in IDL for Macintosh,
there must be no space between the $ character and the full path name of the
application being started.

Quotation Mark (")

The quotation mark precedes octal numbers, which are always integers, and delimits
string constants. Example: "100B is a byte constant equal to 64 base 10 and "Don’t
drink the water" is a string constant.

Period (.)

The period or decimal point indicates in a numeric constant that the number is of
floating-point or double-precision type. Example: 1.0 is a floating-point number.
Also, in response to the IDL prompt, the period begins an executive command. For
example,

.run myfile

causes IDL to compile the file myfile.pro. If myfile.pro contains a main program, the
program also will be executed. In addition, the period precedes the name of a tag
when referring to a field within a structure. For example, a reference to a tag called
NAME in a structure stored in the variable A is A.NAME.
IDL Reference Guide

2466 Appendix F: Special Characters
Ampersand (&)

The ampersand separates multiple statements on one line. Statements can be
combined until the maximum line length is reached. For example, the following line
contains two statements:

I = 1 & PRINT, 'value:', I

Colon (:)

The colon ends label identifiers. Labels can only be referenced by GOTO and
ON_ERROR statements. The following line contains a statement with the label
LOOP1.

LOOP1: X = 2.5

The colon also separates the starting and ending subscripts in subscript range
specifiers. For example, A(3:6) designates elements three to six of the variable A.

Asterisk (*)

The asterisk represents one of the following, depending on context:

1. Multiplication (3 * 3).

2. An ending subscript range equal to the size of the dimension. For example,
A[3:*] represents all elements of the vector A from A[3] to the last element,
while B[*,3] represents all elements of row four of matrix B.

3. A pointer dereference operation. For example, if ptr is a valid pointer (created
via the PTR_NEW function), then *ptr is the value held by the heap variable
that ptr points to. For more information on IDL pointers, see Chapter 7,
“Pointers” in Building IDL Applications.

At Sign (@)

The “at” sign is used both as an include character and to signal batch execution.

@ as an Include Character

The “at” sign at the beginning of a line causes the IDL compiler to substitute the
contents of the file whose name appears after the @ for the line. If the full path name
is not specified after the @ symbol, IDL searches the current directory and a list of
known locations where procedures are kept.

• UNIX: IDL searches for the file in the list of directories (as established by the
environment variable IDL_PATH) stored in the system variable !PATH.
IDL Reference Guide

Appendix F: Special Characters 2467
• VMS: IDL searches the list of directories (but not text libraries) established by
the logical name IDL_PATH and stored in the system variable !PATH for the
file.

• Windows: IDL searches for the file in the list of directories stored in the
system variable !PATH (specified in the “Preferences” dialog of the File
menu).

• Macintosh: IDL searches for the file in the list of directories stored in the
system variable !PATH (specified in the “Search Path” dialog of the Edit
menu).

For example, the line

@doit

when included in a file, causes the file doit.pro to be compiled in its place. (The suffix
.pro is the default for IDL program files.) When the end of the file is reached,
compilation resumes at the line after the @.

@ to Signal Batch Processing

When IDL is running in interactive mode, a line beginning with the character @ is
entered in response to the IDL prompt and the file is opened for batch input. See
“Batch Execution” in Chapter 2 of Using IDL for details.

Question Mark (?)

The question mark is used as follows:

• When entered at the IDL command line, the IDL online help facility is
invoked.

• Used in conditional expressions as part of the ?: ternary operator. For example:

; A shorter way of saying IF (a GT b) THEN z=a ELSE z=b:
z = (a GT b) ? a : b

For more on conditional expressions, see “Conditional Expression” in Chapter
2 of Building IDL Applications.
IDL Reference Guide

2468 Appendix F: Special Characters
IDL Reference Guide

Appendix G:

Reserved Words
Variables, user-written procedures, and user-written functions should not have the
same names as IDL functions or procedures. Re-using names of IDL routines can
lead to syntax errors or to “hiding” variables. In addition, certain words representing
IDL language constructs are strictly forbidden—using any of these reserved words as
a variable, procedure, or function name will cause an immediate syntax error. The
following table lists all of the reserved words in IDL.

AND BEGIN BREAK

CASE COMMON COMPILE_OPT

CONTINUE DO ELSE

END ENDCASE ENDELSE

ENDFOR ENDIF ENDREP

ENDSWITCH ENDWHILE EQ

FOR FORWARD_FUNCTION FUNCTION
IDL Reference Guide 2469

2470 Appendix G: Reserved Words
GE GOTO GT

IF INHERITS LE

LT MOD NE

NOT OF ON_IOERROR

OR PRO REPEAT

SWITCH THEN UNTIL

WHILE XOR
IDL Reference Guide

Appendix H:

Fonts
The following topics are covered in this appendix:
Overview . 2472
Fonts in IDL Direct vs. Object Graphics 2473
About Vector Fonts 2474
About TrueType Fonts 2477
About Device Fonts 2482

Choosing a Font Type 2489
Embedded Formatting Commands 2491
Formatting Command Examples 2494
TrueType Font Samples 2498
Vector Font Samples 2501
IDL Reference Guide 2471

2472 Appendix H: Fonts
Overview

IDL uses three font systems for writing characters on the graphics device: Hershey
(vector) fonts, TrueType (outline) fonts, and device (hardware) fonts. This chapter
describes each of the three types of fonts, discusses when to use each type, and
explains how to use fonts when creating graphical output in IDL.

 Vector-drawn fonts, also referred to as Hershey fonts, are drawn as lines. They are
device-independent (within the limits of device resolution). All vector fonts included
with IDL are guaranteed to be available in any IDL installation. See “About Vector
Fonts” on page 2474 for additional details.

TrueType fonts, also referred to here as outline fonts, are drawn as character outlines,
which are filled when displayed. They are largely device-independent, but do have
some device-dependent characteristics. Four TrueType font families are included
with IDL; these fonts should display in a similar way on any IDL platform. TrueType
font support for IDL Object Graphics was introduced in IDL version 5.0 and support
in IDL Direct Graphics was introduced in IDL version 5.1. See “About TrueType
Fonts” on page 2477 for additional details.

Device fonts, also referred to as hardware fonts, rely on character-display hardware
or software built in to a specific display device. Device fonts, necessarily, are device-
dependent and differ from platform to platform and display device to display device.
See “About Device Fonts” on page 2482 for additional details.
Overview IDL Reference Guide

Appendix H: Fonts 2473
Fonts in IDL Direct vs. Object Graphics

This volume deals almost exclusively with IDL Direct Graphics. However, the vector
and TrueType font systems described here are also available in the IDL Object
Graphics system, described in Using IDL.

IDL Direct Graphics

When generating characters for Direct Graphics plots, IDL uses the font system
specified by the value of the system variable !P.FONT. The normal default for this
variable is -1, which specifies that the built-in, vector-drawn (Hershey) fonts should
be used. Setting !P.FONT equal to 1 specifies that TrueType fonts should be used.
Setting !P.FONT equal to zero specifies that fonts supplied by the graphics device
should be used.

The setting of the IDL system variable !P.FONT can be overridden for a single IDL
Direct Graphics routine (AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE, or
XYOUTS) by setting the FONT keyword equal to -1, 0, or 1.

Once a font system has been selected, an individual font can be chosen either via a
formatting command embedded in a text string as described in “Embedded
Formatting Commands” on page 2491, or by setting the value of the FONT keyword
to the DEVICE routine (see “FONT” on page 2326).

IDL Object Graphics

IDL Object Graphics can use the vector and TrueType font systems. See Using IDL
for more information on using fonts with Object Graphics. Any TrueType fonts you
add to your IDL installation as described in “About TrueType Fonts” on page 2477
will also be available to the Object Graphics system.
IDL Reference Guide Fonts in IDL Direct vs. Object Graphics

2474 Appendix H: Fonts
About Vector Fonts

The vector fonts used by IDL were digitized by Dr. A.V. Hershey of the Naval
Weapons Laboratory. Characters in the vector fonts are stored as equations, and can
be scaled and rotated in three dimensions. They are drawn as lines on the current
graphics device, and are displayed quickly and efficiently by IDL. The vector fonts
are built into IDL itself, and are always available.

All the available fonts are illustrated in “Vector Font Samples” on page 2501. The
default vector font (Font 3, Simplex Roman) is in effect if no font changes have been
made.

Using Vector Fonts

To use the vector font system with IDL Direct Graphics, either set the value of the
IDL system variable !P.FONT equal to -1 (negative one), or set the FONT keyword
of one of the Direct Graphics routines equal to -1. The vector font system is the
default font system for IDL.

Once the vector font system is selected, use an embedded formatting command to
select a vector font (or fonts) for each string. (See “Embedded Formatting
Commands” on page 2491 for details on embedded formatting commands.) The font
selected “sticks” from string to string; that is, if you change fonts in one string, future
strings will use the new font until you change it again or exit IDL.

For example, to use the Duplex Roman vector font for the title of a plot, you would
use a command that looks like this:

PLOT, mydata, TITLE=”!5Title of my plot”

Consult Using IDL for details on using the vector font system with IDL Object
Graphics.

Specifying Font Size

To specify the size of a vector font, use the SET_CHARACTER_SIZE keyword to
the DEVICE procedure. The SET_CHARACTER_SIZE keyword takes a two-
element vector as its argument. The first element specifies the width of the “average”
About Vector Fonts IDL Reference Guide

Appendix H: Fonts 2475
character in the font (in pixels) and calculates a scaling factor that determines the
height of the characters. (It is not important what the “average” character is; it is used
only to calculate a scaling factor that will be applied to all of the characters in the
font.) The second element of the vector specifies the number of pixels between
baselines of lines of text.

The ratio of the “average” character’s height to its width differs from font to font, so
specifying the same value [x, y] to the SET_CHARACTER_SIZE keyword may
produce characters of different sizes in different fonts.

Note
While the first element of the vector specified to SET_CHARACTER_SIZE is
technically a width, it is important to note that the width value has no effect on the
widths of individual characters in the font. The width value is used only to calculate
the appropriate scaling factor for the font.

For example, the following IDL commands display the word “Hello There” on the
screen, in letters based on an “average” character that is 70 pixels wide, with 90
pixels between lines:

DEVICE, SET_CHARACTER_SIZE=[70,90]
XYOUTS, 0.1, 0.5, 'Hello!CThere'

You can also use the CHARSIZE keyword to the graphics routines or the
CHARSIZE field of the !P System Variable to change the size of characters to a
multiple of the size of the currently-selected character size. For example, to create
characters one half the size of the current character size, you could use the following
command:

XYOUTS, 0.1, 0.5, 'Hello!CThere', CHARSIZE=0.5

Note
Changing CHARSIZE adjusts both the character size and the space between lines.

ISO Latin 1 Encoding

The default font (Font 3, Simplex Roman) follows the ISO Latin 1 Encoding scheme
and contains many international characters. The illustration of this font under “Vector
Font Samples” on page 2501 can be used to find the octal codes for the special
characters.

For example, suppose you want to display some text with an Angstrom symbol in it.
Looking at the chart of font 3, we see that the Angstrom symbol has octal code 305.
IDL Reference Guide About Vector Fonts

2476 Appendix H: Fonts
Non-printable characters can be represented in IDL using octal or hexadecimal
notation and the STRING function (see “Representing Non-Printable Characters” in
Chapter 3 of Building IDL Applications for details). So the Angstrom can be printed
by inserting a STRING("305B) character in our text string as follows:

XYOUTS,.1, .5, 'Here is an Angstrom symbol: ' + STRING("305B), $
/NORM, CHARSIZE=3

Customizing the Vector Fonts

The EFONT procedure is a widget application that allows you to edit the Hershey
fonts and save the results. Use this routine to add special characters or completely
new, custom fonts to the Hershey fonts.
About Vector Fonts IDL Reference Guide

Appendix H: Fonts 2477
About TrueType Fonts

Beginning with version 5.2, five TrueType font families are included with IDL. The
fonts included are:

When TrueType fonts are rendered on an IDL graphics device or destination object,
the font outlines are first scaled to the proper size. After scaling, IDL converts the
character outline information to a set of polygons using a triangulation algorithm.
When text in a TrueType font is displayed, IDL is actually drawing a set of polygons
calculated from the font information. This process has two side effects:

1. Computation time is used to triangulate and create the polygons. This means
that you may notice a slight delay the first time you use text in a particular font
and size. Once the polygons have been created, the information is cached by
IDL and there is no need to re-triangulate each time text is displayed.
Subsequent uses of the same font and size happen quickly.

2. Because the TrueType font outlines are converted into polygons, you may
notice some chunkiness in the displayed characters, especially at small point
sizes. The smoothness of the characters will vary with the quality of the
TrueType font you are using, the point size, and the general smoothness of the
font outlines.

Font Family Italic Bold BoldItalic

Courier Courier Italic Courier Bold Courier Bold Italic

Helvetica Helvetica Italic Helvetica Bold Helvetica Bold Italic

Monospace Symbol

Times Times Italic Times Bold Times Bold Italic

Symbol

Table H-1: TrueType font names
IDL Reference Guide About TrueType Fonts

2478 Appendix H: Fonts
Using TrueType Fonts

To use the TrueType font system with IDL Direct Graphics, either set the value of the
IDL system variable !P.FONT equal to 1 (one), or set the FONT keyword to on one
of the Direct Graphics routines equal to 1.

Once the TrueType font system is selected, use the SET_FONT keyword to the
DEVICE routine to select the font to use. The value of the SET_FONT keyword is a
font name string. The font name is the name by which IDL knows the font; the names
of the TrueType fonts included with IDL are listed under “About TrueType Fonts” on
page 2477. Finally, specify the TT_FONT keyword in the call to the DEVICE
procedure. For example, to use Helvetica Bold Italic, use the following statement:

DEVICE, SET_FONT='Helvetica Bold Italic', /TT_FONT

To use Times Roman Regular:

DEVICE, SET_FONT='Times', /TT_FONT

IDL’s default TrueType font is 12 point Helvetica regular.

Specifying Font Size

To specify the size of a TrueType font, use the SET_CHARACTER_SIZE keyword
to the DEVICE procedure. The SET_CHARACTER_SIZE keyword takes a two-
element vector as its argument. The first element specifies the width of the “average”
character in the font (in pixels) and calculates a scaling factor that determines the
height of the characters. (It is not important what the “average” character is; it is used
only to calculate a scaling factor that will be applied to all of the characters in the
font.) The second element of the vector specifies the number of pixels between
baselines of lines of text.

The ratio of the “average” character’s height to its width differs from font to font, so
specifying the same value [x, y] to the SET_CHARACTER_SIZE keyword may
produce characters of different sizes in different fonts.

Note
While the first element of the vector specified to SET_CHARACTER_SIZE is
technically a width, it is important to note that the width value has no effect on the
widths of individual characters in the font. The width value is used only to calculate
the appropriate scaling factor for the font.
About TrueType Fonts IDL Reference Guide

Appendix H: Fonts 2479
For example, the following IDL commands display the word “Hello There” on the
screen in Helvetica Bold, in letters based on an “average” character that is 70 pixels
wide, with 90 pixels between lines:

DEVICE, FONT='Helvetica Bold', /TT_FONT,
SET_CHARACTER_SIZE=[70,90]
XYOUTS, 0.1, 0.5, 'Hello!CThere'

You can also use the CHARSIZE keyword to the graphics routines or the
CHARSIZE field of the !P System Variable to change the size of characters to a
multiple of the size of the currently-selected character size. For example, to create
characters one half the size of the current character size, you could use the following
command:

XYOUTS, 0.1, 0.5, 'Hello!CThere', CHARSIZE=0.5

Note that changing the CHARSIZE adjusts both the character size and the space
between lines.

Using Embedded Formatting Commands

Embedded formatting commands allow you to position text and change fonts within a
single line of text. A subset of the embedded formatting commands available for use
with the vector fonts are also available when using the TrueType font system. See
“Embedded Formatting Commands” on page 2491 for a list of in-line formatting
commands.

IDL TrueType Font Resource Files

The TrueType font system relies on a resource file named ttfont.map, located in
the resource/fonts/tt subdirectory of the IDL directory. The format of the
ttfont.map file is:

FontName FileName DirectGraphicsScale ObjectGraphicsScale

where the fields in each row must be separated by white space (spaces and/or tabs).
The fields contain the following information

The Fontname field contains the name that would be used for the SET_FONT
keywords to the DEVICE routine.

The Filename field contains the name of the TrueType font file. On UNIX and VMS
platforms, IDL will search for the file specified in the FileName field in the current
directory (that is, in the resource/fonts/tt subdirectory of the IDL directory) if a
bare filename is provided, or it will look for the file in the location specified by the
fully-qualified file name if a complete path is provided. Because different platforms
IDL Reference Guide About TrueType Fonts

2480 Appendix H: Fonts
use different path-specification syntax, we recommend that you place any TrueType
font files you wish to add to the ttfont.map file in the resource/fonts/tt
subdirectory of the IDL directory. On Macintosh and Windows platforms, this entry
may be '*', in which case the font will be loaded from the operating system font list,
but that the following two scale entries will be honored.

The DirectGraphicsScale field contains a correction factor that will be applied when
choosing a scale factor for the glyphs prior to being rendered on a Direct Graphics
device. If you want the tallest character in the font to fit exactly within the vertical
dimension of the device’s current character size (as set via the
SET_CHARACTER_SIZE keyword to the DEVICE procedure), set the scale factor
equal to 1.0. Change the scale factor to a smaller number to scale a smaller portion of
the tallest character into the character size.

For example, suppose the tallest character in your font is “Å”. Setting the scale factor
to 1.0 will scale this character to fit the current character size, and then apply the
same scaling to all characters in the font. As a result, the letter “M” will fill only
approximately 85% of the full height of the character size. To scale the font such that
the height of the “M” fills the vertical dimension of the character size, you would
include the value 0.85 in the scale field of the ttfont.map file.

The ObjectGraphicsScale field contains a correction factor that will be applied when
choosing a scale factor for the glyphs prior to being rendered on a Direct Graphics
device. (This field works just like the DirectGraphicsScale field.) This scale factor
should be set to 1.0 if the maximum ascent among all glyphs within a given font is to
fit exactly within the font size (as set via the SIZE property to the IDLgrFont object).

Adding Your Own Fonts

To add a your own font to the list of fonts known to IDL, use a text editor to edit the
ttfont.map file, adding the FontName, FileName, DirectGraphicsScale, and
ObjectGraphicsScale fields for your font. You will need to restart IDL for the
changes to the ttfont.map file to take effect. On Windows and Macintosh systems,
you can use fonts that are not mentioned in the ttfont.map file, as long as they are
installed in the Fonts control panel or Font folder, as described below.

Warning
If you choose to modify the ttfont.map file, be sure to keep a backup copy of the
original file so you can restore the defaults if necessary. Note also that applications
that use text may appear different on different platforms if the scale entries in the
ttfont.map file have been altered.
About TrueType Fonts IDL Reference Guide

Appendix H: Fonts 2481
Where IDL Searches for Fonts

The TrueType font files included with IDL are located in the resource/fonts/tt
subdirectory of the IDL directory. When attempting to resolve a font name (specified
via the FONT keyword to the DEVICE procedure), IDL will look in the
ttfont.map file first. If it fails to find the specified font file in the ttfont.map
file, it will search for the font file in the following locations:

UNIX and VMS

No further search will be performed. If the specified font is not included in the
ttfont.map file, IDL will substitute Helvetica.

Microsoft Windows

If the specified font is not included in the ttfont.map file, IDL will search the list
of fonts installed in the system (the fonts installed in the Font control panel). If the
specified font is not found, IDL will substitute Helvetica.

Macintosh

If the specified font is not included in the ttfont.map file, IDL will search the list
of fonts installed in the system (the fonts installed 1in the Fonts subfolder of the
System folder). If the specified font is not found, IDL will substitute Helvetica.
IDL Reference Guide About TrueType Fonts

2482 Appendix H: Fonts
About Device Fonts

Device, or hardware, fonts are fonts that are provided directly by your system’s
hardware or by software other than IDL. In past releases of IDL, we have used the
term “hardware fonts” extensively to discuss these types of fonts. This is because in
the early days of IDL, computer displays were either text-only terminals or dedicated
graphics display devices such as plotters or Tektronix graphics terminals. These
graphics displays generally came with a set of fonts built-in; when IDL asked the
device to display characters in a built-in font, it was making a request to the hardware
to display those characters.

As computer displays have become more sophisticated, the concept of fonts provided
“by the hardware” has expanded to include fonts provided by the computer’s
operating system, or by font-management software. For example, many computers
now use font management software like Adobe Type Manager to manage the fonts
made available by the operating system to all applications. We use the term “device
font” to refer to a font that is available to one of IDL’s graphics devices from a source
other than IDL itself. (In this case, a “graphics device” can be either a Direct
Graphics device as specified by the DEVICE routine or an Object Graphics
“destination” such as a window or a printer.) While device fonts may include fonts
only available because a particular piece of hardware knows how to draw characters
in that font (a pen plotter is an example of a device that may still have its own special
fonts), in most cases device fonts are fonts supplied by the operating system to any
application that may want to use them.

Which Device Fonts Are Available?

To determine which device fonts are available on your system and the exact font
strings to specify for each, use the GET_FONTNAMES keyword to the DEVICE
procedure. You can also use an operating system specific method to determine which
fonts are available:

UNIX and VMS

On most systems, the xlsfonts utility displays a list of fonts available to the
operating system.
About Device Fonts IDL Reference Guide

Appendix H: Fonts 2483
Microsoft Windows

Fonts available to the system are displayed in the Fonts control panel. You may also
have other fonts available if you use font-management software such as Adobe Type
Manager.

Macintosh

Fonts available to the system are displayed in the Fonts folder in the System folder.
You may also have other fonts available if you use font-management software such
as Adobe Type Manager.

Using Device Fonts

To use the Device font system with IDL Direct Graphics, either set the value of the
IDL system variable !P.FONT equal to 0 (zero), or set the FONT keyword to on one
of the Direct Graphics routines equal to 0.

Once the Device font system is selected, use the SET_FONT keyword to the
DEVICE routine to select the font to use. Because device fonts are specified
differently on different platforms, the syntax of the fontname string depends on which
platform you are using.

UNIX and VMS

Usually, the window system provides a directory of font files that can be used by all
applications. List the contents of that directory to find the fonts available on your
system. The size of the font selected also affects the size of vector drawn text. On
some machines, fonts are kept in subdirectories of /usr/lib/X11/fonts. You can
use the xlsfonts command to list available X Windows fonts.

For example, to select the font 8X13:

!P.FONT = 0
DEVICE, SET_FONT = '8X13'

Microsoft Windows

The SET_FONT keyword should be set to a string with the following form:

DEVICE, SET_FONT="font*modifier1*modifier2*...modifiern"

where the asterisk (*) acts as a delimiter between the font’s name (font) and any
modifiers. The string is not case sensitive. Modifiers are simply “keywords” that
change aspects of the selected font. Valid modifiers are:

• For font weight: THIN, LIGHT, BOLD, HEAVY
IDL Reference Guide About Device Fonts

2484 Appendix H: Fonts
• For font quality: DRAFT, PROOF

• For font pitch: FIXED, VARIABLE

• For font angle: ITALIC

• For strikeout text: STRIKEOUT

• For underlined text: UNDERLINE

• For font size: Any number is interpreted as the font height in pixels.

For example, if you have Garamond installed as one of your Windows fonts, you
could select 24-pixel cell height Garamond italic as the font to use in plotting. The
following commands tell IDL to use hardware fonts, change the font, and then make
a simple plot:

!P.FONT = 0
DEVICE, SET_FONT = "GARAMOND*ITALIC*24"
PLOT, FINDGEN(10), TITLE = "IDL Plot"

This feature is compatible with TrueType and Adobe Type Manager (and, possibly,
other type scaling programs for Windows). If you have TrueType or ATM installed,
the TrueType or PostScript outline fonts are used so that text looks good at any size.

Macintosh

The SET_FONT keyword should be set to a string with the following form:

DEVICE, SET_FONT="font*modifier1*modifier2*...modifiern"

where the asterisk (*) acts as a delimiter between the font’s name (font) and any
modifiers. The string is not case sensitive. Modifiers are simply “keywords” that
change aspects of the selected font. Valid modifiers are:

• For font weight: BOLD

• For font angle: ITALIC

• For font width: CONDENSED, EXTENDED

• For outlined text: OUTLINE, SHADOW

• For underlined text: UNDERLINE

• For font size: Any number is interpreted as the font size, in points.

For example, if you have Garamond installed, you could select 24-point Garamond
italic as the font to use in plotting. The following commands tell IDL to use hardware
fonts, change the font, and then make a simple plot:
About Device Fonts IDL Reference Guide

Appendix H: Fonts 2485
IDL> !P.FONT = 0
IDL> DEVICE, SET_FONT = "GARAMOND*ITALIC*24"
IDL> PLOT, FINDGEN(10), TITLE = "IDL Plot"

Fonts and the PostScript Device

A special set of device fonts are available when the current Direct Graphics device is
PS (PostScript). IDL includes font metric information for 35 standard PostScript
fonts, and can create PostScript language files that include text in these fonts. (The 35
fonts known to IDL are listed in the following table; they the standard fonts included
in memory in the vast majority of modern PostScript printers.) The PostScript font
metric files (*.afm files) are located in the resource/fonts/ps subdirectory of
the IDL directory.

AvantGarde-Book Helvetica-Narrow-Oblique

AvantGarde-BookOblique Helvetica-Oblique

AvantGarde-Demi NewCenturySchlbk-Bold

AvantGarde-DemiOblique NewCenturySchlbk-BoldItalic

Bookman-Demi NewCenturySchlbk-Italic

Bookman-DemiItalic NewCenturySchlbk-Roman

Bookman-Light Palatino-Bold

Bookman-LightItalic Palatino-BoldItalic

Courier Palatino-Italic

Courier-Bold Palatino-Roman

Courier-BoldOblique Symbol

Courier-Oblique Times-Bold

Helvetica Times-BoldItalic

Helvetica-Bold Times-Italic

Helvetica-BoldOblique Times-Roman

Helvetica-Narrow ZapfChancery-MediumItalic

Helvetica-Narrow-Bold ZapfDingats

Helvetica-Narrow-BoldOblique

Table H-2: Names of Supported PostScript Fonts
IDL Reference Guide About Device Fonts

2486 Appendix H: Fonts
Using PostScript Fonts

To use a PostScript font in your Direct Graphics output, you must first specify that
IDL use the device font system, they switch to the PS device, then choose a font using
the SET_FONT keyword to the DEVICE procedure.

The following IDL commands choose the correct font system, set the graphics
device, select the font Palatino Roman, open a PostScript file to print to, plot a simple
data set, and close the PostScript file:

!P.FONT = 0
SET_PLOT, 'PS'
DEVICE, SET_FONT = 'Palatino-Roman', FILE = 'testfile.ps'
PLOT, INDGEN(10), TITLE = 'My Palatino Title'
DEVICE, /CLOSE

Note
Subsequent PostScript output will continue to use the font Palatino Roman until
you explicitly change the font again, or exit IDL.

You can also specify PostScript fonts using a set of keywords to the DEVICE
procedure. The keyword combinations for the fonts included with IDL are listed in
the following table.

PostScript Font DEVICE Keywords

Courier /COURIER

Courier Bold /COURIER, /BOLD

Courier Oblique /COURIER, /OBLIQUE

Courier Bold Oblique /COURIER, /BOLD, /OBLIQUE

Helvetica /HELVETICA

Helvetica Bold /HELVETICA, /BOLD

Helvetica Oblique /HELVETICA, /OBLIQUE

Helvetica Bold Oblique /HELVETICA, /BOLD, /OBLIQUE

Helvetica Narrow /HELVETICA, /NARROW

Helvetica Narrow Bold /HELVETICA, /NARROW, /BOLD

Table H-3: The Standard 35 PostScript Fonts
About Device Fonts IDL Reference Guide

Appendix H: Fonts 2487
Helvetica Narrow Oblique /HELVETICA, /NARROW, /OBLIQUE

Helvetica Narrow Bold Oblique /HELVETICA, /NARROW, /BOLD,
/OBLIQUE

ITC Avant Garde Gothic Book /AVANTGARDE, /BOOK

ITC Avant Garde Gothic Book
Oblique

/AVANTGARDE, /BOOK, /OBLIQUE

ITC Avant Garde Gothic Demi /AVANTGARDE, /DEMI

ITC Avant Garde Gothic Demi
Oblique

/AVANTGARDE, /DEMI, /OBLIQUE

ITC Bookman Demi /BKMAN, /DEMI

ITC Bookman Demi Italic /BKMAN, /DEMI, /ITALIC

ITC Bookman Light /BKMAN, /LIGHT

ITC Bookman Light Italic /BKMAN, /LIGHT, /ITALIC

ITC Zapf Chancery Medium Italic /ZAPFCHANCERY, /MEDIUM,
/ITALIC

ITC Zapf Dingbats /ZAPFDINGBATS

New Century Schoolbook /SCHOOLBOOK

New Century Schoolbook Bold /SCHOOLBOOK, /BOLD

New Century Schoolbook Italic /SCHOOLBOOK, /ITALIC

New Century Schoolbook Bold Italic /SCHOOLBOOK, /BOLD, /ITALIC

Palatino /PALATINO

Palatino Bold /PALATINO, /BOLD

Palatino Italic /PALATINO, /ITALIC

Palatino Bold Italic /PALATINO, /BOLD, /ITALIC

Symbol /SYMBOL

Times /TIMES

Times Bold /TIMES, /BOLD

PostScript Font DEVICE Keywords

Table H-3: The Standard 35 PostScript Fonts
IDL Reference Guide About Device Fonts

2488 Appendix H: Fonts
For example to use the PostScript font Palatino Bold Italic, you could use either of
the following DEVICE commands:

DEVICE, SET_FONT = 'Palatino*Bold*Italic'
DEVICE, /PALATINO, /BOLD, /ITALIC

Changing the PostScript Font Assigned to an Index

You can change the PostScript font assigned to a given font index using the
FONT_INDEX keyword to the DEVICE procedure. Font indices and their use are
discussed in “Embedded Formatting Commands” on page 2491.

Changing the font index assigned to a font can be useful when changing PostScript
fonts in the middle of a text string. For example, the following statements map
Palatino Bold Italic to font index 4, and then output text using that font and the
Symbol font:

; Map the font selected by !4 to be PalatinoBoldItalic:
DEVICE, /PALATINO, /BOLD, /ITALIC, FONT_INDEX=4
; Output "Alpha :" in PalatinoBoldItalic followed by an
; Alpha character:
XYOUTS, .3, .5, /NORMAL, "!4Alpha: !9a", FONT=0, SIZE=5.0

Adding Your Own PostScript Fonts

Because the 35 PostScript fonts included with IDL are built in to a PostScript
printer’s memory, the IDL distribution includes only the font metric files, which
provide positioning information. In addition, the .afm files used by IDL are specially
processed to provide the information in a format IDL expects.

You can add your own PostScript fonts to the list of fonts known to IDL if you have
access to the PostScript font file (usually named font.pfb) to load into your printer
and to the font.afm file supplied by Adobe. You can convert the standard .afm file
into a file IDL understands using the IDL routine PSAFM. Consult the file
README.TXT in the resource/fonts/ps subdirectory of the IDL directory for
details on adding PostScript fonts to your system.

Times Italic /TIMES, /ITALIC

Times Bold Italic /TIMES, /ITALIC, /BOLD

PostScript Font DEVICE Keywords

Table H-3: The Standard 35 PostScript Fonts
About Device Fonts IDL Reference Guide

Appendix H: Fonts 2489
Choosing a Font Type

Some of the issues involved in choosing between vector, TrueType, and device fonts
are explained below.

Appearance

Vector-drawn characters are of medium quality, suitable for most uses. TrueType
characters are of relatively high quality, although at some point sizes the triangulation
process (described in “About TrueType Fonts” on page 2477) may cause characters
to appear slightly jagged. The appearance of device characters varies from mediocre
(characters found in many graphics terminals) to publication quality (PostScript).

Three-Dimensional Transformations

Vector or TrueType fonts should always be used with three-dimensional
transformations. Both vector and TrueType characters pass through the same
transformations as the rest of the plot, yielding a better looking plot. See “Three-
Dimensional Graphics” in Chapter 12 of Using IDL for an example of vector-drawn
characters with three-dimensional graphics. Device characters are not subject to the
three-dimensional transforms.

Portability

The vector-drawn fonts work using any graphics device and look the same on every
device (within the limitations of device resolution) on any system supported by IDL.

TrueType fonts are available only on the X, WIN, MAC, PRINTER, PS, and Z Direct
Graphics devices, and in IDL’s Object Graphics system. If you use only the fonts
supplied with IDL, TrueType fonts also look the same on every supported device
(again within the limits of the device resolution). If you use TrueType fonts other
than those supplied with IDL, your font may not be installed on the system which
runs your program. In this case, IDL will substitute a known font for the missing font.

The appearance, size, and availability of device fonts varies greatly from device to
device. Many, if not most, of the positioning and font changing commands
recognized by the vector-drawing routines are ignored when using device fonts. The
exception to this rule is the Direct Graphics PS device; if you use one of the
PostScript fonts supported by IDL, the PostScript output from the PS device will be
identical between platforms.
IDL Reference Guide Choosing a Font Type

2490 Appendix H: Fonts
Computational Time

Device fonts are generally rendered the most quickly, since the hardware device or
operating system handles all computations and caching.

It takes more computer time to draw characters with line vectors and generally results
in more input/output. However, this is not an important issue unless the plot contains
a large number of characters or the transmission link to the device is very slow.

The initial triangulation step used when displaying TrueType fonts for the first time
can be computationally expensive. However, since the font shapes are cached,
subsequent uses of the same font are relatively speedy.

Flexibility

Vector-drawn fonts provide a great deal of flexibility. There are many different
typefaces available, as shown in the tables at the end of this chapter. In addition, such
fonts can be arbitrarily scaled, rotated, and transformed.

TrueType fonts support fewer embedded formatting commands than do the vector
fonts, and cannot be scaled, rotated, or transformed.

The abilities of hardware-generated characters differ greatly between devices so it is
not possible to make a blanket statement on when they should be used—the best font
to use depends on the available hardware. In general, however, the vector or
TrueType fonts are easier to use and often provide superior results to what is
available from the hardware. See the discussion of the device you are using in
Appendix B, “IDL Graphics Devices” for details on the hardware-generated
characters provided by that device.

Print Quality

For producing publication-quality output, we recommend using either the TrueType
font system or the Direct Graphics PS device and one of the PostScript fonts
supported by IDL.
Choosing a Font Type IDL Reference Guide

Appendix H: Fonts 2491
Embedded Formatting Commands

When you use vector, TrueType, and some device fonts, text strings can include
embedded formatting commands that facilitate subscripting, superscripting, and
equation formatting. The method used is similar to that developed by Grandle and
Nystrom (1980). Embedded formatting commands are always introduced by the
exclamation mark, (!). (The string “!!” is used to produce a literal exclamation
mark.)

Note
Embedded formatting commands prefaced by the exclamation mark have no special
significance for hardware-generated characters unless the ability is provided by the
particular device in use. The IDL PostScript device driver accepts many of the
standard embedded formatting commands, and is described here. If you wish to use
hardware fonts with IDL Direct Graphics devices other than the PostScript device,
consult the description of the device in Appendix B, “IDL Graphics Devices”
before trying to use these commands with hardware characters.

You can determine whether embedded formatting commands are available for use
with device fonts on your current graphics device by inspecting bit 12 of the Flags
field of the !D System Variable. Use the IDL statement:

IF (!D.FLAGS AND 4096) NE 0 THEN PRINT, 'Bit is set.'

to determine whether bit 12 of the Flags field is set for the current graphics device.

Changing Fonts within a String

You can change fonts one or more times within a text string using the embedded font
commands shown in the table below. The character following the exclamation mark
can be either upper or lower case.

Examples of commands used to change fonts in mid-string are included in
“Formatting Command Examples” on page 2494.
IDL Reference Guide Embedded Formatting Commands

2492 Appendix H: Fonts
Command Vector Font TrueType Font PostScript Font

!3 Simplex Roman (default) Helvetica Helvetica

!4 Simplex Greek Helvetica Bold Helvetica Bold

!5 Duplex Roman Helvetica Italic Helvetica Narrow

!6 Complex Roman Helvetica Bold
Italic

Helvetica Narrow
Bold Oblique

!7 Complex Greek Times Times Roman

!8 Complex Italic Times Italic Times Bold Italic

!9 Math/special characters Symbol Symbol

!M Math/special characters
(change effective for one
character only)

Symbol Symbol

!10 Special characters Symbol * Zapf Dingbats

!11(!G) Gothic English Courier Courier

!12(!W) Simplex Script Courier Italic Courier Oblique

!13 Complex Script Courier Bold Palatino

!14 Gothic Italian Courier Bold Italic Palatino Italic

!15 Gothic German Times Bold Palatino Bold

!16 Cyrillic Times Bold Italic Palatino Bold
Italic

!17 Triplex Roman Helvetica * Avant Garde Book

!18 Triplex Italic Helvetica * New Century
Schoolbook

!19 Helvetica * New Century
Schoolbook Bold

!20 Miscellaneous Helvetica * Undefined User
Font

!X Revert to the entry font Revert to the entry
font

Revert to the entry
font

* The font assigned to this index may be replaced in a future release of IDL.

Table H-4: Embedded Font Selection Commands
Embedded Formatting Commands IDL Reference Guide

Appendix H: Fonts 2493
Positioning Commands

The positioning and other font-manipulation commands are described in the
following table. Examples of commands used to position text are included in
“Formatting Command Examples” on page 2494.

Command Action

!A Shift above the division line .

!B Shift below the division line .

!C “Carriage return,” begins a new line of text. Shift back to the
starting position and down one line.

!D Shift down to the first level subscript and decrease the
character size by a factor of 0.62.

!E Shift up to the exponent level and decrease the character size
by a factor of 0.44.

!I Shift down to the index level and decrease the character size
by a factor of 0.44.

!L Shift down to the second level subscript. Decrease the
character size by a factor of 0.62.

!N Shift back to the normal level and original character size.

!R Restore position. The current position is set from the top of
the saved positions stack.

!S Save position. The current position is saved on the top of the
saved positions stack.

!U Shift to upper subscript level. Decrease the character size by a
factor of 0.62.

!X Return to the entry font.

!Z(u0,u1,...,un) Display one or more character glyphs according to their
unicode value. Each ui within the parentheses will be
interpreted as a 16-bit hexadecimal unicode value. If more
than one unicode value is to be included, the values should be
separated by commas.

!! Display the ! symbol.

Table H-5: Vector-Drawn Positioning and Miscellaneous Commands
IDL Reference Guide Embedded Formatting Commands

2494 Appendix H: Fonts
Formatting Command Examples

The figure below illustrates the relative positions and effects on character size of the
level commands. In this figure, the letters “!N” are normal level and size characters.

The positioning shown was created with the following command:

XYOUTS, 0.1, 0.3, $
'!LLower!S!EExponent!R!IIndex!N Normal!S!EExp!R!IInd!N!S!U Up
!R!D Down!N!S!A Above!R!B Below'

Note that the string argument to the XYOUTS procedure must be entered on a single
line rather than the two lines shown above.

Figure H-1: Positioning commands with vector fonts (top) and TrueType fonts
(bottom).
Formatting Command Examples IDL Reference Guide

Appendix H: Fonts 2495
A Complex Equation

Embedded positioning commands and the vector font system can be used to create
the integral shown below:

The command string used to produce the integral is:

XYOUTS, 0, .2, $
'!MI!S!A!E!8x!R!B!Ip!N !7q!Ii!N!8U!S!E2!R!Ii!Ndx', $

SIZE = 3, /NORMAL

Remember that the case of the letter in an embedded command is not important. The
string may be broken down into the following components:

!MI

Changes to the math set and draws the integral sign, uppercase I.

!S

Saves the current position on the position stack.

!A!E!8x

Shifts above the division line and to the exponent level, switches to the Complex
Italic font (Font 8), and draws the “x.”

!R!B!Ip

Restores the position to the position immediately after the integral sign, shifts below
the division line to the index level, and draws the “p.”

Figure H-2: An integral created with the vector fonts.
IDL Reference Guide Formatting Command Examples

2496 Appendix H: Fonts
!N !7q

Returns to the normal level, advances one space, shifts to the Complex Greek font
(Font 7), and draws the Greek letter rho, which is designated by “q” in this set.

!Ii!N

Shifts to the index level and draws the “i” at the index level. Returns to the normal
level.

!8U

Shifts to the Complex Italic font (Font 8) and outputs the upper case “U.”

!S!E2

Saves the position and draws the exponent “2.”

!R!Ii

Restores the position and draws the index “i.”

!N dx

Returns to the normal level and outputs “dx.”

Note
The equation shown in the figure above could not be created so simply using the
TrueType font system, because the large integral symbol is broken into two or more
characters in the TrueType fonts.

Vector-Drawn Font Example

IDL uses vector-drawn font when the value of the system variable !P.FONT is -1.
This is the default condition. Initially, all characters are drawn using the Simplex
Roman font (Font 3). When plotting, font changing commands may be embedded in
the title strings keyword arguments (XTITLE, YTITLE, and TITLE) to select other
fonts. For example, the following statement uses the Complex Roman font (Font 6)
for the x-axis title:

PLOT, X, XTITLE = '!6X Axis Title'

This font remains in effect until explicitly changed. The order in which the
annotations are drawn is main title, x-axis numbers, x-axis title, y-axis numbers,
and y-axis title. Strings to be output also may contain embedded information
Formatting Command Examples IDL Reference Guide

Appendix H: Fonts 2497
selecting subscripting, superscripting, plus other features that facilitate equation
formatting.

The following statements were used to produce the figure below. They serve as an
example of a plot using vector-drawn characters and of equation formatting.

; Define an array:
X = FLTARR(128)
; Make a step function:
X[30:40] = 1.0
;Take FFT and magnitude:
X = ABS(FFT(X, 1))
; Produce a log-linear plot. Use the Triplex Roman font for the
; x title (!17), Duplex Roman for the y title (!5), and Triplex
; Italic for the main title (!18). The position keyword is used to
; shrink the plotting window:
PLOT, X[0:64], /YLOG, XTITLE = '!17Frequency', $

YTITLE = '!5Power', $
TITLE = '!18Example of Vector Drawn Plot', $
POSITION = [.2, .2, .9, .6]

SS = '!6F(s) = (2!4p)!e-1/2!n !mi!s!a!e!m $
!r!b!i ' + '-!m $

; String to produce equation:
!nF(x)e !e-i2!4p!3xs!ndx'

XYOUTS, 0.1, .75, SS, SIZE = 3, $
; Output string over plot. The NOCLIP keyword is needed because
; the previous plot caused the clipping region to shrink:

/NORMAL, /NOCLIP

Figure H-3: Example of a Vector-drawn Plot.
IDL Reference Guide Formatting Command Examples

2498 Appendix H: Fonts
TrueType Font Samples

The following figures show roman versions of the four TrueType font families
included with IDL. The character sets for the bold, italic, and bold italic versions of
these fonts are the same as the roman versions.

The SHOWFONT command was used to create these figures. For example, to
display the following figure on the screen, you would the command:

SHOWFONT, 'Helvetica', 'Helvetica', /TT_FONT

For more information, see “SHOWFONT” on page 1248.

Note
The following font charts are numbered in octal notation. To read the octal number
of a character, add the column index (along the top) to ten times the row index. For
example, the capital letter “A” is octal 101, and the copyright symbol is octal 251.
TrueType Font Samples IDL Reference Guide

Appendix H: Fonts 2499
IDL Reference Guide TrueType Font Samples

2500 Appendix H: Fonts
TrueType Font Samples IDL Reference Guide

Appendix H: Fonts 2501
Vector Font Samples

The following figures show samples of various vector-drawn fonts. The
SHOWFONT command was used to create these figures. For example, to display the
following figure on the screen, you would the command:

SHOWFONT, 3, 'Simplex Roman'

To output this figure to a postscript file, you would use the following commands:

SET_PLOT, 'PS'
SHOWFONT, 3, 'Simplex Roman'
DEVICE, /CLOSE

For more information, see “SHOWFONT” on page 1248.

Note
The following font charts are numbered in octal notation. To read the octal number
of a character, add the column index (along the top) to ten times the row index. For
example, the capital letter “A” is octal 101, and the “$” symbol is octal 44.
IDL Reference Guide Vector Font Samples

2502 Appendix H: Fonts
Vector Font Samples IDL Reference Guide

Appendix H: Fonts 2503
IDL Reference Guide Vector Font Samples

2504 Appendix H: Fonts
Vector Font Samples IDL Reference Guide

Appendix H: Fonts 2505
IDL Reference Guide Vector Font Samples

2506 Appendix H: Fonts
Vector Font Samples IDL Reference Guide

Appendix H: Fonts 2507
IDL Reference Guide Vector Font Samples

2508 Appendix H: Fonts
Vector Font Samples IDL Reference Guide

Appendix H: Fonts 2509
IDL Reference Guide Vector Font Samples

2510 Appendix H: Fonts
Vector Font Samples IDL Reference Guide

Appendix I:

Obsolete Routines
The following topics are covered in this appendix:
What Are Obsolete Routines? 2512
Routines Obsoleted in IDL 5.4 2513
Routines Obsoleted in IDL 5.3 2514
Routines Obsoleted in IDL 5.2 2515

Routines Obsoleted in IDL 5.1 2516
Routines Obsoleted in IDL 5.0 2517
Routines Obsoleted in IDL 4.0 or Earlier 2518
Obsolete System Variables 2524
IDL Reference Guide 2511

2512 Appendix I: Obsolete Routines
What Are Obsolete Routines?

To improve the overall quality and functionality of IDL, Research Systems, Inc.
occasionally replaces existing routines with new, improved routines. In many cases,
existing routines are improved without changing their existing behavior—through
improvements of the underlying algorithms, for example, or by adding keyword
functionality. In some cases, however, the improved methods are incompatible with
the old. In these situations, we consider the routines that we have replaced to be
obsolete.

This chapter lists the routines that have become obsolete in each version of IDL.
These routines are not documented in the online help. To view reference information
for routines obsoleted in IDL version 5.0 and later, see the obsolete.pdf file in the
docs subdirectory of the IDL distribution. Routines obsoleted in IDL 4.0 and earlier
are not documented in the obsolete.pdf file. If a .pro file for the routine exists, it
is located in the lib/obsolete subdirectory of the IDL distribution. You can read
the documentation header of a routine in the obsolete directory either by opening
the .pro file or using the DOC_LIBRARY routine.
What Are Obsolete Routines? IDL Reference Guide

Appendix I: Obsolete Routines 2513
Routines Obsoleted in IDL 5.4

The following routines were present in IDL Version 5.3 but became obsolete in IDL
Version 5.4.

Routine Replaced by .pro File?

POLYFITW POLY_FIT, MEASURE_ERRORS
keyword

polyfitw.pro

RIEMANN RADON

Table I-1: Routines Obsoleted in IDL 5.4
IDL Reference Guide Routines Obsoleted in IDL 5.4

2514 Appendix I: Obsolete Routines
Routines Obsoleted in IDL 5.3

The following routines were present in IDL Version 5.2 but became obsolete in IDL
Version 5.3.

Routine Replaced by .pro File?

HDF_DFSD_*
Routines

HDF_SD_* Routines

RSTRPOS STRPOS, /REVERSE_SEARCH rstrpos.pro

STR_SEP STRSPLIT for single character
delimiters

STRSPLIT, /REGEX for longer
delimiters

str_sep.pro

Table I-2: Routines Obsoleted in IDL 5.3
Routines Obsoleted in IDL 5.3 IDL Reference Guide

Appendix I: Obsolete Routines 2515
Routines Obsoleted in IDL 5.2

The following routines were present in IDL Version 5.1 but became obsolete in IDL
Version 5.2.

Routine Replaced by .pro File?

DEMO_MODE LMGR demo_mode.pro

Table I-3: Routines Obsoleted in IDL 5.2
IDL Reference Guide Routines Obsoleted in IDL 5.2

2516 Appendix I: Obsolete Routines
Routines Obsoleted in IDL 5.1

The following routines were present in IDL Version 5.0 but became obsolete in IDL
Version 5.1.

Routine Replaced by .pro File?

SLICER SLICER3 slicer3.pro

Table I-4: Routines Obsoleted in IDL 5.1
Routines Obsoleted in IDL 5.1 IDL Reference Guide

Appendix I: Obsolete Routines 2517
Routines Obsoleted in IDL 5.0

The following routines were present in IDL Version 4.0 but became obsolete in IDL
Version 5.0.

Routine Replaced by .pro File?

DDE Routines n/a

GETHELP OUTPUT keyword to HELP

HANDLE_CREATE PTR_NEW

HANDLE_FREE PTR_FREE

HANDLE_INFO PTR_VALID

HANDLE_MOVE n/a

HANDLE_VALUE dereference operator

INP, INPW, OUTP, OUTPW n/a

PICKFILE DIALOG_PICKFILE

Old RPC API New RPC API

.SIZE Executive Command No longer needed

TIFF_DUMP n/a

TIFF_READ READ_TIFF

TIFF_WRITE WRITE_TIFF

WIDED n/a

WIDGET_MESSAGE DIALOG_MESSAGE

Table I-5: Routines Obsoleted in IDL 5.0
IDL Reference Guide Routines Obsoleted in IDL 5.0

2518 Appendix I: Obsolete Routines
Routines Obsoleted in IDL 4.0 or Earlier

The following routines became obsolete in IDL version 4.0 or earlier. These routines
are not documented in the obsolete.pdf file. If a .pro file for the routine exists, it
is located in the obsolete subdirectory of the lib directory of the IDL distribution.
You can read the documentation header of a routine in the obsolete directory either
by opening the .pro file or using the DOC_LIBRARY routine.

Routine Replaced by .pro File?

ADDSYSVAR DEFSYSV addsysvar.pro

ADJCT XPALETTE adjct.pro

ANOVA KW_TEST anova.pro

ANOVA_UNEQUAL KW_TEST anova_uneqal.pro

BETAI IBETA betai.pro

C_EDIT XPALETTE c_edit.pro

CALL_VMS CALL_EXTERNAL

CHI_SQR CHISQR_CVF chi_sqr.pro

CHI_SQR1 CHISQR_PDF chi_sqr1.pro

COLOR_EDIT XPALETTE color_edit.pro

CONTINGENT CTI_TEST contingent.pro

CORREL_MATRIX CORRELATE correl_matrix.pro

COSINES n/a cosines.pro

CW_BSELECTOR WIDGET_DROPLIST cw_bselector.pro

CW_LOADSTATE NO_COPY keyword to
WIDGET_CONTROL

cw_loadstate.pro

CW_SAVESTATE NO_COPY keyword to
WIDGET_CONTROL

cw_savestate.pro

DIFFEQ_23 RK4 diffeq_23.pro

DIFFEQ_45 RK4 diffeq_23.pro

Table I-6: Routines Obsoleted in IDL 4.0 or Earlier
Routines Obsoleted in IDL 4.0 or Earlier IDL Reference Guide

Appendix I: Obsolete Routines 2519
DISP_TEXT XYOUTS disp_text.pro

EIGEN_II EIGENVEC eigen_ii.pro

EQUAL_VARIANCE FV_TEST equal_variance.pro

F_TEST F_CVF f_test.pro

F_TEST1 F_PDF f_test1.pro

FILLCONTOUR FILL keyword to
CONTOUR

fillcontour.pro

FORRD READU

FORRD_KEY READU

FORWRT WRITEU

FRIEDMAN KW_TEST friedman.pro

GAUSS GAUSS_CVF gauss.pro

GOODFIT XSQ_TEST goodfit.pro

HELP_VM MEMORY keyword to
HELP

help_vm.pro

HSV_TO_RGB COLOR_CONVERT hsv_to_rgb.pro

JOIN CLUSTER join.pro

KMEANS CLUSTER kmeans.pro

KRUSKAL_WALLIS KW_TEST kruskal_wallis.pro

LATLON n/a latlon.pro

LEGO LEGO keyword to
SURFACE

lego.pro

LISTREP n/a listrep.pro

LISTWISE n/a listwise.pro

LN03 n/a ln03.pro

LUBKSB LUSOL

Routine Replaced by .pro File?

Table I-6: Routines Obsoleted in IDL 4.0 or Earlier
IDL Reference Guide Routines Obsoleted in IDL 4.0 or Earlier

2520 Appendix I: Obsolete Routines
LUDCMP LUDC

MAKETREE CLUSTER maketree.pro

MANN_WHITNEY RS_TEST mann_whitney.pro

MENUS WIDGET_DROPLIST, etc. menus.pro

MIPSEB_DBLFIXUP n/a mipseb_dblfixup.pro

MOVIE XINTERANIMATE movie.pro

MPROVE LUMPROVE

MULTICOMPARE Hypothesis Testing
Routines

multicompare.pro

NR_BETA BETA

NR_BROYDN BROYDEN

NR_CHOLDC CHOLDC

NR_CHOLSL CHOLSOL

NR_DFPMIN DFPMIN

NR_ELMHES ELMHES nr_elmhes.pro

NR_EXPINT EXPINT

NR_FULSTR FULSTR

NR_HQR HQR nr_hqr.pro

NR_INVERT INVERT

NR_LINBCG LINBCG

NR_LUBKSB LUSOL nr_lubksb.pro

NR_LUDCMP LUDC nr_ludcmp.pro

NR_MACHAR MACHAR

NR_MPROVE LUMPROVE

NR_NEWT NEWTON

NR_POWELL POWELL

Routine Replaced by .pro File?

Table I-6: Routines Obsoleted in IDL 4.0 or Earlier
Routines Obsoleted in IDL 4.0 or Earlier IDL Reference Guide

Appendix I: Obsolete Routines 2521
NR_QROMB QROMB

NR_QROMO QROMO

NR_QSIMP QSIMP

NR_RK4 RK4

NR_SPLINE SPL_INIT

NR_SPLINT SPL_INTERP

NR_SPRSAB SPRSAB

NR_SPRSAX SPRSAX

NR_SPRSIN SPRSIN nr_sprsin.pro

NR_SVBKSB SVSOL nr_svbksb.pro

NR_SVD SVDC nr_svd.pro

NR_TQLI TRIQL

NR_TRED2 TRIRED

NR_TRIDAG TRISOL

NR_WTN WTN nr_wtn.pro

NR_ZROOTS FZ_ROOTS

ONLY_8BIT n/a only_8bit.pro

PALETTE XPALETTE palette.pro

PARTIAL2_COR P_CORRELATE partial2_cor.pro

PARTIAL_COR P_CORRELATE partical_cor.pro

PHASER n/a phaser.pro

PM n/a pm.pro

PMF n/a pmf.pro

POLYCONTOUR FILL keyword to
CONTOUR

polycontour.pro

PROMPT n/a prompt.pro

Routine Replaced by .pro File?

Table I-6: Routines Obsoleted in IDL 4.0 or Earlier
IDL Reference Guide Routines Obsoleted in IDL 4.0 or Earlier

2522 Appendix I: Obsolete Routines
PWIDGET n/a pwidget.pro

REGRESS1 REGRESS regress1.pro

REGRESSION REGRESS regression.pro

RGB_TO_HSV COLOR_CONVERT rgb_to_hsv.pro

RM n/a rm.pro

RMF n/a rmf.pro

ROT_INT ROT rot_int.pro

RSI_GAMMAI IGAMMA rsi_gamma.pro

RUNS_TEST R_TEST runs_test.pro

SET_NATIVE_PLOT n/a set_native_plot.pro

SET_SCREEN n/a set_screen.pro

SET_VIEWPORT n/a set_viewport.pro

SET_XY n/a set_xy.pro

SIGMA MOMENT sigma.pro

SIGN_TEST S_TEST sign_test.pro

SIMPSON QSIMP or QROMB simpson.pro

SPEARMAN R_CORRELATE sprearman.pro

STDEV MOMENT stdev.pro

STEPWISE REGRESS stepwise.pro

STUDENT1_T T_PDF student1_t.pro

STUDENT_T T_CVF student_t.pro

STUDRANGE T_PDF studrange.pro

SURFACE_FIT SFIT surface_fit.pro

SVBKSB SVSOL

SVD SVDC

Routine Replaced by .pro File?

Table I-6: Routines Obsoleted in IDL 4.0 or Earlier
Routines Obsoleted in IDL 4.0 or Earlier IDL Reference Guide

Appendix I: Obsolete Routines 2523
TESTCONTRAST n/a testcontrast.pro

TQLI TRIQL

TRED2 TRIRED

TRIDAG TRISOL

TVDELETE WDELETE

TVRDC CURSOR

TVSET WSET

TVSHOW WSHOW

TVWINDOW WINDOW

VMSCODE n/a vmscode.pro

WILCOXON RS_TEST wilcoxon.pro

WMENU WIDGET_DROPLIST, etc. wmenu.pro

XANIMATE XINTERANIMATE xanimate.pro

XBACKREGISTER TIMER keyword to
WIDGET_CONTROL

xbackregister.pro

XDL n/a xdl.pro

XMANAGERTOOL XMTOOL xmanagertool.pro

XMENU WIDGET_DROPLIST, etc. xmenu.pro

XPDMENU WIDGET_DROPLIST, etc. xpdmenu.pro

ZROOTS FZ_ROOTS

Routine Replaced by .pro File?

Table I-6: Routines Obsoleted in IDL 4.0 or Earlier
IDL Reference Guide Routines Obsoleted in IDL 4.0 or Earlier

2524 Appendix I: Obsolete Routines
Obsolete System Variables

The following IDL system variables became obsolete in the change from VAX IDL
(IDL version 1) to IDL version 2. While it is highly unlikely that you will find
references to these system variables in existing code, we include them here because
they are flagged when the OBS_SYSVARS field of the !WARN structure is set equal
to one. See Appendix D, “System Variables” in the IDL Reference Guide for
information on IDL system variables.

System Variable Replaced by

!BCOLOR BOTTOM keyword to SURFACE

!COLOR !P.COLOR

!CXMAX !X.CRANGE[1]

!CXMIN !X.CRANGE[0]

!CYMAX !Y.CRANGE[1]

!CYMIN !Y.CRANGE[0]

!FANCY No direct equivalent. Use !P.FONT and
!P.CHARSIZE

!FLIP No equivalent.

!GRID !P.TICKLEN

!HI No equivalent.

!IGNORE !P.NOCLIP

!LINETYPE !P.LINESTYLE

!LO No equivalent.

!MTITLE !P.TITLE

!NOERAS !P.NOERASE

!NORMALCONT FOLLOW keyword to CONTOUR

!NSUM !P.NSUM

!PSYM !P.PSYM

Table I-7: Obsolete System Variables
Obsolete System Variables IDL Reference Guide

Appendix I: Obsolete Routines 2525
!SC1 !P.POSITION[0] * !D.X_VSIZE if !P.POSITION[2]
is nonzero, or !X.WINDOW[0] * !D.X_VSIZE
otherwise.

!SC2 !P.POSITION[2] * !D.X_VSIZE if !P.POSITION[2]
is nonzero, or !X.WINDOW[1] * !D.X_VSIZE
otherwise.

!SC3 !P.POSITION[1] * !D.X_VSIZE if !P.POSITION[2]
is nonzero, or !Y.WINDOW[0] * !D.X_VSIZE
otherwise.

!SC4 !P.POSITION[3] * !D.X_VSIZE if !P.POSITION[2]
is nonzero, or !Y.WINDOW[1] * !D.X_VSIZE
otherwise.

!TERM DEVICE procedure.

!TYPE !X.TYPE, !X.STYLE, !Y.TYPE, !Y.STYLE,
!P.TICKLEN

!XMAX !X.RANGE[1]

!XMIN !X.RANGE[0]

!XTICKS !X.TICKS

!XTITLE !X.TITLE

!YMAX !Y.RANGE[1]

!YMIN !Y.RANGE[0]

!YTICKS !Y.TICKS

!YTITLE !Y.TITLE

System Variable Replaced by

Table I-7: Obsolete System Variables
IDL Reference Guide Obsolete System Variables

2526 Appendix I: Obsolete Routines
Obsolete System Variables IDL Reference Guide

Index

Symbols
! character, 2464
!C system variable, 2437
!D system variable, 2437
!D.TABLE_SIZE system variable, 1467, 2439
!D.WINDOW system variable, 1508, 1661,
1695
!DIR system variable, 2429
!DLM_PATH system variable, 2429
!DPI system variable, 2423
!DTOR system variable, 2423
!EDIT_INPUT system variable, 2429
!ERR system variable, 1514, 2425
!ERROR_STATE system variable, 889, 890,
955, 1348, 2425

MSG field, 1348
MSG_PREFIX field, 890

!EXCEPT system variable, 2426
!HELP_PATH system variable, 2430
!JOURNAL system variable, 652, 2430
!MAKE_DLL system variable, 2430
!MAP system variable, 2423
!MAP1 system variable, 843
!MORE system variable, 2432
!MOUSE system variable, 265, 2427
!ORDER system variable, 1457, 1465, 2440
!P system variable, 2440
!P.COLOR system variable, 1743
!P.FONT system variable, 2473
!P.MULTI system variable, 2377
!P.T system variable, 255, 334, 1212, 1214,
1371, 1391, 2410
!P.T3D system variable, 255
!PATH system variable, 456, 2433
!PI system variable, 2423
IDL Reference Guide 2527

2528
!PROMPT system variable, 2435
!QUIET system variable, 889, 2435
!RADEG system variable, 2423
!VALUES system variable, 2423
!VERSION system variable, 2436
!WARN system variable, 2428
!X system variable, 2444
!Y system variable, 2444
!Z system variable, 2444
operator, 2453, 2453
$ character, 2465
& character, 2466
' character, 2464
* character, 2466
. character, 2465
.COMPILE command, 48
.CONTINUE command, 49
.EDIT command, 50
.FULL_RESET_SESSION command, 51
.GO command, 52
.OUT command, 53
.RESET_SESSION command, 54
.RETURN command, 56
.RNEW command, 57
.RUN command, 59
.SIZE executive command, 2517
.SKIP command, 61
.STEP command, 62
.STEPOVER command, 63
.TRACE command, 64
.Xdefaults file, 1527
: character, 2466
; character, 2465
< operator, 2453
> operator, 2453
? character

starting online help, 2467
?: ternary operator, 2453
@ character, 2466
’’ character, 2465

Numerics
24-bit images, 1457
2D rendering of 3D volumes, 1043
3D

images
reconstructed from 2D arrays, 1159
viewing coordinate system, 255

rendering, 876
transformations, 245, 287, 334, 1212, 1214,
1371, 1391, 1492
volume slices, 1259

3D plots
viewing, 1744

64-bit integer
arrays, 665, 790
data type, converting to, 793
vectors, 790

A
A_CORRELATE function, 65
ABS function, 67
absolute deviation, 903
absolute value, 67
ACOS function, 68
active command line, 1725
ADAPT_HIST_EQUAL function, 69
addition

array elements, 1418
addition operator, 2453
AddPolygon method, 2207
ADDSYSVAR, see obsolete routines
adjacency list, Delaunay triangulation, 1429
ADJCT, see obsolete routines
Adobe

Font Metrics files, 1047
Type Manager, 2342, 2484

Aitoff map projection, 844, 844
Alber’s

equal area conic map projection, 845
Index IDL Reference Guide

2529
aligning text (XYOUTS), 1777
allocated memory, returning amount of, 574
ALOG function, 71
ALOG10 function, 72
AMOEBA function, 73
ampersand, 2466
analysis objects

IDLanRIOGroup, 1821
IDLanROI class, 1796

AND operator, 2453
Angstrom symbol, 2475
animation

flickering images, 500
MPEG files, 923, 924, 928, 930
widgets (CW_ANIMATE), 276
widgets (XINTERANIMATE), 1711
XVOLUME, 1767

ANNOTATE procedure, 77
annotations

of displayed images, 77
ANOVA, see obsolete routines
ANOVA_UNEQUAL, see obsolete routines
apostrophe, 2464
AppendData method

IDLanROI, 1798
AppleScript, 419
approximating models, statistical, 200
arc-cosine, 68
architecture, current version in use, 2436
arc-sine, 86
arc-tangent, 90
ARG_PRESENT function, 79
arguments

checking existence of, 79
described, 45

arguments, described, 1785
array operators

CHOLDC, 181
CHOLSOL, 182
COND, 212
CRAMER, 251

DETERM, 383
EIGENVEC, 433
ELMHES, 435
GS_ITER, 554
HQR, 600
INVERT, 641
LU_COMPLEX, 799
LUDC, 801
LUMPROVE, 803
LUSOL, 805
NORM, 944
SVDC, 1372
SVSOL, 1380
TRIQL, 1440
TRIRED, 1442
TRISOL, 1443

ARRAY_EQUAL function, 81
arrays

changing dimensions of, 1165
comparing to scalars, 81
comparing values, 81
concatenation, 2453
creating

64-bit integer
(L64INDGEN function), 665
(LON64ARR function), 790

any type (MAKE_ARRAY function), 811
byte

(BINDGEN function), 115
(BYTARR function), 131

complex
(CINDGEN function), 184
(COMPLEXARR function), 209
(DCINDGEN function), 361
(DCOMPLEXARR function), 364

double-precision
(DBLARR function), 360
(DCINDGEN function), 361
(DCOMPLEXARR function), 364
(DINDGEN function), 414
IDL Reference Guide Index

2530
integer
(INDGEN function), 624
(INTARR function), 634

longword
(LINDGEN function), 684
(LONARR function), 791

single-precision, floating-point
(FINDGEN function), 495
(FLTARR function), 506

string
(SINDGEN function), 1251
(STRARR function), 1327

unsigned 64-bit
(ULON64ARR function), 1474

unsigned 64-bit integer
(UL64INDGEN function), 1472

unsigned integer
(UINDGEN function), 1469

unsigned longword
(ULINDGEN function), 1473
(ULONARR function), 1475

data type, determining, 1253
extracting sub-arrays, 462
filling with a scalar value, 1172
finding number of elements in, 937
floating-point, 495
incrementing elements, 587
interactive editing tool (XVAREDIT proce-
dure), 1766
of structures, 1172
operators, see array operators
resizing, 213, 455, 1155
returning

maximum value, 856
minimum value, 891
subscripts of non-zero elements, 1513

reversing indices, 1184
rotating, 1194
searching for objects, 1215, 1218
shifting elements, 1244
size, 1253

sorting, 1289
subscripts

returning non-zero elements, 1513
summing elements, 1418
transposing, 1423
unique elements of (UNIQ function), 1478
updating, 118

ARROW procedure, 82
ASCII_TEMPLATE function, 84
ASIN function, 86
assignment operator, 2453
ASSOC function, 87
associated variables, 87
asterisk, 2466
at sign (character), 2466
ATAN function, 90
attributes

adding to a Shapefile, 1906
of a Shapefile, 1900

autocorrelation, 65
autocovariance, 65
autoregressive time-series forecasting, 1447,
1451
AVANTGARDE keyword, 2316
average

mean, 903
median, 863
moving, 1281, 1453

AVERAGE_LINES keyword, 2316
axes, 1927, 2412

changing type, 1749
date labels for, 666
direction, 1934
end points, 2451
gridstyles, 1935, 2446
linear, 2451
location, 1936
logarithmic, 1936, 2451

[XYZ]LOG keywords, 92, 235, 235, 985,
1237, 1237, 1370, 1370, 1370

margins, 2446, 2446
Index IDL Reference Guide

2531
multi-level, 2417
range, 2445, 2447
range (CRANGE, EXACT, EXTEND,
RANGE), 1931
scaling, 2447
style, 2448
system variables for, 2444
thickness, 1938, 2448
thickness, (XYZ)THICK keyword, 2412
titles, 1942, 2418, 2451

axis object, 1927
AXIS procedure, 91
azimuth

mapping points, 820
azimuthal equidistant map projection, 845

B
background color, 2356

for graphics windows, 442
BACKGROUND keyword, 2402
BACKGROUND system variable field, 2441
background tasks, widgets, 1572
backing store, 1662, 2337, 2351

for draw widgets, 288, 1583, 1589
for zoom widgets, 356

backprojection
Hough inverse transform, 592
Radon inverse transform, 1084

back-substitution, 1380
backward index list (for histograms), 584
bar charts, 95
BAR_PLOT procedure, 95
base 10 logarithm, 72
base widgets, 1518

bulletin board bases, 1536
changing title of, 1573
column, 1521
column bases, 1521
events returned by, 1538
exclusive, 1522

exclusive and non-exclusive, 1535
keyboard focus events, 1523
mapping and unmapping, 1563
nonexclusive, 1526
positioning, 1572

top-level bases, 1536
resize events, 1532
row bases, 1529
top-level, 1519

batch
processing, 2467

BEGIN...END statement, 99
benchmarks, 1410
Bernoulli distribution, 116
BESELI function, 101
BESELJ function, 103
BESELK function, 105
BESELY function, 107
Bessel functions

BESELI, 101
BESELJ, 103
BESELK, 105
BESELY, 107

BETA function, 109
incomplete (IBETA), 604

BETAI, see obsolete routines
big endian byte order, 1287
big endian byte ordering, 133, 1382
bi-level images, 1407
BILINEAR function, 110
bilinear interpolation, 110, 1155
BIN_DATE function, 112
binary interpolation, 637
BINARY keyword, 2317
binary SAVE and RESTORE, 1206
BINARY_TEMPLATE function, 113
BINDGEN function, 115
binomial distribution, 116
BINOMIAL function, 116
binomial random deviates, 1094, 1099
bins, histogram, 584
IDL Reference Guide Index

2532
bit shift operation, 646
bitmap

button labels, 1546, 1547, 1701
byte array, 274
files

reading (READ_BMP), 1114
writing (WRITE_BMP), 1665

labels, creating, 274
bitmaps

transparent, 1548
BITS_PER_PIXEL keyword, 2317
BKMAN keyword, 2317
BLAS_AXPY procedure, 118
BLK_CON function, 120
blob coloring, 670
block convolution, 120
BMP files

reading (READ_BMP), 1114
writing (WRITE_BMP), 1665

BOLD keyword, 2317
BOOK keyword, 2317
Bookman font, 2317
Boolean operators, 2453
bottom margin, setting, 2446
BOX_CURSOR procedure, 122
boxcar average, 1281
BREAK statement, 124
BREAKPOINT procedure, 125
breakpoints

removing, 126
returning information on, 572
setting, 127

BROYDEN function, 128
Broyden’s method, 128
buffered output, 436, 507
buffers, 507

flushing, 453
type-ahead, 539

bulletin board bases, 1536
button

groups, 291

labels, creating, 274
mouse with CURSOR procedure, 265
widgets, 1540

bitmap labels, 1546, 1547, 1701
button release events, 1543
events returned by, 1547
groups, 291
setting pointer focus, 1561
toggle, 1547

BYPASS_TRANSLATION keyword, 2317
BYTARR function, 131
byte

arrays, 115, 131
scaling values into a range of bytes, 137
swapping, 133
swapping short integers, 134
type, converting to, 132

BYTE function, 132
byte order, 1287
BYTEORDER procedure, 133
BYTSCL function, 137

C
C_CORRELATE function, 139
C_EDIT, see obsolete routines
CALDAT procedure, 141
CALENDAR procedure, 144
CALL_EXTERNAL function, 145
CALL_FUNCTION function, 159
CALL_METHOD, 160
CALL_PROCEDURE procedure, 161
CALL_VMS, see obsolete routines
calling

external modules from IDL, 145
IDL functions from a string, 159
IDL methods from a string, 160
IDL procedures from a string, 161
routines written in other languages, 145, 688
sequence, 44
Index IDL Reference Guide

2533
calling sequence
function methods, 1784
procedure methods, 1784

cancel button, 1553
CASE statement, 162
CATCH procedure, 164
catch, C++ language, 164
CD procedure, 166
CEIL function, 170
central map projection, 845
CGM driver, 2357
changing

directories, 166
changing access permissions, 477
changing modes on all platforms, 477
CHANNEL keyword, 2402
CHANNEL system variable field, 2441
characters

character sets, 2491
newline, 1654
plotting in graphics windows, 1776
size, 1777

CHARSIZE keyword, 2403
CHARSIZE system variable field, 2441, 2445
CHARTHICK keyword, 2403
CHARTHICK system variable field, 2441
CHEBYSHEV function, 171
CHECK_MATH function, 172
CHI_SQR, see obsolete routines
CHI_SQR1, see obsolete routines
children, of widgets, 1603
CHISQR_CVF function, 178
CHISQR_PDF function, 179
Chi-square distribution, 178, 179
chi-square error statistic, minimizing, 685
Chi-square goodness-of-fit test, 263, 1762
chmod, 477
CHOLDC procedure, 181
Cholesky decomposition, 181, 182
CHOLSOL function, 182
CINDGEN function, 184

CIR_3PNT procedure, 185
clearing breakpoints, 126
CLIP keyword, 2403
CLIP system variable field, 2441
clipboard object, 1966
clipping window, 2441
clock, system, 1385
CLOSE keyword, 2318
CLOSE procedure, 187
CLOSE_DOCUMENT keyword, 2318
CLOSE_FILE keyword, 2318
closing

(image processing) function, 412
files (CLOSE procedure), 187
graphics output files, 2318
Shapefiles, 1909

CLUST_WTS function, 189
cluster analysis

CLUST_WTS function, 189
CLUSTER function, 191

CLUSTER function, 191
cluster weights, 189
CMY color system, 351
coastlines, 824
colon character, 2466
COLOR keyword, 2318, 2404
COLOR system variable field, 2441
color tables

colors1.tbl file, 787, 901
creating and modifying with XPALETTE,
1739
for LJ device, 772
gamma correction, 527
histogram equalization, 558
histogram equalizing, 557
HLS (Hue, Lightness, Saturation), 590
HSV (Hue, Saturation, Value), 602
LHB (Lightness, Hue, Brightness), 1048
loading, 1461
loading into variables (GET keyword), 1462
loading predefined, 787, 1718
IDL Reference Guide Index

2534
maximum indices for draw widgets, 1579
modifying predefined colortable files, 901
setting maximum number of indices, 1661
stretching, 1337
Tektronix 4115, 1400
wrapping (MULTI procedure), 936

COLOR_CONVERT procedure, 193
COLOR_EDIT, see obsolete routines
COLOR_QUAN function, 195
colorbar object, 1980
COLORMAP_APPLICABLE function, 199
colors

background, 442, 2356, 2402, 2441
converting between color systems, 193
default index, 2441
gamma correction (GAMMA_CT), 527
indices, 296, 299, 351, 2322
luminance of (CT_LUMINANCE function),
261
maximum number available, 1467
maximum number for draw widgets, 1579
quantization, 195
reducing number in an image, 1164
resources, for widgets, 1529
setting maximum number of indices, 1661
shared colormap, 2344
systems, 351, 1461

COLORS keyword, 2319
column bases, 1521
combination, 471
COMFIT function, 200
command input buffer, displaying, 575
command recall

buffer, 1158
commands

displaying previously-executed, 575
executive

.COMPILE, 48

.CONTINUE, 49

.EDIT, 50

.FULL_RESET_SESSION, 51

.GO, 52

.OUT, 53

.RESET_SESSION, 54

.RETURN, 56

.RNEW, 57

.RUN, 59

.SIZE, 2517

.SKIP, 61

.STEP, 62

.STEPOVER, 63

.TRACE, 64
COMMON statement, 203
comparing array values, 81
COMPILE_OPT statement, 204
compiling

RESOLVE_ALL, 1175
RESOLVE_ROUTINE, 1177

compiling functions and procedures
displaying, 576

complex
arrays, creating, 184, 209, 361, 364
arrays, rounding, 210
conjugate, 216
data type, 207, 362
numbers, returning imaginary part of, 623
numbers, returning real part of, 501
numbers, returning the magnitude of, 67
polynomials, 524

COMPLEX function, 207
COMPLEXARR function, 209
COMPLEXROUND function, 210
compound widgets

CW_ANIMATE, 276
CW_ARCBALL, 287
CW_BGROUP, 291
CW_CLR_INDEX, 296
CW_COLORSEL, 299
CW_DEFROI, 301
CW_FIELD, 305
CW_FILESEL, 309
CW_FORM, 313
Index IDL Reference Guide

2535
CW_FSLIDER, 321
CW_LIGHT_EDITOR, 325
CW_LIGHT_EDITOR_GET, 329
CW_LIGHT_EDITOR_SET, 332
CW_ORIENT, 334
CW_PALETTE_EDITOR, 336
CW_PALETTE_EDITOR_GET, 342
CW_PALETTE_EDITOR_SET, 343
CW_PDMENU, 344
CW_RGBSLIDER, 351
CW_ZOOM, 355

compression, JPEG, 1120, 1669
COMPUTE_MESH_NORMALS function,
211
ComputeBounds method, 2247
ComputeDimensions method, 1982, 2031
ComputeGeometry method

IDLanROI, 1801
ComputeMask method

IDLanROI, 1803
IDLanROIGroup, 1825

ComputeMesh method
IDLanROIGroup, 1828

Computer Graphics Metafile, 2357
concatenation

array, 2453
concave polygons, 2206
COND function, 212
condition number, 212
conditional expression, 2453
CONGRID function, 213, 1155
CONJ function, 216
conjugate, complex, 216
CONSTRAINED_MIN procedure, 217
container object, 1787
ContainsPoints method

IDLanROI, 1806
IDLanROIGroup, 1830

context number, 956
continental boundaries, 824
contingency table, 263

CONTINGENT, see obsolete routines
CONTINUE statement, 224
contour object, 1992
contour plots, 225

overlaying with images, 619
polar, 1001
with images and surface plots, 1246

CONTOUR procedure, 225
contrast, gamma correction, 527
convergence criterion, 942
CONVERT_COORD function, 238
converting

colors between color systems, 193
coordinate systems, 238

converting expressions
between host and network byte ordering, 133
to 64-bit integer type, 793
to byte type, 132
to complex type, 207, 362
to double-precision type, 424
to integer type, 498
to longword type, 792
to single-precision floating-point type, 501
to string type, 1339
to unsigned 64-bit integer type, 1477
to unsigned integer type, 1470
to unsigned longword type, 1476

convex polygons, 2206
CONVOL function, 241
convolution, 120, 241
COORD2TO3 function, 245
coordinates

3D transformations, 245, 287, 334, 1212,
1214, 1371, 1391, 1492
clipping, 2403
converting

2D to 3D, 245
between coordinate systems, 272
map coordinates, 843
systems, 238

defining 3D systems, 255
IDL Reference Guide Index

2536
device, 2404
normal, 2407

COPY keyword, 2319, 2319
copying pixels from one window to another,
2319
correction, gamma, 527
CORREL_MATRIX, see obsolete routines
CORRELATE function, 247
correlation analysis

correlation/covariance matrix, 247
Kendall’s tau rank, 1080
lagged autocorrelation, 65
lagged crosscorrelation, 139
multiple, 807
partial, 975
Pearson’s correlation, 247
Spearman’s rho rank, 1080

correlation coefficient
CORRELATE, 247
Kendalls’s, 1080
M_CORRELATE, 807
multiple, 807
P_CORRELATE, 975
partial, 975
Pearson, 247
R_CORRELATE, 1080
rank, 1080
Spearman’s, 1080

COS function, 249, 249
COSH function, 250
cosine, 249

hyperbolic, 250
inverse, 68

COSINES, see obsolete routines
count accumulation, 587
Count method, 1790
country boundaries, 824
COURIER keyword, 2319
CRAMER function, 251
Cramer’s rule, 251
CRANGE system variable field, 2445

CREATE_STRUCT function, 253
CREATE_VIEW procedure, 255
creating

realizing widgets, 1564
system variables, 376
windows, 1661

cross correlation, 139
cross covariance, 139
CROSSP function, 258
CRVLENGTH function, 259
CT_LUMINANCE function, 261
CTI_TEST function, 263
cubic convolution interpolation, 638, 1007
cubic spline interpolation, 1306, 1308
current IDL session, returning information on,
571
current working directory, 166
cursor

box, 122
changing appearance, 2320
displaying, 1459
graphics on Tektronix terminals, 2329
hiding, 1460
hourglass, 1560
positioning, 1459
reading position of, 1105
returning events from draw widgets, 1582
setting to crosshair, 2319
specifying pattern, 2320
type, 2319

CURSOR procedure, 265
and Tektronix terminals, 2329

CURSOR_CROSSHAIR keyword, 2319
CURSOR_IMAGE keyword, 2320
CURSOR_STANDARD keyword, 2320
CURSOR_XY keyword, 2321
curve fitting, 200

COMFIT, 200
CRVLENGTH, 259
CURVEFIT, 268
GAUSS2DFIT, 531
Index IDL Reference Guide

2537
GAUSSFIT, 534
LADFIT, 672
LINFIT, 685
LMFIT, 775
MIN_CURVE_SURF, 893
POLY_FIT, 1011
REGRESS, 1167
SFIT, 1232
SVDFIT, 1375

CURVEFIT function, 268
cutoff value

Chi-square distribution, 178
F distribution, 468
Gaussian distribution, 528
T distribution, 1388

CV_COORD function, 272
CVTTOBM function, 274
CW_ANIMATE function, 276
CW_ANIMATE_GETP procedure, 281
CW_ANIMATE_LOAD procedure, 283
CW_ANIMATE_RUN procedure, 285
CW_ARCBALL function, 287
CW_BGROUP function, 291
CW_BSELECTOR, see obsolete routines
CW_CLR_INDEX function, 296
CW_COLORSEL function, 299
CW_DEFROI function, 301
CW_FIELD function, 305
CW_FILESEL function, 309
CW_FORM function, 313
CW_FSLIDER function, 321
CW_LIGHT_EDITOR function, 325
CW_LIGHT_EDITOR_GET procedure, 329
CW_LIGHT_EDITOR_SET procedure, 332
CW_LOADSTATE, see obsolete routines
CW_ORIENT function, 334
CW_PALETTE_EDITOR function, 336
CW_PALETTE_EDITOR_GET procedure,
342
CW_PALETTE_EDITOR_SET procedure,
343

CW_PDMENU function, 344, 1543
CW_RGBSLIDER function, 351
CW_SAVESTATE, see obsolete routines
CW_TMPL procedure, 354
CW_ZOOM function, 355
cylindrical coordinates, 272
cylindrical equidistant map projection, 845

D
data coordinates

converting to other types, 239
data entry

field widget, 305
DATA keyword, 2404
data types

determining, 1253
date

converting from string to binary, 112
converting Julian to calendar, 141
displaying calendars, 144
labeling axes with, 666
returning current, 1385

Daubechies wavelet filter, 1697
Davidon-Fletcher-Powell minimization, 389
day, returning current, 1385
DBLARR function, 360
DCINDGEN function, 361
DCL interpreter symbols

defining, 1225
deleting, 378

DCOMPLEX function, 362
DCOMPLEXARR function, 364
DDE routines, see obsolete routines
deallocated memory, returning amount of, 574
debugging, 125

PROFILER procedure, 1039
DECOMPOSED keyword, 2322
decomposition

Cholesky, 181, 182
LU, 801, 805
IDL Reference Guide Index

2538
singular value, 1372, 1381
default button, 1554
default font, 2221
default visual class, 2388
DEFINE_KEY procedure, 365
defining

command or help path, 456
keys, 365
region of interest, 374
system variables, 376

DEFROI function, 374
DEFSYSV procedure, 376
Delaunay triangulation, 1429
DELETE_SYMBOL procedure, 378
deleting

DCL interpreter symbols, 378
files or directories, 481
region of interest, 1760
variables, 380
windows, 1508

DELLOG procedure, 379
DELVAR procedure, 380
DEMI keyword, 2322
DEMO_MODE, see obsolete routines
density function, 584, 585
DERIV function, 381
DERIVSIG function, 382
de-sensitizing widgets, 1566
destroying

widgets, 1555
windows, 1508

DETERM function, 383
determinant of a square matrix, 383
deviation, mean absolute, 861
device

backing store, 2351
CGM, 2357
coordinates

converting to other types, 239
display channels, 2441
flags, 2438

font, 2326
for graphics output, 2310
graphics

output, 2310
height, 2350
HP-GL, 2359
LJ, 2361
Macintosh (MAC), 2364
Microsoft Windows (WIN), 2386
monochrome, 2353
name of, 2439
Null, 2367
number of color table indices, 2439
number of colors, 2439
offset, 2348, 2349
PCL, 2368
PostScript, 2371
Printer, 2370
Regis terminals, 2383
resolution of, 2440
size of display, 2440
Tektronix, 2384
width, 2349
X Windows, 2387
Z-buffer, 2395

Device fonts, 2472
DEVICE keyword, 2404
DEVICE procedure, 385, 2310
DFPMIN procedure, 389
DIALOG_MESSAGE function, 392
DIALOG_PICKFILE function, 395
DIALOG_PRINTERSETUP function, 398
DIALOG_PRINTJOB function, 400
DIALOG_READ_IMAGE function, 402
DIALOG_WRITE_IMAGE function, 405
dialogs

message dialog box, 392
modal, 392

dicer, 1259
DICOM

conformance summary, 1840
Index IDL Reference Guide

2539
IDLffDICOM object, 1838
querying DICOM files, 1066
reading DICOM files, 1116

DIFFEQ_23, see obsolete routines
DIFFEQ_45, see obsolete routines
differentiation, CONVOL function, 241
digital dissolve effect, 415
digital smoothing polynomial, 1208
DIGITAL_FILTER function, 407
DILATE function, 409
dilation operator, 409
DINDGEN function, 414
Direct Graphics

font use, 2473
DIRECT_COLOR keyword, 2323
DirectColor visuals, 2322
direction

light source for shaded surface plots, 1223
directories

changing, 166
changing permissions, 477
creating, 485
deleting, 481
expanding pathnames, 483
main directory system variable, 2429
making, 485
popping, 1027
printing, 1035
pushing, 1055
searching for files, 490
searching for help files, 2430

DISP_TEXT, see obsolete routines
displaying images

flickering (FLICK), 500
TrueColor, 1457
TV, 1455
with intensity scaling, 1467

displaying text
ASCII files, 1703
in a graphics window, 1776

displays
size, 2440

DISSOLVE procedure, 415
DIST function, 416
distance

between points, 820
dithering, 2351, 2353

Floyd-Steinberg, 2325
ordered, 2332
threshold, 2346

division operator, 2453
DLM

building sharable libraries, 814
loading, 417
registering, 418

DLM_LOAD procedure, 417
DLM_REGISTER procedure, 418
DO_APPLE_SCRIPT procedure, 419
DOC_LIBRARY procedure, 421
documentation headers, extracting, 421
dollar sign, 2465
Doppler frequency, 1494
DOUBLE function, 424
double-clicks, 1626
double-precision

arrays, creating, 360, 414
type, converting to, 424

drag events
for floating-point slider widgets, 322
for RGB slider widgets, 352
for slider widgets, 1628, 1635
in draw widgets, 1556, 1582

draw widgets, 1578
backing store, 1589
changing size, 1556, 1556
events

determining if set, 1604, 1604, 1604, 1604
returned by, 1587
returning, 1555

motion events, 1582
obtaining window number of, 1585
IDL Reference Guide Index

2540
returning events, 1555, 1556, 1556, 1556
viewport, position, 1558, 1566

DRAW_ROI procedure, 426
drawing

arrows, 82
continents, 824
lines (PLOTS procedure), 994
objects (ANNOTATE procedure), 77

droplist widgets, 1591
events returned by, 1597
returning

current selection, 1604
number of elements, 1604

setting, 1567
DXF library, supported version, 1866
DXF object, 1866

displaying, 1706
manipulation, 1706

dynamic memory
usage, 865

dynamic memory, returning amount in use, 574
dynamically loadable module. See DLM
dynamically loadable modules. See DLM
dynamically loaded modules, keyword, 572

E
earth, interpolating irregularly-sampled data
over, 1429
edge detection, CONVOL function, 241
edge enhancement

ROBERTS function, 1189
SOBEL function, 1283

EFONT procedure, 428
EIGEN_II, see obsolete routines
EIGENQL function, 430
eigenvalues, 430, 433, 435, 600, 1440
EIGENVEC function, 433
eigenvectors, 430, 433, 1440
EJECT keyword, 2323
elements, number of, 937

ELMHES function, 435
EMPTY procedure, 436
emptying

file buffers, 507
graphics buffers, 436

ENABLE_SYSRTN procedure, 437
ENCAPSULATED keyword, 2324
encapsulated PostScript, 2376
ENCODING keyword, 2325
endian

big, 1287
little, 1287

end-of-file, 439, 1509
entities

inserting into a Shapefile, 1922
retrieving from a Shapefile, 1913

entity, in a Shapefile, 1896
environment variables

adding or changing, 1226
returning, 546
returning value of, 544
setting, 546
UNIX, 545

EOF function, 439
EPS machine-specific parameter, 810
EPSI files, 2335
EPSNEG machine-specific parameter, 810
EQ operator, 2453
EQUAL_VARIANCE, see obsolete routines
equivalence strings, 1445, 1446
Erase method, 1950, 2280
ERASE procedure, 442
erasing IDL windows, 442
ERODE function, 444
erosion operator, morphologic, 444
error messages

generating (MESSAGE procedure), 889
modal dialog box, 392
returning text of (STRMESSAGE function),
1348

ERRORF function, 449
Index IDL Reference Guide

2541
errors
error bars, 450
error bars (OPLOTERR), 974
error bars (PLOTERR), 993
error function (ERRORF), 449
handling

CATCH procedure, 164
ON_ERROR procedure, 954
ON_IOERROR procedure, 955
OPEN procedure, 961

messages, generating (MESSAGE proce-
dure), 889
messages, modal dialog box, 392
messages, returning text of (STRMESSAGE
function), 1348
placing error status in variable, 961

ERRPLOT procedure, 450
Euclidean norm, 944
events

basic structure returned by all widgets, 1600
button release, 1543
clearing, 1553
processing, 1599
returned by

button widgets, 1547
draw widgets, 1587
droplist widgets, 1597
list widgets, 1626
slider widgets, 1634
text widgets, 1658
top-level base widgets, 1538

returning
base resize events, 1532
handler procedure name, 1605
keyboard focus events, 1523, 1640, 1653

sending to widgets, 1566
top-level base kill events, 1532

example files
surf_track.pro, 2308

exclamation point, 2464, 2491
EXECUTE function, 159, 160, 161, 452

EXIT procedure, 453
exiting IDL, 453
EXP function, 454
EXPAND procedure, 455
EXPAND_PATH function, 456
expanding pathnames, 483
EXPINT function, 460
exponential

integral, 460
natural, 454
random deviates, 1095, 1100

exponentiation operator, 2453
expressions

data type, determining, 1253
returning information on, 571

external
sharable object, 145

EXTRAC function, 462
EXTRACT_SLICE function, 464

F
F distribution, 468, 469
F_CVF function, 468
F_PDF function, 469
F_TEST, see obsolete routines
F_TEST1, see obsolete routines
FACTORIAL function, 471
Fast Fourier transform, 473
FFT function, 473
field

plots, 504, 991
widget, 305

file units
allocating, 541
returning information about, 572
See also logical unit numbers
setting file position pointer, 999

FILE_CHMOD procedure, 477
FILE_DELETE procedure, 481
FILE_EXPAND_PATH function, 483
IDL Reference Guide Index

2542
FILE_MKDIR procedure, 485
FILE_TEST function, 486
FILE_WHICH function, 490
FILENAME keyword, 2325
FILEPATH function, 491
files

changing permissions, 477
closing, 511, 2318
closing (CLOSE procedure), 187
deleting, 481
displaying ASCII, 1703
end-of-file, 1509
expanding pathnames, 483
filenames, 2325
finding, 395, 493
finding in IDL distribution, 491
freeing logical unit numbers, 511
Macintosh path, 2435
opening, 959
pointer position, 514

POINT_LUN procedure, 999
printing to, 1032
protection classes, 477
reading

ASCII data, 1109
binary data from, 1152
data, 1106
unformatted binary data, 1152

returning information on open, 571
searching directories, 490
selecting, 395
size of, 514
skipping records, 1258
special functions (IOCTL function), 643
updating records (REWRITE keyword),
1694
with indexed organization, 1108
writing formatted output, 1032
writing unformatted binary data, 1693

FILL_DIST system variable field, 2437
FILLCONTOUR, see obsolete routines

filling
plotting symbols, 1480
polygons, 1015, 1019

filtering
convolution, 120
digital, 407
digital filters, 407
filenames, 396
frequency domain, 473
Hanning windows, 559
histogram equalization, 581
Lee filter algorithm, 676
mean, 1281
median, 863
morphologic dilation, 409
morphologic erosion, 444
Roberts, 1189
Sobel, 1283

FINDFILE function, 493
FINDGEN function, 495
finding files, 395
finite

numbers, 496
FINITE function, 496
FIX function, 498
FLAGS system variable field, 2438
FLICK procedure, 500
FLOAT function, 501
floating-point

arithmetic, 809
arrays, 495, 506
converting type to, 501
mantissa, 809
native format, 133
precision, 810
slider widgets, 321
XDR format, 133

FLOOR function, 502
flow

control, 2349
field, plotting, 504, 1488
Index IDL Reference Guide

2543
FLOW3 procedure, 504
FLOYD keyword, 2325
FLTARR function, 506
FLUSH procedure, 507
focus events, 1523, 1562, 1606, 1640, 1653
folders, Macintosh, 2435
FONT keyword, 2405
font object, 2007

modifiers, 2010
FONT system variable field, 2441
FONT_INDEX keyword, 2326
FONT_SIZE keyword, 2326
fonts

character sets, 2491
default for widgets, 1554
device, 2472
Direct Graphics, 2473
displaying vector fonts, 1248
displaying X Windows fonts, 1710
editing, 428
examples of TrueType fonts, 2498
examples of vector fonts, 2501
finding current X windows font, 2326
finding names of, 2326
finding number of, 2327
hardware, 2472
Hershey, 2472
Object Graphics, 2473
outline, 2472
positioning commands, 2493
PostScript, 1046
TrueType, 2342, 2472, 2484
vector, 2472

FOR statement, 508
foreground color, 1743
formal parameters, 45, 1785
FORMAT_AXIS_VALUES function, 509
forms, creating, 313
FORRD, see obsolete routines
FORRD_KEY, see obsolete routines
Fortran file formats, 962

forward difference, 1449
FORWARD_FUNCTION statement, 510
FORWRT procedure see WRITEU
FORWRT, see obsolete routines
four-dimensional displays, 1021
Fourier transform, 473
FREE_LUN procedure, 187, 511
FRIEDMAN, see obsolete routines
FSTAT function, 513
FSTAT structure, 513
FULSTR function, 516
FUNCT procedure, 518
function keys

defining, 365, 372
for different keyboards, 1229
returning definitions, 571, 573

function methods
calling sequence for, 1784

FUNCTION statement, 519
functions

calling sequence for, 45
compiled, 1198
displaying compiled, 576

FV_TEST function, 520
FX_ROOT function, 522
FZ_ROOTS function, 524

G
gamma correction, 527
GAMMA function, 526
gamma function

incomplete, 616
logarithm of, 783

gamma random deviates, 1095, 1100
GAMMA_CT procedure, 527
garbage collection, 569
GAUSS, see obsolete routines
GAUSS_CVF function, 528
GAUSS_PDF function, 529
GAUSS2DFIT function, 531
IDL Reference Guide Index

2544
GAUSSFIT function, 534
Gaussian

distribution, 528, 529
elimination method, 641
integral, 537
iterated quadrature, 626, 629
two-dimensional fit, 531

GAUSSINT function, 537
Gauss-Krueger map projection, 847
Gauss-Seidel iteration, 554
GE operators, 2453
general perspective map projection, 846
general triangles, 2206
Get method, 1791
GET_CURRENT_FONT keyword, 2326
GET_DECOMPOSED keyword, 2326
GET_DRIVE_LIST function, 538
GET_FONTNAMES keyword, 2326
GET_FONTNUM keyword, 2327
GET_GRAPHICS_FUNCTION keyword,
2327
GET_KBRD function, 539
GET_LUN procedure, 187, 511, 541
GET_PAGE_SIZE keyword, 2327
GET_SCREEN_SIZE function, 542
GET_SCREEN_SIZE keyword, 2327
GET_SYMBOL function, 543
GET_VISUAL_DEPTH keyword, 2328
GET_VISUAL_NAME keyword, 2328
GET_WINDOW_POSITION keyword, 2328
GET_WRITE_MASK keyword, 2328
GetByName method, 2056, 2177, 2229, 2240
GetContents method, 1869
GetDeviceInfo method

IDLgrBuffer, 1952
IDLgrClipboard, 1971
IDLgrVRML, 2267
IDLgrWiindow, 2282

GetEntity method, 1872
GETENV function, 544, 546

GetFontnames method, 1954, 1973, 2141,
2269, 2284
GETHELP, see obsolete routines
GetPalette method, 1883
GetRGB method, 2080
GetTextDimensions method, 1956, 1975,
2144, 2271, 2287
GIN_CHARS keyword, 2328
gnomic map projection, 845
gnomonic map projection, 845
GOODFIT, see obsolete routines
GOTO statement, 547
Gouraud shading, 1223
graphics

cursor positioning, 265
devices, 2310

DEVICE procedure, 385
erasing, 442
returning information about current, 572
setting, 1221

functions
getting, 2327
setting, 2343

image file formats
BMP, 1114, 1665
Interfile, 1119
JPEG, 1120, 1669
NRIF, 1672
PICT, 1124, 1674
SRF, 1132, 1680
TIFF, 1137, 1684
X11 bitmap, 1147
XWD, 1149

keywords (collected), 2401
GRAPHICS_TIMES procedure, 1410
great circle, 820
grid

across a plot (TICKLEN keyword), 2410
GRID_TPS function, 548
GRID3 function, 551
Index IDL Reference Guide

2545
gridding, 1432
spherical, 1300, 1429, 1432

GRIDSTYLE system variable field, 2446
growth trends, 200
GS_ITER function, 554
GT operator, 2453
guard digits, 810

H
H_EQ_CT procedure, 557
H_EQ_INT procedure, 558
halftoning, 2351
halting program execution, 1326
Hammer-Aitoff map projection, 845, 845
HANDLE_CREATE, see obsolete routines
HANDLE_FREE, see obsolete routines
HANDLE_INFO, see obsolete routines
HANDLE_MOVE, see obsolete routines
HANDLE_VALUE, see obsolete routines
HANNING function, 559
hardware fonts, 2472
HDF_BROWSER function, 561
HDF_READ function, 565
heap variables

creating, 1051
destroying, 1050
garbage collection, 569

HEAP_GC procedure, 569
help

ONLINE_HELP procedure, 956
HELP procedure, 571
HELP_VM, see obsolete routines
HELVETICA keyword, 2329
Hershey fonts, 2472
Hershey, Dr. A. V., 2474
Hessenberg array or matrix, 435, 600
Hewlett-Packard Graphics Language, see HP-
GL
hiding cursor, 1460
HILBERT function, 578

HIST_2D function, 579
HIST_EQUAL function, 581
histogram

equalization
H_EQ_CT function, 557
interactive (H_EQ_INT function), 558

plotting mode, 2409
view of ROI, 1760

HISTOGRAM function, 584
HLS color system, 193, 351, 1461
HLS procedure, 590
Hough

backprojection, 592
transform, 592

HOUGH function, 592
hourglass cursor

for widgets, 1560
saving, 1599

Householder
method, 1442
reductions, 430

HP-GL
driver, 2359
files, 2354

HQR function, 600
HSV color system, 193, 351, 1461
HSV procedure, 602
HSV_TO_R, see obsolete routines
HTML, 898
hyperbolic

cosine, 250
sine, 1252
tangent, 1397

HyperText Markup Language, 898
hypothesis testing

Chi-square model validation, 1762
contingency test for independence, 263
F-variances test, 520
Kruskal-Wallis H-test, 662
Lomb frequency test, 784
Mann-Whitney U-test, 1201
IDL Reference Guide Index

2546
median delta test, 858
normality test, 520, 1416
runs test for randomness, 1082
sign test, 1203
t-means test, 1416
Wilcoxon rank-sum test, 1201

I
I/O, see input/output
IBETA function, 604
IBETA machine-specific parameter, 809
Iconify method, 2288
iconifying

widgets, 1560
windows, 1696

icons, editing, 1701
IDENTITY function, 606
IDL

for Macintosh, 2364
for Windows, 2386

IDL_Container
Add method, 1788
class, 1787
Cleanup method, 1789
Count method, 1790
Get method, 1791
Init method, 1792, 1884
IsContained method, 1793
Move method, 1794
Remove method, 1795

IDLanROI
AppendData method, 1798
Cleanup method, 1800
ComputeGeometry method, 1801
ComputeMask method, 1803
ContainsPoints method, 1806
GetProperty method, 1808
Init method, 1810
RemoveData method, 1813
ReplaceData method, 1814

Rotate method, 1817
Scale method, 1818
SetProperty method, 1819
Translate method, 1820

IDLanROI object class, 1796
IDLanROIGroup

Add method, 1823
Cleanup method, 1824
ComputeMask method, 1825
ComputeMesh method, 1828
ContainsPoints method, 1830
GetProperty method, 1832
Init method, 1834
Rotate method, 1835
Scale method, 1836
Translate method, 1837

IDLanROIGroup object class, 1821
IDLffDICOM

Cleanup method, 1844
DumpElements method, 1845
GetChildren method, 1846
GetDescription method, 1847
GetElement method, 1849
GetGroup method, 1851
GetLength method, 1853
GetParent method, 1854
GetPreamble method, 1855
GetReference method, 1856
GetValue method, 1858
GetVR method, 1861
Init method, 1863
Read method, 1864
Reset method, 1865

IDLffDICOM object, 1838
IDLffDXF

Cleanup method, 1868
GetContents method, 1869
GetEntity method, 1872
GetPalette method, 1883
Init method, 1884
PutEntity method, 1885
Index IDL Reference Guide

2547
Read method, 1886
RemoveEntity method, 1887
Reset method, 1888
SetPalette method, 1889
Write method, 1890

IDLffDXF class, 1866
IDLffLanguageCat

class, 1891
IsValid method, 1892
Query method, 1893
SetCatalog method, 1894

IDLffShape
AddAttribute method, 1906
class, 1895
Cleanup method, 1908
Close method, 1909
DestroyEntity method, 1910
GetAttributes method, 1911
GetEntity method, 1913
GetProperty method, 1915
Init method, 1919
Open method, 1921
PutEntity method, 1922
SetAttributes method, 1924

IDLgrAxis
class, 1927
Cleanup method, 1928
GetCTM method, 1929
GetProperty method, 1931
Init method, 1933
SetProperty method, 1945

IDLgrBuffer
Cleanup method, 1948
Draw method, 1949
Erase method, 1950
GetDeviceInfo method, 1952
GetFontnames method, 1954, 1973, 2141,
2269
GetProperty method, 1955
GetTextDimensions method, 1956
Init method, 1957

Pickdata method, 1960
Read method, 1962
Select method, 1963
SetProperty method, 1965

IDLgrBuffer class, 1946
IDLgrClipboard

Cleanup method, 1967
Draw method, 1968
GetContiguousPixels method, 1970
GetDeviceInfo method, 1971
GetProperty method, 1974
GetTextDimensions method, 1975
Init method, 1976

IDLgrClipboard object, 1966
IDLgrColorbar

class, 1980
Cleanup method, 1981
ComputeDimensions method, 1982
GetProperty method, 1983
Init method, 1985
SetProperty method, 1991

IDLgrColorbar object, 1980
IDLgrContour

Cleanup method, 1993
GetCTM method, 1994
GetProperty method, 1996
Init method, 1998
SetProperty method, 2006

IDLgrContour object, 1992
IDLgrFont

class, 2007
Cleanup method, 2008
GetProperty method, 2009
Init method, 2010
SetProperty method, 2012

IDLgrImage
class, 2013
Cleanup method, 2015
GetCTM method, 2016
GetProperty method, 2018
Init method, 2020
IDL Reference Guide Index

2548
SetProperty method, 2027
IDLgrLegend

Cleanup method, 2030
ComputeDimensions method, 2031
GetProperty method, 2032
Init method, 2034
SetProperty method, 2040

IDLgrLight
class, 2041
Cleanup method, 2042
GetCTM method, 2043
GetProperty method, 2045
Init method, 2046
SetProperty method, 2050

IDLgrModel
Add method, 2053
class, 2051
Cleanup method, 2054
Draw method, 2055
GetByName method, 2056
GetCTM method, 2057
GetProperty method, 2059
Init method, 2060
Reset method, 2062
Rotate method, 2063
Scale method, 2064
SetProperty method, 2065
Translate method, 2066

IDLgrMPEG
Cleanup method, 2068
GetProperty method, 2069
Init method, 2070
Put method, 2075
Save method, 2076
SetProperty method, 2077

IDLgrMPEG object, 2067
IDLgrPalette

class, 2078
Cleanup method, 2079
GetProperty method, 2081
GetRGB method, 2080

Init method, 2082
LoadCT method, 2085
NearestColor method, 2086
SetProperty method, 2088
SetRGB method, 2087

IDLgrPattern
class, 2089
Cleanup method, 2090
GetProperty method, 2091
Init method, 2092
SetProperty method, 2094

IDLgrPlot
class, 2095
Cleanup method, 2096
GetCTM method, 2097
GetProperty method, 2099
Init method, 2101
SetProperty method, 2107

IDLgrPolygon
class, 2108
Cleanup method, 2109
GetCTM method, 2110
GetProperty method, 2112
Init method, 2114
SetProperty method, 2123

IDLgrPolyline
class, 2124
Cleanup method, 2125
GetCTM method, 2126
GetProperty method, 2128
Init method, 2130
SetProperty method, 2136

IDLgrPrinter
class, 2137
Cleanup method, 2138
Draw method, 2139
GetContiguousPixels method, 2140
GetProperty method, 2142
GetTextDimensions method, 2144
Init method, 2145
NewDocument method, 2149
Index IDL Reference Guide

2549
NewPage method, 2150
SetProperty method, 2151

IDLgrROI
Cleanup method, 2154
GetProperty method, 2155
Init method, 2157
PickVertex method, 2162
SetProperty method, 2163

IDLgrROI object class, 2152
IDLgrROIGroup

Add method, 2166
Cleanup method, 2167
GetProperty method, 2168
Init method, 2170
PickRegion method, 2172
SetProperty method, 2173

IDLgrROIGroup object class, 2164
IDLgrScene

Add method, 2175
class, 2174
Cleanup method, 2176
GetByName method, 2177
GetProperty method, 2178
Init method, 2179
SetProperty method, 2181

IDLgrSurface
class, 2182
Cleanup method, 2183
GetCTM method, 2184
GetProperty method, 2186
Init method, 2188
SetProperty method, 2198

IDLgrSymbol
class, 2199
Cleanup method, 2200
GetProperty method, 2201
Init method, 2202
SetProperty method, 2205

IDLgrTessellator
AddPolygon method, 2207
class, 2206

Cleanup method, 2209
Init method, 2210
Reset method, 2211
Tessellate method, 2212

IDLgrText
class, 2213
Cleanup method, 2214
GetCTM method, 2215
GetProperty method, 2217
Init method, 2219
SetProperty method, 2225

IDLgrView
Add method, 2227, 2228
class, 2226
GetByName method, 2229
GetProperty method, 2230
Init method, 2231
SetProperty method, 2235

IDLgrViewgroup
Add method, 2238
Cleanup method, 2239
GetByName method, 2240
GetProperty method, 2241
Init method, 2242
SetProperty method, 2244

IDLgrViewgroup object, 2236
IDLgrVolume

class, 2245
Cleanup method, 2246
ComputeBounds method, 2247
GetCTM method, 2248
GetProperty method, 2250
Init method, 2252
PickVoxel method, 2260
SetProperty method, 2261

IDLgrVRML
Draw method, 2266
GetDeviceInfo method, 2267
GetProperty method, 2270
GetTextDimensions method, 2271
Init method, 2272
IDL Reference Guide Index

2550
SetProperty method, 2275
IDLgrVRML object, 2262
IDLgrWindow

class, 2276
Cleanup method, 2278
Draw method, 2279
Erase method, 2280
GetContiguousPixels method, 1951, 2281
GetDeviceInfo method, 2282
GetFontnames method, 2284
GetProperty method, 2285
GetTextDimensions method, 2287
Iconify method, 2288
Init method, 2289
maximum size, 2276
Pickdata method, 2294
Read method, 2296
Select method, 2297
SetCurrentCursor method, 2299
SetProperty method, 2301
Show method, 2302

IEXP machine-specific parameter, 810
IF...THEN...ELSE statement, 615
IGAMMA function, 616
image object, 2013
IMAGE_CONT procedure, 619
IMAGE_STATISTICS procedure, 620
images, 2013

annotating, 77
bi-level, 1407
color channel, 2022
copying areas, 2319
defining region of interest, 374
displaying, 355, 1277, 1459, 1461, 1464
displaying (FLICK), 500
displaying (TV), 1455
displaying with intensity scaling, 1467
dissolve effect, 415
JPEG, 1120
magnified, 1779, 1781
monochrome, 2353

MPEG files, 923, 924, 928, 930
profiling, 1037, 1041
reading from display, 1464
region labeling, 670
Roberts edge enhancement, 1189
rotating, 1194
searching for objects, 1215
sharing data, 2025
smoothing, 1281
Sobel edge enhancement, 1283
thinning, 1407
transfer direction, 2440
TrueColor, 1465
warping, 1006
warping to maps, 833, 837
with surface and contour plots, 1246
zooming, 355

IMAGINARY function, 623
imaginary part of complex numbers, 623
INCHES keyword, 2329
incomplete

beta function, 604
gamma function, 616

incrementing array elements, 587
INDEX_COLOR keyword, 2329
INDGEN function, 624
Infinity norm, 944
INP, see obsolete routines
input/output

associated variables, 87
bitmap files, 1114
BMP files, 1665
closing files, 187
emptying buffers, 436, 507
end of file mark, 1509
errors, 955
formatted, 1032
Interfile files, 1119
JPEG files, 1120, 1669
NRIF files, 1672
opening files, 959
Index IDL Reference Guide

2551
PGM files, 1129, 1678
PICT files, 1124, 1674
PPM files, 1129, 1678
reading

ASCII files, 1109
formatted data, 1106
formatted data from a string, 1150
from a prompt, 1107
from tape unit, 1398
unformatted binary data, 1152

SRF files, 1132, 1680
TIFF files, 1137, 1684
updating records (REWRITE keyword),
1694
wave files, 1145, 1691
writing

to tape unit, 1399
unformatted binary data, 1693

X11 Bitmaps, 1147
XWD files, 1149

INT_2D function, 626
INT_3D function, 629
INT_TABULATED function, 632
INTARR function, 634
integer, 498

arrays, 624, 634
data type, converting to, 498

integration
INT_2D, 626
INT_3D, 629
INT_TABULATED, 632
QROMB, 1056
QROMO, 1058
QSIMP, 1061
RK4, 1187
tabulated functions, 632
univariate functions, 1056, 1058, 1061

Interfile files
reading, 1119

Internet socket support, 1285
INTERPOL function, 635

INTERPOLATE function, 637
interpolation, 637

bilinear, 110, 1155
cubic convolution, 638, 1007
cubic spline, 1306, 1310, 1312
irregularly-gridded data, 1432
irregularly-sampled data over earth, 1429
KRIG2D, 657
MIN_CURVE_SURF, 893
of irregularly-gridded data, 657, 893
POLAR_SURFACE, 1003
quintic, 1434
spherical, 1300
SPL_INIT, 1306
SPL_INTERP, 1308
thin-plate-spline, 548, 893

interpreter symbols, DCL
defining, 1225
deleting, 378
returning values, 543

invalid widget ID’s, 1598
inverse

cosine, 68
of a complex array or matrix, 799
sine, 86
subspace iteration, 433
tangent, 90

INVERT function, 641
IOCTL function, 643
IRND machine-specific parameter, 810
irregularly-gridded data, 1429, 1432
IsContained method, 1793
ISHFT function, 646
ISO Latin 1 encoding, 2475
ISOCONTOUR procedure, 647
ISOLATIN1 keyword, 2329
ISOSURFACE procedure, 650
isosurfaces, displaying, 1241
IT machine-specific parameter, 809
ITALIC keyword, 2330
IDL Reference Guide Index

2552
iterative
biconjugate gradient, 681
Gaussian quadrature, 626, 629
improvement of a solution, 803

J
JFIF, see JPEG
JOIN, see obsolete routines
JOURNAL procedure, 652
JPEG files

reading, 1120
writing, 1669

JULDAY function, 653
Julian date

converting to calendar, 141
Julian date definition, 1411
Julian dates/time

generating, 1411

K
Kendall’s tau rank correlation, 1080
kernel, convolving an array with, 241
keyboard

defining keys, 365
focus events, 1523, 1562, 1606, 1640, 1653
numeric keypads, 1231
returning characters from, 539

keys, defining for different keyboards, 1229
KEYWORD_SET function, 656
keywords

arguments, checking existence of, 79
described, 45, 1785
determining if set (KEYWROD_SET), 656
graphics, 2401
meaning of slash character, 1785
searching, 956
setting, 1785

KMEANS, see obsolete routines

KRIG2D function, 657
kriging, 657
KRUSKAL_WALLIS, see obsolete routines
Kruskal-Wallis H-Test, 662
kurtosis, 661, 903
KURTOSIS function, 661
KW_TEST function, 662

L
L64INDGEN function, 665
label widgets, 1614
LABEL_DATE function, 666
LABEL_REGION function, 670
labeling regions, 670
LADFIT function, 672
lagged

autocorrelation, 66
cross correlation, 140

LAGUERRE function, 674
Laguerre polynomials, 674
Laguerre’s method, 524
Lambert’s conformal conic map projection,
845
Lambert’s equal-area map projection, 845
LANDSCAPE keyword, 2330
landscape orientation, 2374

for IDL plots (LANDSCAPE keyword),
2330

laser printers, 2371
LATLON, see obsolete routines
LE operator, 2453
least absolute deviation, 672
least squares fit, 268, 534, 1011, 1375
LEEFILT function, 676
LEGENDRE function, 678
Legendre polynomials, 678
LEGO, see obsolete routines
length of strings, 1343
LIGHT keyword, 2330
light object, 2041
Index IDL Reference Guide

2553
light source, 2041
shading, 1223

LINBCG function, 681
LINDGEN function, 684
line

drawing
method for contours, 225
PLOTS procedure, 994

editing
enabling and disabling, 2429

interval, 2437
styles, 2406

linear
interpolation, 637
linear-log plots, 985
regression, 1167

linear algebra
CHOLDC, 181
CHOLSOL, 182
COND, 212
CRAMER, 251
DETERM, 383
EIGENVEC, 433
ELMHES, 435
GS_ITER, 554
HQR, 600
INVERT, 641
LINBCG, 681, 681
LU_COMPLEX, 799
LUDC, 801
LUMPROVE, 803
LUSOL, 805
NORM, 944
SVDC, 1372
SVSOL, 1380
TRIQL, 1440
TRIRED, 1442
TRISOL, 1443

LINESTYLE keyword, 2405
LINESTYLE system variable field, 2442
linestyles, table of, 2406

LINFIT function, 685
LINKIMAGE procedure, 145, 688
linking

C code with IDL, 814
dynamically, 814

list widgets, 1620
determining

currently selected element
LIST_SELECT keyword, 1607

topmost element
LIST_TOP keyword, 1607

double-clicks, 1626
events returned by, 1626
number, 1607, 1607
selecting multiple items, 1606, 1622
setting, 1567

LISTREP, see obsolete routines
LISTWISE, see obsolete routines
little endian byte order, 1287
little endian byte ordering, 1382
LIVE_CONTOUR procedure, 695
LIVE_CONTROL procedure, 703
LIVE_DESTROY procedure, 706
LIVE_EXPORT procedure, 708
LIVE_IMAGE procedure, 711
LIVE_INFO procedure, 718
LIVE_LINE procedure, 729
LIVE_LOAD procedure, 733
LIVE_OPLOT procedure, 734
LIVE_PLOT procedure, 739
LIVE_PRINT procedure, 747
LIVE_RECT procedure, 749
LIVE_STYLE function, 753
LIVE_SURFACE procedure, 760
LIVE_TEXT procedure, 768
LJ device

color tables for, 772
LJ driver, 2361
LJLCT procedure, 772
LL_ARC_DISTANCE function, 773
LMFIT function, 775
IDL Reference Guide Index

2554
LMGR function, 780
LN03, see obsolete routines
LNGAMMA function, 783
LNP_TEST function, 784
LoadCT method, 2085
LOADCT procedure, 787
loading color tables, 1461
LOCALE_GET function, 789
logarithm

base 10, 72
natural, 71
of the gamma function, 783

logarithmic
axes, [XYZ]LOG keywords, 92, 235, 235,
985, 1237, 1237, 1370, 1370, 1370

logging an IDL session, 652
logical names (VMS)

defining, 1227
deleting, 379
searching tables, 1445

logical unit number
SOCKET procedure, 1286

logical unit numbers
!D system variable field, 2439
allocating, 541
freeing, 511
FSTAT function, 513, 513
getting, 962
journal file, 2430
obtaining status information, 513, 513
returning information about, 572
setting file position pointer, 999

log-linear plots, 92, 235, 235, 985, 1237, 1237,
1370, 1370, 1370
Lomb Normalized Periodogram, 784
LON64ARR function, 790
LONARR function, 791
LONG function, 792
LONG64 function, 793
longjmp, C language, 164

longword
arrays, 684, 791, 1474
data type, converting to, 792
unsigned arrays, 1473

lossy compression, 1120, 1669
lower margin, setting, 2446
lowercase, converting strings to, 1344
LSODE function, 794
LT operator, 2453
LU decomposition, 799, 801, 805
LU_COMPLEX function, 799
LUBKSB, see obsolete routines
LUDC procedure, 801
LUDCMP, see obsolete routines
luminance, 261
LUMPROVE function, 803
LUN

freeing, 511
TCP/IP socket, 1285

LUSOL function, 805

M
M_CORRELATE function, 807
MACHAR function, 809
MACHEP machine-specific parameter, 810
machine-specific parameters, 809
Macintosh

display device (MAC), 2310, 2364
path specification, 2435

Macintosh platform
changing file permissions, 477

magnifying arrays, 1155
magnitude

of a complex number, 67
magnitude-based ranks, 1103
MAKE_ARRAY function, 811
MAKE_DLL procedure, 814
MAKETREE, see obsolete routines
MANN_WHITNEY, see obsolete routines
Mann-Whitney U-Test, 1201
Index IDL Reference Guide

2555
map projections, 843
Aitoff, 844
Alber’s equal area conic, 845
azimuthal equidistant, 845
cylindrical equidistant, 845
drawing boundaries over, 824
drawing continent boundaries, 847
drawing parallels and meridians, 828
gnomonic (central, gnomic), 845
Hammer-Aitoff, 845
Lambert’s conformal conic, 845
Lambert’s equal area, 845
Mercator, 845
Miller, 846
Mollweide, 846
orthographic, 846
satellite, 846
sinusoidal, 846
stereographic, 846
Transverse Mercator (UTM), 847
warping images to maps, 833, 837

MAP_2POINTS function, 820
MAP_CONTINENTS procedure, 824
MAP_GRID procedure, 828
MAP_IMAGE function, 833
MAP_PATCH function, 837
MAP_PROJ_INFO procedure, 841
MAP_SET procedure, 843
mapping widgets, 1524
MARGIN system variable field, 2446
margins, setting, 2446, 2446
marquee selector, 122
mathematical operators, 2453
matrices

MATRIX_MULTIPLY, 854
matrices, multiplying, 2453
matrix operators

CHOLDC, 181
CHOLSOL, 182
COND, 212
CRAMER, 251

DETERM, 383
EIGENVEC, 433
ELMHES, 435
GS_ITER, 554
HQR, 600
INVERT, 641
LU_COMPLEX, 799
LUDC, 801
LUMPROVE, 803
LUSOL, 805
NORM, 944
SVDC, 1372
SVSOL, 1380
TRIQL, 1440
TRIRED, 1442
TRISOL, 1443
See also sparse arrays

MATRIX_MULTIPLY function, 854
MAX function, 856
MAXEXP machine-specific parameter, 810
maximum operator, 2453
maximum size of drawable, 2276
maximum value

for slider widgets, 1630
of an array, 856

MD_TEST function, 858
mean

absolute deviation, 861
MOMENT function, 903
of distribution, 662

MEAN function, 860
MEANABSDEV function, 861
median

Median Delta Test, 858
MOMENT function, 903
smoothing, 863

MEDIAN function, 863
MEDIUM keyword, 2330
memory

conserving by using temporary variables,
1401
IDL Reference Guide Index

2556
dynamic memory in use, 574
MEMORY function, 865
menu bars, 1519, 1524
menus

menu bars, 1519, 1524
pulldown, 1543

MENUS, see obsolete routines
Mercator map projection, 845
meridians, drawing, 828, 848
mesh plots, 1366
MESH_CLIP function, 868
MESH_DECIMATE function, 870
MESH_ISSOLID function, 872
MESH_MERGE function, 873
MESH_NUMTRIANGLES function, 875
MESH_OBJ procedure, 876
MESH_SMOOTH function, 882
MESH_SURFACEAREA function, 884
MESH_VALIDATE function, 886
MESH_VOLUME function, 888
message dialogs, 392
MESSAGE procedure, 889
messages, suppressing informational, 2435
Metafile, 2310
Microsoft Windows display device (WIN),
2310, 2386
Miller map projection, 846
MIN function, 891
MIN_CURVE_SURF function, 225, 893
MINEXP machine-specific parameter, 810
minimization, 389, 1028
minimum curvature surface, 893
minimum operator, 2453
minimum value

for slider widgets (MINIMUM keyword),
1630
of an array, 891

MINOR system variable field, 2446
MIPSEB_DBLFIXUP, see obsolete routines
missing data

in CONTOUR plots, 231, 231

in irregular grids, 1426, 1434
in map projections, 835, 835
in plots, 971, 972, 984, 984, 1236, 1236,
1368, 1368
in reconstructed images, 1161
in rotated images, 1192
in velocity fields, 1491
in warped images, 1008

MK_HTML_HELP procedure, 898
model object, 2051
MODIFYCT procedure, 901
modules

compiled, 576
dynamically loaded, 572

modulo operator, 2453
Mollweide map projection, 846
MOMENT function, 903
MORPH_CLOSE function, 905
MORPH_DISTANCE function, 908
MORPH_GRADIENT function, 911
MORPH_HITORMISS function, 913
MORPH_OPEN function, 916
MORPH_THIN function, 919
MORPH_TOPHAT function, 921
morphology

dilation operator, 409
erosion operator, 444

Mosaic, 898
mouse

double-clicks, 1626
reading position of, 1105
reading position with the CURSOR proce-
dure, 265
returning events from draw widgets, 1582

Move method, 1794
MOVIE, see obsolete routines
movies

MPEG, 923, 924, 928, 930
moving averages, 1281, 1453
MPEG object, 2067
MPEG_CLOSE procedure, 923
Index IDL Reference Guide

2557
MPEG_OPEN function, 924
MPEG_PUT procedure, 928
MPEG_SAVE procedure, 930
MPROVE, see obsolete routines
MSG_CAT_CLOSE procedure, 931
MSG_CAT_COMPILE procedure, 932
MSG_CAT_OPEN function, 934
Müller’s method, 522
MULTI procedure, 936
MULTI system variable field, 2442
MULTICOMPARE, see obsolete routines
multiple correlation coefficient, 807
multiple plots on a page, 2442
multiplication of matrices, 854
multiplication operator, 2453
multivariate analysis

contingency table, 263
Kruskal-Wallis H-test, 662
multiple correlation, 807
partial correlation, 975

multivariate functions
CTI_TEST, 263
KW_TEST, 662
M_CORRELATE, 807
P_CORRELATE, 975

N
N_COLORS system variable field, 2439
N_ELEMENTS function, 937
N_PARAMS function, 938
N_TAGS function, 939
NAME system variable field, 2439
named

variables, 45, 45
named variables, 1785
names

of structure tags, 1394
NARROW keyword, 2330
native format (floating-point values), 133
natural exponential function, 454

natural logarithm, 71
NCAR binary encoding, 2331, 2331
NCAR keyword, 2331
NCAR Raster Interchange Format files, writ-
ing, 1672
NE operator, 2453
NearestColor method, 2086
negation operator, 2453
NEGEP machine-specific parameter, 810
nesting of procedures and functions, 571, 576
Netscape, 898
new page, 442
NewDocument method, 2149
newline character, 1654
NewPage method, 2150
NEWTON function, 941
Newton’s method, 632, 941
NGRD machine-specific parameter, 810
NOCLIP keyword, 2406
NOCLIP system variable field, 2443
NODATA keyword, 2406
NOERASE keyword, 2407
NOERASE system variable field, 2443
noise, filtering, 863
nonlinear equations

BROYDEN, 128
CONSTRAINED_MIN, 217
FX_ROOT, 522
FZ_ROOTS, 524
NEWTON, 941

nonparametric tests
LNP_TEST, 784
MD_TEST, 858
R_TEST, 1082
RS_TEST, 1201
S_TEST, 1203
XSQ_TEST, 1762

NORM function, 944
normal

coordinates
converting to other types, 239
IDL Reference Guide Index

2558
distribution (Gaussian), 528, 529
random deviates, 1100

NORMAL keyword, 2407
normally-distributed random numbers, 1093
NR_BETA, see obsolete routines
NR_BROYDN, see obsolete routines
NR_CHOLDC, see obsolete routines
NR_CHOLSL, see obsolete routines
NR_DFPMIN, see obsolete routines
NR_ELMHES, see obsolete routines
NR_EXPINT, see obsolete routines
NR_FULSTR, see obsolete routines
NR_HQR, see obsolete routines
NR_INVERT, see obsolete routines
NR_LINBCG, see obsolete routines
NR_LUBKSB, see obsolete routines
NR_LUDCMP, see obsolete routines
NR_MACHAR, see obsolete routines
NR_MPROVE, see obsolete routines
NR_NEWT, see obsolete routines
NR_POWELL, see obsolete routines
NR_QROMB, see obsolete routines
NR_QROMO, see obsolete routines
NR_QSIMP, see obsolete routines
NR_RK4, see obsolete routines
NR_SPLINE, see obsolete routines
NR_SPLINT, see obsolete routines
NR_SPRSAB, see obsolete routines
NR_SPRSAX, see obsolete routines
NR_SPRSIN, see obsolete routines
NR_SVBKSB, see obsolete routines
NR_SVD, see obsolete routines
NR_TQLI, see obsolete routines
NR_TRED2, see obsolete routines
NR_TRIDAG, see obsolete routines
NR_WTN, see obsolete routines
NR_ZROOTS, see obsolete routines
NRIF

files, writing, 1672
NSUM system variable field, 2443
Null display device (NULL), 2367

number of array elements, 937
numbers, random, 1093, 1098
numeric keypads, 1231
numerical integration, 1061

O
OBJ_CLASS function, 946
OBJ_DESTROY procedure, 947
OBJ_ISA function, 948
OBJ_NEW function, 949
OBJ_VALID function, 951
OBJARR function, 953
object class

IDLanROI, 1796
IDLanROIGroup, 1821
IDLgrROI, 2152
IDLgrROIGroup, 2164

objects
creating, 949

arrays, 953
destroying, 947
determining

class names, 946
subclasses, 948

Object Graphics
font use, 2473

testing existence, 951
OBLIQUE keyword, 2331
obsolete routines and system variables, 2512
OMARGIN system variable field, 2446
ON_ERROR procedure, 889, 954
ON_IOERROR procedure, 955
online help, 421, 898

calling from programs, 956
ONLINE_HELP procedure, 956
ONLY_8BIT, see obsolete routines
opacities, 1498
OPEN procedures, 959
opening

Shapefiles, 1921
Index IDL Reference Guide

2559
opening files
getting information on open files, 571
OPEN procedures, 959

opening operation, in image processing, 411
operating system

current version in use, 2436
operators

addition, 2453
AND, 2453
array concatenation, 2453
assignment, 2453
Boolean, 2453
division, 2453
EQ, 2453
exponentiation, 2453
GE, 2453
GT, 2453
LE, 2453
LT, 2453
mathematical, 2453
matrix multiplication, 2453
maximum, 2453
minimum, 2453
modulo, 2453
multiplication, 2453
NE, 2453
OR, 2453
relational, 2453
subtraction and negation, 2453
XOR, 2453

OPLOT procedure, 971
OPLOTERR procedure, 974
optimization

AMOEBA function, 73
CONSTRAINED_MIN, 217
DFPMIN, 389
POWELL, 1028

OPTIMIZE keyword, 2331
optional parameters in user-written functions,
938
OR operator, 2453

ORDERED keyword, 2332
ordinary differential equations

LSODE function, 794
ordinary differential equations, RK4, 1187
ORIENTATION keyword, 2407
ORIGIN system variable field, 2439
orthographic map projection, 846
outer margins, setting, 2446
outline fonts, 2472
outlines of continents, 824
outlying data regression, 672
OUTP, see obsolete routines
output

BMP files, 1665
JPEG files, 1669
NRIF files, 1672
PGM files, 1678
PICT files, 1674
PPM files, 1678
SRF files, 1680
TIFF files, 1684
wave files, 1691

OUTPUT keyword, 2332
overflow, integer, 810
overplotting, 971

P
P_CORRELATE function, 975
page break, 442
PALATINO keyword, 2332
palette object, 2078
PALETTE, see obsolete routines
pan offset, 2439
parallels, drawing, 828, 848
parameters

finding number of, 938
formal, 45, 1785

parents, of widgets, 1608
partial correlation coefficient, 975
PARTIAL_COR, see obsolete routines
IDL Reference Guide Index

2560
PARTIAL2_COR, see obsolete routines
PARTICLE_TRACE procedure, 977
path

definition string, 456
on a Macintosh, 2435

pattern object, 2089
PCL

driver, 2368
files, 2354

PCOMP function, 979
Pearson correlation coefficient, 247
period (character), 2465
permutation, 471
perspective, 1391
PGM files, 1129, 1678
phase, 90
PHASER, see obsolete routines
Pickdata method, 1960, 2294
PICKFILE, see obsolete routines
PickRegion method

IDLgrROIGroup, 2172
PickVertex method

IDLgrROI, 2162
PickVoxel method, 2260
PICT files

reading, 1124
writing, 1674

pixels
depth, 2322
reading value of, 1105

PIXELS keyword, 2332
plane of vector-drawn text, 1777
plot object, 2095
PLOT procedure, 983
PLOT_3DBOX procedure, 987
PLOT_FIELD procedure, 991
PLOT_IO, see YLOG keyword to PLOT
PLOT_OI, see XLOG keyword to PLOT
PLOT_OO, see (XY)LOG keywords to PLOT
PLOT_TO keyword, 2333
PLOTERR procedure, 993

plots
margins, 2446
outer margins, 2446
viewing in 3D, 1744

PLOTS procedure, 994
PLOTTER_ON_OFF keyword, 2333
plotting, 983

2D fields, 991
3D fields, 504
3D transformations, 245, 287, 334, 1212,
1214, 1371, 1391, 1492, 2409
axes

thickness, 2412
titles, 2418

bar plots, 95
closing files (CLOSE_FILE keyword), 2318
color, 1743
contour plots, 225, 619
drawing axes (AXIS procedure), 91
error bars, 450, 974, 993
filename for output (FILENAME keyword),
2325
flow field, 504
functions of 2 variables, 987
height of output, 2350
histogram, 2409
landscape orientation, 2330, 2330
line thickness, 2410, 2444
lines, 994
linestyles, 2405, 2442
logarithmic axes

linear-log, 985
log-linear, 92, 235, 235, 985, 1237, 1237,
1370, 1370, 1370

missing data, 971, 984
multiple plots on a page, 2377, 2442
output, positioning, 2356
overplotting, 619, 971
points, 994
polar, 972, 985
portrait orientation, 2334
Index IDL Reference Guide

2561
position of window, 2407, 2443
region, 2444
selecting a plotting device, 1221
shaded surfaces, 1234
subtitles, 2409, 2444
symbol size, 2409
symbols, 2408, 2443
text, 1776
three-dimensional lines, 995
titles, 2410, 2444
user-defined symbols, 1480
velocity field, 504
velocity fields, 1490
weather fronts, 1510
width of output, 2349
wire-mesh surfaces, 1366
without data, 2406
without erasing, 2407, 2443
XY plots, 983
Z-coordinate for, 2419, 2419

PM, see obsolete routines
PMF, see obsolete routines
PNG library, supported version, 1126, 1675
PNT_LINE function, 997
POINT_LUN procedure, 999
pointers

creating, 1051
creating arrays, 1054
destroying, 1050
testing existence, 1052

Poisson random deviates, 1095, 1100
polar plots, 985

contours, 1001
coordinates, 272, 1003

POLAR_CONTOUR procedure, 1001
POLAR_SURFACE function, 1003
polishing of roots, 524
political boundaries, 824
POLY function, 1005
POLY_2D function, 1006
POLY_AREA function, 1010

POLY_FIT function, 1011
POLYCONTOUR, see obsolete routines
POLYFILL keyword, 2333
POLYFILL procedure, 1015
POLYFILLV function, 1019
POLYFITW, see obsolete routines
polygon filling, 1015, 1019

with HP plotters, 2333
polygon object, 2108
polyline object, 2124
polynomial warping, 1006
polynomials

digital smoothing, 1208
Laguerre, 674
least-squares fit, 1208
Legendre, 678

POLYSHADE function, 1021
POLYWARP procedure, 1025
POPD procedure, 166, 1027
PORTRAIT keyword, 2334
portrait orientation, 2374

for IDL output (PORTRAIT keyword), 2334
POSITION keyword, 2407
POSITION system variable field, 2443
positional parameters, 45, 1785

returning number of, 938
positioning

child widgets within a base, 1536
commands, 2493
cursor, 1459
graphics cursor, 265
PostScript output, 2374
top level base widgets, 1572
widget bases, 1536
windows (XPOS and YPOS keywords), 1663

PostScript
color, 2372
device, 2371
encapsulated, 2324, 2376
EPSI (Encapsulated PostScript Interchange)
files, 2335
IDL Reference Guide Index

2562
files, 2354
files with preview headers, 2335
font index, 2326
fonts, 1046, 2372
importing graphics into other programs, 2378
importing into another document, 2324
multiple plots on a single page, 2377
pixel bit depth, 2317
positioning output, 2374
scaling entire plot (SCALE_FACTOR key-
word), 2337
TrueColor images, 2373
writing 24-bit images, 1457, 2374

Powell minimization (POWELL procedure),
1028
PPM files, 1129, 1678
PREVIEW keyword, 2335
PRIMES function, 1031
principal components analysis, 979
PRINT procedure, 1032
PRINT_FILE keyword, 2335
PRINTD procedure, 166, 1035
Printer Control Language, see PCL
PRINTER device, 2370
printer object, 2137
PRINTF procedure, 1032
printing, 2370

closing files (CLOSE_FILE keyword), 2318
dialog, 400
filename for output (FILENAME keyword),
2325
graphics output files, 2354
landscape orientation, 2330
printer set up, 2355
properties, 398
setup dialog, 398
to file units, 1032
to standard output, 1032

PRO statement, 1036
probability

bivariate distributions, 581

density distribution, 584
Gaussian distribution, 537
Histogram function, 584

probability functions
binomial distribution, 116
Chi-square distribution, 178, 179
F distribution, 468, 469
Gaussian distribution, 528, 529
student’s T distribution, 1388, 1389

procedure methods
calling sequence for, 1784

procedures
call stack, returning, 572
calling

sequence for, 44
compiled, 1198
DEVICE, 2310
displaying compiled, 576
SET_PLOT, 2310

PROFILE function, 1037
PROFILER procedure, 1039
PROFILES procedure, 1041
program

listings, 59
programming

displaying traceback information, 576
identifying keywords as set, 656
stopping programs, 1326
suspending execution of programs, 1503
traceback information, 572

PROJECT_VOL function, 1043
projections

2D from 3D datasets, 1043
3D plots on walls, 1749
Aitoff, 844
Albers, 845
azimuthal equidistant, 845
cylindrical equidistant, 845
gnomonic (central, gnomic), 845
Hammer-Aitoff, 845
Lambert’s conformal conic, 845
Index IDL Reference Guide

2563
Lambert’s equal area, 845
Mercator, 845
Miller, 846
Mollweide, 846
orthographic, 846
satellite, 846
sinusoidal, 846
stereographic, 846
Transverse Mercator (UTM), 847

prompt
changing default, 2435
reading from, 1107

PROMPT, see obsolete routines
PS_SHOW_FONTS procedure, 1046
PSAFM procedure, 1047
PSEUDO procedure, 1048
PSEUDO_COLOR keyword, 2336
pseudo-color images, converting from True-
Color, 195
pseudo-color PostScript images, 2373
PSYM keyword, 2408
PSYM system variable field, 2443
PTR_FREE procedure, 1050
PTR_NEW function, 1051
PTR_VALID function, 1052
PTRARR function, 1054
pulldown menu, 344, 1543
PUSHD procedure, 166, 1055
Put method, 2075
PutEntity method, 1885
PWIDGET, see obsolete routines

Q
QL algorithm, 1440
QL method (computing eigenvalues), 430
QROMB function, 1056
QROMO function, 1058
QSIMP function, 1061
quantizing colors, 195
QUERY_* routines, 1063

QUERY_BMP routine, 1065
QUERY_DICOM function, 1066
QUERY_IMAGE function, 1068
QUERY_JPEG routine, 1071
QUERY_PICT routine, 1072
QUERY_PNG routine, 1073
QUERY_PPM routine, 1075
QUERY_SRF routine, 1076
QUERY_TIFF routine, 1077
QUERY_WAV function, 1079
question mark

starting online help, 2467
quintic interpolation, 1434
quitting IDL, 453
quotation marks, 2465

R
R_CORRELATE function, 1080
R_TEST function, 1082
radix, 809
Radon backprojection, 1084
RADON function, 1084
Radon transform, 1084
random deviates

binomial, 1094, 1099
exponential, 1095, 1100
gamma, 1095, 1100
normal, 1100
Poisson, 1095, 1100
random, 1101

random numbers
normally-distributed, 1093
uniformly-distributed, 1098

RANDOMN function, 1093
RANDOMU function, 1098
RANGE system variable field, 2447
rank correlation coefficient, 1080
RANKS function, 1103
rank-sum test, 1201
RDPIX procedure, 1105
IDL Reference Guide Index

2564
Read method, 1886, 1962, 2296
READ procedure, 1106
READ_ASCII function, 1109
READ_BINARY function, 1112
READ_BMP function, 1114
READ_DICOM function, 1116
READ_IMAGE function, 1117
READ_INTERFILE procedure, 1119
READ_JPEG procedure, 1120
READ_KEY procedure, 1107
READ_PICT procedure, 1124
READ_PNG routine, 1126
READ_PPM procedure, 1129
READ_SPR function, 1131
READ_SRF procedure, 1132
READ_SYLK function, 1134
READ_TIFF function, 1137
READ_WAV function, 1144
READ_WAVE procedure, 1145
READ_X11_BITMAP procedure, 1147
READ_XWD function, 1149
READF procedure, 1106
reading

ASCII files, 1109
BMP files, 1114
current color table, 1462
cursor position, 1105
data from a string, 1150
formatted data, 1106
from a prompt, 1107
from tapes, 1398
images from the display, 1464
Interfile files, 1119
JPEG files, 1120
mouse position, 265
PGM files, 1129
PICT files, 1124
pixel values, 1105
PPM files, 1129
SRF files, 1132
TIFF files, 1137

unformatted binary data, 1152
wave files, 1145
X11 bitmaps, 1147
XWD files, 1149

read-only system variables, 376
READS procedure, 1150
READU procedure, 1152
real part of complex numbers, 501
realizing widgets, 1564
REBIN function, 1155
recall buffer

command, 1158
RECALL_COMMANDS function, 1158
RECON3 function, 1159
reconstructions

3D from 2D images, 1159
recording an interactive IDL session, 652
records

length of, 515
updating, 1694

rectangular
coordinates, 272, 1003

reduce operator, 445
REDUCE_COLORS procedure, 1164
REFORM function, 1165
reformatting arrays, 1165
region

labeling, 670
of interest, 301, 374

region of interest
IDLanROI, 1796
XROI, 1753

REGION system variable field, 2444, 2447
Regis device, 2383
REGRESS function, 1167
REGRESS1, see obsolete routines
regression analysis, 1167
REGRESSION, see obsolete routines
relational operators, 2453
relaxed structure assignment, 1180, 1361
release, current version in use, 2436
Index IDL Reference Guide

2565
Remove method, 1795
RemoveData method

IDLanROI, 1813
RemoveEntity method, 1887
removing breakpoints, 126
rendering

3D objects, 876
3D volumes as 2D images, 1043
voxel, 1498

REPEAT...UNTIL statement, 1171
ReplaceData method

IDLanROI, 1814
REPLICATE function, 1172
REPLICATE_INPLACE procedure, 1173
reserved words, 2469
Reset method, 1888, 2062, 2211, 2306
RESET_STRING keyword, 2336
resetting widgets, 1565
resizing arrays, 213, 455, 1155
RESOLUTION keyword, 2336, 2337
RESOLVE_ALL procedure, 1175
RESOLVE_ROUTINE procedure, 1177
resource names for IDL widgets, 1527, 1544,
1583, 1594, 1617, 1623, 1631, 1655
RESTORE procedure, 1179
restoring IDL save files, 1179
RETAIN keyword, 2337
RETALL command, 1181
retrieving

attributes of a Shapefile, 1911
RETURN command, 1182
returning

subscripts of non-zero array elements, 1513
widget information, 1602

REVERSE function, 1184
reverse index list (for histograms), 584
reversing array indices, 1184
REWIND procedure, 1186
RGB color system, 193, 351, 1461
RGB_TO_HSV, see obsolete routines
rhumb line, 820

RIEMANN, see obsolete routines
rivers, 824
RK4 function, 1187
RM, see obsolete routines
RMF, see obsolete routines
RMS block mode, 966
Roberts edge enhancement, 1189
ROBERTS function, 1189
ROI

deleting, 1760
geometric and statistical data, 1753
histogram view, 1760

Romberg integration, 1056, 1058
roots, 522, 524
ROT function, 1191, 1194
ROT_INT, see obsolete routines
ROTATE function, 1194
Rotate method, 2063

IDLanROI, 1817
IDLanROIGroup, 1835

rotating
arrays, 1194
images, 287

by arbitrary amounts, 1191
the viewing matrix, 1391

ROUND function, 1196
rounding, 810

ceiling function, 170
floor function, 502
to nearest integer, 1196

ROUTINE_INFO function, 1198
routines

obsolete, 2512
saving as binary files, 1205

row bases, 1529
RS_TEST function, 1201
RSI_GAMMAI, see obsolete routines
RSTRPOS, see obsolete routines
Runge-Kutta method, 1187
run-length encoding, 1020
runs test for randomness, 1082
IDL Reference Guide Index

2566
RUNS_TEST, see obsolete routines

S
S system variable field, 2447
S_TEST function, 1203
satellite map projection, 846
Save method, 2076
SAVE procedure, 1205
save/restore

binary files, 1206
files, 1179

saved commands, displaying, 575
SAVGOL function, 1208
saving

IDL routines as binary files, 1205
IDL variables, 1205
system variables, 1206
variables, 1206

Savitzky-Golay smoothing filter, 1208
scalable pixels, 2358
Scale method, 2064

IDLanROI, 1818
IDLanROIGroup, 1836

SCALE_FACTOR keyword, 2337
SCALE3 procedure, 1212
SCALE3D procedure, 1214
scaling, 1391

factors, 2447
values into range of bytes, 137

scene object, 2174
SCHOOLBOOK keyword, 2338
scripts, AppleScript, 419
scroll bars

for draw widgets, 1584
for text widgets, 1651, 1655

scroll offset, 2439
SEARCH2D function, 1215
SEARCH3D function, 1218
searching, within strings, 1351
segmentation, 670

Select method, 1963, 2297
semicolon, 2465
semicolon character, 2465
semi-logarithmic plots, 92, 235, 235, 985,
1237, 1237, 1370, 1370, 1370
sensitizing widgets, 1566
SET_CHARACTER_SIZE keyword, 2338
SET_COLORMAP keyword, 2339
SET_FONT keyword, 2340
SET_GRAPHICS_FUNCTION keyword,
2343
SET_NATIVE_PLOT, see obsolete routines
SET_PLOT procedure, 1221, 1221, 1221,
2310
SET_RESOLUTION keyword, 2344
SET_SCREEN, see obsolete routines
SET_SHADING procedure, 1021, 1223
SET_STRING keyword, 2344
SET_SYMBOL procedure, 1225
SET_TRANSLATION keyword, 2344
SET_VIEWPORT, see obsolete routines
SET_WRITE_MASK keyword, 2345
SET_XY, see obsolete routines
SetCurrentCursor method, 2299
SETENV procedure, 546, 1226
setjmp, C language, 164
SETLOG procedure, 1227
SetPalette method, 1889
SetRGB method, 2087
setting

breakpoints, 127
keywords, 656, 1785
the current window, 1695
widget values, 1569

SETUP_KEYS procedure, 366, 1229
SFIT function, 1232
SHADE_SURF procedure, 1234
SHADE_SURF_IRR procedure, 1239
SHADE_VOLUME procedure, 1023, 1241
shaded surfaces, 1234

changing position of light source, 1223
Index IDL Reference Guide

2567
from polygons, 1021
shading, 1223

changing position of light source, 1223
volumes, 1021

Shapefile
adding attributes, 1906
attribute structure, 1900
attributes, 1900
closing, 1909
entity, 1896
entity structure, 1897
included files, 1896
inserting entities, 1922
naming conventions, 1896
object properties, 1915
opening, 1921
retrieving attributes, 1911
retrieving entities, 1913
setting attributes, 1924

sharable library
building, 814

shared colormap, 2344, 2347
sheet feeder, 2323
shells, spawning, 1291
SHIFT function, 1244
shifting

array elements, 1244
bit, 646

short word swap, 134
Show method, 2302
SHOW3 procedure, 1246
SHOWFONT procedure, 1248
showing

images, 1455
windows, 1696

shrink operator, 445
shrinking

arrays, 1155
windows, 1696

SIGMA, see obsolete routines
sign test, 1203

SIGN_TEST, see obsolete routines
signal

filtering, 120
processing

CONVOL function, 241
significant bits, 2322
simple polygons, 2206
SIMPSON, see obsolete routines
Simpson’s rule, 1061
SIN function, 1250
SINDGEN function, 1251
sine, 1250

hyperbolic, 1252
inverse, 86

single-precision
arrays, 495, 506
converting values to, 501

singular value decomposition, 1372, 1381
SINH function, 1252
sinusoidal map projection, 846
SIZE executive command, 2517
SIZE function, 1253
skeletons of bi-level images, 1407
skewness, 903, 1257
SKEWNESS function, 1257
SKIPF procedure, 1258
slash character, 1785
SLICER, see obsolete routines
SLICER3 procedure, 551, 1259
SLIDE_IMAGE procedure, 1277
slider widgets, 1628

changing maximum value, 1567
changing minimum value, 1568
drag events, 1635
draggable, 1628
events returned by, 1634
floating-point, 321
maximum value, 1630
minimum value, 1630
returning minimum and maximum values,
1608
IDL Reference Guide Index

2568
SMOOTH function, 1281
smoothing, 1281

CONVOL function, 241
median, 863
MIN_CURVE_SURF function, 225

SOBEL function, 1283
SOCKET procedure, 1285
SORT function, 1289
sorting

arrays, 1289
sparse arrays

FULSTR, 516
LINBCG, 681
READ_SPR, 1131
SPRSAB, 1314
SPRSAX, 1316
WRITE_SPR, 1679

spawn
shell process, 1291

SPAWN procedure, 1291
SPEARMAN, see obsolete routines
Spearman’s rho rank correlation, 1080
special characters

displaying in plots, 2475
special functions

BETA, 109
IBETA, 604

SPH_4PNT procedure, 1298
SPH_SCAT function, 1300
SPHER_HARM function, 1303
spherical coordinates, 272
spherical gridding, 1300, 1429, 1432
spherical harmonic

relation to Legendre polynomial, 1303
spherical interpolation, 1300
spherical triangulation, 1429
SPL_INIT function, 1306
SPL_INTERP function, 1308
spline

cubic interpolation, 1306, 1310, 1312
thin-plate surface, 893

SPLINE function, 1310
SPLINE_P procedure, 1312
spreadsheet data files, 1134, 1682
SPRSAB function, 1314
SPRSAX function, 1316
SPRSIN function, 1318
SPRSTP function, 1321
SQRT function, 1322
square root, 1322
SRF files

reading, 1132
writing, 1680

stacked histogram plots (LEGO keyword),
1368
standard

deviation, 903
input, 539

standard deviation, 1325
STANDARDIZE function, 1323
standardized variables, 1323
STATIC_COLOR keyword, 2345
STATIC_GRAY keyword, 2345
statistics

approximating models, 200
fitting data

growth trends, 200
least absolute deviation regression, 672
moving averages, 1281
multiple linear regression, 1167
nonlinear least-squares regression, 268
outlying data regression, 672

kurtosis, 661
tools

absolute deviation, 903
chi-square error, minimizing, 685
combinations, 471
contingency table, 263
cumulative sum, 1418
factorial, 471
frequency tables, 584
histogram, 584
Index IDL Reference Guide

2569
kurtosis, 661, 903
Lomb normalized periodogram, 784
magnitude-based ranking, 1103
maximum, 856
mean, 860, 903
mean absolute deviation, 861
median, 903
minimum, 891
number generators, 1031, 1093, 1098
permutations, 471
skewness, 903, 1257
sort, 1289
standard deviation, 903, 1325
T-statistic, Student’s, 1416
variance, 903, 1484

STDDEV function, 1325
STDEV, see obsolete routines
STEPWISE, see obsolete routines
stereographic map projection, 846
STOP procedure, 1326
stopping program execution, 125, 1326
STR_SEP, see obsolete routines
STRARR function, 1327
STRCMP function, 1328
STRCOMPRESS function, 1330
STREAMLINE procedure, 1331
streamlines, 1488
STREGEX function, 1333
STRETCH procedure, 1337
STRING function, 1339
strings

calling
IDL functions from, 159
IDL methods from, 160
IDL procedures from, 161

converting to lowercase, 1344
converting to uppercase, 1365
creating arrays, 1251
creating string arrays, 1327
data type, converting to, 1339
executing contents of, 452

extracting substrings from, 1349
finding substrings within, 1351
inserting strings into, 1353
length of, 1343
reading data from, 1150
removing whitespace from, 1330, 1359

STRJOIN function, 1342
STRLEN function, 1343
STRLOWCASE function, 1344
STRMATCH function, 1345
STRMESSAGE function, 1348
STRMID function, 1349
STRPOS function, 1351
STRPUT procedure, 1353
STRSPLIT function, 1355
STRTRIM function, 1359
STRUCT_ASSIGN procedure, 1361
STRUCT_HIDE procedure, 1363
structures

concatenating, 253
creating and defining, 253
creating arrays of, 1172
definition, 1361
displaying information on currently-defined,
576
FSTAT, 513
relaxed definition, 1180, 1361
returned by widgets, 1600
returning length of, 939
returning number of tags, 939
tag names, 253, 1394

structuring element, 411
STRUPCASE function, 1365
STUDENT_T, see obsolete routines
Student’s t distribution, 1388, 1389
Student’s T-statistic, 1416
STUDENT1_T, see obsolete routines
STUDRANGE, see obsolete routines
STYLE system variable field, 2448
SUBTITLE keyword, 2409
SUBTITLE system variable field, 2444
IDL Reference Guide Index

2570
subtraction operator, 2453
summation, array elements, 1418
Sun raster files

reading, 1132
writing, 1680

suppressing information messages, 2435
surf_track.pro (example file), 2308
surface fitting

SFIT, 1232
surface object, 2182
surface plots, 1764

with images and contours, 1246
SURFACE procedure, 1366

duplicating transformations, 1371
SURFACE_FIT, see obsolete routines
surfaces, shaded, 876, 1234, 1239
SURFR procedure, 1371
SVBKSB, see obsolete routines
SVD, see obsolete routines
SVDC procedure, 1372
SVDFIT function, 1375
SVSOL function, 1380
SWAP_ENDIAN function, 1382
swapping the order of bytes, 133
SWITCH statement, 1383
SYLK files, 1134, 1682
SYMBOL keyword, 2345
symbol object, 2199
symbolic link files, 1134, 1682
symbols, plotting, 1480, 2408, 2443
symmetric

array or matrix, 1440, 1442
SYMSIZE keyword, 2409
system

clock, 1385
system variable fields

BACKGROUND, 2441
BLOCK, 2425
CHANNEL, 2441
CHARSIZE, 2441, 2445
CHARTHICK, 2441

CLIP, 2441
CODE, 2425
COLOR, 2441
CRANGE, 2445
FILL_DIST, 2437
FLAGS, 2438
FONT, 2441
GRIDSTYLE, 2446
LINESTYLE, 2442
MARGIN, 2446
MINOR, 2446
MSG, 2425
MSG_PREFIX, 2426
MULTI, 2442
N_COLORS, 2439
NAME, 2425, 2439
NOCLIP, 2443
NOERASE, 2443
NSUM, 2443
OMARGIN, 2446
ORIGIN, 2439
POSITION, 2443
PSYM, 2443
RANGE, 2447
REGION, 2444, 2447
S, 2447
STYLE, 2448
SUBTITLE, 2444
SYS_CODE, 2425
SYS_MSG, 2425
T, 2444
T3D, 2444
TABLE_SIZE, 2439
THICK, 2444, 2448
TICKFORMAT, 2449
TICKINTERVAL, 2449
TICKLAYOUT, 2449
TICKLEN, 2444, 2449
TICKNAME, 2449
TICKS, 2450
TICKUNITS, 2450
Index IDL Reference Guide

2571
TICKV, 2450
TITLE, 2444, 2451
TYPE, 2451
UNIT, 2439
WINDOW, 2439, 2451
X_CH_SIZE, 2439
X_PX_CM, 2440
X_SIZE, 2440
X_VSIZE, 2440
Y_CH_SIZE, 2439
Y_PX_CM, 2440
Y_SIZE, 2440
Y_VSIZE, 2440
ZOOM, 2440

system variables, 2422
!C, 2437
!D, 2437
!D.TABLE_SIZE, 1467
!D.WINDOW, 1508, 1661, 1695
!ERR, 1514
!ERROR_STATE, 889, 890, 1348
!JOURNAL, 652
!MAP1, 843
!MOUSE, 265
!ORDER, 1457, 1465, 2440
!P, 2440
!P.COLOR, 1743
!P.MULTI, 2377
!P.T, 2410
!QUIET, 889
!X, 2444
!Y, 2444
!Z, 2444
creating, 376
displaying information on currently-defined,
576
for axes, 2444
for graphics, 2437
obsolete, 2512
read-only, 376
saving, 1206

SYSTIME function, 1385

T
T system variable field, 2444
T_CVF function, 1388
T_PDF function, 1389
T3D keyword, 2409
T3D procedure, 1391
T3D system variable field, 2444
table widgets, 1636

keyboard focus events, 1640
TABLE_SIZE system variable field, 2439
TAG_NAMES function, 1394
tags, number in a structure, 939
TAN function, 1396
tangent, 1396

hyperbolic, 1397
inverse, 90

TANH function, 1397
tapes

reading from, 1398
rewinding, 1186
skipping records, 1258
writing data to, 1399
writing EOF mark, 1509

TAPRD procedure, 1398
TAPWRT procedure, 1399
TCP/IP client side socket support, 1285
TEK_COLOR procedure, 1400
TEK4014 keyword, 2345
TEK4100 keyword, 2346
Tektronix device, 2384
TEMPORARY function, 1401
temporary variables, 1401
ternary operator, ?:, 2453
tesselation, 1429
Tessellate method, 2212
tessellator object, 2206
test functions, 784

CTI_TEST, 263
IDL Reference Guide Index

2572
FV_TEST, 520
KW_TEST, 662
LNP_TEST, 784
MD_TEST, 858
R_TEST, 1082
RS_TEST, 1201
S_TEST, 1203
TM_TEST, 1416
XSQ_TEST, 1762

TESTCONTRAST, see obsolete routines
TETRA_CLIP function, 1402
TETRA_SURFACE function, 1404
TETRA_VOLUME function, 1405
text

aligning (XYOUTS), 1777
character

height, 2439
size, 2441
thickness, 1777, 2441
width, 2439

displaying, 1703
font index, 2405
font selection, 2441
plane of, 1777
plotting in graphics windows, 1776
positioning, 2493
size, 2411
size of characters, 1777
widgets, see text widgets
width of, 1777

text object, 2213
text widgets, 1651

appending text to, 1552
changing selected text, 1575
converting

character offsets to column/line form, 1610
line/column positions to character offsets,
1610

determining
if all events are being returned, 1609
if text widget is editable, 1609

editable, 1652
making editable after creation, 1557

events returned by, 1552, 1651, 1658
keyboard focus events, 1653
returning

line number of top line in viewport, 1610
number of characters, 1610
offsets of text selection, 1610
selected text, 1575

setting
text selection, 1568
top line, 1569

setting keyboard focus to, 1561
suppressing newline characters, 1564

THICK keyword, 2410
THICK system variable field, 2444, 2448
thickness of characters, 1777
THIN function, 1407
thinning images, 1407
thin-plate-spline interpolation, 548, 893
THREED procedure, 1409
three-dimensional

transformations
array transforms, 1492
coordinates, 245, 334
duplicating SURFACE transforms, 1371
implementing transforms, 1391
plotting, 245, 334
scaling, 1212, 1214
specifying orientation, 287
T3D keyword, 2444

THRESHOLD keyword, 2346
throw, C++ language, 164
tick marks

annotation, 2417, 2449
data values for, 2418, 2450
getting values of, 2412
intervals, 2417, 2450
layout in individual axes, 2416
length, 2410, 2444
length on individual axes, 2416, 2449
Index IDL Reference Guide

2573
linestyles, 2411
minor, 2411, 2446
string labels for, 2449
styles, 2446
suppressing, 2417, 2450
units for labeling, 2417

TICKFORMAT system variable field, 2449
TICKINTERVAL system variable field, 2449
TICKLAYOUT system variable field, 2449
TICKLEN keyword, 2410
TICKLEN system variable field, 2444, 2449
TICKNAME system variable field, 2449
TICKS system variable field, 2450
TICKUNITS system variable field, 2450
TICKV system variable field, 2450
TIFF files

reading, 1137
writing, 1684

TIFF_DUMP, see obsolete routines
TIFF_READ, see obsolete routines
TIFF_WRITE, see obsolete routines
time

converting from string to binary, 112
returning current, 1385

TIME_TEST2 procedure, 1410
TIMEGEN function, 1411
TIMES keyword, 2346
time-series analysis

autocorrelation, 65
autocovariance, 65
autoregressive modeling, 1447, 1451
cross correlation, 139
cross covariance, 139
forward differencing, 1449

TITLE keyword, 2410
TITLE system variable field, 2444, 2451
TM_TEST function, 1416
t-means test, 1416
toggle buttons, 1547
top margin, setting, 2446
top-level base, 1519

TOTAL function, 1418
TQLI, see obsolete routines
TRACE function, 1421
traceback information

displaying, 576
returning, 572

Trackball
Init method, 2304
Reset method, 2306
Update method, 2307

TrackBall object, 2303
transformation matrices, 2444
transforms

Fourier, 473
Hough, 592
Radon, 1084

Translate method, 2066
IDLanROI, 1820
IDLanROIGroup, 1837

translation, 1391
TRANSLATION keyword, 2347
translation tables, bypassing, 2317
transparency

polygon objects, 2121
surface objects, 2195

transparent bitmaps, 1548
TRANSPOSE function, 1423
transposing arrays, 1423
Transverse Mercator map (UTM) projection,
847
TRED2, see obsolete routines
TRI_SURF function, 1425
TRIANGULATE procedure, 1429
triangulation, 1429, 1432

spherical, 1429
TRIDAG, see obsolete routines
tridiagonal array or matrix, 1440, 1442, 1443
TRIGRID function, 1432
trilinear interpolation, 637
trimming strings, 1359
TRIQL procedure, 1440
IDL Reference Guide Index

2574
TRIRED procedure, 1442
TRISOL function, 1443
TRNLOG function, 1445
TRUE_COLOR keyword, 2347
TrueColor

images
converting to pseudo-color, 195

images, displaying, 1457
images, PostScript, 2373
images, reading, 1465

true-color
visuals, 2322

TrueType, 2342, 2484
TrueType fonts, 2472, 2498
TS_COEF function, 1447
TS_DIFF function, 1449
TS_FCAST function, 1451
TS_SMOOTH function, 1453
TT_FONT keyword, 2347
TTY keyword, 2348
TV procedure, 1455
TVCRS procedure, 1459
TVDELETE, see obsolete routines
TVLCT procedure, 1461
TVRD function, 1464
TVRDC, see obsolete routines
TVSCL procedure, 1467
TVSET, see obsolete routines
TVSHOW, see obsolete routines
TVWINDOW, see obsolete routines
two-dimensional Gaussian fit, 531
type conversion

to 64-bit integer, 793
to byte, 132
to complex, 207, 362
to double-precision, 424
to integer, 498
to longword, 792
to single-precision, floating-point, 501
to string, 1339
to unsigned 64-bit integer, 1477

to unsigned integer, 1470
to unsigned longword, 1476

TYPE system variable field, 2451
type-ahead buffer, 539

U
UINDGEN function, 1469
UINT function, 1470
UINTARR function, 1471
UL64INDGEN function, 1472
ULINDGEN function, 1473
ULON64ARR function, 1474
ULONARR function, 1475
ULONG function, 1476
ULONG64 function, 1477
unformatted binary data, 1152, 1693
uniform random deviates, 1101
uniformly-distributed random numbers, 1098
UNIQ function, 1478
unit number, logical, 962
UNIT system variable field, 2439
UNIX

environment variables, 545
UNIX platform

changing file permissions, 477
unmapping widgets, 1524
unsigned 64-bit integer

arrays, 1472
data type, converting to, 1477

unsigned arrays
longword, 1473

unsigned integer
arrays, 1469
data type, converting to, 1470

unsigned longword
arrays, 1475
data type, converting to, 1476

Update method, 2307
upper margin, setting, 2446
uppercase, converting strings to, 1365
Index IDL Reference Guide

2575
USER_FONT keyword, 2348
user-defined plotting symbols, 1480
USERSYM procedure, 1480
using external modules, 145
UTM (Transverse Mercator) map projection,
847

V
VALUE_LOCATE function, 1482
variables

associated, 87
data type, determining, 1253
deleting, 380
interactive editing tool, 1766
named, 45, 45, 1785
reading display images into (TVRD func-
tion), 1464
returning information on, 571
saving, 1206
temporary, 1401

variance, 520, 903
VARIANCE function, 1484
VAX_FLOAT function, 1485
VECTOR_FIELD procedure, 1487
vector-drawn fonts, 2472, 2501

! character, 2493
displaying, 1248
editing (EFONT procedure), 428
special characters, 2475

vectors
drawing arrowheads, 82

VEL procedure, 1488
velocity field, plotting, 504, 1488, 1490
VELOVECT procedure, 1490
VERT_T3D function, 1492
view object, 2226
viewgroup object, 2236
VMS logical name, 379
VMS logical name tables, 1445
VMS logical tables, 1446

VMS text libraries, 456
VMSCODE, see obsolete routines
VOIGT function, 1494
volume object, 2245
volume slices, 1259
volumes

extracting slices, 464
rendering, 1043
searching for objects, 1218
visualizing, 1021, 1043, 1241, 1498

volumetric reconstruction, 1159
VORONOI procedure, 1496
voxel rendering, 1498
VOXEL_PROJ function, 1498
VRML object, 2262
VT240 keyword, 2348
VT240 terminal, 2383
VT330 terminal, 2383
VT340 keyword, 2348
VT340 terminal, 2383

W
WAIT procedure, 1503
WARP_TRI function, 1504
warping

images, 1006
to maps, 833, 837

polynomial, 1006
using the Z-buffer, 1017

WATERSHED function, 1506
Wavefront Advanced Data Visualizer, 1145,
1691
Wavefront files

reading, 1145
writing, 1691

wavelet transform, 1697
WDELETE procedure, 1508, 2351
weather fronts, plotting, 1510
WEOF procedure, 1509
WEXMASTER (widget examples), 1727
IDL Reference Guide Index

2576
WF_DRAW procedure, 1510
WHERE function, 1513
WHILE...DO statement, 1517
whitespace, removing from strings, 1330, 1359
WIDED, see obsolete routines
WIDGET_BASE function, 1518
WIDGET_BUTTON function, 1540
WIDGET_CONTROL procedure, 1549
WIDGET_DRAW function, 1578
WIDGET_DROPLIST function, 1591
WIDGET_EVENT function, 1598
WIDGET_INFO function, 1602
WIDGET_KILL_REQUEST event, 1532
WIDGET_LABEL function, 1614
WIDGET_LIST function, 1620
WIDGET_MESSAGE, see obsolete routines
WIDGET_SLIDER function, 1628
WIDGET_TABLE function, 1636
WIDGET_TEXT function, 1651
widgets

aligning (ALIGN_XXX keywords), 1519
animation, 276
annotation, 77
base, 1518
buttons, 1540

bitmap labels, 1147
groups, 291
release events, 1543

callbacks, 1524, 1527
changing appearance of, 1527, 1544, 1583,
1594, 1617, 1623, 1631, 1655
clearing events (CLEAR_EVENTS key-
word), 1553
color

index, 296, 351
resources, 1529
selection, 299

compound, 276, 287, 291, 296, 299, 301,
305, 321, 334, 344, 351, 355

template for creating, 354
default font for, 1554

destroying, 1555
determining if widgets are realized

(ACTIVE keyword), 1603
(REALIZED keyword), 1608

disabling and enabling screen updates (UP-
DATE keyword), 1574
draw, 1578
droplist, 1591
events, 1598
examples, 1727
exclusive buttons, 1522
field, 305
form, 313
getting user values, 1558
help buttons, 1542
hiding and showing, 1571
horizontal size, changing, 1565, 1576
iconifying, 1560
invalid IDs, 1553, 1598
label, 1614
list, 1620
main event loop for, 1721
mapping, 1524

mapping and unmapping, 1563
menu bars, 1519, 1524
message dialog box, 392
modal, 392
non-exclusive buttons, 1526
positioning, 1536, 1536, 1536
pulldown menu, 344
pulldown menus

separators, 1544
realizing, 1564
region of interest, 301
registered, 1751
registering with XMANAGER, 1721
resetting all widgets, 1565
resizing (DYNAMIC_RESIZE keyword),
1541, 1591, 1614
returning

children of, 1603
Index IDL Reference Guide

2577
information about, 1602
name of event handler procedure, 1605
parent of, 1608
siblings of, 1608
size of (GEOMETRY keyword), 1605
tracking event status, 1611
type of, 1607, 1611
validity of, 1612

sending event to (SEND_EVENT keyword),
1566
sensitizing and de-sensitizing, 1530, 1544,
1566, 1566, 1584, 1594, 1617, 1623, 1632,
1643, 1655
setting buttons, 1566
showing and hiding, 1571
size

changing
horizontal, 1565, 1576
vertical, 1565, 1576

slider, 321, 1628
space between children, 1531
table, 1636
template for creating, 1729
text, 1651
tracking events, 1533
unmapping, 1524, 1563
values, 1559
version of implementation, 1612
vertical size, changing, 1565, 1576
viewing widgets managed by XMANAGER,
1730
XMANAGER procedure, 1598
zoom, 355

width of text, 1777
Wilcoxon Rank-Sum Test, 1201
WILCOXON, see obsolete routines
window object, 2276
window objects

maximum size, 2276
WINDOW procedure, 1661, 2351
WINDOW system variable field, 2439, 2451

WINDOW_STATE keyword, 2348
windows

backing store, 1662, 2337, 2351
copying areas, 2319
copying pixels from, 2319
creating, 1661
deleting, 1508
display size, 2440
draw widgets, 1578, 1578
erasing, 442
exposing, 1696
height, 1663
hiding, 1696
iconifying, 1696
ID for draw widgets, 1585
index of currently open, 2439
number of colors, 2439
pixmaps, 1662
position of, 2328, 2443
positioning, 1663
selecting current, 1695
systems, 2351
visible area of display, 2440
width, 1663

Windows display device (WIN), 2310
Windows Metafile Format, 2310
Windows platform

changing file permissions, 477
wire-mesh surface plots, 1366
WMENU, see obsolete routines
WMF, 2310
World Wide Web, 898
write mask, 2328, 2345
Write method, 1890
WRITE_BMP procedure, 1665
WRITE_IMAGE procedure, 1667
WRITE_JPEG procedure, 1669
WRITE_NRIF procedure, 1672
WRITE_PICT procedure, 1674
WRITE_PNG procedure, 1675
WRITE_PPM procedure, 1678
IDL Reference Guide Index

2578
WRITE_SPR procedure, 1679
WRITE_SRF procedure, 1680
WRITE_SYLK function, 1682
WRITE_TIFF procedure, 1684
WRITE_WAV procedure, 1690
WRITE_WAVE procedure, 1691
WRITEU procedure, 1693
writing

BMP files, 1665
JPEG files, 1669
NRIF files, 1672
PGM files, 1678
PICT files, 1674
PPM files, 1678
SRF files, 1680
TIFF files, 1684
wave files, 1691

WSET procedure, 1695, 2351
WSHOW procedure, 1696, 2351
WTN function, 1697

X
X resources

widget colors, 1529
X Windows

bitmap files, reading, 1147
Dump files, reading, 1149
fonts, 1710
resource names, 1527, 1544, 1583, 1594,
1617, 1623, 1631, 1655

X Windows device, 2387
DirectColor visual, 2323
PseudoColor visual, 2336
StaticColor visual, 2345
StaticGray visual, 2345
TrueColor visual, 2347
visuals, 2387

X_CH_SIZE system variable field, 2439
X_PX_CM system variable field, 2440
X_SIZE system variable field, 2440

X_VSIZE system variable field, 2440
XANIMATE, see obsolete routines
XBACKREGISTER, see obsolete routines
XBM_EDIT procedure, 1548, 1701
XCHARSIZE keyword, 2411
XDISPLAYFILE procedure, 1703
XDL, see obsolete routines
XDR format (floating point values), 133
XDXF procedure, 1706
XFONT function, 1710
XGRIDSTYLE keyword, 2411
XINTERANIMATE procedure, 1711
XLOADCT procedure, 1718
XMANAGER procedure, 1598, 1721
XMANAGERTOOL, see obsolete routines
XMARGIN keyword, 2411
XMAX machine-specific parameter, 810
XMENU, see obsolete routines
XMIN machine-specific parameter, 810
XMINOR keyword, 2411
XMNG_TMPL procedure, 1729
XMTOOL procedure, 1730
XOBJVIEW procedure, 1731
XOFFSET keyword, 2348, 2374
XON_XOFF keyword, 2349
XOR operator, 2453
XPALETTE procedure, 1739
XPCOLOR procedure, 1743
XPDMENU, see obsolete routines
XPLOT3D procedure, 1744
XRANGE keyword, 2411
XREGISTERED function, 1751
XROI

importing images, 1759
XROI procedure, 1753
XSIZE keyword, 2349
XSQ_TEST function, 1762
XSTYLE keyword, 2412
XSURFACE procedure, 1764
XTHICK keyword, 2412
XTICK_GET keyword, 2412
Index IDL Reference Guide

2579
XTICKFORMAT keyword, 2413
XTICKINTERVAL keyword, 2415
XTICKLAYOUT keyword, 2416
XTICKLEN keyword, 2416
XTICKNAME keyword, 2417
XTICKS keyword, 2417
XTICKUNITS keyword, 2417
XTICKV keyword, 2418
XTITLE keyword, 2418
XVAREDIT procedure, 1766
XVOLUME procedure, 1767
XVOLUME_ROTATE procedure, 1773
XVOLUME_WRITE_IMAGE procedure,
1775
xwd files

reading, 1149
XYOUTS procedure, 1776

See also positioning

Y
Y_CH_SIZE system variable field, 2439
Y_PX_CM system variable field, 2440
Y_SIZE system variable field, 2440
Y_VSIZE system variable field, 2440
YCHARSIZE keyword, 2411
YGRIDSTYLE keyword, 2411
YMARGIN keyword, 2411
YMINOR keyword, 2411
YOFFSET keyword, 2349, 2374
YRANGE keyword, 2411
YSIZE keyword, 2350
YSTYLE keyword, 2412
YTHICK keyword, 2412
YTICK_GET keyword, 2412
YTICKFORMAT keyword, 2413
YTICKINTERVAL keyword, 2415
YTICKLAYOUT keyword, 2416
YTICKLEN keyword, 2416
YTICKNAME keyword, 2417

YTICKS keyword, 2417
YTICKUNITS keyword, 2417
YTICKV keyword, 2418
YTITLE keyword, 2418

Z
Z keyword, 2419
ZAPFCHANCERY keyword, 2350
ZAPFDINGBATS keyword, 2350
Z-buffer

closing, 2318
using with POLYFILL, 1016
using with POLYSHADE, 1021
warping images to polygons, 1017

Z-buffer device, 2395
ZCHARSIZE keyword, 2411
zeroing byte arrays, 131
ZGRIDSTYLE keyword, 2411
ZMARGIN keyword, 2411
ZMINOR keyword, 2411
ZOOM procedure, 1779
ZOOM system variable field, 2440
zoom widget, 355
ZOOM_24 procedure, 1781
ZRANGE keyword, 2411
ZROOTS, see obsolete routines
ZSTYLE keyword, 2412
ZTHICK keyword, 2412
ZTICK_GET keyword, 2412
ZTICKFORMAT keyword, 2413
ZTICKINTERVAL keyword, 2415
ZTICKLAYOUT keyword, 2416
ZTICKLEN keyword, 2416
ZTICKNAME keyword, 2417
ZTICKS keyword, 2417
ZTICKUNITS keyword, 2417
ZTICKV keyword, 2418
ZTITLE keyword, 2418
ZVALUE keyword, 2419
IDL Reference Guide Index

2580
Index IDL Reference Guide

	Online Guide
	Contents
	IDL Commands Reference
	IDL Syntax
	Elements of Syntax
	Square Brackets ([])
	Braces ({ })
	Italics

	Procedures
	Functions
	Arguments
	Named Variables

	Keywords

	.COMPILE
	.CONTINUE
	.EDIT
	.FULL_RESET_SESSION
	.GO
	.OUT
	.RESET_SESSION
	.RETURN
	.RNEW
	.RUN
	Using .RUN to Make Program Listings

	.SKIP
	.STEP
	.STEPOVER
	.TRACE
	A_CORRELATE
	X
	Lag
	COVARIANCE
	DOUBLE

	ABS
	X

	ACOS
	X

	ADAPT_HIST_EQUAL
	Image
	CLIP
	NREGIONS
	TOP

	ALOG
	X

	ALOG10
	X

	AMOEBA
	Ftol
	FUNCTION_NAME
	FUNCTION_VALUE
	NCALLS
	NMAX
	P0
	SCALE
	SIMPLEX

	ANNOTATE
	Using the Annotation Widget
	COLOR_INDICES
	DRAWABLE
	LOAD_FILE
	TEK_COLORS
	WINDOW

	ARG_PRESENT
	Variable

	ARRAY_EQUAL
	Op1, Op2
	NO_TYPECONV

	ARROW
	X0, Y0
	X1,Y1
	DATA
	NORMALIZED
	HSIZE
	COLOR
	HTHICK
	SOLID
	THICK

	ASCII_TEMPLATE
	Filename
	BROWSE_LINES
	CANCEL
	GROUP

	ASIN
	X

	ASSOC
	Unit
	Array_Structure
	Offset
	PACKED

	ATAN
	X
	Y

	AXIS
	X, Y, and Z
	SAVE
	XAXIS
	XLOG
	YAXIS
	YLOG
	YNOZERO
	ZAXIS

	BAR_PLOT
	Values
	BACKGROUND
	BARNAMES
	BAROFFSET
	BARSPACE
	BARWIDTH
	BASELINES
	BASERANGE
	COLORS
	OUTLINE
	OVERPLOT
	ROTATE
	TITLE
	XTITLE
	YTITLE

	BEGIN...END
	BESELI
	X
	N

	BESELJ
	X
	N

	BESELK
	X
	N

	BESELY
	X
	N

	BETA
	Z, W
	DOUBLE

	BILINEAR
	P
	IX and JY

	BIN_DATE
	Ascii_Time

	BINARY_TEMPLATE
	Filename
	CANCEL
	GROUP
	N_ROWS
	TEMPLATE

	BINDGEN
	Di

	BINOMIAL
	V
	N
	P
	DOUBLE
	GAUSSIAN

	BLAS_AXPY
	Y
	A
	X
	D1
	Loc1
	D2
	Range

	BLK_CON
	Filter
	Signal
	B_LENGTH
	DOUBLE

	BOX_CURSOR
	Using BOX_CURSOR
	X0, Y0
	NX, NY
	INIT
	FIXED_SIZE
	MESSAGE

	BREAK
	BREAKPOINT
	File
	Index
	AFTER
	CLEAR
	CONDITION
	DISABLE
	ENABLE
	ONCE
	SET

	BROYDEN
	X
	Vecfunc
	CHECK
	DOUBLE
	EPS
	ITMAX
	STEPMAX
	TOLF
	TOLMIN
	TOLX

	BYTARR
	Di
	NOZERO

	BYTE
	Expression
	Offset
	Di

	BYTEORDER
	Variablen
	DTOVAX
	DTOXDR
	FTOVAX
	FTOXDR
	HTONL
	HTONS
	L64SWAP
	LSWAP
	NTOHL
	NTOHS
	SSWAP
	SWAP_IF_BIG_ENDIAN
	SWAP_IF_LITTLE_ENDIAN
	VAXTOD
	VAXTOF
	XDRTOD
	XDRTOF
	DTOGFLOAT
	GFLOATTOD
	Note On IEEE to VAX Format Conversion

	BYTSCL
	Array
	MAX
	MIN
	NAN
	TOP

	C_CORRELATE
	X
	Y
	Lag
	COVARIANCE
	DOUBLE

	CALDAT
	Julian
	Month
	Day
	Year
	Hour
	Minute
	Second

	CALENDAR
	Month
	Year

	CALL_EXTERNAL
	Image
	Entry
	P0, ..., PN-1
	ALL_VALUE
	B_VALUE
	CDECL
	DEFAULT
	D_VALUE
	F_VALUE
	I_VALUE
	L64_VALUE
	PORTABLE
	RETURN_TYPE
	S_VALUE
	UI_VALUE
	UL_VALUE
	UL64_VALUE
	UNLOAD
	VALUE
	VAX_FLOAT (VMS Only)
	WRITE_WRAPPER
	AUTO_GLUE
	CC
	COMPILE_DIRECTORY
	EXTRA_CFLAGS
	EXTRA_LFLAGS
	IGNORE_EXISTING_GLUE
	LD
	NOCLEANUP
	SHOW_ALL_OUTPUT
	VERBOSE
	Note On IEEE to VAX Format Conversion
	String Parameters
	Calling Convention
	Portable
	Example: Using Auto Glue To Call System Library Routines

	CALL_FUNCTION
	Name
	Pi

	CALL_METHOD
	Name
	ObjRef
	Pi

	CALL_PROCEDURE
	Name
	Pi

	CASE
	CATCH
	Variable
	CANCEL

	CD
	Directory
	CURRENT
	Windows
	Unix
	Macintosh
	VMS

	CDF Routines
	CEIL
	X
	L64

	CHEBYSHEV
	D
	N

	CHECK_MATH
	MASK
	NOCLEAR
	PRINT
	CHECK_MATH and !EXCEPT
	Printing Error Messages
	Testing Critical Code
	Example 1
	Example 2

	CHISQR_CVF
	P
	Df

	CHISQR_PDF
	V
	Df

	CHOLDC
	A
	P
	DOUBLE

	CHOLSOL
	A
	P
	B
	DOUBLE

	CINDGEN
	Di

	CIR_3PNT
	X
	Y
	R
	X0
	Y0

	CLOSE
	Uniti
	ALL
	EXIT_STATUS
	FILE
	FORCE

	CLUST_WTS
	Array
	DOUBLE
	N_CLUSTERS
	N_ITERATIONS
	VARIABLE_WTS

	CLUSTER
	Array
	Weights
	DOUBLE
	N_CLUSTERS

	COLOR_CONVERT
	I0, I1, I2
	O0, O1, O2
	HLS_RGB
	HSV_RGB
	RGB_HLS
	RGB_HSV

	COLOR_QUAN
	Using COLOR_QUAN
	Image_R, Image_G, Image_B
	Image
	Dim
	R, G, B
	COLORS
	CUBE
	DITHER
	ERROR
	GET_TRANSLATION
	MAP_ALL
	TRANSLATION

	COLORMAP_APPLICABLE
	redrawRequired

	COMFIT
	X
	Y
	A
	EXPONENTIAL
	GEOMETRIC
	GOMPERTZ
	HYPERBOLIC
	LOGISTIC
	LOGSQUARE
	SIGMA
	WEIGHTS
	YFIT

	COMMON
	COMPILE_OPT
	optn

	COMPLEX
	Real
	Imaginary
	Expression
	Offset
	Di

	COMPLEXARR
	Di
	NOZERO

	COMPLEXROUND
	Input

	COMPUTE_MESH_NORMALS
	fVerts
	iConn

	COND
	A
	DOUBLE

	CONGRID
	Array
	X
	Y
	Z
	CUBIC
	INTERP
	MINUS_ONE

	CONJ
	X

	CONSTRAINED_MIN
	X
	Xbnd
	Gbnd
	Nobj
	Gcomp
	Inform
	EPSTOP
	LIMSER
	MAXIMIZE
	NSTOP
	REPORT
	TITLE

	CONTINUE
	CONTOUR
	Smoothing Contours
	Z
	X
	Y
	C_ANNOTATION
	Example
	C_CHARSIZE
	C_CHARTHICK
	C_COLORS
	Example
	C_LABELS
	Example
	C_LINESTYLE
	Example
	C_ORIENTATION
	C_SPACING
	C_THICK
	CELL_FILL
	CLOSED
	DOWNHILL
	FILL
	FOLLOW
	IRREGULAR
	ISOTROPIC
	LEVELS
	Example
	MAX_VALUE
	MIN_VALUE
	NLEVELS
	OVERPLOT
	PATH_DATA_COORDS
	PATH_DOUBLE
	PATH_FILENAME
	PATH_INFO
	PATH_XY
	TRIANGULATION
	XLOG
	YLOG
	ZAXIS
	Example 1
	Example 2
	Example 3
	Example 4

	CONVERT_COORD
	X
	Y
	Z
	DATA
	DEVICE
	DOUBLE
	NORMAL
	T3D
	TO_DATA
	TO_DEVICE
	TO_NORMAL

	CONVOL
	Using CONVOL
	Array
	Kernel
	Scale_Factor
	CENTER
	EDGE_WRAP
	EDGE_TRUNCATE

	COORD2TO3
	Mx, My
	Dim
	D0
	PTI

	CORRELATE
	X
	Y
	COVARIANCE
	DOUBLE

	COS
	X

	COSH
	X

	CRAMER
	A
	B
	DOUBLE
	ZERO

	CREATE_STRUCT
	Tags
	Values
	NAME

	CREATE_VIEW
	AX
	AY
	AZ
	PERSP
	RADIANS
	WINX
	WINY
	XMAX
	XMIN
	YMAX
	YMIN
	ZFAC
	ZMAX
	ZMIN
	ZOOM

	CROSSP
	V1, V2

	CRVLENGTH
	X
	Y
	DOUBLE

	CT_LUMINANCE
	R
	G
	B
	BRIGHT
	DARK
	READ_TABLES

	CTI_TEST
	Obfreq
	COEFF
	CORRECTED
	CRAMV
	DF
	EXFREQ
	RESIDUAL

	CURSOR
	Using CURSOR with Draw Widgets
	Using CURSOR with the TEK Device
	X
	Y
	Wait
	CHANGE
	DATA
	DOWN
	DEVICE
	NORMAL
	NOWAIT
	UP
	WAIT

	CURVEFIT
	X
	Y
	Weights
	A
	Sigma
	CHISQ
	DOUBLE
	FUNCTION_NAME
	ITER
	ITMAX
	NODERIVATIVE
	TOL

	CV_COORD
	DEGREES
	DOUBLE
	FROM_CYLIN
	FROM_POLAR
	FROM_RECT
	FROM_SPHERE
	TO_CYLIN
	TO_POLAR
	TO_RECT
	TO_SPHERE

	CVTTOBM
	Array
	THRESHOLD

	CW_ANIMATE
	Using CW_ANIMATE
	Parent
	Sizex
	Sizey
	Nframes
	NO_KILL
	OPEN_FUNC
	PIXMAPS
	TRACK
	UNAME
	UVALUE

	CW_ANIMATE_GETP
	Widget
	Pixmaps
	KILL_ANYWAY

	CW_ANIMATE_LOAD
	Widget
	CYCLE
	FRAME
	IMAGE
	ORDER
	WINDOW
	XOFFSET
	YOFFSET
	Example

	CW_ANIMATE_RUN
	Widget
	Rate
	NFRAMES
	STOP

	CW_ARCBALL
	Using CW_ARCBALL
	Parent
	COLORS
	FRAME
	LABEL
	RETAIN
	SIZE
	UPDATE
	UNAME
	UVALUE
	VALUE

	CW_BGROUP
	Parent
	Names
	BUTTON_UVALUE
	COLUMN
	EVENT_FUNC
	EXCLUSIVE
	FONT
	FRAME
	IDS
	LABEL_LEFT
	LABEL_TOP
	MAP
	NONEXCLUSIVE
	NO_RELEASE
	RETURN_ID
	RETURN_INDEX
	RETURN_NAME
	ROW
	SCROLL
	SET_VALUE
	SPACE
	UNAME
	UVALUE
	XOFFSET
	XPAD
	XSIZE
	X_SCROLL_SIZE
	YOFFSET
	YPAD
	YSIZE
	Y_SCROLL_SIZE

	CW_CLR_INDEX
	Parent
	COLOR_VALUES
	EVENT_FUNC
	FRAME
	LABEL
	NCOLORS
	START_COLOR
	UNAME
	UVALUE
	VALUE
	XSIZE
	YSIZE

	CW_COLORSEL
	Using CW_COLORSEL
	Parent
	FRAME
	UNAME
	UVALUE
	XOFFSET
	YOFFSET

	CW_DEFROI
	Draw
	IMAGE_SIZE
	OFFSET
	ORDER
	RESTORE
	ZOOM

	CW_FIELD
	Parent
	ALL_EVENTS
	COLUMN
	FIELDFONT
	FLOATING
	FONT
	FRAME
	INTEGER
	LONG
	NOEDIT
	RETURN_EVENTS
	ROW
	STRING
	TEXT_FRAME
	TITLE
	UNAME
	UVALUE
	VALUE
	XSIZE
	YSIZE

	CW_FILESEL
	Parent
	FILENAME
	FILTER
	FIX_FILTER
	FRAME
	IMAGE_FILTER
	MULTIPLE
	PATH
	SAVE
	UNAME
	UVALUE
	WARN_EXIST

	CW_FORM
	Using CW_FORM
	Parent
	Desc
	COLUMN
	IDS
	TITLE
	UNAME
	UVALUE

	CW_FSLIDER
	Using CW_FSLIDER
	Parent
	DRAG
	EDIT
	FORMAT
	FRAME
	MAXIMUM
	MINIMUM
	SCROLL
	SUPPRESS_VALUE
	TITLE
	UNAME
	UVALUE
	VALUE
	VERTICAL
	XSIZE
	YSIZE

	CW_LIGHT_EDITOR
	Parent
	DIRECTION_DISABLED
	DRAG_EVENTS
	FRAME
	HIDE_DISABLED
	LIGHT
	LOCATION_DISABLED
	TYPE_DISABLED
	UNAME
	UVALUE
	XRANGE
	XSIZE
	YRANGE
	YSIZE
	ZRANGE
	GET_VALUE
	SET_VALUE

	CW_LIGHT_EDITOR_GET
	WidgetID
	DIRECTION_DISABLED
	DRAG_ EVENTS
	HIDE_DISABLED
	LIGHT
	LOCATION_DISABLED
	TYPE_DISABLED
	XRANGE
	XSIZE
	YRANGE
	YSIZE
	ZRANGE

	CW_LIGHT_EDITOR_SET
	WidgetID
	DIRECTION_DISABLED
	DRAG_ EVENTS
	HIDE_DISABLED
	LIGHT
	LOCATION_DISABLED
	TYPE_DISABLED
	XRANGE
	XSIZE
	YRANGE
	YSIZE
	ZRANGE

	CW_ORIENT
	Parent
	AX
	AZ
	FRAME
	TITLE
	UNAME
	UVALUE
	XSIZE
	YSIZE

	CW_PALETTE_EDITOR
	Reference Color bar
	Palette Colorbar
	Channel and Histogram Display
	Color Space
	Editing Mode
	Channel Display and Edit
	Zoom
	Scrolling of the Palette Window
	Parent
	DATA
	FRAME
	HISTOGRAM
	HORIZONTAL
	SELECTION
	UNAME
	UVALUE
	XSIZE
	YSIZE
	Selection Moved
	Palette Edited
	GET_VALUE
	SET_VALUE

	CW_PALETTE_EDITOR_GET
	WidgetID
	ALPHA
	HISTOGRAM

	CW_PALETTE_EDITOR_SET
	WidgetID
	ALPHA
	HISTOGRAM

	CW_PDMENU
	Parent
	Desc
	COLUMN
	DELIMITER
	FONT
	HELP
	IDS
	MBAR
	RETURN_ID
	RETURN_INDEX
	RETURN_NAME
	RETURN_FULL_NAME
	UNAME
	UVALUE
	XOFFSET
	YOFFSET
	Example 1
	Example 2

	CW_RGBSLIDER
	Using CW_RGBSLIDER
	Parent
	CMY
	COLOR_INDEX
	DRAG
	FRAME
	GRAPHICS_LEVEL
	HSV
	HLS
	LENGTH
	RGB
	UNAME
	UVALUE
	VALUE
	VERTICAL

	CW_TMPL
	Parent
	UNAME
	UVALUE

	CW_ZOOM
	Using CW_ZOOM
	Parent
	FRAME
	MAX
	MIN
	RETAIN
	SAMPLE
	SCALE
	TRACK
	UNAME
	UVALUE
	XSIZE
	X_SCROLL_SIZE
	X_ZSIZE
	YSIZE
	Y_SCROLL_SIZE
	Y_ZSIZE

	DBLARR
	Di
	NOZERO

	DCINDGEN
	Di

	DCOMPLEX
	Real
	Imaginary
	Expression
	Offset
	Di

	DCOMPLEXARR
	Di
	NOZERO

	DEFINE_KEY
	Key
	Value
	MATCH_PREVIOUS
	NOECHO
	TERMINATE
	BACK_CHARACTER
	BACK_WORD
	CONTROL
	DELETE_CHARACTER
	DELETE_CURRENT
	DELETE_EOL
	DELETE_LINE
	DELETE_WORD
	END_OF_LINE
	END_OF_FILE
	ENTER_LINE
	ESCAPE
	FORWARD_CHARACTER
	FORWARD_WORD
	INSERT_OVERSTRIKE_TOGGLE
	NEXT_LINE
	PREVIOUS_LINE
	RECALL
	Example
	REDRAW
	START_OF_LINE
	Defining New Function Keys
	Example

	DEFROI
	Using DEFROI
	Sx, Sy
	Xverts, Yverts
	NOREGION
	NOFILL
	RESTORE
	X0, Y0
	ZOOM

	DEFSYSV
	Name
	Value
	Read_Only
	EXISTS

	DELETE_SYMBOL
	Name
	TYPE

	DELLOG
	Lognam
	TABLE

	DELVAR
	Vi

	DERIV
	X
	Y

	DERIVSIG
	X
	Y
	Sigx
	Sigy

	DETERM
	A
	CHECK
	DOUBLE
	ZERO

	DEVICE
	DFPMIN
	X
	Gtol
	Fmin
	Func
	Dfunc
	DOUBLE
	EPS
	ITER
	ITMAX
	STEPMAX
	TOLX

	DIALOG_MESSAGE
	Message_Text
	CANCEL
	DEFAULT_CANCEL
	DEFAULT_NO
	DIALOG_PARENT
	DISPLAY_NAME
	ERROR
	INFORMATION
	QUESTION
	RESOURCE_NAME
	TITLE

	DIALOG_PICKFILE
	DIALOG_PARENT
	DIRECTORY
	DISPLAY_NAME
	FILE
	FILTER
	FIX_FILTER
	GET_PATH
	GROUP
	MULTIPLE_FILES
	MUST_EXIST
	PATH
	READ
	TITLE
	WRITE

	DIALOG_PRINTERSETUP
	PrintDestination
	DIALOG_PARENT
	DISPLAY_NAME
	RESOURCE_NAME
	TITLE

	DIALOG_PRINTJOB
	PrintDestination
	DIALOG_PARENT
	DISPLAY_NAME
	RESOURCE_NAME
	TITLE

	DIALOG_READ_IMAGE
	Filename
	BLUE
	DIALOG_PARENT
	FILE
	FILTER_TYPE
	FIX_FILTER
	GET_PATH
	GREEN
	IMAGE
	PATH
	QUERY
	RED
	TITLE

	DIALOG_WRITE_IMAGE
	Image
	R, G, B
	DIALOG_PARENT
	FILE
	FIX_TYPE
	NOWRITE
	OPTIONS
	PATH
	TITLE
	TYPE
	WARN_EXIST

	DIGITAL_FILTER
	Flow
	Fhigh
	A
	Nterms

	DILATE
	Image
	Structure
	X0, Y0, Z0
	BACKGROUND
	CONSTRAINED
	GRAY
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES
	Using DILATE
	Openings and Closings
	Example 1
	Example 2

	DINDGEN
	Di

	DISSOLVE
	Image
	DELAY
	ORDER
	SIZ
	X0, Y0

	DIST
	N
	M

	DLM_LOAD
	DLMNameStrn

	DLM_REGISTER
	DLMDefFilePathn

	DO_APPLE_SCRIPT
	Script
	AS_STRING
	RESULT

	DOC_LIBRARY
	Name
	PRINT
	DIRECTORY
	MULTI
	FILE
	PATH
	OUTPUTS

	DOUBLE
	Expression
	Offset
	Di

	DRAW_ROI
	oROI
	LINE_FILL
	SPACING

	EFONT
	Init_Font
	BLOCK
	GROUP

	EIGENQL
	A
	ABSOLUTE
	ASCENDING
	DOUBLE
	EIGENVECTORS
	OVERWRITE
	RESIDUAL

	EIGENVEC
	A
	EVAL
	DOUBLE
	ITMAX
	RESIDUAL

	ELMHES
	A
	COLUMN
	DOUBLE
	NO_BALANCE

	EMPTY
	ENABLE_SYSRTN
	Routines
	DISABLE
	EXCLUSIVE
	FUNCTIONS
	Special Cases

	EOF
	Unit
	Using EOF with VMS Files

	EOS_* Routines
	ERASE
	Background_Color
	CHANNEL
	COLOR

	ERODE
	Image
	Structure
	X0, Y0, Z0
	GRAY
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES
	Using ERODE
	Example 1
	Example 2

	ERRORF
	X

	ERRPLOT
	X
	Low
	High
	WIDTH

	EXECUTE
	String
	QuietCompile

	EXIT
	NO_CONFIRM
	STATUS

	EXP
	Expression

	EXPAND
	A
	Nx
	Ny
	Result
	FILLVAL
	MAXVAL

	EXPAND_PATH
	The Path Definition String
	A Note on Order within !PATH
	String
	ALL_DIRS
	ARRAY
	COUNT
	DLM
	HELP
	Example 1
	Example 2

	EXPINT
	N
	X
	DOUBLE
	EPS
	ITMAX

	EXTRAC
	Array
	Ci
	Si

	EXTRACT_SLICE
	PlaneNormal
	Xvec
	Vol
	Xsize
	Ysize
	Xcenter
	Ycenter
	Zcenter
	Xrot
	Yrot
	Zrot
	ANISOTROPY
	CUBIC
	OUT_VAL
	RADIANS
	SAMPLE
	VERTICES

	F_CVF
	P
	Dfn
	Dfd

	F_PDF
	V
	Dfn
	Dfd

	FACTORIAL
	N
	STIRLING
	UL64

	FFT
	Array
	Direction
	DOUBLE
	INVERSE
	OVERWRITE
	Running Time

	FILE_CHMOD
	File
	Mode
	A_EXECUTE
	A_READ
	A_WRITE
	G_EXECUTE
	G_READ
	G_WRITE
	O_EXECUTE
	O_READ
	O_WRITE
	U_EXECUTE
	U_READ
	U_WRITE
	SETGID
	SETUID
	STICKY_BIT

	FILE_DELETE
	FileN
	QUIET

	FILE_EXPAND_PATH
	Path

	FILE_MKDIR
	FileN

	FILE_TEST
	File
	DIRECTORY
	EXECUTABLE
	GET_MODE
	READ
	REGULAR
	WRITE
	ZERO_LENGTH
	BLOCK_SPECIAL
	CHARACTER_SPECIAL
	DANGLING_SYMLINK
	NAMED_PIPE
	SETGID
	SETUID
	SOCKET
	STICKY_BIT
	SYMLINK
	GROUP
	USER

	FILE_WHICH
	Path
	File
	INCLUDE_CURRENT_DIR

	FILEPATH
	Filename
	ROOT_DIR
	SUBDIRECTORY
	TERMINAL
	TMP

	FINDFILE
	File_Specification
	COUNT

	FINDGEN
	Di

	FINITE
	X
	INFINITY
	NAN
	Example 1
	Example 2

	FIX
	Expression
	Offset
	Dimi
	PRINT
	TYPE

	FLICK
	A
	B
	Rate

	FLOAT
	Expression
	Offset
	Di

	FLOOR
	X
	L64

	FLOW3
	Vx, Vy, Vz
	ARROWSIZE
	BLOB
	LEN
	NSTEPS
	NVECS
	SX, SY, SZ

	FLTARR
	Di
	NOZERO

	FLUSH
	Uniti

	FOR
	FORMAT_AXIS_VALUES
	Values

	FORWARD_FUNCTION
	FREE_LUN
	Uniti
	EXIT_STATUS
	FORCE

	FSTAT
	Fields of the FSTAT Structure
	Unit

	FULSTR
	A

	FUNCT
	X
	A
	F
	Pder

	FUNCTION
	FV_TEST
	X
	Y

	FX_ROOT
	X
	Func
	DOUBLE
	ITMAX
	STOP
	TOL

	FZ_ROOTS
	C
	DOUBLE
	EPS
	NO_POLISH

	GAMMA
	X

	GAMMA_CT
	Gamma
	CURRENT
	INTENSITY

	GAUSS_CVF
	P

	GAUSS_PDF
	V
	Example 1
	Example 2
	Example 3

	GAUSS2DFIT
	Procedure Used and Other Notes
	Z
	A
	X
	Y
	NEGATIVE
	TILT

	GAUSSFIT
	X
	Y
	A
	ESTIMATES
	NTERMS
	NTERMS=6
	NTERMS=5
	NTERMS=4
	NTERMS=3

	GAUSSINT
	X

	GET_DRIVE_LIST
	GET_KBRD
	Wait

	GET_LUN
	Unit

	GET_SCREEN_SIZE
	Display_name (X Only)
	DISPLAY_NAME (X Only)
	RESOLUTION

	GET_SYMBOL
	Name
	TYPE

	GETENV
	Name
	ENVIRONMENT
	Environment Variables Under VMS
	Special Handling of the IDL_TMPDIR Environment Variable
	The UNIX Environment
	GETENV
	SETENV

	GOTO
	GRID_TPS
	Xp
	Yp
	Values
	COEFFICIENTS
	DELTA
	NGRID
	START

	GRID3
	X, Y, Z and F
	Gx, Gy, and Gz
	DELTA
	DTOL
	GRID
	NGRID
	START

	GS_ITER
	A
	B
	CHECK
	DOUBLE
	LAMBDA
	MAX_ITER
	TOL
	X_0

	H_EQ_CT
	Image

	H_EQ_INT
	Using the H_EQ_INT Interface
	Image

	HANNING
	N1
	N2
	ALPHA
	DOUBLE

	HDF_* Routines
	HDF_BROWSER
	Filename
	CANCEL
	GROUP
	PREFIX
	Graphical User Interface Menu Options
	Pulldown Menu
	Preview Button
	Read Checkbox
	Extract As

	HDF_READ
	Filename
	DFR8
	DF24
	PREFIX
	TEMPLATE
	Graphical User Interface Menu Options
	Pulldown Menu
	Preview Button
	Read Checkbox
	Extract As

	HEAP_GC
	OBJ
	PTR
	VERBOSE

	HELP
	Expression(s)
	ALL_KEYS
	BREAKPOINTS
	BRIEF
	CALLS
	DEVICE
	DLM
	FILES
	FULL
	FUNCTIONS
	HEAP_VARIABLES
	KEYS
	LAST_MESSAGE
	MEMORY
	MESSAGES
	NAMES
	OBJECTS
	OUTPUT
	PROCEDURES
	RECALL_COMMANDS
	ROUTINES
	SOURCE_FILES
	STRUCTURES
	SYSTEM_VARIABLES
	TRACEBACK

	HILBERT
	X
	D

	HIST_2D
	V1, V2
	BIN1
	BIN2
	MAX1
	MAX2
	MIN1
	MIN2

	HIST_EQUAL
	A
	BINSIZE
	HISTOGRAM_ONLY
	MAXV
	MINV
	OMAX
	OMIN
	PERCENT
	TOP

	HISTOGRAM
	Array
	BINSIZE
	INPUT
	L64
	MAX
	MIN
	NAN
	NBINS
	OMAX
	OMIN
	REVERSE_INDICES

	HLS
	Litlo
	Lithi
	Satlo
	Sathi
	Hue
	Loops
	Colr

	HOUGH
	How IDL Implements the Hough Transform
	How IDL Implements the Hough Backprojection
	Array
	BACKPROJECT
	DOUBLE
	DRHO
	DX
	DY
	GRAY
	NRHO
	NTHETA
	NX
	NY
	RHO
	RMIN
	THETA
	XMIN
	YMIN

	HQR
	A
	COLUMN
	DOUBLE

	HSV
	Vlo
	Vhi
	Satlo
	Sathi
	Hue
	Loops
	Colr

	IBETA
	A
	B
	X
	DOUBLE
	EPS
	ITER
	ITMAX

	IDENTITY
	N
	DOUBLE

	IDL_Container Object Class
	IDLanROI Object Class
	IDLanROIGroup Object Class
	IDLffDICOM Object Class
	IDLffDXF Object Class
	IDLffLanguageCat Object Class
	IDLffShape Object Class
	IDLgr* Object Classes
	IF...THEN...ELSE
	IGAMMA
	A
	X
	DOUBLE
	EPS
	ITER
	ITMAX
	METHOD

	IMAGE_CONT
	A
	ASPECT
	INTERP
	WINDOW_SCALE

	IMAGE_STATISTICS
	Data
	COUNT
	DATA_SUM
	LABELED
	LUT
	MASK
	MAXIMUM
	MEAN
	MINIMUM
	STDDEV
	SUM_OF_SQUARES
	VARIANCE
	VECTOR
	WEIGHT_SUM
	WEIGHTED

	IMAGINARY
	Complex_Expression

	INDGEN
	Di
	BYTE
	COMPLEX
	DCOMPLEX
	DOUBLE
	FLOAT
	L64
	LONG
	STRING
	TYPE
	UINT
	UL64
	ULONG

	INT_2D
	Fxy
	AB_Limits
	PQ_Limits
	Pts
	DOUBLE
	ORDER
	Example 1
	Example 2

	INT_3D
	Fxyz
	AB_Limits
	PQ_Limits
	UV_Limits
	Pts
	DOUBLE

	INT_TABULATED
	X
	F
	DOUBLE
	SORT

	INTARR
	Di
	NOZERO

	INTERPOL
	V
	N
	X
	U
	LSQUADRATIC
	QUADRATIC
	SPLINE

	INTERPOLATE
	P
	X, Y, Z
	CUBIC
	GRID
	MISSING

	INVERT
	Array
	Status
	DOUBLE

	IOCTL
	File_Unit
	Request
	Arg
	BY_VALUE
	MT_OFFLINE
	MT_REWIND
	MT_SKIP_FILE
	MT_SKIP_RECORD
	MT_WEOF
	SUPPRESS_ERROR

	ISHFT
	P1
	P2

	ISOCONTOUR
	Values
	Outconn
	Outverts
	AUXDATA_IN
	AUXDATA_OUT
	C_VALUE
	DOUBLE
	FILL
	GEOMX
	GEOMY
	GEOMZ
	LEVEL_VALUES
	N_LEVELS
	OUTCONN_INDICES
	POLYGONS

	ISOSURFACE
	Data
	Value
	Outverts
	Outconn
	AUXDATA_IN
	AUXDATA_OUT
	GEOM_XYZ
	TETRAHEDRA

	JOURNAL
	Arg

	JULDAY
	Month
	Day
	Year
	Hour
	Minute
	Second

	KEYWORD_SET
	Expression

	KRIG2D
	Z, X, Y
	EXPONENTIAL
	SPHERICAL
	REGULAR
	XGRID
	XVALUES
	YGRID
	YVALUES
	GS
	BOUNDS
	NX
	NY

	KURTOSIS
	X
	DOUBLE
	NAN

	KW_TEST
	X
	DF
	MISSING

	L64INDGEN
	Di

	LABEL_DATE
	AM_PM
	DATE_FORMAT
	DAYS_OF_WEEK
	MONTHS
	OFFSET
	ROUND_UP

	LABEL_REGION
	Data
	ALL_NEIGHBORS
	EIGHT
	ULONG
	Example 1
	Example 2

	LADFIT
	X
	Y
	ABSDEV
	DOUBLE

	LAGUERRE
	X
	N
	K
	COEFFICIENTS
	DOUBLE

	LEEFILT
	A
	N
	Sig
	DOUBLE
	EXACT

	LEGENDRE
	X
	L
	M
	DOUBLE
	Example 1
	Example 2

	LINBCG
	A
	B
	X
	DOUBLE
	ITOL
	TOL
	ITER
	ITMAX

	LINDGEN
	Di

	LINFIT
	X
	Y
	CHISQ
	COVAR
	DOUBLE
	MEASURE_ERRORS
	PROB
	SDEV
	SIGMA
	YFIT

	LINKIMAGE
	Name
	Image
	Type
	Entry
	DEFAULT
	DEVICE
	FUNCT
	KEYWORDS
	MAX_ARGS
	MIN_ARGS
	VMS LINKIMAGE and LIB$FIND_IMAGE_SYMBOL
	Specifying The Library Name
	Linking To The IDL Executable

	LIVE_Tools
	LIVE_CONTOUR
	Zn
	BUFFER
	DOUBLE
	DIMENSIONS
	DRAW_DIMENSIONS
	ERROR
	INDEXED_COLOR
	INSTANCING
	LOCATION
	MANAGE_STYLE
	NAME
	NO_DRAW
	NO_STATUS
	NO_TOOLBAR
	PARENT_BASE
	REFERENCE_OUT
	RENDERER
	REPLACE
	STYLE
	TITLE
	TLB_LOCATION
	WINDOW_IN
	XINDEPENDENT
	YINDEPENDENT
	XLOG
	YLOG
	XRANGE
	YRANGE
	X_TICKNAME
	Y_TICKNAME

	LIVE_CONTROL
	Name
	DIALOG
	ERROR
	NO_DRAW
	PROPERTIES
	UPDATE_DATA
	WINDOW_IN

	LIVE_DESTROY
	Name
	ENVIRONMENT
	ERROR
	NO_DRAW
	PURGE
	WINDOW_IN

	LIVE_EXPORT
	APPEND
	COMPRESSION (TIFF)
	DIALOG
	DIMENSIONS
	ERROR
	FILENAME
	ORDER (JPEG, TIFF)
	PROGRESSIVE (JPEG)
	QUALITY (JPEG, VRML)
	RESOLUTION
	TYPE
	UNITS
	VISUALIZATION_IN
	WINDOW_IN

	LIVE_IMAGE
	Image
	BLUE
	BUFFER
	DIMENSIONS
	DRAW_DIMENSIONS
	ERROR
	GREEN
	INDEXED_COLOR
	INSTANCING
	LOCATION
	MANAGE_STYLE
	NAME
	NO_DRAW
	NO_STATUS
	NO_TOOLBAR
	PARENT_BASE
	RED
	REFERENCE_OUT
	RENDERER
	REPLACE
	STYLE
	TITLE
	TLB_LOCATION
	WINDOW_IN

	LIVE_INFO
	Name
	ERROR
	PROPERTIES
	WINDOW_IN
	Structure Tables for LIVE_INFO and LIVE CONTROL
	Color Names
	Line Annotations
	Rectangle Annotations
	Text Annotations
	Axes
	Colorbars
	Contours
	Images
	Legends
	Surfaces
	Entire Visualizations
	Windows

	LIVE_LINE
	ARROW_ANGLE
	ARROW_END
	ARROW_SIZE
	ARROW_START
	COLOR
	DIALOG
	DIMENSIONS
	ERROR
	HIDE
	LINESTYLE
	LOCATION
	NAME
	NO_DRAW
	REFERENCE_OUT
	THICK
	VISUALIZATION_IN
	WINDOW_IN

	LIVE_LOAD
	LIVE_OPLOT
	YVector
	ERROR
	INDEPENDENT
	NAME
	NEW_AXES
	NO_DRAW
	REFERENCE_OUT
	REPLACE
	SUBTYPE
	VISUALIZATION_IN
	WINDOW_IN
	X_TICKNAME
	Y_TICKNAME
	XAXIS_IN
	YAXIS_IN

	LIVE_PLOT
	YVector
	BUFFER
	DIMENSIONS
	DOUBLE
	DRAW_DIMENSIONS
	ERROR
	HISTOGRAM
	INDEPENDENT
	INDEXED_COLOR
	INSTANCING
	LINE
	LOCATION
	MANAGE_STYLE
	NAME
	NO_DRAW
	NO_STATUS
	NO_TOOLBAR
	PARENT_BASE
	POLAR
	REFERENCE_OUT
	RENDERER
	REPLACE
	SCATTER
	STYLE
	TITLE
	TLB_LOCATION
	WINDOW_IN
	XLOG
	YLOG
	XRANGE
	YRANGE
	X_TICKNAME
	Y_TICKNAME

	LIVE_PRINT
	DIALOG
	ERROR
	SETUP
	WINDOW_IN

	LIVE_RECT
	COLOR
	DIALOG
	DIMENSIONS
	ERROR
	HIDE
	LINESTYLE
	LOCATION
	NAME
	NO_DRAW
	REFERENCE_OUT
	THICK
	VISUALIZATION_IN
	WINDOW_IN

	LIVE_STYLE
	Type
	BASE_STYLE
	COLORBAR_PROPERTIES
	GRAPHIC_PROPERTIES
	Plots
	Images
	Contours
	Surfaces
	GROUP
	LEGEND_PROPERTIES
	NAME
	SAVE
	VISUALIZATION_PROPERTIES
	XAXIS_PROPERTIES, YAXIS_PROPERTIES, ZAXIS_PROPERTIES

	LIVE_SURFACE
	Data
	BUFFER
	DIMENSIONS
	DOUBLE
	DRAW_DIMENSIONS
	ERROR
	INDEXED_COLOR
	INSTANCING
	LOCATION
	MANAGE_STYLE
	NAME
	NO_DRAW
	NO_STATUS
	NO_TOOLBAR
	PARENT_BASE
	REFERENCE_OUT
	RENDERER
	REPLACE
	STYLE
	TITLE
	TLB_LOCATION
	WINDOW_IN
	XINDEPENDENT
	YINDEPENDENT
	XLOG
	YLOG
	XRANGE
	YRANGE
	X_TICKNAME
	Y_TICKNAME

	LIVE_TEXT
	Text
	ALIGNMENT
	COLOR
	DIALOG
	ENABLE_FORMATTING
	ERROR
	FONTNAME
	FONTSIZE
	HIDE
	LOCATION
	NAME
	NO_DRAW
	REFERENCE_OUT
	TEXTANGLE
	VERTICAL_ALIGNMENT
	VISUALIZATION_IN
	WINDOW_IN

	LJLCT
	LL_ARC_DISTANCE
	Lon_lat0
	Arc_Dist
	Az
	DEGREES

	LMFIT
	X
	Y
	A
	ALPHA
	CHISQ
	CONVERGENCE
	COVAR
	DOUBLE
	FITA
	FUNCTION_NAME
	ITER
	ITMAX
	ITMIN
	MEASURE_ERRORS
	SIGMA
	TOL
	WEIGHTS

	LMGR
	CLIENTSERVER
	DEMO
	EMBEDDED
	EXPIRE_DATE
	FORCE_DEMO
	INSTALL_NUM
	LMHOSTID
	RUNTIME
	SITE_NOTICE
	STUDENT
	TRIAL

	LNGAMMA
	X

	LNP_TEST
	X
	Y
	DOUBLE
	HIFAC
	JMAX
	OFAC
	WK1
	WK2

	LOADCT
	Table
	BOTTOM
	FILE
	GET_NAMES
	NCOLORS
	SILENT

	LOCALE_GET
	LON64ARR
	Di
	NOZERO

	LONARR
	Di
	NOZERO

	LONG
	Expression
	Offset
	Di

	LONG64
	Expression
	Offset
	Di

	LSODE
	Y
	X
	H
	Derivs
	Status
	ATOL
	RTOL

	LU_COMPLEX
	A
	B
	DOUBLE
	INVERSE
	SPARSE

	LUDC
	A
	Index
	COLUMN
	DOUBLE
	INTERCHANGES

	LUMPROVE
	A
	Alud
	Index
	B
	X
	COLUMN
	DOUBLE

	LUSOL
	A
	Index
	B
	COLUMN
	DOUBLE

	M_CORRELATE
	X
	Y
	DOUBLE

	MACHAR
	DOUBLE
	MACHAR Fields

	MAKE_ARRAY
	Di
	BYTE
	COMPLEX
	DCOMPLEX
	DIMENSION
	DOUBLE
	FLOAT
	L64
	INDEX
	INT
	LONG
	NOZERO
	OBJ
	PTR
	SIZE
	STRING
	TYPE
	UINT
	UL64
	ULONG
	VALUE

	MAKE_DLL
	InputFiles
	OutputFile
	ExportedRoutineNames
	CC
	COMPILE_DIRECTORY
	DLL_PATH
	EXPORTED_DATA
	EXTRA_CFLAGS
	EXTRA_LFLAGS
	INPUT_DIRECTORY
	LD
	NOCLEANUP
	OUTPUT_DIRECTORY
	SHOW_ALL_OUTPUT
	VERBOSE
	VAX_FLOAT
	Testmodule DLM
	Using GCC

	MAP_2POINTS
	Lon0, Lat0
	Lon1, Lat1
	DPATH
	METERS
	MILES
	NPATH
	PARAMETERS
	RADIANS
	RADIUS
	RHUMB
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	MAP_CONTINENTS
	COASTS
	COLOR
	CONTINENTS
	COUNTRIES
	FILL_CONTINENTS
	HIRES
	LIMIT
	MLINESTYLE
	MLINETHICK
	ORIENTATION
	RIVERS
	SPACING
	USA

	MAP_GRID
	BOX_AXES
	CHARSIZE
	CLIP_TEXT
	COLOR
	FILL_HORIZON
	GLINESTYLE
	GLINETHICK
	HORIZON
	INCREMENT
	LABEL
	LATALIGN
	LATDEL
	LATLAB
	LATNAMES
	LATS
	LONALIGN
	LONDEL
	LONLAB
	LONNAMES
	LONS
	NO_GRID
	ORIENTATION

	MAP_IMAGE
	Image
	Startx
	Starty
	Xsize
	Ysize
	LATMIN
	LATMAX
	LONMIN
	LONMAX
	BILINEAR
	COMPRESS
	SCALE
	MAX_VALUE
	MIN_VALUE
	MISSING

	MAP_PATCH
	Image_Orig
	Lons
	Lats
	LAT0
	LAT1
	LON0
	LON1
	MAX_VALUE
	MISSING
	TRIANGULATE
	XSIZE
	XSTART
	YSIZE
	YSTART

	MAP_PROJ_INFO
	Iproj
	AZIMUTHAL
	CIRCLE
	CURRENT
	CYLINDRICAL
	LL_LIMITS
	NAME
	PROJ_NAMES
	UV_LIMITS
	UV_RANGE

	MAP_SET
	P0lat
	P0lon
	Rot
	AITOFF
	ALBERS
	AZIMUTHAL
	CONIC
	CYLINDRICAL
	GOODESHOMOLOSINE
	GNOMIC
	HAMMER
	LAMBERT
	MERCATOR
	MILLER_CYLINDRICAL
	MOLLWEIDE
	NAME
	ORTHOGRAPHIC
	ROBINSON
	SATELLITE
	SINUSOIDAL
	STEREOGRAPHIC
	TRANSVERSE_MERCATOR
	ADVANCE
	CHARSIZE
	CLIP
	COLOR
	CONTINENTS
	CON_COLOR
	E_CONTINENTS
	E_GRID
	E_HORIZON
	Example
	GLINESTYLE
	GLINETHICK
	GRID
	HIRES
	HORIZON
	LABEL
	LATALIGN
	LATLAB
	LATDEL
	LONALIGN
	LONDEL
	LONLAB
	MLINESTYLE
	MLINETHICK
	NOBORDER
	NOERASE
	REVERSE
	TITLE
	USA
	XMARGIN
	YMARGIN
	CENTRAL_AZIMUTH
	ELLIPSOID
	ISOTROPIC
	LIMIT
	SAT_P
	SCALE
	STANDARD_PARALLELS

	MATRIX_MULTIPLY
	A
	B
	ATRANSPOSE
	BTRANSPOSE

	MAX
	Array
	Max_Subscript
	MIN
	NAN
	Example 1
	IDL Output
	Example 2
	IDL Output

	MD_TEST
	X
	ABOVE
	BELOW
	MDC

	MEAN
	X
	DOUBLE
	NAN

	MEANABSDEV
	X
	DOUBLE
	MEDIAN
	NAN

	MEDIAN
	Array
	Width
	EVEN

	MEMORY
	CURRENT
	HIGHWATER
	L64
	NUM_ALLOC
	NUM_FREE
	STRUCTURE

	MESH_CLIP
	Plane
	Vertsin
	Connin
	Vertsout
	Connout
	AUXDATA_IN
	AUXDATA_OUT
	CUT_VERTS

	MESH_DECIMATE
	Verts
	Conn
	Connout
	PERCENT_VERTICES
	PERCENT_POLYGONS
	VERTICES

	MESH_ISSOLID
	Conn

	MESH_MERGE
	Verts
	Conn
	Verts1
	Conn1
	COMBINE_VERTICES
	TOLERANCE

	MESH_NUMTRIANGLES
	Conn

	MESH_OBJ
	Type
	Vertex_List
	Polygon_List
	Array1
	Array2
	DEGREES
	P1 - P5

	MESH_SMOOTH
	Verts
	Conn
	ITERATIONS
	FIXED_VERTICES
	FIXED_EDGE_VERTICES
	LAMBDA

	MESH_SURFACEAREA
	Verts
	Conn
	AUXDATA
	MOMENT

	MESH_VALIDATE
	Verts
	Conn
	COMBINE_VERTICES
	PACK_VERTICES
	REMOVE_NAN
	TOLERANCE

	MESH_VOLUME
	Verts
	Conn
	SIGNED

	MESSAGE
	Text
	CONTINUE
	INFORMATIONAL
	IOERROR
	NONAME
	NOPREFIX
	NOPRINT
	RESET
	TRACEBACK

	MIN
	Array
	Min_Subscript
	MAX
	NAN

	MIN_CURVE_SURF
	Z, X, Y
	CONST
	DOUBLE
	SPHERE
	TPS
	REGULAR
	XGRID
	XVALUES
	YGRID
	YVALUES
	GS
	BOUNDS
	NX
	NY
	XOUT
	YOUT
	XPOUT, YPOUT
	Example 1: Irregularly gridded cases
	Example 2: Regularly gridded cases

	MK_HTML_HELP
	Sources
	Filename
	STRICT
	TITLE
	VERBOSE

	MODIFYCT
	Itab
	Name
	R
	G
	B
	FILE

	MOMENT
	X
	DOUBLE
	MDEV
	NAN
	SDEV

	MORPH_CLOSE
	Image
	Structure
	GRAY
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MORPH_DISTANCE
	Data
	BACKGROUND
	NEIGHBOR_SAMPLING
	Default Two Dimensional Example
	Chessboard Two-Dimensional Example
	City Block Two-Dimensional Example:
	Actual Distance Two-Dimensional Example
	NO_COPY

	MORPH_GRADIENT
	Image
	Structure
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MORPH_HITORMISS
	Image
	HitStructure
	MissStructure

	MORPH_OPEN
	Image
	Structure
	GRAY
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MORPH_THIN
	Image
	HitStructure
	MissStructure

	MORPH_TOPHAT
	Image
	Structure
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MPEG_CLOSE
	mpegID

	MPEG_OPEN
	Dimensions
	BITRATE
	FILENAME
	IFRAME_GAP
	MOTION_VEC_LENGTH
	QUALITY

	MPEG_PUT
	mpegID
	COLOR
	FRAME
	IMAGE
	ORDER
	WINDOW

	MPEG_SAVE
	mpegID
	FILENAME

	MSG_CAT_CLOSE
	object

	MSG_CAT_COMPILE
	input
	output
	LOCALE_ALIAS
	MBCS

	MSG_CAT_OPEN
	application
	DEFAULT_FILENAME
	FILENAME
	FOUND
	LOCALE
	PATH
	SUB_QUERY

	MULTI
	N

	N_ELEMENTS
	Expression
	Example 1
	Example 2

	N_PARAMS
	N_TAGS
	Expression
	LENGTH

	NCDF_* Routines
	NEWTON
	X
	Vecfunc
	CHECK
	DOUBLE
	ITMAX
	STEPMAX
	TOLF
	TOLMIN
	TOLX

	NORM
	A
	DOUBLE

	OBJ_CLASS
	Arg
	COUNT
	SUPERCLASS

	OBJ_DESTROY
	ObjRef
	Arg1…Argn

	OBJ_ISA
	ObjectInstance
	ClassName

	OBJ_NEW
	ObjectClassName
	Arg1…Argn

	OBJ_VALID
	Arg
	CAST
	COUNT

	OBJARR
	Di
	NOZERO

	ON_ERROR
	N

	ON_IOERROR
	ONLINE_HELP
	Value
	BOOK
	CONTEXT
	FULL_PATH
	HTML_HELP
	QUIT
	TOPICS

	OPEN
	Unit
	File
	Record_Length
	APPEND
	BUFSIZE
	COMPRESS
	DELETE
	ERROR
	F77_UNFORMATTED
	GET_LUN
	MORE
	STDIO
	SWAP_ENDIAN
	SWAP_IF_BIG_ENDIAN
	SWAP_IF_LITTLE_ENDIAN
	VAX_FLOAT
	WIDTH
	XDR
	MACCREATOR
	MACTYPE
	RAWIO
	BLOCK
	DEFAULT
	EXTENDSIZE
	FIXED
	FORTRAN
	INITIALSIZE
	KEYED
	LIST
	NONE
	PRINT
	SEGMENTED
	SHARED
	STREAM
	SUBMIT
	SUPERSEDE
	TRUNCATE_ON_CLOSE
	UDF_BLOCK
	VARIABLE
	Note On IEEE to VAX Format Conversion

	OPLOT
	X
	Y
	MAX_VALUE
	MIN_VALUE
	NSUM
	POLAR
	THICK

	OPLOTERR
	X
	Y
	Err
	Psym

	P_CORRELATE
	X
	Y
	C
	DOUBLE

	PARTICLE_TRACE
	Data
	Seeds
	Verts
	Conn
	Normals
	ANISOTROPY
	INTEGRATION
	SEED_NORMAL
	TOLERANCE
	MAX_ITERATIONS
	MAX_STEPSIZE
	UNIFORM

	PCOMP
	A
	COEFFICIENTS
	COVARIANCE
	DOUBLE
	EIGENVALUES
	NVARIABLES
	STANDARDIZE
	VARIANCES

	PLOT
	X
	Y
	ISOTROPIC
	MAX_VALUE
	MIN_VALUE
	NSUM
	POLAR
	THICK
	XLOG
	YNOZERO
	YLOG

	PLOT_3DBOX
	X
	Y
	Z
	GRIDSTYLE
	PSYM
	SOLID_WALLS
	XY_PLANE
	XYSTYLE
	XZ_PLANE
	XZSTYLE
	YZ_PLANE
	YZSTYLE

	PLOT_FIELD
	U
	V
	ASPECT
	LENGTH
	N
	TITLE

	PLOTERR
	X
	Y
	Err
	TYPE
	PSYM

	PLOTS
	X
	Y
	Z
	CONTINUE

	PNT_LINE
	P0
	L0
	L1
	Pl
	INTERVAL

	POINT_LUN
	Unit
	Position
	Use Of POINT_LUN On Compressed Files

	POLAR_CONTOUR
	Z
	Theta
	R
	SHOW_TRIANGULATION

	POLAR_SURFACE
	Z
	R
	Theta
	GRID
	SPACING
	BOUNDS
	QUINTIC
	MISSING

	POLY
	X
	C

	POLY_2D
	Array
	P and Q
	Interp
	Dimx
	Dimy
	CUBIC
	MISSING

	POLY_AREA
	X
	Y
	SIGNED

	POLY_FIT
	X
	Y
	Degree
	Yfit, Yband, Sigma, Corrm
	CHISQ
	COVAR
	DOUBLE
	MEASURE_ERRORS
	SIGMA
	STATUS
	YBAND
	YERROR
	YFIT

	POLYFILL
	Fill Methods
	X
	Y
	Z
	IMAGE_COORD
	IMAGE_INTERP
	LINE_FILL
	PATTERN
	SPACING
	TRANSPARENT (Z-Buffer output only)

	POLYFILLV
	X
	Y
	Sx
	Sy
	Run_Length

	POLYSHADE
	Vertices
	X, Y, Z
	Polygons
	DATA
	NORMAL
	POLY_SHADES
	SHADES
	T3D
	TOP
	XSIZE
	YSIZE

	POLYWARP
	Xi, Yi
	Xo, Yo
	Degree
	Kx
	Ky

	POPD
	POWELL
	P
	Xi
	Ftol
	Fmin
	Func
	DOUBLE
	ITER
	ITMAX

	PRIMES
	K

	PRINT/PRINTF
	Unit
	Expri
	AM_PM
	DAYS_OF_WEEK
	FORMAT
	MONTHS
	STDIO_NON_FINITE
	REWRITE
	Format Compatibility

	PRINTD
	PRO
	argumentn

	PROFILE
	Image
	XX
	YY
	NOMARK
	XSTART
	YSTART

	PROFILER
	Module
	CLEAR
	OUTPUT
	REPORT
	RESET
	SYSTEM

	PROFILES
	Using PROFILES
	Image
	ORDER
	SX
	SY
	WSIZE

	PROJECT_VOL
	Vol
	X_Sample
	Y_Sample
	Z_Sample
	DEPTH_Q
	OPAQUE
	TRANS

	PS_SHOW_FONTS
	NOLATIN

	PSAFM
	Input_Filename
	Output_Filename

	PSEUDO
	Litlo
	Lithi
	Satlo
	Sathi
	Hue
	Loops
	Colr

	PTR_FREE
	Pi

	PTR_NEW
	InitExpr
	ALLOCATE_HEAP
	NO_COPY

	PTR_VALID
	Arg
	CAST
	COUNT

	PTRARR
	Di
	ALLOCATE_HEAP
	NOZERO

	PUSHD
	Dir

	QROMB
	Func
	A
	B
	DOUBLE
	EPS
	JMAX
	K

	QROMO
	Func
	A
	B
	DOUBLE
	EPS
	JMAX
	K
	MIDEXP
	MIDINF
	MIDPNT
	MIDSQL
	MIDSQU

	QSIMP
	Func
	A
	B
	DOUBLE
	EPS
	JMAX

	QUERY_* Routines
	QUERY_BMP
	Filename
	Info

	QUERY_DICOM
	Filename
	Info
	IMAGE_INDEX

	QUERY_IMAGE
	Filename
	Info
	CHANNELS
	DIMENSIONS
	HAS_PALETTE
	IMAGE_INDEX
	NUM_IMAGES
	PIXEL_TYPE
	SUPPORTED_READ
	SUPPORTED_WRITE
	TYPE

	QUERY_JPEG
	Filename
	Info

	QUERY_PICT
	Filename
	Info

	QUERY_PNG
	Filename
	Info

	QUERY_PPM
	Filename
	Info
	MAXVAL

	QUERY_SRF
	Filename
	Info

	QUERY_TIFF
	Filename
	Info
	IMAGE_INDEX

	QUERY_WAV
	Filename
	Info

	R_CORRELATE
	X
	Y
	D
	KENDALL
	PROBD
	ZD

	R_TEST
	X
	N0
	N1
	R

	RADON
	How IDL Implements the Radon Transform
	How IDL Implements the Radon Backprojection
	Array
	BACKPROJECT
	DOUBLE
	DRHO
	DX
	DY
	GRAY
	LINEAR
	NRHO
	NTHETA
	NX
	NY
	RHO
	RMIN
	THETA
	XMIN
	YMIN

	RANDOMN
	Seed
	Di
	BINOMIAL
	DOUBLE
	GAMMA
	LONG
	NORMAL
	POISSON
	UNIFORM

	RANDOMU
	Seed
	Di
	BINOMIAL
	DOUBLE
	GAMMA
	LONG
	NORMAL
	POISSON
	UNIFORM

	RANKS
	X

	RDPIX
	Using RDPIX
	Image
	X0, Y0

	READ/READF
	Prompt
	Unit
	Vari
	AM_PM
	DAYS_OF_WEEK
	FORMAT
	MONTHS
	PROMPT
	KEY_ID
	KEY_MATCH
	KEY_VALUE
	Format Compatibility

	READ_ASCII
	Filename
	COMMENT_SYMBOL
	COUNT
	DATA_START
	DELIMITER
	HEADER
	MISSING_VALUE
	NUM_RECORDS
	RECORD_START
	TEMPLATE
	VERBOSE

	READ_BINARY
	Filename
	FileUnit
	DATA_DIMS
	DATA_START
	DATA_TYPE
	ENDIAN
	TEMPLATE

	READ_BMP
	Filename
	R, G, B
	Ihdr
	RGB

	READ_DICOM
	Filename
	Red, Green, Blue
	IMAGE_INDEX

	READ_IMAGE
	Filename
	Red
	Green
	Blue
	IMAGE_INDEX

	READ_INTERFILE
	File
	Data

	READ_JPEG
	Filename
	Image
	Colortable
	BUFFER
	COLORS
	DITHER
	GRAYSCALE
	ORDER
	TRUE
	TWO_PASS_QUANTIZE
	UNIT

	READ_PICT
	Filename
	Image
	R, G, B

	READ_PNG
	Filename
	R, G, B
	ORDER
	VERBOSE
	TRANSPARENT

	READ_PPM
	Filename
	Image
	MAXVAL

	READ_SPR
	Filename

	READ_SRF
	Filename
	Image
	R, G, B

	READ_SYLK
	File
	ARRAY
	COLMAJOR
	NCOLS
	NROWS
	STARTCOL
	STARTROW
	USEDOUBLES
	USELONGS

	READ_TIFF
	Filename
	R, G, B
	CHANNELS
	GEOTIFF
	IMAGE_INDEX
	INTERLEAVE
	ORDER
	PLANARCONFIG
	SUB_RECT
	UNSIGNED
	VERBOSE
	Example 1
	Example 2
	Example 3

	READ_WAV
	Filename
	Rate

	READ_WAVE
	File
	Variables
	Names
	Dimensions
	MESHNAMES

	READ_X11_BITMAP
	File
	Bitmap
	X
	Y
	EXPAND_TO_BYTES

	READ_XWD
	Filename
	R, G, B

	READS
	Input
	Vari
	AM_PM
	DAYS_OF_WEEK
	FORMAT
	MONTHS

	READU
	Unit
	Vari
	TRANSFER_COUNT
	KEY_ID
	KEY_MATCH
	KEY_VALUE

	REBIN
	Array
	Di
	SAMPLE
	Rules Used by REBIN
	Endpoint Effects When Expanding

	RECALL_COMMANDS
	RECON3
	Using RECON3
	Images
	Obj_Rot
	Obj_Pos
	Focal
	Dist
	Vol_Pos
	Img_Ref
	Img_Mag
	Vol_Size
	CUBIC
	MISSING
	MODE

	REDUCE_COLORS
	Image
	Values

	REFORM
	Array
	Di
	OVERWRITE

	REGRESS
	X
	Y
	Weights
	Yfit, Const, Sigma, Ftest, R, Rmul, Chisq, Status
	CHISQ
	CONST
	CORRELATION
	DOUBLE
	FTEST
	MCORRELATION
	MEASURE_ERRORS
	RELATIVE_WEIGHT
	SIGMA
	STATUS
	YFIT

	REPEAT...UNTIL
	REPLICATE
	Value
	Di

	REPLICATE_INPLACE
	X
	Value
	D1
	Loc1
	D2
	Range

	RESOLVE_ALL
	CONTINUE_ON_ERROR
	QUIET

	RESOLVE_ROUTINE
	Name
	COMPILE_FULL_FILE
	EITHER
	IS_FUNCTION
	NO_RECOMPILE

	RESTORE
	Note to VMS Users
	Filename
	FILENAME
	RELAXED_STRUCTURE_ASSIGNMENT
	RESTORED_OBJECTS
	VERBOSE

	RETALL
	RETURN
	Return_value

	REVERSE
	Array
	Subscript_Index
	OVERWRITE

	REWIND
	Unit

	RK4
	Y
	Dydx
	X
	H
	Derivs
	DOUBLE

	ROBERTS
	Image

	ROT
	A
	ANGLE
	MAG
	X0
	Y0
	INTERP
	CUBIC
	MISSING
	PIVOT

	ROTATE
	Array
	Direction

	ROUND
	X
	L64

	ROUTINE_INFO
	Routine
	DISABLED
	ENABLED
	FUNCTIONS
	PARAMETERS
	SOURCE
	SYSTEM
	UNRESOLVED
	VARIABLES

	RS_TEST
	X
	Y
	UX
	UY

	S_TEST
	X
	Y
	ZDIFF

	SAVE
	Varn
	ALL
	COMM
	COMPRESS
	FILENAME
	ROUTINES
	SYSTEM_VARIABLES
	VARIABLES
	VERBOSE

	SAVGOL
	Nleft
	Nright
	Order
	Degree
	DOUBLE

	SCALE3
	XRANGE
	YRANGE
	ZRANGE
	AX
	AZ

	SCALE3D
	SEARCH2D
	Array
	Xpos
	Ypos
	Min_Val
	Max_Val
	DECREASE
	INCREASE
	LPF_BAND
	DIAGONAL

	SEARCH3D
	Array
	Xpos
	Ypos
	Zpos
	Min_Val
	Max_Val
	DECREASE
	INCREASE
	LPF_BAND
	DIAGONAL

	SET_PLOT
	Device
	COPY
	INTERPOLATE

	SET_SHADING
	GOURAUD
	LIGHT
	REJECT
	VALUES

	SET_SYMBOL
	Name
	Value
	TYPE

	SETENV
	Environment_Expression

	SETLOG
	Lognam
	Value
	CONCEALED
	CONFINE
	NO_ALIAS
	TABLE
	TERMINAL

	SETUP_KEYS
	ANSI
	EIGHTBIT
	SUN
	VT200
	HP9000
	IBM
	MIPS
	SGI
	APP_KEYPAD
	NUM_KEYPAD

	SFIT
	Data
	Degree
	KX

	SHADE_SURF
	Restrictions
	Z
	X
	Y
	AX
	AZ
	IMAGE
	MAX_VALUE
	MIN_VALUE
	PIXELS
	SAVE
	SHADES
	XLOG
	YLOG

	SHADE_SURF_IRR
	Z
	X
	Y
	AX
	AZ
	IMAGE
	PLIST
	T3D

	SHADE_VOLUME
	Volume
	Value
	Vertex
	Poly
	LOW
	SHADES
	VERBOSE
	XRANGE
	YRANGE
	ZRANGE

	SHIFT
	Array
	Si

	SHOW3
	Image
	X
	Y
	INTERP
	E_CONTOUR
	E_SURFACE
	SSCALE

	SHOWFONT
	Font
	Name
	ENCAPSULATED
	TT_FONT

	SIN
	X

	SINDGEN
	Di

	SINH
	X

	SIZE
	IDL Type Codes
	Expression
	DIMENSIONS
	FILE_LUN
	L64
	N_DIMENSIONS
	N_ELEMENTS
	STRUCTURE
	TNAME
	TYPE

	SKEWNESS
	X
	DOUBLE
	NAN

	SKIPF
	Unit
	Files
	Records
	R

	SLICER3
	hData3D
	DATA_NAMES
	DETACH
	GROUP
	MODAL
	The SLICER3 Graphical User Interface
	File Menu
	Load
	Save/Save Subset
	Save/Save Tiff Image
	Quit
	Tools Menu
	Erase
	Delete/...
	Colors/Reset Colors
	Colors/Differential Shading
	Colors/Slice/Block
	Colors/Surface
	Colors/Projection
	Options
	Main Draw Window
	Data Pulldown Menu
	Mode Pulldown Menu
	Slice Mode
	Draw Radio Button
	Expose Radio Button
	Orthogonal Radio Button
	X/Y/Z Radio Buttons
	Oblique Radio Button
	Normal Radio Button
	Center Radio Button
	Display Button
	Block Mode
	Add
	Subtract
	Display Button
	Surface Mode
	Low
	High
	Shading pulldown menu
	Display Button
	Projection Mode
	Max
	Avg
	Low
	Med
	High
	Depth Queue % Slider
	Display Button
	Threshold Mode
	Min
	Max
	Transp.
	Profile Mode
	Orthogonal
	Oblique
	Probe Mode
	X
	Y
	Z
	View Mode
	Display
	1st Rotation
	2nd Rotation
	Zoom % Slider
	Z % Slider

	Operational Details

	SLIDE_IMAGE
	Image
	BLOCK
	CONGRID
	FULL_WINDOW
	GROUP
	ORDER
	REGISTER
	RETAIN
	SLIDE_WINDOW
	SHOW_FULL
	TITLE
	TOP_ID
	XSIZE
	XVISIBLE
	YSIZE
	YVISIBLE

	SMOOTH
	Array
	Width
	EDGE_TRUNCATE
	NAN

	SOBEL
	Image

	SOCKET
	Unit
	Host
	Port
	CONNECT_TIMEOUT
	ERROR
	GET_LUN
	RAWIO
	READ_TIMEOUT
	SWAP_ENDIAN
	SWAP_IF_BIG_ENDIAN
	SWAP_IF_LITTLE_ENDIAN
	WIDTH
	WRITE_TIMEOUT
	STDIO

	SORT
	Array
	L64
	Sorting NaN Values

	SPAWN
	Command
	Result
	ErrResult
	COUNT
	EXIT_STATUS
	FORCE
	NOWAIT
	PID
	MACCREATOR
	NOSHELL
	NOTTYRESET
	NULL_STDIN
	SH
	STDERR
	UNIT
	HIDE
	LOG_OUTPUT
	NOSHELL
	NULL_STDIN
	STDERR
	NOCLISYM
	NOLOGNAM
	NOTIFY
	Example 1
	Example 2

	SPH_4PNT
	X, Y, Z
	Xc, Yc, Zc
	R
	DOUBLE

	SPH_SCAT
	Lon
	Lat
	F
	BOUNDS
	BOUT
	GOUT
	GS
	NLON
	NLAT

	SPHER_HARM
	Theta
	Phi
	L
	M
	DOUBLE

	SPL_INIT
	X
	Y
	DOUBLE
	YP0
	YPN_1
	Example 1
	Example 2

	SPL_INTERP
	X
	Y
	Y2
	X2
	DOUBLE

	SPLINE
	X
	Y
	T
	Sigma

	SPLINE_P
	X
	Y
	Xr
	Yr
	INTERVAL
	TAN0
	TAN1

	SPRSAB
	A, B
	DOUBLE
	THRESHOLD

	SPRSAX
	A
	X
	DOUBLE

	SPRSIN
	A
	Columns
	Rows
	Values
	N
	COLUMN
	DOUBLE
	THRESHOLD
	Example1
	Example2

	SPRSTP
	A

	SQRT
	X

	STANDARDIZE
	A
	DOUBLE

	STDDEV
	X
	DOUBLE
	NAN

	STOP
	Expri

	STRARR
	Di

	STRCMP
	String1, String2
	N
	FOLD_CASE

	STRCOMPRESS
	String
	REMOVE_ALL
	IDL Output

	STREAMLINE
	Verts
	Conn
	Normals
	Outverts
	Outconn
	ANISOTROPY
	SIZE
	PROFILE

	STREGEX
	StringExpression
	RegularExpression
	BOOLEAN
	EXTRACT
	FOLD_CASE
	LENGTH
	SUBEXPR
	Example 1
	Example 2

	STRETCH
	Low
	High
	Gamma
	CHOP

	STRING
	Expressionn
	AM_PM
	DAYS_OF_WEEK
	FORMAT
	MONTHS
	PRINT
	Differences Between STRING and PRINT

	STRJOIN
	String
	Delimiter
	SINGLE

	STRLEN
	Expression

	STRLOWCASE
	String

	STRMATCH
	String
	SearchString
	FOLD_CASE
	Example 1
	Example 2
	Example 3
	Example 4

	STRMESSAGE
	Err
	BLOCK
	CODE
	NAME

	STRMID
	Expression
	First_Character
	Length
	REVERSE_OFFSET

	STRPOS
	Expression
	Search_String
	Pos
	REVERSE_OFFSET
	REVERSE_SEARCH
	Example 1
	Example 2

	STRPUT
	Destination
	Source
	Position

	STRSPLIT
	String
	Pattern
	ESCAPE
	EXTRACT
	FOLD_CASE
	LENGTH
	PRESERVE_NULL
	REGEX
	Example 1
	Example 2
	Example 3

	STRTRIM
	String
	Flag

	STRUCT_ASSIGN
	Source
	Destination
	NOZERO
	VERBOSE

	STRUCT_HIDE
	Arg1, ..., Argn

	STRUPCASE
	String

	SURFACE
	Restrictions
	Z
	X
	Y
	AX
	AZ
	BOTTOM
	HORIZONTAL
	LEGO
	LOWER_ONLY
	MAX_VALUE
	MIN_VALUE
	SAVE
	SHADES
	SKIRT
	UPPER_ONLY
	XLOG
	YLOG
	ZAXIS
	ZLOG

	SURFR
	AX
	AZ

	SVDC
	A
	W
	U
	V
	COLUMN
	DOUBLE
	ITMAX

	SVDFIT
	X
	Y
	M
	A
	CHISQ
	COVAR
	DOUBLE
	FUNCTION_NAME
	LEGENDRE
	MEASURE_ERRORS
	SIGMA
	SINGULAR
	VARIANCE
	WEIGHTS
	YFIT

	SVSOL
	U
	W
	V
	B
	COLUMN
	DOUBLE

	SWAP_ENDIAN
	Variable

	SWITCH
	SYSTIME
	SecondsFlag
	ElapsedSeconds
	JULIAN
	SECONDS
	UTC

	T_CVF
	P
	Df

	T_PDF
	V
	Df

	T3D
	Array
	MATRIX
	OBLIQUE
	PERSPECTIVE
	RESET
	ROTATE
	SCALE
	TRANSLATE
	XYEXCH
	XZEXCH
	YZEXCH

	TAG_NAMES
	Expression
	STRUCTURE_NAME

	TAN
	X

	TANH
	X

	TAPRD
	Unit
	Array
	Byte_Reverse

	TAPWRT
	Unit
	Array
	Byte_Reverse

	TEK_COLOR
	Start_Index
	Colors

	TEMPORARY
	Variable

	TETRA_CLIP
	Plane
	Vertsin
	Connin
	Vertsout
	Connout
	AUXDATA_IN
	AUXDATA_OUT
	CUT_VERTS

	TETRA_SURFACE
	Verts
	Connin

	TETRA_VOLUME
	Verts
	Conn
	AUXDATA
	MOMENT

	THIN
	Image
	NEIGHBOR_COUNT
	PRUNE

	THREED
	A
	Sp
	TITLE
	XTITLE
	YTITLE

	TIME_TEST2
	Filename

	TIMEGEN
	Di
	DAYS
	FINAL
	HOURS
	MINUTES
	MONTHS
	SECONDS
	START
	STEP_SIZE
	UNITS
	YEAR
	See Also

	TM_TEST
	X
	Y
	PAIRED
	UNEQUAL

	TOTAL
	Array
	Dimension
	CUMULATIVE
	DOUBLE
	NAN
	Example 1
	Example 2

	TRACE
	A
	DOUBLE

	TrackBall Object
	TRANSPOSE
	Array
	P
	Example 1
	Example 2

	TRI_SURF
	X, Y, Z
	EXTRAPOLATE
	LINEAR
	MISSING
	Input Grid Description:
	REGULAR
	XGRID
	XVALUES
	YGRID
	YVALUES
	Output Grid Description:
	GS
	BOUNDS
	NX
	NY
	Example 1
	Example 2

	TRIANGULATE
	X
	Y
	Triangles
	B
	CONNECTIVITY
	DEGREES
	FVALUE
	REPEATS
	SPHERE

	TRIGRID
	X, Y, Z
	F
	Triangles
	GS
	Limits
	DEGREES
	EXTRAPOLATE
	INPUT
	MAX_VALUE
	MIN_VALUE
	MISSING
	NX
	NY
	QUINTIC
	SPHERE
	XGRID
	XOUT
	YGRID
	YOUT
	Example 1
	Example 2
	Example 3

	TRIQL
	D
	E
	A
	DOUBLE

	TRIRED
	A
	D
	E
	DOUBLE

	TRISOL
	A
	B
	C
	R
	DOUBLE

	TRNLOG
	Lognam
	Value
	ACMODE
	FULL_TRANSLATION
	ISSUE_ERROR
	RESULT_ACMODE
	RESULT_TABLE
	TABLE

	TS_COEF
	X
	P
	DOUBLE
	MSE

	TS_DIFF
	X
	K
	DOUBLE

	TS_FCAST
	X
	P
	Nvalues
	BACKCAST
	DOUBLE

	TS_SMOOTH
	X
	Nvalues
	BACKWARD
	DOUBLE
	FORWARD
	ORDER

	TV
	Image
	X, Y
	Position
	Channel
	CENTIMETERS
	CHANNEL
	INCHES
	ORDER
	TRUE
	WORDS
	XSIZE
	YSIZE

	TVCRS
	ON_OFF
	X
	Y
	CENTIMETERS
	INCHES
	HIDE_CURSOR

	TVLCT
	R, G, B Color System
	H, L, S Color System
	H, S, V Color System
	Start
	GET
	HLS
	HSV

	TVRD
	Important Note about TVRD and Backing Store
	X0
	Y0
	Nx
	Ny
	Channel
	CHANNEL
	ORDER
	TRUE
	WORDS
	Unexpected Results Using TVRD with X Windows

	TVSCL
	Image
	X, Y
	Position
	Channel
	NAN
	TOP

	UINDGEN
	Di

	UINT
	Expression
	Offset
	Di

	UINTARR
	Di
	NOZERO

	UL64INDGEN
	Di

	ULINDGEN
	Di

	ULON64ARR
	Di
	NOZERO

	ULONARR
	Di
	NOZERO

	ULONG
	Expression
	Offset
	Di

	ULONG64
	Expression
	Offset
	Di

	UNIQ
	Array
	Index

	USERSYM
	X, Y
	COLOR
	FILL
	THICK

	VALUE_LOCATE
	Vector
	Value
	L64

	VARIANCE
	X
	DOUBLE
	NAN

	VAX_FLOAT
	Default
	FILE_UNIT

	VECTOR_FIELD
	Field
	Outverts
	Outconn
	ANISOTROPY
	SCALE
	VERTICES

	VEL
	U
	V
	LENGTH
	NSTEPS
	NVECS
	TITLE
	XMAX

	VELOVECT
	U
	V
	X
	Y
	COLOR
	DOTS
	LENGTH
	MISSING
	OVERPLOT

	VERT_T3D
	Vertex_List
	DOUBLE
	MATRIX
	NO_COPY
	NO_DIVIDE
	SAVE_DIVIDE

	VOIGT
	A
	U

	VORONOI
	X
	Y
	I0
	C
	Xp, Yp
	Rect

	VOXEL_PROJ
	V
	RGBO
	BACKGROUND
	CUTTING_PLANE
	INTERPOLATE
	MAXIMUM_INTENSITY
	STEP
	XSIZE
	YSIZE
	ZBUFFER
	ZPIXELS
	Example 1
	Example 2
	Example 3

	WAIT
	Seconds

	WARP_TRI
	Xo, Yo
	Xi, Yi
	Image
	OUTPUT_SIZE
	QUINTIC
	EXTRAPOLATE

	WATERSHED
	Image
	CONNECTIVITY

	WDELETE
	Window_Index

	WEOF
	Unit

	WF_DRAW
	X, Y
	COLD
	COLOR
	CONVERGENCE
	DATA
	DEVICE
	FRONT_TYPE
	INTERVAL
	NORMAL
	OCCLUDED
	PSYM
	STATIONARY
	SYM_HT
	SYM_LEN
	THICK
	WARM

	WHERE
	When WHERE Returns –1
	Array_Expression
	Count
	COMPLEMENT
	L64
	NCOMPLEMENT
	Example 1
	Example 2

	WHILE...DO
	WIDGET_BASE
	Parent
	ALIGN_BOTTOM
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	ALIGN_TOP
	APP_MBAR
	BASE_ALIGN_BOTTOM
	BASE_ALIGN_CENTER
	BASE_ALIGN_LEFT
	BASE_ALIGN_RIGHT
	BASE_ALIGN_TOP
	COLUMN
	Column Width
	Horizontal Size of Widgets
	Vertical Placement
	DISPLAY_NAME
	EVENT_FUNC
	EVENT_PRO
	EXCLUSIVE
	FLOATING
	FRAME
	FUNC_GET_VALUE
	GRID_LAYOUT
	GROUP_LEADER
	KBRD_FOCUS_EVENTS
	KILL_NOTIFY
	MAP
	MBAR
	MODAL
	NO_COPY
	NONEXCLUSIVE
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	Example
	Note on Specifying Color Resources
	RNAME_MBAR
	ROW
	Row Height
	Vertical Size of Widgets
	Horizontal Placement
	SCR_XSIZE
	SCR_YSIZE
	SCROLL
	SENSITIVE
	SPACE
	TITLE
	TLB_FRAME_ATTR
	TLB_KILL_REQUEST_EVENTS
	TLB_SIZE_EVENTS
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	XOFFSET
	XPAD
	XSIZE
	X_SCROLL_SIZE
	YOFFSET
	YPAD
	YSIZE
	Y_SCROLL_SIZE
	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Exclusive And Non-Exclusive Bases
	Positioning Child Widgets Within a Base
	Positioning Top-Level Bases
	Iconizing, Layering, and Destroying Groups of Top-Level Bases
	Iconization and Mapping
	Motif
	Windows
	Macintosh
	Layering
	Motif
	Windows and Macintosh
	Destruction

	Events
	Resize Events
	Keyboard Focus Events
	Kill Request Events

	WIDGET_BUTTON
	Parent
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	BITMAP
	DYNAMIC_RESIZE
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	HELP
	KILL_NOTIFY
	MENU
	NO_COPY
	NO_RELEASE
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	SEPARATOR
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	X_BITMAP_EXTRA
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Exclusive And Non-Exclusive Bases
	Events Returned by Button Widgets
	Bitmap Button Labels
	Transparent Bitmaps

	WIDGET_CONTROL
	Widget_ID
	ALIGNMENT
	ALL_TABLE_EVENTS
	ALL_TEXT_EVENTS
	AM_PM
	APPEND
	BAD_ID
	CANCEL_BUTTON
	CLEAR_EVENTS
	COLUMN_LABELS
	COLUMN_WIDTHS
	DAYS_OF_WEEK
	DEFAULT_BUTTON
	DEFAULT_FONT
	DELAY_DESTROY
	DELETE_COLUMNS
	DELETE_ROWS
	DESTROY
	DRAW_BUTTON_EVENTS
	DRAW_EXPOSE_EVENTS
	DRAW_MOTION_EVENTS
	DRAW_VIEWPORT_EVENTS
	DRAW_XSIZE
	DRAW_YSIZE
	DYNAMIC_RESIZE
	EDITABLE
	EDIT_CELL
	EVENT_FUNC
	EVENT_PRO
	FORMAT
	FUNC_GET_VALUE
	GET_DRAW_VIEW
	GET_UVALUE
	GET_VALUE
	GROUP_LEADER
	HOURGLASS
	ICONIFY
	INPUT_FOCUS
	INSERT_COLUMNS
	INSERT_ROWS
	KBRD_FOCUS_EVENTS
	KILL_NOTIFY
	MANAGED
	MAP
	MONTHS
	NO_COPY
	NO_NEWLINE
	NOTIFY_REALIZE
	PRO_SET_VALUE
	REALIZE
	RESET
	ROW_LABELS
	ROW_HEIGHTS
	SCR_XSIZE
	SCR_YSIZE
	SEND_EVENT
	SENSITIVE
	SET_BUTTON
	SET_DRAW_VIEW
	SET_DROPLIST_SELECT
	SET_LIST_SELECT
	SET_LIST_TOP
	SET_SLIDER_MAX
	SET_SLIDER_MIN
	SET_TABLE_SELECT
	SET_TABLE_VIEW
	SET_TEXT_SELECT
	SET_TEXT_TOP_LINE
	SET_UNAME
	SET_UVALUE
	SET_VALUE
	SHOW
	TABLE_XSIZE
	TABLE_YSIZE
	TIMER
	TLB_GET_OFFSET
	TLB_GET_SIZE
	TLB_KILL_REQUEST_EVENTS
	TLB_SET_TITLE
	TLB_SET_XOFFSET
	TLB_SET_YOFFSET
	TRACKING_EVENTS
	UNITS
	UPDATE
	USE_TABLE_SELECT
	USE_TEXT_SELECT
	X_BITMAP_EXTRA
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE

	WIDGET_DRAW
	Parent
	APP_SCROLL
	BUTTON_EVENTS
	COLOR_MODEL
	COLORS
	EVENT_FUNC
	EVENT_PRO
	EXPOSE_EVENTS
	FRAME
	FUNC_GET_VALUE
	GRAPHICS_LEVEL
	GROUP_LEADER
	KILL_NOTIFY
	MOTION_EVENTS
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RENDERER
	RESOURCE_NAME
	RETAIN
	SCR_XSIZE
	SCR_YSIZE
	SCROLL
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	VIEWPORT_EVENTS
	XOFFSET
	XSIZE
	X_SCROLL_SIZE
	YOFFSET
	YSIZE
	Y_SCROLL_SIZE
	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Widget Events Returned by Draw Widgets
	Backing Store

	WIDGET_DROPLIST
	Parent
	DYNAMIC_RESIZE
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	TITLE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Widget Events Returned by Droplist Widgets

	WIDGET_EVENT
	Widget_ID
	BAD_ID
	NOWAIT
	SAVE_HOURGLASS
	YIELD_TO_TTY
	Event Processing
	Events
	ID
	TOP
	HANDLER

	WIDGET_INFO
	Widget_ID
	ACTIVE
	CHILD
	COLUMN_WIDTHS
	DRAW_BUTTON_EVENTS
	DRAW_EXPOSE_EVENTS
	DRAW_MOTION_EVENTS
	DRAW_VIEWPORT_EVENTS
	DROPLIST_NUMBER
	DROPLIST_SELECT
	DYNAMIC_RESIZE
	EVENT_FUNC
	EVENT_PRO
	FIND_BY_UNAME
	GEOMETRY
	KBRD_FOCUS_EVENTS
	LIST_MULTIPLE
	LIST_NUMBER
	LIST_NUM_VISIBLE
	LIST_SELECT
	LIST_TOP
	MANAGED
	MODAL
	NAME
	PARENT
	REALIZED
	ROW_HEIGHTS
	SIBLING
	SLIDER_MIN_MAX
	TABLE_ALL_EVENTS
	TABLE_EDITABLE
	TABLE_EDIT_CELL
	TABLE_SELECT
	TABLE_VIEW
	TEXT_ALL_EVENTS
	TEXT_EDITABLE
	TEXT_NUMBER
	TEXT_OFFSET_TO_XY
	TEXT_SELECT
	TEXT_TOP_LINE
	TEXT_XY_TO_OFFSET
	TLB_KILL_REQUEST_EVENTS
	TRACKING_EVENTS
	TYPE
	UNAME
	UNITS
	UPDATE
	USE_TABLE_SELECT
	VALID_ID
	VERSION

	WIDGET_LABEL
	Parent
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	DYNAMIC_RESIZE
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Widget Events Returned by Label Widgets

	WIDGET_LIST
	Parent
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	MULTIPLE
	Motif
	Windows
	Macintosh
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Widget Events Returned by List Widgets

	WIDGET_SLIDER
	Parent
	DRAG
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	MAXIMUM
	MINIMUM
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SCROLL
	SENSITIVE
	SUPPRESS_VALUE
	TRACKING_EVENTS
	TITLE
	UNAME
	UNITS
	UVALUE
	VALUE
	VERTICAL
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Slider Widget Events
	Known Implementation Problems

	WIDGET_TABLE
	Note on Table Sizing
	Parent
	ALIGNMENT
	ALL_EVENTS
	AM_PM
	COLUMN_LABELS
	COLUMN_MAJOR
	COLUMN_WIDTHS
	DAYS_OF_WEEK
	EDITABLE
	EVENT_FUNC
	EVENT_PRO
	FONT
	FORMAT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KBRD_FOCUS_EVENTS
	KILL_NOTIFY
	MONTHS
	NO_COPY
	NO_HEADERS
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESIZEABLE_COLUMNS
	RESIZEABLE_ROWS
	RESOURCE_NAME
	ROW_HEIGHTS
	ROW_LABELS
	ROW_MAJOR
	SCR_XSIZE
	SCR_YSIZE
	SCROLL
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	X_SCROLL_SIZE
	YOFFSET
	YSIZE
	Y_SCROLL_SIZE

	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Widget Events Returned by Table Widgets
	Insert Single Character (TYPE = 0)
	Insert Multiple Characters (TYPE = 1)
	Delete Text (TYPE = 2)
	Text Selection (TYPE = 3)
	Cell Selection (TYPE = 4)
	Row Height Changed (TYPE = 6)
	Column Width Changed (TYPE = 7)
	Invalid Data (TYPE = 8)
	Keyboard Focus Events

	WIDGET_TEXT
	Parent
	ALL_EVENTS
	EDITABLE
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KBRD_FOCUS_EVENTS
	KILL_NOTIFY
	NO_COPY
	NO_NEWLINE
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SCROLL
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	WRAP
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Text Widget Events
	Insert Single Character (TYPE = 0)
	Insert Multiple Characters (TYPE = 1)
	Delete Text (TYPE = 2)
	Selection (TYPE = 3)
	Keyboard Focus Events

	WINDOW
	Window_Index
	COLORS
	FREE
	PIXMAP
	RETAIN
	TITLE
	XPOS
	YPOS
	XSIZE
	YSIZE

	WRITE_BMP
	Filename
	Image
	R, G, B
	FOUR_BIT
	IHDR
	HEADER_DEFINE
	RGB

	WRITE_IMAGE
	Filename
	Format
	Data
	Red
	Green
	Blue
	APPEND

	WRITE_JPEG
	Filename
	Image
	ORDER
	PROGRESSIVE
	QUALITY
	TRUE
	UNIT

	WRITE_NRIF
	File
	Image
	R, G, B

	WRITE_PICT
	Filename
	Image
	R, G, B

	WRITE_PNG
	Filename
	Image
	R, G, B
	ORDER
	VERBOSE
	TRANSPARENT

	WRITE_PPM
	Filename
	Image
	ASCII

	WRITE_SPR
	AS
	Filename

	WRITE_SRF
	Filename
	Image
	R, G, B
	ORDER
	WRITE_32

	WRITE_SYLK
	File
	Data
	STARTCOL
	STARTROW

	WRITE_TIFF
	Filename
	Image
	Order
	APPEND
	COMPRESSION
	FLOAT
	GEOTIFF
	LONG
	PLANARCONFIG
	RED, GREEN, BLUE
	SHORT
	VERBOSE
	XRESOL
	YRESOL
	Example 1
	Example 2
	Example 3

	WRITE_WAV
	Filename
	Data
	Rate

	WRITE_WAVE
	File
	Array
	BIN
	DATANAME
	MESHNAME
	NOMESHDEF
	VECTOR

	WRITEU
	Unit
	Expri
	TRANSFER_COUNT
	REWRITE

	WSET
	Window_Index

	WSHOW
	Window_Index
	Show
	ICONIC

	WTN
	A
	Coef
	COLUMN
	DOUBLE
	INVERSE
	OVERWRITE
	IDL Output

	XBM_EDIT
	BLOCK
	FILENAME
	GROUP
	XSIZE
	YSIZE

	XDISPLAYFILE
	Filename
	BLOCK
	DONE_BUTTON
	EDITABLE
	FONT
	GROUP
	HEIGHT
	MODAL
	TEXT
	TITLE
	WIDTH
	WTEXT

	XDXF
	Filename
	BLOCK
	GROUP
	MODAL
	SCALE
	TEST
	Using XDXF
	The XDXF Toolbar
	The XDXF Information Dialog

	XFONT
	GROUP
	PRESERVE_FONT_INFO

	XINTERANIMATE
	Using XINTERANIMATE
	Rate
	SET
	BLOCK
	CYCLE
	GROUP
	MODAL
	MPEG_BITRATE
	MPEG_FILENAME
	MPEG_IFRAME_GAP
	MPEG_MOTION_VEC_LENGTH
	MPEG_OPEN
	MPEG_QUALITY
	SHOWLOAD
	TRACK
	TITLE
	FRAME
	IMAGE
	ORDER
	WINDOW
	CLOSE
	KEEP_PIXMAPS
	MPEG_CLOSE
	XOFFSET
	YOFFSET

	XLOADCT
	BLOCK
	BOTTOM
	FILE
	GROUP
	MODAL
	NCOLORS
	SILENT
	UPDATECALLBACK
	UPDATECBDATA
	USE_CURRENT

	XMANAGER
	Name
	ID
	BACKGROUND
	CATCH
	CLEANUP
	EVENT_HANDLER
	GROUP_LEADER
	JUST_REG
	NO_BLOCK
	Warning
	A Note About Blocking in XMANAGER
	JUST_REG vs. NO_BLOCK
	Blocking vs. Non-blocking Applications

	XMNG_TMPL
	BLOCK
	GROUP

	XMTOOL
	BLOCK
	GROUP

	XOBJVIEW
	Obj
	BACKGROUND
	BLOCK
	DOUBLE_VIEW
	GROUP
	MODAL
	REFRESH
	SCALE
	STATIONARY
	TLB
	TEST
	TITLE
	XSIZE
	YSIZE
	Using XOBJVIEW
	The XOBJVIEW Toolbar
	Example 1
	Example 2
	Example 3

	XPALETTE
	BLOCK
	GROUP
	UPDATECALLBACK
	UPDATECBDATA
	Using the XPALETTE Interface
	Plots on Left Side of Interface
	Status Region
	Control Panel
	Color System Control
	Right Side Color Spectrum Display

	A Note about the Colors Used in the Interface

	XPCOLOR
	GROUP

	XPLOT3D
	X
	Y
	Z
	BLOCK
	COLOR
	DOUBLE_VIEW
	GROUP
	LINESTYLE
	MODAL
	NAME
	OVERPLOT
	SYMBOL
	TEST
	THICK
	TITLE
	XRANGE
	YRANGE
	ZRANGE
	XTITLE
	YTITLE
	ZTITLE
	Using XPLOT3D
	The XPLOT3D Toolbar
	Projecting Data onto Plot “Walls”
	Changing the Axis Type

	XREGISTERED
	Name
	NOSHOW

	XROI
	ImageData
	R, G, B
	BLOCK
	FLOATING
	GROUP
	MODAL
	REGIONS_IN
	REGIONS_OUT
	REJECTED
	RENDERER
	ROI_COLOR
	ROI_GEOMETRY
	ROI_SELECT_COLOR
	STATISTICS
	TITLE
	TOOLS
	Using XROI
	The XROI Toolbar
	Importing an Image into XROI
	Changing the Image Color Table
	Changing the ROI Outline Colors
	Viewing ROI Information
	Deleting an ROI
	Example 1
	Example 2

	XSQ_TEST
	Obfreq
	Exfreq
	EXCELL
	OBCELL
	RESIDUAL
	IDL Output

	XSURFACE
	Data
	BLOCK
	GROUP

	XVAREDIT
	Var
	NAME
	GROUP
	X_SCROLL_SIZE
	Y_SCROLL_SIZE

	XVOLUME
	Vol
	BLOCK
	GROUP
	INTERPOLATE
	MODAL
	RENDERER
	REPLACE
	SCALE
	TEST
	XSIZE
	YSIZE
	Using XVOLUME
	The XVOLUME Toolbar

	The XVOLUME Interface
	Image Planes and Contours
	Volume
	Isosurface

	XVOLUME_ROTATE
	Axis
	Angle
	PREMULTIPLY

	XVOLUME_WRITE_IMAGE
	Filename
	Format
	DIMENSIONS

	XYOUTS
	X, Y
	String
	ALIGNMENT
	CHARSIZE
	CHARTHICK
	TEXT_AXES
	WIDTH
	Scaled Hardware Fonts

	ZOOM
	Using ZOOM
	Using ZOOM with Draw Widgets
	CONTINUOUS
	FACT
	INTERP
	KEEP
	NEW_WINDOW
	XSIZE
	YSIZE
	ZOOM_WINDOW

	ZOOM_24
	Using ZOOM_24
	Using ZOOM_24 with Draw Widgets
	FACT
	RIGHT
	XSIZE
	YSIZE

	IDL Object Class & Method Reference
	Using this Appendix
	Syntax
	Procedure Methods
	Function Methods

	Arguments
	Named Variables
	Keywords
	Setting Keywords

	Creating Objects from the Graphics Class Library

	IDL_Container
	Intrinsic Methods
	IDL_Container::Add
	Object
	POSITION

	IDL_Container::Cleanup
	IDL_Container::Count
	IDL_Container::Get
	ALL
	COUNT
	ISA
	POSITION

	IDL_Container::Init
	IDL_Container::IsContained
	Object
	POSITION

	IDL_Container::Move
	Source
	Destination

	IDL_Container::Remove
	Child_object
	ALL
	POSITION

	IDLanROI
	Intrinsic Methods
	IDLanROI::AppendData
	X
	Y
	Z
	XRANGE
	YRANGE
	ZRANGE

	IDLanROI::Cleanup
	IDLanROI::ComputeGeometry
	Result
	AREA
	CENTROID
	PERIMETER
	SPATIAL_OFFSET
	SPATIAL_SCALE

	IDLanROI::ComputeMask
	Result
	DIMENSIONS
	INITIALIZE
	LOCATION
	MASK_IN
	MASK_RULE
	PLANE_NORMAL
	PLANE_XAXIS

	IDLanROI::ContainsPoints
	X
	Y
	Z

	IDLanROI::GetProperty
	ALL
	N_VERTS
	ROI_XRANGE
	ROI_YRANGE
	ROI_ZRANGE

	IDLanROI::Init
	X
	Y
	Z
	BLOCK_SIZE (Get, Set)
	DATA (Get, Set)
	DOUBLE (Get, Set)
	INTERIOR (Get, Set)
	TYPE (Get)

	IDLanROI::RemoveData
	COUNT
	START
	XRANGE
	YRANGE
	ZRANGE

	IDLanROI::ReplaceData
	X
	Y
	Z
	FINISH
	START
	XRANGE
	YRANGE
	ZRANGE

	IDLanROI::Rotate
	Axis
	Angle
	CENTER

	IDLanROI::Scale
	Sx
	Sy
	Sz

	IDLanROI::SetProperty
	IDLanROI::Translate
	Tx
	Ty
	Tz

	IDLanROIGroup
	Intrinsic Methods
	Inherited Methods
	IDLanROIGroup::Add
	ROI

	IDLanROIGroup::Cleanup
	IDLanROIGroup::ComputeMask
	Result
	DIMENSIONS
	INITIALIZE
	LOCATION
	MASK_IN
	MASK_RULE
	PLANE_NORMAL
	PLANE_XAXIS

	IDLanROIGroup::ComputeMesh
	Result
	Vertices
	Conn
	CAPPED
	SURFACE_AREA

	IDLanROIGroup::ContainsPoints
	X
	Y
	Z

	IDLanROIGroup::GetProperty
	ALL
	ROIGROUP_XRANGE
	ROIGROUP_YRANGE
	ROIGROUP_ZRANGE

	IDLanROIGroup::Init
	IDLanROIGroup::Rotate
	Axis
	Angle
	CENTER

	IDLanROIGroup::Scale
	Sx
	Sy
	Sz

	IDLanROIGroup::Translate
	Tx
	Ty
	Tz

	IDLffDICOM
	IDL DICOM v3.0 Conformance Summary
	Introduction
	Reading of DICOM Part 10 files
	Encapsulated Transfer Syntaxes Supported
	Encapsulated Transfer Syntaxes NOT Supported
	Encapsulated SOP Classes Supported
	Handling of odd length data elements
	Handling of undefined VRs
	Handling of retired and private data elements

	IDLffDICOM::Cleanup
	IDLffDICOM::DumpElements
	Filename

	IDLffDICOM::GetChildren
	Reference

	IDLffDICOM::GetDescription
	Group
	Element
	REFERENCE

	IDLffDICOM::GetElement
	Group
	Element
	REFERENCE

	IDLffDICOM::GetGroup
	Group
	Element
	REFERENCE

	IDLffDICOM::GetLength
	Group
	Element
	REFERENCE

	IDLffDICOM::GetParent
	ReferenceList

	IDLffDICOM::GetPreamble
	IDLffDICOM::GetReference
	Group
	Element
	DESCRIPTION
	VR

	IDLffDICOM::GetValue
	Group
	Element
	REFERENCE
	NO_COPY
	Example 1
	Example 2

	IDLffDICOM::GetVR
	Group
	Element
	REFERENCE

	IDLffDICOM::Init
	Filename
	VERBOSE

	IDLffDICOM::Read
	Filename
	ENDIAN

	IDLffDICOM::Reset

	IDLffDXF
	Intrinsic Methods
	IDLffDXF::Cleanup
	IDLffDXF::GetContents
	Filter
	BLOCK
	COUNT
	LAYER

	IDLffDXF::GetEntity
	Type
	BLOCK
	INDEX
	LAYER

	Fields Common to all Structures
	BLOCK
	COLOR
	EXTRUSION
	LAYER
	LINESTYLE
	THICKNESS
	DXF_TYPE

	Structure Formats
	Structure IDL_DXF_ELLIPSE
	Structure IDL_DXF_POLYGON
	Structure IDL_DXF_POLYLINE
	Structure IDL_DXF_POINT
	Structure IDL_DXF_SPLINE
	Structure IDL_DXF_TXT
	Structure IDL_DXF_XLINE
	Structure IDL_DXF_INSERT
	Structure IDL_DXF_BLOCK
	Structure IDL_DXF_LAYER

	IDLffDXF::GetPalette
	Red
	Green
	Blue

	IDLffDXF::Init
	Filename

	IDLffDXF::PutEntity
	Data

	IDLffDXF::Read
	Filename

	IDLffDXF::RemoveEntity
	Type
	INDEX

	IDLffDXF::Reset
	IDLffDXF::SetPalette
	Red
	Green
	Blue

	IDLffDXF::Write
	Filename

	IDLffLanguageCat
	IDLffLanguageCat::IsValid
	IDLffLanguageCat::Query
	key
	DEFAULT_STRING

	IDLffLanguageCat::SetCatalog
	application
	FILENAME
	LOCALE
	PATH

	IDLffShape
	Intrinsic Methods
	Overview
	Naming Conventions for a Shapefile
	Major Elements of a Shapefile
	Entities
	Attributes

	Accessing Shapefiles
	Creating New Shapefiles
	Updating Existing Shapefiles
	IDLffShape::AddAttribute
	Name
	Type
	Width
	PRECISION

	IDLffShape::Cleanup
	IDLffShape::Close
	IDLffShape::DestroyEntity
	Entity

	IDLffShape::GetAttributes
	Index
	ALL
	ATTRIBUTE_STUCTURE

	IDLffShape::GetEntity
	Index
	ALL
	ATTRIBUTES

	IDLffShape::GetProperty
	N_ENTITIES
	ENTITY_TYPE
	N_ATTRIBUTES
	ATTRIBUTE_NAMES
	ATTRIBUTE_INFO

	IDLffShape::Init
	Filename
	UPDATE
	ENTITY_TYPE

	IDLffShape::Open
	Filename
	UPDATE
	ENTITY_TYPE

	IDLffShape::PutEntity
	Data

	IDLffShape::SetAttributes
	Index
	Attribute_Num
	Value
	Attributes

	IDLgrAxis
	Intrinsic Methods
	IDLgrAxis::Cleanup
	IDLgrAxis::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrAxis::GetProperty
	ALL
	CRANGE
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrAxis::Init
	Direction
	AM_PM (Get, Set)
	COLOR (Get, Set)
	DAYS_OF_WEEK (Get, Set)
	DIRECTION (Get, Set)
	EXACT (Get, Set)
	EXTEND (Get, Set)
	GRIDSTYLE (Get, Set)
	HIDE (Get, Set)
	LOCATION (Get, Set)
	LOG (Get, Set)
	MAJOR (Get, Set)
	MINOR (Get, Set)
	MONTHS (Get, Set)
	NAME (Get, Set)
	NOTEXT (Get, Set)
	PALETTE
	RANGE (Get, Set)
	SUBTICKLEN (Get, Set)
	TEXTALIGNMENTS (Get, Set)
	TEXTBASELINE (Get, Set)
	TEXTPOS (Get, Set)
	TEXTUPDIR (Get,Set)
	THICK (Get, Set)
	TICKDIR (Get, Set)
	TICKFORMAT (Get, Set)
	If TICKUNITS are not specified:
	If TICKUNITS are specified:
	TICKFRMTDATA (Get, Set)
	TICKINTERVAL (Get, Set)
	TICKLAYOUT (Get, Set)
	TICKLEN (Get, Set)
	TICKTEXT (Get, Set)
	TICKUNITS (Get, Set)
	TICKVALUES (Get, Set)
	TITLE (Get, Set)
	USE_TEXT_COLOR (Get, Set)
	UVALUE (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrAxis::SetProperty

	IDLgrBuffer
	Intrinsic Methods
	IDLgrBuffer::Cleanup
	IDLgrBuffer::Draw
	Picture
	CREATE_INSTANCE
	DRAW_INSTANCE

	IDLgrBuffer::Erase
	COLOR

	IDLgrBuffer::GetContiguousPixels
	IDLgrBuffer::GetDeviceInfo
	ALL
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrBuffer::GetFontnames
	FamilyName
	IDL_FONTS
	STYLES

	IDLgrBuffer::GetProperty
	ALL
	IMAGE_DATA
	SCREEN_DIMENSIONS
	ZBUFFER_DATA

	IDLgrBuffer::GetTextDimensions
	TextObj
	DESCENT
	PATH

	IDLgrBuffer::Init
	COLOR_MODEL (Get)
	DIMENSIONS (Get, Set)
	GRAPHICS_TREE (Get, Set)
	N_COLORS (Get)
	PALETTE (Get, Set)
	QUALITY (Get, Set)
	RESOLUTION (Get, Set)
	UNITS (Get, Set)
	UVALUE (Get, Set)

	IDLgrBuffer::PickData
	View
	Object
	Location
	XYZLocation
	PATH

	IDLgrBuffer::Read
	IDLgrBuffer::Select
	Picture
	XY
	DIMENSIONS
	UNITS

	IDLgrBuffer::SetProperty

	IDLgrClipboard
	Intrinsic Methods
	IDLgrClipboard::Cleanup
	IDLgrClipboard::Draw
	Picture
	FILENAME
	POSTSCRIPT
	VECTOR

	IDLgrClipboard::GetContiguousPixels
	IDLgrClipboard::GetDeviceInfo
	ALL
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrClipboard::GetFontnames
	FamilyName
	IDL_FONTS
	STYLES

	IDLgrClipboard::GetProperty
	ALL
	SCREEN_DIMENSIONS

	IDLgrClipboard::GetTextDimensions
	TextObj
	DESCENT
	PATH

	IDLgrClipboard::Init
	COLOR_MODEL (Get)
	DIMENSIONS (Get, Set)
	GRAPHICS_TREE (Get, Set)
	N_COLORS (Get)
	PALETTE (Get, Set)
	QUALITY (Get, Set)
	RESOLUTION (Get, Set)
	UNITS (Get, Set)
	UVALUE (Get, Set)

	IDLgrClipboard::SetProperty

	IDLgrColorbar
	Intrinsic Methods
	Inherited Methods
	IDLgrColorbar::Cleanup
	IDLgrColorbar::ComputeDimensions
	DestinationObject
	PATH

	IDLgrColorbar::GetProperty
	ALL
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrColorbar::Init
	aRed
	aGreen
	aBlue
	BLUE_VALUES (Get, Set)
	COLOR (Get, Set)
	DIMENSIONS (Get, Set)
	GREEN_VALUES (Get, Set)
	HIDE (Get, Set)
	MAJOR (Get, Set)
	MINOR (Get, Set)
	NAME (Get, Set)
	PALETTE (Get, Set)
	RED_VALUES (Get, Set)
	SHOW_AXIS (Get, Set)
	SHOW_OUTLINE (Get, Set)
	SUBTICKLEN (Get, Set)
	THICK (Get, Set)
	THREED (Get)
	TICKFORMAT (Get, Set)
	TICKFRMTDATA (Get, Set)
	TICKLEN (Get, Set)
	TICKTEXT (Get, Set)
	TICKVALUES (Get, Set)
	TITLE (Get, Set)
	UVALUE (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrColorbar::SetProperty

	IDLgrContour
	Intrinsic Methods
	IDLgrContour::Cleanup
	IDLgrContour::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrContour::GetProperty
	ALL
	GEOM
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrContour::Init
	Values
	ANISOTROPY (Get, Set)
	C_COLOR (Get, Set)
	C_FILL_PATTERN (Get, Set)
	C_LINESTYLE (Get, Set)
	C_THICK (Get, Set)
	C_VALUE (Get, Set)
	COLOR (Get, Set)
	DATA_VALUES (Get, Set)
	DOUBLE_DATA (Get, Set)
	DOUBLE_GEOM (Get, Set)
	DOWNHILL (Get, Set)
	FILL (Get, Set)
	GEOMX (Set)
	GEOMY (Set)
	GEOMZ (Set)
	HIDE (Get, Set)
	MAX_VALUE (Get, Set)
	MIN_VALUE (Get, Set)
	NAME (Get, Set)
	N_LEVELS (Get, Set)
	PALETTE
	PLANAR (Get, Set)
	POLYGONS (Get, Set)
	SHADE_RANGE (Get, Set)
	SHADING (Get, Set)
	TICKINTERVAL (Get, Set)
	TICKLEN (Get, Set)
	UVALUE (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrContour::SetProperty

	IDLgrFont
	Intrinsic Methods
	IDLgrFont::Cleanup
	IDLgrFont::GetProperty
	ALL

	IDLgrFont::Init
	Fontname
	NAME (Get, Set)
	SIZE (Get, Set)
	SUBSTITUTE (Get, Set)
	THICK (Get, Set)
	UVALUE (Get, Set)

	IDLgrFont::SetProperty

	IDLgrImage
	Intrinsic Methods
	IDLgrImage::Cleanup
	IDLgrImage::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrImage::GetProperty
	ALL
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrImage::Init
	ImageData
	BLEND_FUNCTION (Get, Set)
	CHANNEL (Get, Set)
	DATA (Get, Set)
	DIMENSIONS (Get, Set)
	GREYSCALE (Get, Set)
	HIDE (Get, Set)
	INTERLEAVE (Get, Set)
	INTERPOLATE (Get, Set)
	LOCATION (Get, Set)
	NAME (Get, Set)
	NO_COPY (Get, Set)
	ORDER (Get, Set)
	PALETTE (Get, Set)
	RESET_DATA (Set)
	SHARE_DATA (Set)
	SUB_RECT (Get, Set)
	UVALUE (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrImage::SetProperty

	IDLgrLegend
	Intrinsic Methods
	Inherited Methods
	IDLgrLegend::Cleanup
	IDLgrLegend::ComputeDimensions
	DestinationObject
	PATH

	IDLgrLegend::GetProperty
	ALL
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrLegend::Init
	aItemNames
	BORDER_GAP (Get, Set)
	COLUMNS (Get, Set)
	FILL_COLOR (Get, Set)
	FONT (Get, Set)
	GAP (Get, Set)
	GLYPH_WIDTH (Get, Set)
	HIDE (Get, Set)
	ITEM_COLOR (Get, Set)
	ITEM_LINESTYLE (Get, Set)
	ITEM_NAME (Get, Set)
	ITEM_OBJECT (Get, Set)
	ITEM_THICK (Get, Set)
	ITEM_TYPE (Get, Set)
	NAME (Get, Set)
	OUTLINE_COLOR (Get, Set)
	OUTLINE_THICK (Get, Set)
	SHOW_FILL (Get, Set)
	SHOW_OUTLINE (Get, Set)
	TEXT_COLOR (Get, Set)
	TITLE (Get, Set)
	UVALUE (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrLegend::SetProperty
	RECOMPUTE

	IDLgrLight
	Intrinsic Methods
	IDLgrLight::Cleanup
	IDLgrLight::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrLight::GetProperty
	ALL
	PARENT

	IDLgrLight::Init
	ATTENUATION (Get, Set)
	COLOR (Get, Set)
	CONEANGLE (Get, Set)
	DIRECTION (Get, Set)
	FOCUS (Get, Set)
	HIDE (Get, Set)
	INTENSITY (Get, Set)
	LOCATION (Get, Set)
	NAME (Get, Set)
	TYPE (Get, Set)
	UVALUE (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrLight::SetProperty

	IDLgrModel
	Intrinsic Methods
	Inherited Methods
	IDLgrModel::Add
	Object
	ALIAS
	POSITION

	IDLgrModel::Cleanup
	IDLgrModel::Draw
	Destination
	Picture

	IDLgrModel::GetByName
	Name

	IDLgrModel::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrModel::GetProperty
	ALL
	PARENT

	IDLgrModel::Init
	HIDE (Get, Set)
	LIGHTING (Get, Set)
	NAME (Get, Set)
	SELECT_TARGET (Get, Set)
	TRANSFORM (Get, Set)
	UVALUE (Get, Set)

	IDLgrModel::Reset
	IDLgrModel::Rotate
	Axis
	Angle
	PREMULTIPLY

	IDLgrModel::Scale
	Sx, Sy, Sz
	PREMULTIPLY

	IDLgrModel::SetProperty
	IDLgrModel::Translate
	Tx, Ty, Tz
	PREMULTIPLY

	IDLgrMPEG
	Subclasses
	Intrinsic Methods

	IDLgrMPEG::Cleanup
	IDLgrMPEG::GetProperty
	ALL

	IDLgrMPEG::Init
	BITRATE (Get, Set)
	DIMENSIONS (Get, Set)
	FILENAME (Get, Set)
	FORMAT (Get, Set)
	FRAME_RATE (Get, Set)
	IFRAME_GAP (Get, Set)
	INTERLACED (Get, Set)
	MOTION_VEC_LENGTH (Get, Set)
	QUALITY (Get, Set)
	SCALE (Get, Set)
	STATISTICS (Get, Set)
	TEMP_DIRECTORY

	IDLgrMPEG::Put
	Image
	Frame

	IDLgrMPEG::Save
	CREATOR_TYPE
	FILENAME

	IDLgrMPEG::SetProperty

	IDLgrPalette
	Intrinsic Methods
	IDLgrPalette::Cleanup
	IDLgrPalette::GetRGB
	Index

	IDLgrPalette::GetProperty
	ALL
	N_COLORS

	IDLgrPalette::Init
	aRed
	aGreen
	aBlue
	BLUE_VALUES (Get, Set)
	BOTTOM_STRETCH (Get, Set)
	GAMMA (Get, Set)
	GREEN_VALUES (Get, Set)
	NAME (Get, Set)
	RED_VALUES (Get, Set)
	TOP_STRETCH (Get, Set)
	UVALUE (Get, Set)

	IDLgrPalette::LoadCT
	TableNum
	FILE

	IDLgrPalette::NearestColor
	Red
	Green
	Blue

	IDLgrPalette::SetRGB
	Index
	Red
	Green
	Blue

	IDLgrPalette::SetProperty

	IDLgrPattern
	Intrinsic Methods
	IDLgrPattern::Cleanup
	IDLgrPattern::GetProperty
	ALL

	IDLgrPattern::Init
	Style
	ORIENTATION (Get, Set)
	NAME (Get, Set)
	PATTERN (Get, Set)
	SPACING (Get, Set)
	STYLE (Get, Set)
	THICK
	UVALUE (Get, Set)

	IDLgrPattern:SetProperty

	IDLgrPlot
	Intrinsic Methods
	IDLgrPlot::Cleanup
	IDLgrPlot::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrPlot::GetProperty
	ALL
	DATA
	PARENT
	ZRANGE

	IDLgrPlot::Init
	X
	Y
	COLOR (Get, Set)
	DATAX (Set)
	DATAY (Set)
	DOUBLE (Get, Set)
	HIDE (Get, Set)
	HISTOGRAM (Get, Set)
	LINESTYLE (Get, Set)
	MAX_VALUE (Get, Set)
	MIN_VALUE (Get, Set)
	NAME (Get, Set)
	NSUM (Get, Set)
	PALETTE (Get, Set)
	POLAR (Get, Set)
	RESET_DATA (Set)
	SHARE_DATA (Set)
	SYMBOL (Get, Set)
	THICK (Get, Set)
	USE_ZVALUE
	UVALUE (Get, Set)
	VERT_COLORS (Get, Set)
	XCOORD_CONV (Get, Set)
	XRANGE (Get, Set)
	YCOORD_CONV (Get, Set)
	YRANGE (Get, Set)
	ZCOORD_CONV (Get, Set)
	ZVALUE (Get, Set)

	IDLgrPlot::SetProperty

	IDLgrPolygon
	Intrinsic Methods
	IDLgrPolygon::Cleanup
	IDLgrPolygon::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrPolygon::GetProperty
	ALL
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrPolygon::Init
	X
	Y
	Z
	BOTTOM (Get, Set)
	COLOR (Get, Set)
	DATA (Get, Set)
	DOUBLE (Get, Set)
	FILL_PATTERN (Get, Set)
	HIDDEN_LINES
	HIDE (Get, Set)
	LINESTYLE (Get, Set)
	NAME (Get, Set)
	NORMALS (Get, Set)
	PALETTE
	POLYGONS (Get, Set)
	REJECT (Get, Set)
	RESET_DATA (Set)
	SHADE_RANGE (Get, Set)
	SHADING (Get, Set)
	SHARE_DATA (Set)
	STYLE (Get, Set)
	TEXTURE_COORD (Get, Set)
	TEXTURE_INTERP (Get, Set)
	TEXTURE_MAP (Get, Set)
	THICK (Get, Set)
	VERT_COLORS (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)
	ZERO_OPACITY_SKIP (Get, Set)

	IDLgrPolygon::SetProperty

	IDLgrPolyline
	Subclasses
	Intrinsic Methods

	IDLgrPolyline::Cleanup
	IDLgrPolyline::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrPolyline::GetProperty
	ALL
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrPolyline::Init
	X
	Y
	Z
	COLOR (Get, Set)
	DATA (Get, Set)
	DOUBLE (Get, Set)
	HIDE (Get, Set)
	LINESTYLE (Get, Set)
	NAME (Get, Set)
	PALETTE (Get, Set)
	POLYLINES (Get, Set)
	RESET_DATA (Set)
	SHADING (Get, Set)
	SHARE_DATA (Set)
	SYMBOL (Get, Set)
	THICK (Get, Set)
	UVALUE (Get, Set)
	VERT_COLORS (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrPolyline::SetProperty

	IDLgrPrinter
	Intrinsic Methods
	IDLgrPrinter::Cleanup
	IDLgrPrinter::Draw
	Picture
	VECTOR

	IDLgrPrinter::GetContiguousPixels
	IDLgrPrinter::GetFontnames
	FamilyName
	IDL_FONTS
	STYLES

	IDLgrPrinter::GetProperty
	ALL
	DIMENSIONS
	NAME
	RESOLUTION

	IDLgrPrinter::GetTextDimensions
	TextObj
	DESCENT
	PATH

	IDLgrPrinter::Init
	COLOR_MODEL (Get)
	GRAPHICS_TREE (Get, Set)
	LANDSCAPE (Get, Set)
	N_COLORS (Get)
	N_COPIES (Get, Set)
	PALETTE (Get, Set)
	PRINT_QUALITY (Get, Set)
	QUALITY (Get, Set)
	UNITS (Get, Set)
	UVALUE (Get, Set)

	IDLgrPrinter::NewDocument
	IDLgrPrinter::NewPage
	IDLgrPrinter::SetProperty

	IDLgrROI
	Intrinsic Methods
	Inherited Methods
	IDLgrROI::Cleanup
	IDLgrROI::GetProperty
	ALL
	XRANGE
	YRANGE
	ZRANGE

	IDLgrROI::Init
	X
	Y
	Z
	COLOR (Get, Set)
	DOUBLE (Get, Set)
	HIDE (Get, Set)
	LINESTYLE (Get, Set)
	NAME (Get, Set)
	PALETTE (Get, Set)
	STYLE (Get, Set)
	SYMBOL (Get, Set)
	THICK (Get, Set)
	UVALUE (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrROI::PickVertex
	Result
	Dest
	View
	Point
	PATH

	IDLgrROI::SetProperty

	IDLgrROIGroup
	Intrinsic Methods
	Inherited Methods
	IDLgrROIGroup::Add
	ROI

	IDLgrROIGroup::Cleanup
	IDLgrROIGroup::GetProperty
	ALL
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrROIGroup::Init
	COLOR (Get, Set)
	HIDE (Get, Set)
	NAME (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrROIGroup::PickRegion
	Result
	Dest
	View
	Point
	PATH

	IDLgrROIGroup::SetProperty

	IDLgrScene
	Intrinsic Methods
	Inherited Methods
	IDLgrScene::Add
	View
	POSITION

	IDLgrScene::Cleanup
	IDLgrScene::GetByName
	Name

	IDLgrScene::GetProperty
	ALL

	IDLgrScene::Init
	HIDE
	COLOR (Get, Set)
	NAME
	TRANSPARENT (Get, Set)
	UVALUE (Get, Set)

	IDLgrScene::SetProperty

	IDLgrSurface
	Intrinsic Methods
	IDLgrSurface::Cleanup
	IDLgrSurface::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrSurface::GetProperty
	ALL
	DATA
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrSurface::Init
	X
	Y
	Z
	BOTTOM (Get, Set)
	COLOR (Get, Set)
	DATAX (Set)
	DATAY (Set)
	DATAZ (Set)
	DOUBLE (Get, Set)
	EXTENDED_LEGO (Get, Set)
	HIDDEN_LINES (Get, Set)
	HIDE (Get, Set)
	LINESTYLE (Get, Set)
	MAX_VALUE (Get, Set)
	MIN_VALUE (Get, Set)
	NAME (Get, Set)
	PALETTE (Get, Set)
	RESET_DATA (Set)
	SHADE_RANGE (Get, Set)
	SHADING (Get, Set)
	SHARE_DATA (Set)
	SHOW_SKIRT (Get, Set)
	SKIRT (Get, Set)
	STYLE (Get, Set)
	TEXTURE_COORD (Get, Set)
	TEXTURE_INTERP (Get, Set)
	TEXTURE_MAP (Get, Set)
	THICK (Get, Set)
	UVALUE (Get, Set)
	USE_TRIANGLES (Get, Set)
	VERT_COLORS (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)
	ZERO_OPACITY_SKIP (Get, Set)

	IDLgrSurface::SetProperty

	IDLgrSymbol
	Intrinsic Methods
	IDLgrSymbol::Cleanup
	IDLgrSymbol::GetProperty
	ALL

	IDLgrSymbol::Init
	Data
	COLOR (Get, Set)
	DATA (Get, Set)
	NAME (Get, Set)
	SIZE (Get, Set)
	THICK (Get, Set)
	UVALUE (Get, Set)

	IDLgrSymbol::SetProperty

	IDLgrTessellator
	Intrinsic Methods
	IDLgrTessellator::AddPolygon
	X
	Y
	Z
	POLYGON (Get, Set)
	INTERIOR

	IDLgrTessellator::Cleanup
	IDLgrTessellator::Init
	IDLgrTessellator::Reset
	IDLgrTessellator::Tessellate
	Vertices
	Poly
	QUIET

	IDLgrText
	Intrinsic Methods
	PALETTE
	IDLgrText::Cleanup
	IDLgrText::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrText::GetProperty
	ALL
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrText::Init
	String
	ALIGNMENT (Get, Set)
	BASELINE (Get, Set)
	CHAR_DIMENSIONS (Get, Set)
	COLOR (Get, Set)
	ENABLE_FORMATTING (Get, Set)
	FONT (Get, Set)
	HIDE (Get, Set)
	LOCATIONS (Get, Set)
	NAME (Get, Set)
	ONGLASS (Get, Set)
	PALETTE (Get, Set)
	RECOMPUTE_DIMENSIONS (Get, Set)
	STRINGS (Get, Set)
	UPDIR (Get, Set)
	UVALUE (Get, Set)
	VERTICAL_ALIGNMENT (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrText::SetProperty

	IDLgrView
	Intrinsic Methods
	Inherited Methods
	IDLgrView::Add
	Model
	POSITION

	IDLgrView::Cleanup
	IDLgrView::GetByName
	Name

	IDLgrView::GetProperty
	ALL
	PARENT

	IDLgrView::Init
	COLOR (Get, Set)
	DEPTH_CUE (Get, Set)
	DIMENSIONS (Get, Set)
	DOUBLE (Get, Set)
	EYE (Get, Set)
	LOCATION (Get, Set)
	PROJECTION (Get, Set)
	TRANSPARENT (Get, Set)
	UNITS (Get, Set)
	UVALUE (Get, Set)
	VIEWPLANE_RECT (Get, Set)
	ZCLIP (Get, Set)

	IDLgrView::SetProperty

	IDLgrViewgroup
	Intrinsic Methods
	Inherited Methods
	IDLgrViewgroup::Add
	Object
	POSITION

	IDLgrViewgroup::Cleanup
	IDLgrViewgroup::GetByName
	Name

	IDLgrViewgroup::GetProperty
	ALL
	PARENT

	IDLgrViewgroup::Init
	HIDE (Get, Set)
	NAME (Get, Set)
	UVALUE (Get, Set)

	IDLgrViewgroup::SetProperty

	IDLgrVolume
	Intrinsic Methods
	IDLgrVolume::Cleanup
	IDLgrVolume::ComputeBounds
	OPACITY
	RESET
	VOLUMES

	IDLgrVolume::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrVolume::GetProperty
	ALL
	PARENT
	VALID_DATA
	XRANGE
	YRANGE
	ZRANGE

	IDLgrVolume::Init
	vol0
	vol1
	vol2
	vol3
	AMBIENT (Get, Set)
	BOUNDS (Get, Set)
	COMPOSITE_FUNCTION (Get, Set)
	CUTTING_PLANES (Get, Set)
	DATA0 (Get, Set)
	DATA1 (Get, Set)
	DATA2 (Get, Set)
	DATA3 (Get, Set)
	DEPTH_CUE (Get, Set)
	HIDE (Get, Set)
	HINTS (Get, Set)
	INTERPOLATE (Get, Set)
	LIGHTING_MODEL (Get, Set)
	NAME (Get, Set)
	NO_COPY (Get, Set)
	OPACITY_TABLE0 (Get, Set)
	OPACITY_TABLE1 (Get, Set)
	RENDER_STEP (Get, Set)
	RGB_TABLE0 (Get, Set)
	RGB_TABLE1 (Get, Set)
	TWO_SIDED (Get, Set)
	UVALUE (Get, Set)
	VOLUME_SELECT (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZBUFFER (Get, Set)
	ZCOORD_CONV (Get, Set)
	ZERO_OPACITY_SKIP (Get, Set)

	IDLgrVolume::PickVoxel
	Win
	View
	Point
	PATH

	IDLgrVolume::SetProperty

	IDLgrVRML
	IDLgrImage objects
	IDLgrPolygon and IDLgrSurface objects
	IDLgrLight objects
	IDLgrText objects
	IDLgrViewgroup, IDLgrScene, IDLgrVolume objects
	IDLgrPalette objects
	IDLgrPattern objects
	IDLgrFont, IDLgrSymbol objects
	IDLgrPolyline, IDLgrSymbol, IDLgrSurface, IDLgrPolygon and IDLgrPlot objects
	IDLgrView objects
	Destination objects
	Intrinsic Methods
	IDLgrVRML::Cleanup
	IDLgrVRML::Draw
	Picture

	IDLgrVRML::GetDeviceInfo
	ALL
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrVRML::GetFontnames
	FamilyName
	IDL_FONTS
	STYLES

	IDLgrVRML::GetProperty
	ALL
	SCREEN_DIMENSIONS

	IDLgrVRML::GetTextDimensions
	TextObj
	DESCENT
	PATH

	IDLgrVRML::Init
	COLOR_MODEL (Get)
	DIMENSIONS (Get, Set)
	FILENAME (Get, Set)
	GRAPHICS_TREE (Get, Set)
	N_COLORS (Get)
	PALETTE (Get, Set)
	QUALITY (Get, Set)
	RESOLUTION (Get, Set)
	UNITS (Get, Set)
	UVALUE (Get, Set)
	WORLDINFO
	WOLRDTITLE

	IDLgrVRML::SetProperty

	IDLgrWindow
	Intrinsic Methods
	IDLgrWindow::Cleanup
	IDLgrWindow::Draw
	Picture
	CREATE_INSTANCE
	DRAW_INSTANCE

	IDLgrWindow::Erase
	COLOR

	IDLgrWindow::GetContiguousPixels
	IDLgrWindow::GetDeviceInfo
	ALL
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrWindow::GetFontnames
	FamilyName
	IDL_FONTS
	STYLES

	IDLgrWindow::GetProperty
	ALL
	IMAGE_DATA
	RESOLUTION
	SCREEN_DIMENSIONS
	ZBUFFER_DATA

	IDLgrWindow::GetTextDimensions
	TextObj
	DESCENT
	PATH

	IDLgrWindow::Iconify
	IconFlag

	IDLgrWindow::Init
	COLOR_MODEL (Get)
	DIMENSIONS (Get, Set)
	DISPLAY_NAME (Get) (X Only)
	GRAPHICS_TREE (Get, Set)
	LOCATION (Get, Set)
	N_COLORS (Get)
	PALETTE (Get, Set)
	QUALITY (Get, Set)
	RENDERER (Get)
	RETAIN (Get)
	TITLE (Get, Set)
	UNITS (Get, Set)
	UVALUE (Get, Set)

	IDLgrWindow::Pickdata
	View
	Object
	Location
	XYZLocation
	PATH

	IDLgrWindow::Read
	IDLgrWindow::Select
	Picture
	XY
	DIMENSIONS
	UNITS

	IDLgrWindow::SetCurrentCursor
	CursorName
	IMAGE
	MASK
	HOTSPOT
	STANDARD (X Only)

	IDLgrWindow::SetProperty
	IDLgrWindow::Show
	Position

	TrackBall
	Intrinsic Methods
	TrackBall::Init
	Center
	Radius
	AXIS
	CONSTRAIN
	MOUSE

	Trackball::Reset
	Center
	Radius
	AXIS
	CONSTRAIN
	MOUSE

	TrackBall::Update
	sEvent
	MOUSE
	TRANSFORM
	TRANSLATE

	IDL Graphics Devices
	Supported Devices
	Keywords Accepted by the IDL Devices
	AVANTGARDE
	AVERAGE_LINES
	BINARY
	BITS_PER_PIXEL
	BKMAN
	BOLD
	BOOK
	BYPASS_TRANSLATION
	CLOSE
	CLOSE_DOCUMENT
	CLOSE_FILE
	COLOR
	COLORS
	For Tektronix Terminals Only
	COPY
	COURIER
	CURSOR_CROSSHAIR
	CURSOR_IMAGE
	CURSOR_MASK
	CURSOR_ORIGINAL
	CURSOR_STANDARD
	For X Windows
	For Microsoft Windows
	For Macintosh
	CURSOR_XY
	DECOMPOSED
	DEMI
	DEPTH
	DIRECT_COLOR
	EJECT
	ENCAPSULATED
	ENCODING
	FILENAME
	HP-GL Only
	FLOYD
	FONT
	FONT_INDEX
	FONT_SIZE
	GET_CURRENT_FONT
	GET_DECOMPOSED
	GET_FONTNAMES
	GET_FONTNUM
	GET_GRAPHICS_FUNCTION
	GET_PAGE_SIZE
	GET_SCREEN_SIZE
	GET_VISUAL_DEPTH
	GET_VISUAL_NAME
	GET_WINDOW_POSITION
	GET_WRITE_MASK
	GIN_CHARS
	GLYPH_CACHE
	HELVETICA
	INCHES
	INDEX_COLOR
	ISOLATIN1
	ITALIC
	LANDSCAPE
	LIGHT
	MEDIUM
	NARROW
	NCAR
	The NCAR Binary Encoding
	OBLIQUE
	OPTIMIZE
	ORDERED
	Macintosh Only
	OUTPUT
	PALATINO
	PIXELS
	PLOT_TO
	PLOTTER_ON_OFF
	POLYFILL
	PORTRAIT
	PRE_DEPTH
	PRE_XSIZE
	PRE_YSIZE
	PREVIEW
	A Note About Preview Dimensions
	PRINT_FILE
	PSEUDO_COLOR
	Macintosh Only
	RESET_STRING
	RESOLUTION
	PCL Only
	LJ250 Only
	RETAIN
	Microsoft Windows Only
	A Note on Reading Data from Windows
	SCALE_FACTOR
	SCHOOLBOOK
	SET_CHARACTER_SIZE
	SET_COLORMAP
	SET_COLORS
	SET_FONT
	Note on the FONT Keyword
	Using TrueType Fonts
	Using Hardware Fonts
	UNIX and VMS
	Microsoft Windows
	Macintosh
	SET_GRAPHICS_FUNCTION
	SET_RESOLUTION
	SET_STRING
	SET_TRANSLATION
	SET_WRITE_MASK
	STATIC_COLOR
	STATIC_GRAY
	SYMBOL
	TEK4014
	TEK4100
	TEXT
	THRESHOLD
	Macintosh Only
	TIMES
	TRANSLATION
	Microsoft Windows Only
	TRUE_COLOR
	Macintosh Only
	TT_FONT
	TTY
	USER_FONT
	VT240, VT241
	VT340, VT341
	WINDOW_STATE
	XOFFSET
	PostScript Only
	XON_XOFF
	XSIZE
	PostScript Only
	YOFFSET
	PostScript Only
	YSIZE
	PostScript Only
	LJ250 Only
	ZAPFCHANCERY
	ZAPFDINGBATS
	Z_BUFFERING

	Window Systems
	Backing Store
	A Note on Reading Data from Windows

	Image Display On Monochrome Devices

	Printing Graphics Output Files
	Setting Up The Printer
	Setting Up Printers Under UNIX
	Setting Up Printers Under VMS

	Positioning Graphics Output
	Image Background Color

	The CGM Device
	Device Keywords Accepted by the CGM Device:
	Abilities and Limitations

	The HP-GL Device
	Device Keywords Accepted by the HP-GL Device:
	Abilities And Limitations
	HP-GL Linestyles

	The LJ Device
	Device Keywords Accepted by the LJ Device:
	LJ Driver Strengths
	LJ Driver Limitations
	LJ Suggestions

	The Macintosh Display Device
	Device Keywords Accepted by the MAC Device:

	The Metafile Display Device
	Device Keywords Accepted by the Null Device:

	The Null Display Device
	Device Keywords Accepted by the Null Device:

	The PCL Device
	Device Keywords Accepted by the PCL Device:

	The Printer Device
	Device Keywords Accepted by the PRINTER Device:

	The PostScript Device
	Device Keywords Accepted by the PS Device:
	Using PostScript Fonts
	Color PostScript
	Color Images
	TrueColor Images
	Image Background Color

	PostScript Positioning
	Using the XOFFSET and YOFFSET Keywords
	Encapsulated PostScript Output
	Multiple Plots on the Same Page

	Importing IDL Plots into Other Documents

	The Regis Terminal Device
	Device Keywords Accepted by the REGIS Device:
	Defaults for Regis Devices
	Regis Limitations

	The Tektronix Device
	Device Keywords Accepted by the REGIS Device:
	The DEVICE Procedure For Tektronix Terminals
	Tektronix Limitations
	Tektronix Device Limitations

	The Microsoft Windows Device
	Device Keywords Accepted by the WIN Device:

	The X Windows Device
	Device Keywords Accepted by the X Device:
	X Windows Visuals
	How IDL Selects a Visual Class
	How IDL Obtains a Colormap

	Using Color Under X
	Shared Colormaps
	Private Colormaps
	Static Colormaps
	Color Translation

	Using Pixmaps
	Setting the X Window Defaults

	The Z-Buffer Device
	Device Keywords Accepted by the Z Device:
	Reading and Writing Buffers
	Z-Axis Scaling
	Polyfill Procedure
	Examples Using the Z-Buffer

	Graphics Keywords
	BACKGROUND
	CHANNEL
	CHARSIZE
	CHARTHICK
	CLIP
	COLOR
	DATA
	DEVICE
	FONT
	LINESTYLE
	NOCLIP
	NODATA
	NOERASE
	NORMAL
	ORIENTATION
	POSITION
	PSYM
	SUBTITLE
	SYMSIZE
	T3D
	THICK
	TICKLEN
	TITLE
	[XYZ]CHARSIZE
	[XYZ]GRIDSTYLE
	[XYZ]MARGIN
	[XYZ]MINOR
	[XYZ]RANGE
	[XYZ]STYLE
	[XYZ]THICK
	[XYZ]TICK_GET
	[XYZ]TICKFORMAT
	A format code:
	The string 'LABEL_DATE' :
	The name of a user-defined function:

	[XYZ]TICKINTERVAL
	[XYZ]TICKLAYOUT
	[XYZ]TICKLEN
	[XYZ]TICKNAME
	[XYZ]TICKS
	[XYZ]TICKUNITS
	[XYZ]TICKV
	[XYZ]TITLE
	Z
	ZVALUE

	System Variables
	What Are System Variables?
	Constant System Variables
	!DPI
	!DTOR
	!MAP
	!PI
	!RADEG
	!VALUES

	Error Handling System Variables
	!ERR
	!ERROR_STATE
	!ERROR
	!ERR_STRING
	!EXCEPT
	!MOUSE
	!MSG_PREFIX
	!SYSERROR
	!SYSERR_STRING
	!WARN

	IDL Environment System Variables
	!DIR
	!DLM_PATH
	!EDIT_INPUT
	!HELP_PATH
	!JOURNAL
	!MAKE_DLL
	!MORE
	!PATH
	UNIX
	VMS
	Windows
	Macintosh
	A Note on Order within !PATH

	!PROMPT
	!QUIET
	!VERSION

	Graphics System Variables
	!C System Variable
	!D System Variable
	FILL_DIST
	FLAGS
	N_COLORS
	NAME
	ORIGIN
	TABLE_SIZE
	UNIT
	WINDOW
	X_CH_SIZE, Y_CH_SIZE
	X_PX_CM, Y_PX_CM
	X_SIZE, Y_SIZE
	X_VSIZE, Y_VSIZE
	ZOOM

	!ORDER System Variable
	!P System Variable
	BACKGROUND
	CHANNEL
	CHARSIZE
	CHARTHICK
	CLIP
	COLOR
	FONT
	LINESTYLE
	MULTI
	NOCLIP
	NOERASE
	NSUM
	POSITION
	PSYM
	REGION
	SUBTITLE
	T
	T3D
	THICK
	TITLE
	TICKLEN

	!X, !Y, !Z System Variables
	CHARSIZE
	CRANGE
	GRIDSTYLE
	MARGIN
	MINOR
	OMARGIN
	RANGE
	REGION
	S
	STYLE
	THICK
	TICKFORMAT
	TICKINTERVAL
	TICKLAYOUT
	TICKLEN
	TICKNAME
	TICKS
	TICKUNITS
	TICKV
	TITLE
	TYPE
	WINDOW

	IDL Operators
	Mathematical Operators
	Minimum and Maximum Operators
	Matrix Operators
	Boolean Operators
	Relational Operators
	Other Operators
	Operator Precedence

	Special Characters
	Exclamation Point (!)
	Apostrophe (')
	Semicolon (;)
	Dollar Sign ($)
	Quotation Mark (")
	Period (.)
	Ampersand (&)
	Colon (:)
	Asterisk (*)
	At Sign (@)
	@ as an Include Character
	@ to Signal Batch Processing

	Question Mark (?)

	Reserved Words
	Fonts
	Overview
	Fonts in IDL Direct vs. Object Graphics
	IDL Direct Graphics
	IDL Object Graphics

	About Vector Fonts
	Using Vector Fonts
	Specifying Font Size
	ISO Latin 1 Encoding
	Customizing the Vector Fonts

	About TrueType Fonts
	Using TrueType Fonts
	Specifying Font Size
	Using Embedded Formatting Commands
	IDL TrueType Font Resource Files
	Adding Your Own Fonts
	Where IDL Searches for Fonts
	UNIX and VMS
	Microsoft Windows
	Macintosh

	About Device Fonts
	Which Device Fonts Are Available?
	UNIX and VMS
	Microsoft Windows
	Macintosh

	Using Device Fonts
	UNIX and VMS
	Microsoft Windows
	Macintosh

	Fonts and the PostScript Device
	Using PostScript Fonts
	Changing the PostScript Font Assigned to an Index
	Adding Your Own PostScript Fonts

	Choosing a Font Type
	Appearance
	Three-Dimensional Transformations
	Portability
	Computational Time
	Flexibility
	Print Quality

	Embedded Formatting Commands
	Changing Fonts within a String
	Positioning Commands

	Formatting Command Examples
	A Complex Equation
	!MI
	!S
	!A!E!8x
	!R!B!Ip
	!N !7q
	!Ii!N
	!8U
	!S!E2
	!R!Ii
	!N dx

	Vector-Drawn Font Example

	TrueType Font Samples
	Vector Font Samples

	Obsolete Routines
	What Are Obsolete Routines?
	Routines Obsoleted in IDL 5.4
	Routines Obsoleted in IDL 5.3
	Routines Obsoleted in IDL 5.2
	Routines Obsoleted in IDL 5.1
	Routines Obsoleted in IDL 5.0
	Routines Obsoleted in IDL 4.0 or Earlier
	Obsolete System Variables

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

